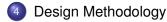
The Feasibility Analysis of Mixed-Criticality Systems

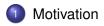
Saravanan Ramanathan, Xiaozhe Gu, Arvind Easwaran

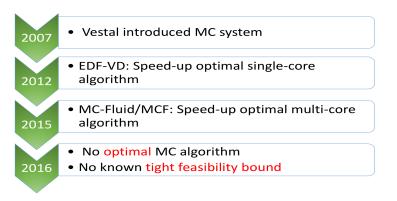
Nanyang Technological University, Singapore

July 5, 2016



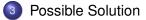

Outline


Motivation



- 2 Open Problem
- 3 Possible Solution
- 4 Design Methodology

Motivation


The open problem

What is a tight feasibility bound for Mixed-Criticality (MC) task systems?

Possible Solution

Mixed-Criticality System:

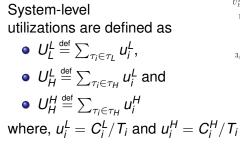
- Single-core / Multi-core scheduling
- Dual-criticality / Multi-Criticality system
- Periodic / Sporadic task model
- Implicit / Constrained deadline

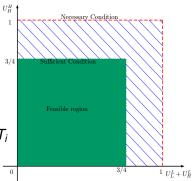
Possible Solution

Mixed-Criticality System:

- Single-core / Multi-core scheduling
- Dual-criticality / Multi-Criticality system
- Periodic / Sporadic task model
- Implicit / Constrained deadline

Mixed-Criticality Task Model

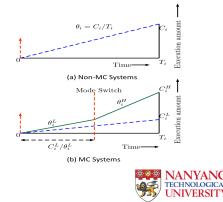

Task Model: Implicit-deadline dual-criticality (namely LO and HI) periodic task system is being considered.


$\tau_i = (T_i, \chi_i, C_i^L, C_i^H, D_i)$

- $T_i \in \mathbb{R}^+$ is the period,
- $\chi_i \in \{LO, HI\}$ is the criticality level,
- C_i^L and C_i^H are the LO- and HI-criticality Worst-Case Execution Time (WCET) values respectively; we assume $C_i^L \leq C_i^H$ and,
- $D_i = T_i$ is the relative deadline.

MC Feasibility Analysis

Design Methodology


Challenge: Determining the worst-case mode switch pattern

Design Methodology

Challenge: Determining the worst-case mode switch pattern Solution: Fluid model

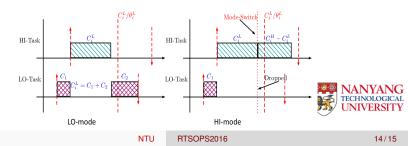
- Execution rate (θ_i) determines the mode switch instant (C^L_i/θ^L_i)
- Non-MC systems: Most fluid algorithms are optimal

Design Methodology

Design of optimal scheduling algorithm involves

- In LO mode: Schedule LO-criticality tasks as late as possible
- In LO mode: Schedule HI-criticality tasks with their virtual deadline (C_i^L/θ_i^L)
- In HI mode: Optimal scheduling of HI-criticality tasks inclusive of carry-over demand of HI-criticality tasks.

Design Methodology


HI-mode schedulability: In the absence of LO-tasks, fluid scheduling can optimally schedule HI-tasks in HI-mode.

Design Methodology

HI-mode schedulability: In the absence of LO-tasks, fluid scheduling can optimally schedule HI-tasks in HI-mode. LO-mode schedulability:

- Use DP-Fair to schedule HI-tasks in LO mode
 - Virtual deadline (C_i^L/θ_i^L) and actual deadline (T_i)
- Schedule LO-tasks as late as possible

Thank you..! Questions..?

