How Does Task Scheduling Affect Engine Control Performance?

Paolo Pazzaglia, **Alessandro Biondi**, Marco Di Natale and Giorgio Buttazzo

Scuola Superiore Sant'Anna, Pisa, Italy

Real-Time Systems Laboratory

Real-time scheduling theory has provided a foundation for understanding and solving responses in systems that have real-time constraints. New fundamental results are needed trends in real-time systems design. RTSOPS 2016 encompasses all aspects that are relescheduling.

RTSOPS 2016 invites extended abstracts of open problems in areas such as, but not limited to:

- Single-, Multi- and Many-core scheduling;
- New models for real-time systems:
- Scheduling in cyber-physical systems;
- Mixed-criticality scheduling;
- Interactions between WCET (worst-case execution time) analysis and scheduling.

Instructions for authors

Extended abstracts (for either new open problems or status reports on previously-presented p be written in English, and not exceed two A4 pages in length in single column, 10pt format, incl

- Download the MS Word template <u>here</u>
- Download the LATEX template here

INTRODUCTION

• Engine control is a very interesting and challenging CPS problem

- Scheduling plays a **key** role
- **Design constraints** (limited computational power)
- Timing significantly influences system **performance**
- Both time- and event-driven behavior

ENGINE CONTROL APPLICATIONS

- Engine control applications include
 - Periodic Tasks, with fixed periods (1-500 ms)
 - Angular Tasks, linked to the rotation of the crankshaft

ADAPTIVE BEHAVIOUR

To prevent **overload** at high rates, different control implementations are used

ENGINE CONTROL APPLICATIONS

SCHEDULING PROBLEM

Buttazzo et al. DATE14 Davis et al. RTAS14 Biondi et al. ICCPS15 Guo and Baruah ICCPS15

ALL THE SOLUTIONS FOR THE SCHEDULING PROBLEM ASSUMED HARD DEADLINES

Are engine control applications hard real-time?

THE (REAL) PROBLEM

• Engine control is **not hard real-time**

Deadline misses can be **tolerated**

Informal specifications

- "Deadline can be missed but not that many"
- "Not that many consecutive deadline misses"
- "Not that large maximum response-times"
- "What matters is the engine performance"
- "The system incurs in transient overloads"

THE (REAL) PROBLEM

• The **objective** of the scheduling is **not** necessarily to *meet* al the **deadlines**.

BUT

Maximize the engine performance given a set of computational constraints

Engine control is a complex **multi-criteria design optimization** problem (power, fuel efficiency, noise, emissions,...)

EXAMPLE OF CHALLENGES FUEL INJECTION

 TPU uses data produced from the CPU (injection angle, quantity of fuel, CR pressure...)

If **deadlines** are **missed** (on the **CPU**), the **TPU** uses **old data** for the next injection

EXAMPLE OF CHALLENGES FUEL INJECTION

- **Deadline misses** can be **penalizing** if the conditions of the engine **changed** (too much) from previous cycles.
- The use of **old data** can produce **errors** in the **injection angle**.

EXAMPLE OF CHALLENGES SWITCHING SPEEDS

 To prevent overload conditions, different control implementations are used depending on the engine speed

EXAMPLE OF CHALLENGES SWITCHING SPEEDS

EXAMPLE OF CHALLENGES SWITCHING SPEEDS

- Which is the **best** speed to **switch** control implementation?
- The problem has been recently attempted only under the assumption of hard deadlines...

TODAY'S APPROACH: ITERATIONS BETWEEN TEST-BENCH AND TUNING

"Something" more systematic supported by a **model** and an **analysis** would be very useful...

CAN THE PROBLEM BE PARTITIONED?

 Is it possible to separate the timing (scheduling) problem from the functional (performance) analysis?

EXISTING APPROACHES

Firm real-time (e.g., m-k model)

- Still yes/no analysis;
- No way to express impact on performance.

Generalized response-time analysis

- Allows computing max. number of consecutive deadline misses;
- System state not considered;
- No way to express impact on performance.

Value-based scheduling

- Allows expressing performance as value functions;
- How to obtain (and define) value functions?
- Value should be dependent on the system state.

LIMITATIONS

- None of the existing approaches can be used as it is.
- Possibly a combination of such techniques will be required.

Large **lack** of **models** (and corresponding **analysis** techniques) to take into account the **system state** (and hence **performance**)

SCHEDULING AS DESIGN OPTIMIZATION

Scheduling in engine control should be a design optimization of performance functions

PROBLEMS

- Likely, **performance** cannot be expressed as a simple function of timing parameters.
- Performance is not independent from past behavior.
- **Multiple** performance indexes must be considered.

OUR (CURRENT) APPROACH

- Closed form functional mapping between temporal parameters and performance is possible for simple control systems.
- This approach becomes soon **prohibitively difficult** for a **realistic** CPS due to the intrinsic complexity of the system.

OUR (CURRENT) APPROACH

Thank you!

Alessandro Biondi alessandro.biondi@sssup.it