
Priority Assignment in Fixed Priority
Pre-emptive Systems with Varying

Context Switch Costs

Robert I. Davis1, Sebastian Altmeyer 2, Alan Burns1

1Real-Time Systems Research Group, University of York, UK
2University of Amsterdam (UvA), Amsterdam, Netherlands

2

Motivation:
Temporal and Spatial Separation
 Separation is vitally important

 Safety standards (IEC61508, DO-178C, ISO26262) require that either all
applications are developed to the standard required for the highest
criticality application, or that independence between different applications
is demonstrated in both spatial and temporal domains

 Process and Thread model
 Each process has a separate memory address space
 Threads within a process share the same address space

 Enables spatial and temporal separation
 By mapping all tasks from a given application to a distinct process (one

process per application)
 Or by mapping all tasks of a given criticality level to a distinct process

(one process per criticality level)

 [R.I. Davis, S. Altmeyer, A. Burns, "Mixed Criticality Systems with Varying Context Switch

Costs ”. In proceedings IEEE Real Time and Embedded Technology and Applications
Symposium (RTAS 2018) 11-13th Apr 2018]

3

Processes and Threads

Thread (task)

Thread (task)

Thread (task)

Process (application(s))
Address
Space

Ai

Thread (task)

Thread (task)

Thread (task)

Process (application(s))
Address
Space

Aj

Large context switch cost

Small
context
switch cost

Small
context
switch cost

Key point: Two very different context switch costs

4

System Model
 Single processor
 Fixed priority pre-emptive scheduling (FPPS)
 Sporadic tasks

 Each task τi
 Ti – Period or minimum inter-arrival time (sporadic behaviour)
 Di – Constrained relative deadline
 Ci – worst-case execution time

 Additionally

 Each task is mapped to an address space Ai (and process)
 When one task τi pre-empts another task τj

same address space (Ai = Aj) implies a small context switch cost CS

change in address space (Ai ≠ Aj) implies a large context switch cost CC

 (Here costs are for switching from and later back to the pre-empted task)

5

Response Time Analysis for FPPS:
Simple Analysis
 Method

 Use large context switch cost CC for every pre-emption
 Equivalent to subsuming context switch times into WCET bounds
 Response time for task τi

 Fixed point iteration (converges or ends when value exceeds Di)

6

Response Time Analysis for FPPS:
Simple Analysis
 Example:

 Three tasks with parameters

 Further and
 Deadline Monotonic Priority Order (DMPO) is optimal
 With priority order then hence task set is not schedulable

 Part of schedule illustrating context switch costs

Large context switch cost
(every time)

LO-criticality execution

HI-criticality execution

7

Response Time Analysis for FPPS:
Refined Analysis
 Method

 Consider the set of tasks that can be affected by
pre-emption by task τj during the response time of task τi

 Only get a large context switch cost for pre-emption by task τj if there is
some task τh that can be pre-empted by task τj during the response time
of task τi that belongs to a different process and hence different address
space

Priority

τj

τi
τx

Lower priority than τj so they
can be pre-empted by τj At least
the priority of τi so they can
run within its response time

8

Response Time Analysis for FPPS:
Refined Analysis
 Example:

 Three tasks with parameters

 Further and
 Deadline Monotonic Priority Order (DMPO) is not optimal
 With priority order then hence task set is not schedulable
 With priority order then and task set is schedulable

 Part of schedule illustrating context switch costs

 Shared process and address
space implies small context
switch cost

9

Response Time Analysis for FPPS:
Multiset Analysis
 See the RTAS 2018 paper for details of the multiset analysis

 Multiset analysis dominates the refined analysis

[R.I. Davis, S. Altmeyer, A. Burns, "Mixed Criticality Systems with Varying Context Switch
Costs ”. In proceedings IEEE Real Time and Embedded Technology and Applications
Symposium (RTAS 2018) 11-13th Apr 2018]

10

Open Problem:
Efficient Optimal Priority Assignment

 How to efficiently obtain an optimal priority assignment* with

respect to the refined analysis? (and with respect to the
multiset analysis?)

*An optimal priority assignment is one that is schedulable whenever there
exists a schedulable priority assignment for the system

11

Audsley’s algorithm:
Optimal Priority Assignment (OPA)

for each priority level i, lowest first {
 for each unassigned task τ {
 if τ is schedulable at priority i
 assuming that all unassigned tasks are
 at higher priorities {
 assign task τ to priority level i
 break (exit for loop)
 }
 }
 if no tasks are schedulable at priority i {
 return unschedulable
 }
}
return schedulable

n(n+1)/2 schedulability tests rather than n!
by exhaustively exploring all possible orderings

(e.g. for n=15, 120 schedulability tests compared to 1307674368000)

12

OPA algorithm applicability
 OPA algorithm provides optimal priority assignment w.r.t. any

schedulability test S for fixed priority scheduling provided that
three conditions are met…
Condition 1: Schedulability of a task may, according to the test, be

dependent on the set of higher priority tasks, but not on their relative
priority ordering

Condition 2: Schedulability of a task may, according to the test, be
dependent on the set of lower priority tasks, but not on their relative
priority ordering

Condition 3: When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become
unschedulable according to the test, if it was previously deemed
schedulable at the lower priority

Powerful idea as we have
said very little about the actual

schedulability test
hence broad applicability

[R.I. Davis and A. Burns "Improved Priority Assignment for Global Fixed Priority Pre-
emptive Scheduling in Multiprocessor Real-Time Systems”. Real-Time Systems,
(2011) Volume 47, Number 1, pages 1-40]

13

Priority assignment toolbox:
Techniques to explore #1
 Task swapping

 Idea is to establish rules under which schedulability continues to hold
when we swap two specific tasks in the priority order (This is the basis of
many proofs of optimal priority orderings)

 Can then use those rules to transform any schedulable ordering into
another one with those tasks in a particular order without loss of
schedulability

 This might provide additional information / properties that hold for an
optimal priority ordering which can then be used to reduce the complexity
of finding it

 Hints and tips
 If we swap two tasks from the same process under what circumstances

would they both remain schedulable?

[R. I. Davis, L. Cucu-Grosjean, M. Bertogna, A. Burns, "A Review of Priority
Assignment in Real-Time Systems”. Journal of Systems Architecture (2016).]

14

Priority assignment toolbox:
Techniques to explore #2
 Results from research into Robust Priority Assignment

 Prior work on Robust Priority Assignment has shown that Deadline
Monotonic is the optimal priority order for tasks subject to an additional
interference function

 Additional interference function is very general – only has to be
monotonically non-decreasing with respect to lower priority levels and
increasing intervals over which interference is considered

 Hints and tips
 Perhaps it would be useful to consider a sub-set of tasks belonging to a

specific process and regard all other tasks as just an additional
interference function – we might then be able to show that Deadline
Monotonic partial order is optimal for the sub-set of tasks in each process
under the refined analysis?

[R.I. Davis, A. Burns. "Robust Priority Assignment for Fixed Priority Real-Time
Systems”. In proceedings IEEE Real-Time Systems Symposium pp. 3-14. Tucson,
Arizona, USA. December 2007]

15

Priority assignment toolbox:
Techniques to explore #3
 Sufficient test

 If a task is schedulable at the lowest (unassigned) priority assuming a
simple analysis (with all context switch costs assumed to be large) then it
MUST be schedulable at that level with the refined and multiset analysis
irrespective of the order of higher priority tasks

 Necessary test
 If a task is unschedulable at the lowest (unassigned) priority assuming a

simple analysis (with all context switch costs assumed to be small) then it
CANNOT be schedulable at that level (with the set of higher priority tasks
unchanged) under refined or multiset analysis irrespective of the order of
higher priority tasks

 Hints and tips
 Can these tests help us to build an optimal priority ordering for the refined

analysis?

[R.I. Davis and A. Burns, “On Optimal Priority Assignment for Response Time
Analysis of Global Fixed Priority Pre-emptive Scheduling in Multiprocessor Hard Real-
Time Systems”. University of York, Department of Computer Science Technical
Report, YCS-2009-451, April 2010.]

16

Open Problems
 How to efficiently obtain an optimal priority assignment for the

refined analysis? (and for the multiset analysis?)
 For two processes?
 For multiple processes?

 How best to schedule tasks when there are two different
context switch costs (process-level and thread-level)?
 Fully pre-emptive scheduling has the disadvantage of a large number of

context switches
 What about using non-preemptive scheduling or limited preemption

scheduling?

	Priority Assignment in Fixed Priority Pre-emptive Systems with Varying Context Switch Costs
	Motivation:�Temporal and Spatial Separation
	Processes and Threads
	System Model
	Response Time Analysis for FPPS:�Simple Analysis
	Response Time Analysis for FPPS:�Simple Analysis
	Response Time Analysis for FPPS:�Refined Analysis
	Response Time Analysis for FPPS:�Refined Analysis
	Response Time Analysis for FPPS:�Multiset Analysis
	Open Problem:�Efficient Optimal Priority Assignment
	Audsley’s algorithm:�Optimal Priority Assignment (OPA)
	OPA algorithm applicability
	Priority assignment toolbox:�Techniques to explore #1
	Priority assignment toolbox:�Techniques to explore #2
	Priority assignment toolbox:�Techniques to explore #3
	Open Problems

