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Rare events and worst-case execution times

Cristian Maximú,úú, Liliana Cucu-Grosjeanú and Benoit Triquetúú

* firstname.lastname@inria.fr, AOSTE team, INRIA Paris-Rocquencourt
** firstname.lastname@airbus.com, Airbus, Toulouse

1 Motivation
During the last years the arrival of multi-core processors or many-core processors as well as the increased
complexity of programs have made more di�cult the estimation of the worst case execution times (WCETs)
of programs. The existing methods may produce estimates that are too pessimistic for some systems. As
result new analyses based on probabilities and statistics have appeared to cope with this complexity by
taking into account the fact that large values of WCET may have low probability of appearance.

The first paper introducing probabilistic distributions for the description of execution times of tasks
had associated to large values of execution times low probabilities [7] as illustrated in Figure 1. Di�erent
papers propose since methods to obtain such distributions. In [3] the authors provide a framework for
obtaining the probabilistic execution times (pETs) of a program. Another method for estimating a pWCET
bound in the presence of permanent faults in instruction caches was introduced in [6]. Papers like [4, 9]
propose the estimation of pWCET using extreme value theory. Such theory is applied in [2] to platforms
with randomized timing behavior and an associated avionics case study is presented in [8]. Only for this
type of architecture, to our best knowledge, it is provided a proof that a large value of an execution time of
a program is a rare event [1].

Figure 1: Distribution of execution times

2 Open Problem
In practice, it is noticeable that the higher the measured execution time is, the smaller its probability of
occurrence is. In reality, the WCET is not easy to measure, and the analysis tools can either overestimate
the WCET (static analysis), or underestimate it (taking in consideration only measurements), or predict it
with a certain probability of occurrence (measurement-based probabilistic timing analyses). Figure 2 shows
a description of the currently common accepted relation between observed execution times, WCET, etc [5].

As stated in the introduction associating low probability of appearance to large values of pETs was
proved valid in the context of cache randomized architectures. One would expect to have higher probability
of appearance for large values of pETs on existing real-world deterministic architectures (from which the
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vast majority are deterministic), but how one would prove it? For cache randomized architectures the proof
was built using static probabilistic analysis and this does not seem to be trivial for any architecture. In
conclusion our open problem is

How do we prove that large values of pETs are rare events for real-world programs executed
on existing deterministic architectures?

Figure 2: Commonly accepted relation between possible execution times
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Abstract

In this paper we present and discuss some of the key open problems and challenges with using probabilities in Response-Time
Analysis (RTA) of ”real” real-time systems, i.e., challenges inherent in the real software to be analyzed.

I. INTRODUCTION

The Worst-Case Response-Time (WCRT) of a task is the maximum time after activation within which the task will finish its
execution. The WCRT is constructed by the Worst-Case Execution Time (WCET) of the task itself, as well as the interference
of other higher priority tasks, along with potential blocking by lower priority tasks if blocking is allowed by the task model. The
interference of other higher priority tasks is constructed using the higher priority tasks’ WCET and period. Hence, the WCET
of tasks in a real-time system is central in deriving the WCRT of a particular task. Usually the WCET is derived using static
analysis of the source code in a context of a specific processor on which the task is to execute on. The context is needed to get
the correct timing characteristics.

Now let’s consider that the probability of the WCET to actually happen is rather low. If we further consider that the tasks
are independent from each other, then the probability of the actual WCRT to happen will be derived by multiplication of
the corresponding WCET probability of the task under analysis along with the respective WCET probability of all instances of
interfering and blocking tasks executing during the busy period constituting the response time. Even with a fairly high probability
of the WCET to happen it is easy to see that the probability of the WCRT to happen quickly becomes very small.

Probabilistic WCRT has the potential to avoid over-allocation of system resources such as processor capacity which, if applied
in RTA for real systems, increases resource efficiency and decreases hardware cost. Hence, it is tempting to make use of the
probability in the context of WCRT, such that overly pessimistic (sufficiently unlikely) WCRT values can be disregarded. Instead,
using a threshold to derive more realistic (sufficiently accurate) analytical response time values would be more applicable.

In search of the holy grail of probabilistic real-time analysis techniques a large number of approaches for using probabilities
in real-time analysis theory have been developed over the years. However, most of these approaches are developed around a set
of simplifying assumptions restricting the problem and unfortunately also restricting the usefulness of the approach in the setting
of a real system.

In this paper we try to go to the bottom of the challenges with using probabilities in RTA for real-time systems. We identify
a set of key challenges inherent in such analysis, and we discuss the implication of these challenges in this context of related
work. Finally, we point towards the future with an attempt to see how probabilities can be used in the context.

II. CHALLENGES

Below we outline 6 key challenges in achieving useful probabilities in RTA. Note that when doing WCET analysis for WCRT
analysis, it is easier to capture the exact worst-case related to each challenge not having to keep track of the different states
outlined below. However, when going for a probabilistic RTA, a more detailed probabilistic execution time is needed along with
various state information in order to produce meaningful probabilistic response times. For each challenge outlined below we
describe the known assumptions made to address the challenge. Note that it is possible to construct a system and software taking
one or more challenge’s assumptions into consideration, however it can be concluded from complying with these assumptions
that they make the analysis less useful for application to real systems.

Challenge 1 – SOFTWARE INTERNAL STATE
The software internal state will affect the exact execution time of a particular execution instance of a task. Internal variables

of the task may contain data that affect the exact software code to be executed and how, e.g., which software parts to execute
and for how many iterations, which in turn will affect the exact execution time of a particular instance of task execution. Known
assumptions made to solve the challenge:

A1.1 Forbid tasks to have internal states, i.e., each activation of a task is independent from other activations of the same task
and therefore the task’s execution time can be modeled as independent from the software internal state.

A1.2 Make sure that the internal state of a task will not influence its execution time.
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Challenge 2 – SOFTWARE EXTERNAL STATE
Sharing of resources among the tasks will affect the exact execution time of a task instance. If critical sections are protected

by locks, protocols for synchronization among real-time tasks can be used. There exist analysis for the worst case behavior of
such protocols, however the exact execution time of a particular task execution instance is not known as this depends on how
and when the other tasks sharing the same resource will execute. Known assumptions made to solve the challenge:

A2.1 Forbid synchronization and sharing of data among tasks, i.e., all tasks must be independent from each other.
A2.2 Make sure that the execution time of a task will not depend on effects related to shared data.

Challenge 3 – SOFTWARE ARCHITECTURE STATE
Due to usage of services and drivers located together with the task on a processor or core of a multi-core, e.g., a particular

driver or service that is used by several tasks possibly also resident outside of the processor hosting the task under analysis,
the exact execution time of a task instance will depend on the usage of these services and drivers. Note that it may be very
difficult to characterize the exact behavior of service and driver usage by external clients compared to internal clients. Known
assumptions made to solve the challenge:

A3.1 Avoid usage of shared services and drives in the software architecture.
A3.2 Enforce predictability of shared services and drivers, e.g., by hosting them in predictable containers such as servers.

Challenge 4 – HARDWARE ARCHITECTURE STATE
The hardware state will affect the execution time of the software executing on the hardware. The hardware state is affected by

all software that is executing on the hardware. For example, the contents of caches will have an impact on the time that it takes
to execute instructions and manipulate data. If two processor cores are sharing a cache, a task running on one core may interfere
with the tasks running on the other core even though they are otherwise independent from each other. Known assumptions made
to solve the challenge:

A4.1 Reset the hardware state before execution of a task instance, and to not allow for any preemption of the task before it
has finished its execution.

A4.2 Disregard for the effect of hardware related interference. Depending on what hardware is used, the effect of the hardware
internal state on the execution time of a task could be so small that it could be incorporated into, e.g., the execution
time of the task, and therefore disregarded.

A4.3 Make the hardware to behave random, and therefore the effects of it can be modeled accurately.

Challenge 5 – STATE OF THE ENVIRONMENT
The state of the environment in which the task is executing may affect the exact execution time of a particular task execution

instance. For example, a software tracking obstacles may have its execution time depend on the number of obstacles that it is
currently tracking. Another example is the speed of a vehicle that may affect the execution time of a control software running
in the vehicle, e.g., where the speed generate data to be processed by a task instance. Known assumptions made to solve the
challenge:

A5.1 Disregard the environment from the analysis. In the context of a worst-case analysis this is a common solution, however if
we would like to derive a correct distribution of execution- and response-times, the environment’s affect on the execution
time should be dealt with.

A5.2 Make sure that the implementation of the software in the task will not vary its execution time depending on the state of
the environment, e.g., it is possible to implement (at least some) algorithms to have constant execution time.

III. DISCUSSION AND OPEN PROBLEMS

We have contributed to the state-of-the-art in probabilistic and statistical analysis of real-time systems, e.g., [?], [?]. Most
related work, including our much of our own, disregard either all or most of these challenges, i.e., they can be considered as
open problems, in particular the combination of solutions to several of the challenges. Typically related work tries to address at
most one of the challenges. We believe that addressing all challenges 1-5 is required for a general applicability of probabilistic
real-time analysis in the context of ”real” real-time systems, i.e., systems that are not subject to too many restricting assumptions.
Hence, given current state-of-the-art, we have a lot of significant research challenges to explore in the upcoming years.
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I. INTRODUCTION

The temporal validation of a real-time system must ensure that critical tasks meet their deadline, even in the
worst-case scenarios. Traditionally, both the deadline and worst-case execution time of a task are expressed as
absolute bounds. Such absolutes may lead to resource over-provisioning for the sake of system validation, as
they may include unlikely events with a granularity beyond the industry requirements. Probabilistic worst-case
execution times (pWCET) fit industrial requirements for the validation of critical real-time systems as they
provide bounds on the worst-case execution time of applications as well as their exceedance probability when
run. Different static probabilistic timing analyses (SPTA) [2], [3], [1] have been proposed and extended to
derive the probabilistic worst-case execution time (pWCET) of a task in the presence of randomised caches.

However, these methods only apply to single level caches and fail to capture the behaviour of complex
memory hierarchies. Such hierarchies are common even in simple architectures as they bridge the gap between
fast processors and relatively slower main memories. In the context of a memory hierarchy, multiple cache
layers are linked together. They are traversed in order from the processor to the main memory, and a request
is served by the first cache level where the target block is found. Therefore, the position of a requested block
in the hierarchy defines the latency of a memory request, and the behaviour of subsequent requests.

Static analyses have been proposed to upper-bound the contribution of cache hierarchies on tasks’ execution
times; however, these approaches focus on deterministic policies [4], [6]. Deterministic policies do not lend
themselves to the expression of worst-case timing estimates as exceedance functions, and the resulting absolute
bounds may be pessimistic. The prior methods rely either on the classification of the access behaviour of each
access with regards to each cache level for an incremental analysis level by level [4], or a unified model of the
whole hierarchy [6].

II. SPTA FOR SINGLE CACHES

Two complementary families of SPTA approaches, contention and collection, have been defined for single
caches implementing an evict-on-miss random cache replacement policy. Under such a policy, when a requested
block is absent from the cache, a line is randomly selected for eviction and the requested block, fetched from
memory, replaces its contents. Each line has the same probability 1

N , depending on the associativity N of the
cache, to be selected for eviction, hence minimising the dependencies of the cache behaviour on access history.

Contention-based methods approximate the Probability Mass Function (PMF) of each access, i.e. the proba-
bility of the access to suffer a cache hit or a memory hit latency, such that their convolution results in a sound
timing estimate. The convolution operator imposes restrictions on the derived hit probabilities. The PMF of an
instruction must lower-bound its cache hit probability, and hence its execution time. As should the convolution
of different PMF lower-bound the execution time of the corresponding sequence of accesses [1]. The former
is ensured by the definition of a lower bound on hit probability based on the reuse distance of accesses, the
maximum number of evictions from the previous access to the same block. The latter is guaranteed in the most
recent approach [1] using cache contention, which relates to the number of hits between two accesses, to ensure
that the lines that are considered as hits fit into the cache.

Collection approaches instead rely on the approximation of a sound subset of the possible cache states at
runtime, alongside their corresponding execution time distributions. Compared to contention-based methods they
offer an increased precision at the cost of higher complexity. The complexity can be controlled by focusing the
analysis on a subset of memory blocks deemed relevant, which in turn introduces uncertainty in the model and
reduces its precision.

III. IMPACT OF MEMORY HIERARCHIES ON SPTA
Consider an M+1 level memory hierarchy, including the main memory. A memory request is first processed

by the lowest cache level the L1 cache. In the case of a miss, it is then transferred to the next layer and so
on until it can be served. The only guarantee after the access is the presence of the block in the L1 cache.
The contents of each layer after an access depends on the management policy. Each policy may introduce new
dependencies between instructions and cache levels. Hence, the introduction of multiple levels in the memory
hierarchy challenges the assumptions behind existing SPTA techniques.

For both contention and collection approaches, the hierarchy management policies need to be studied i) to
prevent the explosion of the problem, e.g. from a single state an eviction on L1 and L2 produces N1 ⇥ N2
states assuming Ni is the associativity of cache level i, and ii) capture scenarios for which convolution produces
only valid sequences of events, e.g. a hit in the L2 cache may depend on a prior access being a miss in L1.
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A. Inclusive cache hierarchy

An inclusive cache hierarchy enforces the inclusion of the contents of a cache in the higher levels, e.g. each
block in the L1 cache must also be in the L2 cache. When a block is evicted from a high cache level, it is
removed from lower levels, a so-called inclusion victim. The higher level caches must be able to hold all lines
in the respective lower levels.

After a memory request, the block is guaranteed to be present in all levels inclusive of the first one. The reuse
distance of an access can be estimated from the closest prior reference to the same block. Further, because of
inclusion victims, a miss on cache level L contributes to the reuse distance of all lower levels. Thus an access
for LM may contribute to the reuse distance of accesses on the L1,. . . , LM � 1 caches. This is a worst-case
scenario assuming a memory hit. The contribution to the reuse distance on the L1 of a guaranteed level L hit
cannot exceed L � 1. But randomised caches hardly provide such guarantees on hits beyond the first level.
Deterministic architectures rely on history-dependent policies, not amenable in the context of SPTA, to reduce
the impact of inclusion victims [5].
B. Exclusive cache hierarchy

An exclusive cache hierarchy maximises the use of the cache space. Every cache line in the hierarchy holds
a different block. A memory block can only appear in one cache level. Upon eviction from a cache level
L, the victim is inserted in cache level L + 1. The requested data is only inserted in the L1 cache upon a
miss. Therefore, all caches in an exclusive hierarchy must use the same line size to allow for line swapping.
Although this is not mandatory, an equal number of sets across the different levels eases the implementation
and the analysis.

An exclusive cache hierarchy may be modelled as a single cache which size equals the size of the hierarchy.
Given a hierarchy of LRU caches, the logical age of a block then defines the cache level in which it resides and
therefore its access latency [4]. A similar model can be applied to collection analyses for randomised caches,
but the depth of a block in the hierarchy needs to be upper-bounded as it defines the latency of accesses. If
different levels of the hierarchy use a different number of cache sets, the unified contents model may not hold.

The reuse distance could also be computed using this unified contents representation. A block can only be
evicted from its current cache level if an access is served by a higher level than the one where it resides. A
victim block is inserted in the higher cache, where it is less sensitive to evictions. This reinforces the need for
a per-level expression of the reuse-distance, even though it is likely to be the same for most levels. Capturing
guaranteed hits, requests which do not reach higher levels is complex for layers beyond the first.
C. Non/Mostly-inclusive cache hierarchy

Neither the exclusion or inclusion restriction applies on a non-inclusive hierarchy. Upon a miss on a cache
level, the request is passed to the next level until it can be served. An access guarantees the insertion of the
data in all the levels where it could not be found, up to the first hit in the hierarchy. This is the simplest
implementation of a cache hierarchy. From the analysis point of view, it means that guarantees about the
presence of data in cache after an access only exist for the first level, or if misses can be guaranteed. Deriving
sound PMF requires a lower bound on the miss probabilities of accesses, e.g. an access can only be a L3 hit
if it misses on all lower levels.

There is no correlation between the different levels. Contrary to the other policies it is unsafe to consider that
a piece of data is in higher levels than the one it might reside in. This has been identified in the deterministic
case, where the insertion of a block in a level which is not guaranteed to be accessed results in optimistic
timing estimates. Instead, when the access to a level cannot be guaranteed, a collection approach can insert a
placeholder for the data in cache, such that further accesses to the same block do not cause additional evictions,
but cannot assume hits on this data. An important property to capture for memory blocks is the lowest and
highest level where they might reside in the hierarchy. These two values bound the cache levels where the
eviction of blocks is bound to occur but not the insertion.

It is currently an open problem how to effectively and efficiently perform SPTA for any of the above multilevel
memory hierarchies using random replacement caches.
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I. Original Problem Statement
Real-time systems such as those deployed in space, aerospace, automotive and railway applications require guar-

antees that the probability of the system failing to meet its timing constraints is below an acceptable threshold (e.g.
a failure rate of less than 10�9 per hour). Advances in hardware technology and the large gap between processor
and memory speeds, bridged by the use of cache, make it di�cult to provide such guarantees without significant
over-provisioning of hardware resources. The use of deterministic cache replacement policies means that pathological
worst-case behaviours need to be accounted for, even when in practice they may have a vanishingly small probability
of actually occurring. The use of cache with random replacement policies [3] can negate the e↵ects of pathological
worst-case behaviours while still achieving e�cient average-case performance, hence providing a way of increasing
guaranteed performance in hard real-time systems.

The timing behaviour of programs running on a processor with a random cache replacement policy can be determined
using Static Probabilistic Timing Analysis (SPTA). SPTA computes an upper bound on the probabilistic Worst-Case
Execution Time (pWCET) in terms of an exceedence function, which gives the probability, as a function of all possible
values for an execution time budget x, that the execution time of the program will not exceed that budget on any single
run. SPTA [5] requires a probability function that can be used to compute an estimate of the probability of a cache hit
for each memory access. This probability function is valid if it provides a lower bound on the probability of a cache
hit. As shown last year at RTSOPS 2013 [4], the only valid cache-hit probability known by then is given as follows:

P̂D(k) =

8>><
>>:

⇣
N�1

N

⌘k
N > k

0 otherwise
(1)

where N denotes the associativity of the cache and k the reuse distance, i.e., the number of intervening memory accesses
that could cause an eviction, since the memory block was last accessed. All other estimations of the hit-probability [7, 6]
that had been proposed by then have been refuted as they may lead to optimistic results. The complexity of deriving
a sound estimate of the hit-probability is caused by the dependency of the current event of a cache hit or miss on the
history of prior events; caused by the finite size of the cache. In Equation (1), this dependency is accounted for by
setting the probability of a cache hit to zero in cases where the reuse distance exceeds the associativity; which results
in a large over-approximation even for simple access sequences. The open problem presented in last year’s RTSOPS [4]
was thus: how to improve upon the simple SPTA analysis?

II. Correctness Conditions and Optimality
Instead of immediately answering the open problem, we tried to learn from the failed approaches to improve upon

Equation (1) and identified the correctness conditions [2] that any sound approximation of the cache-hit probability must
fulfil. Sound in this context means that for any sequence of cache accesses [e1, . . . , en], the approximation P̂ complies
with two constraints: (C1) it does not over-estimate the probability of a cache hit, and (C2) the value obtained from
convolution of the approximated probabilities for any subset of a trace T describing the probability that all elements
in the subset are a hit, is at most the precise probability of such an event occurring:

C1 8e 2 [e1, . . . , en] : P(ehit) � P̂(ehit),
C2 8E ✓ [e1, . . . , en] : P

⇣V
e2E ehit

⌘
�Qe2E P̂(ehit).

Using these soundness conditions, we have been able to clearly identify why former approaches [7, 6] failed and we
have been able to show that Equation (1) is not only correct, but also optimal with respect to the limited information
it uses: any cache-hit probability that only uses the associativity and the reuse distance is either at most as precise as
Equation (1) or optimistic. Due to space limitation, we refer to [1] for the proof of optimality.

III. Using other information
The negative result that we can not improve the existing cache-hit probability by using the same information also

gives the key to providing better bounds: we have to include additional information which is not yet taken into account.

A. Stack Distance
P̂D(k) can be pessimistic in the commonly observed case of sequences with repeated accesses (e.g. loops). For

example, the trace a, b, c, d, c1, d1, c1, d1, a7, b7 repeats the accesses c, d three times within the reuse distance of the
final accesses to a and b. Assuming an associativity of 4, then P̂D(k) gives zero probability of a cache hit for these
accesses, since their reuse distance exceeds the associativity of the cache. However, it is possible for the cache to
contain all four distinct memory blocks a, b, c, d accessed in this sequence, and so a zero value for the probability of
a cache hit for the final accesses to a and b is pessimistic.

Let � be the stack distance of element el, i.e., the total number of pair-wise distinct memory blocks that are accessed
within the reuse distance k of element el. The maximum number of distinct cache locations loaded during the reuse

7



distance of el is upper bounded by �, hence it follows that a lower bound on the probability that el will survive all of
the loads and remain in the cache is given by:

P̂A(�, k) =
( ⇣

N��
N

⌘
(N > �) ^ (k , 1)

0 otherwise
(2)

We note that P̂A(�, k) and P̂D(k) are incomparable, yet both give valid lower bounds on the probability of a cache hit.
We thus may use the maximum of them to compute an improved lower bound that dominates each individually.

B. Cache Contention
Equation (1) and Equation (2) both provide a tight lower bound on the probability of a cache hit, but are imprecise

even for simple access sequences. If we consider for instance a random cache with associativity 4 and the following
access sequence, a, b, c, d, f , a4, b4, c4, d4, f 4 all accesses are considered cache misses. The reason for this is that for
each of the last five accesses, the probability of a cache hit is set to 0 to ensure correctness with respect to condition C2,
i.e, that the probability of the last five access all being hits is zero. However, this can also be ensured by considering
the probability of a cache hit for the preceding accesses. To this end, we define the concept of the cache contention
of a memory block el which denotes the number of memory accesses within the reuse distance of el that potentially
contend with el for space in the cache. We only need to set the probability of a cache hit for an access el to zero when
the cache contention is greater than or equal to the associativity N.

P̂N(ehit
l ) =

8>><
>>:

0 con(el,T ) � N

max
✓
P̂A(�, k),

⇣
N�1

N

⌘k◆
otherwise (3)

Conceptually, the cache contention assumes that each access within the reuse distance of el that has been assigned
non-zero probability of being a hit as requiring its own separate location in the cache. Due to space limitation, we
refer to [1] for the exact definition of the cache contention.

IV. Collecting Semantics and Combined Approach
An orthogonal approach to compute the pWCET is to enumerate all possible cache states and the associated

probabilities. As this solution is computationally intractable, we have developed a combined approach with scalable
precision: The idea is to use the precise approach for a small subset of relevant memory blocks, while using the
imprecise approach for the remaining blocks. So, instead of enumerating all possible cache states, we abstract the set
of cache states and focus only on the m most important memory blocks, where m can be chosen to control both the
precision and the runtime of the analysis. In this way, we e↵ectively reduce the complexity of the precise component
of the analysis for a trace with l distinct elements from 2l to 2m (typically with m ⌧ l). We again refer to [2] for the
details of this approach.

V. Open Problems and FutureWork
This progress report presents the solutions to one of last year’s open problems: how to improve upon the simple

SPTA analysis? A first negative result, namely that the original hit probability can not be improved without additional
information, has led us towards (i) the discovery of alternative approaches to bound cache-hit probability that rely on
additional information such as the stack distance and the cache contention and (ii) the development of an orthogonal
approach that relies on complete, or partial enumeration of the cache contents. As according to George Bernard Shaw
science never solves a problem without creating ten more, the recent advancements lead to new, open problems.
Foremost, how to extend the analysis to control-flow graphs and how to select the relevant memory blocks for the
combined approach.
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I. MOTIVATION FOR A NEW PARALLEL APPLICATION MODEL

Traditional sequential programming models struggle to harness the immense processing capabilities offered by the new
massively parallel architectures. It is also widely recognized that coarse-grained thread-based parallel programming models scale
poorly due to load balancing difficulties. As a result, a shift in software development towards fine-grained task-based parallel
programming paradigms is currently under way. For the real-time scheduling community, this paradigm shift entails the adoption
of new application models to represent precedence constraints and synchronization points among all the computing units (referred
to as sub-tasks hereafter).

Current models typically represent a parallel application as a single graph. Each node of the graph models a sequential
sub-task and the edges that connect the nodes model all kinds of functional and/or non-functional dependencies between these
sub-tasks. Every sub-task (node) is typically characterized by (at least) a WCET estimation and by some additional parameters
such as a best-case/average-case execution time estimation, a memory footprint, and an input and output list of parameters.
The edges may represent functional or non-functional precedence constraints, as in the fork/join task model [1], or explicit data
dependencies as in the synchronous parallel task model [2] and the parallel DAG model [3]. In addition, every edge may also
be annotated with additional information/constraints on the dependency between the two nodes that it connects. However, none

of these models can capture the control-flow information (such as conditional execution of code) of the applications that they

model. Consequently, in such models, all the nodes in the graph must execute each time the application is run. As a result, a
simple application (see Fig. 1a) that executes in parallel either (as a result of an if-statement) four instances of a function B
or two instances of a function C, cannot be properly modelled by using any of the parallel application models proposed so far
in the real-time literature. All the existing models are limited by their implicit assumption that all the nodes must execute each
time the application is run. Due to this limitation, these models:

Case 1: model function A as a node connected to four nodes B and two nodes C, which are in turn connected to node D
(see Fig. 1b). The resulting graph is then composed of 8 nodes that are all assumed to be executed each time the application is
run. This leads to an obvious over-approximation of the maximum workload1 (denoted W ) of the application, which makes the
higher level analyses (like the schedulability analysis) more pessimistic.

Case 2: consider only the “worst-case execution flow” of the application and model that single flow as a graph of sub-tasks
that must all execute. However, it is not trivial to determine the worst-case execution flow of a parallel application. Assuming an
infinite number of cores, the WCET of the application is reached by executing the flow (i.e. the graph of sub-tasks) of maximum
“critical path length” (denoted CP). In our example, such a WCET is reached by taking the “else” flow depicted in Fig. 1d
which has the longest critical path length (= 1+5+2 = 8). However, this flow is not necessarily the one causing the maximum
interference to the other applications of the system. Assuming that our example application has the highest priority in a system
with 6 cores, although its WCET is reached by executing the “else” flow, this flow will occupy at most two cores at the same
time and has a maximum workload of W = 13. On the other hand, the “if” flow depicted in Fig. 1c is shorter (CP = 7) but
it may cause more interference on the lower priority applications as it will demand more processing resources (W = 19) from
four cores at the same time. Therefore, when the schedulability of all the applications in the system has to be assessed, it is a
non-trivial task to identify these so-called application worst-case execution flow and to the best of our knowledge, this problem
is still an open one.

Our research identifies the need to support modelling of such applications for which each run may execute a different set of
sub-tasks and all these sub-tasks may have different dependencies from one run to another. The main difference with the existing
parallel application models is that we intend to represent an application as a set of DAGs where each DAG models a single
execution flow of the application. We believe that such a model is more accurate and efficient than the state-of-the-art as it does
not create a single DAG by cross-cutting the structures of multiple execution flows with different parameters (for instance, we
will model the “if” and “else” flows of Fig. 1c and Fig. 1d as two separated DAGs instead of modelling the application by using
the graph of Fig. 1b). We also believe that one of the first computation phases of the currently-available WCET analysis tools
[4], during which the control flow graph is reconstructed by parsing the code of the application, can be adapted to our application
model such that the tool will identify every feasible execution flow. However, instead of modelling an execution flow as a simple
sequence of instructions or basic blocks (as the tools currently do), a flow will be modelled as a DAG of sub-tasks with data
dependencies between them. Further, we also believe that the same tools may be adapted to derive various useful information
on every execution flow such as its maximum workload, its “critical path length”, its maximum concurrency level, etc.

From a real-time perspective, this new model poses serious challenges, especially when trying to compute the response time
of an application scheduled conjointly with other applications. With this model, it must be verified that every feasible execution
flow (which is now a DAG) of the application under analysis completes before the application deadline, and this must hold

1The maximum workload is defined as the maximum amount of work that the application can impose on the system, i.e. it is the sum of the WCET of all
its nodes.
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(a) Example of a parallel application
using Open MP.

(b) Complete graph of the application.
W = 29 and CP = 8.

(c) “If” execution flow.
W = 19,CP = 7.

(d) “Else” execution flow.
W = 13,CP = 8.

true considering all possible interference patterns from the other applications. Knowing that this interference can greatly vary
depending on which execution flow is taken by these other applications (some of these flows may execute for a very long time
but using only a few cores whereas others may use many cores and execute for a very short time), the interference analysis could
consider every combination of execution flows from every application in the system, but this would be prohibitively expensive
in terms of the computation time.

II. THE ENVISIONED APPROACH

The objective of this work is to come up with a framework to enable the computation of the response time of every
application in the system in polynomial time. Our approach intends to compute a single DAG of independent periodic servers
for each application in the system, and define a mapping rule to decide which ready sub-task must be assigned to which server
at run-time. These servers and the mapping rule must be defined such that, for any execution flow taken by the application at
run-time, enough cpu-budget is provided to the sub-tasks of the currently executed flow so that the application completes by its
deadline and respects all the precedence constraints. Specifically, our envisioned solution will work as follows:
Step 1) We will propose an efficient mapping rule to arbitrate the assignment of the sub-tasks that are ready-for-execution to
the running servers.
Step 2) For each execution flow (DAG of sub-tasks) of the application under analysis, we will compute a graph of servers where
each node of the graph (i.e. each server) has a cpu-budget and each edge models a precedence constraint between two servers.
This graph of servers together with the mapping rule defined in Step 1, will provide the following guarantee at run-time: no
matter how the servers are scheduled on the cores, as long as their precedence constraints are not violated, the total budget
provided by the k’th job of every periodic server (8k > 0) — and the way this budget is distributed between the sub-tasks by
the mapping rule — provides enough cpu-budget for all the sub-tasks of the currently-taken execution flow to complete.
Step 3) All the graphs of servers computed in Step 2 for every execution flow of the application will be merged into a single
graph of servers. That resulting graph will be defined such that it preserves the guarantee defined in Step 2, i.e. it provides
enough cpu-budget to the sub-tasks of any execution flow.
Step 4) The resulting graph of servers computed in Step 3 will be converted into a set ⌧ of asynchronous periodic constrained-
deadline independent real-time tasks by using techniques such as [5], where each real-time task ⌧i is defined by four parameters:
an offset Oi, an execution time (cpu-budget) Ci, a period Ti, and a deadline Di  Ti.
Step 5) Finally, by repeating Step 1 to Step 4 for each parallel application in the system, we will end up with several sets
of real-time tasks (one set for each application). We can then group all these task sets in a super-set ⌧̄ of asynchronous
periodic constrained-deadline independent real-time tasks. This task model has been widely studied in the past and many
efficient scheduling algorithms have been proposed. Our solution will then investigate which of these scheduling algorithms
can successfully schedule the resulting set ⌧̄ by using their respective schedulability tests.
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1 Introduction

In this paper we revisit the problem of uniprocessor real-time scheduling of asynchronous periodic
tasks for EDF scheduling when preemption cost in taken into account in the feasibility conditions.
We show that the classical feasibility interval [0, O

max

+2H] [2] where O
max

is the maximal offset
value and H is the hyperperiod of the tasks (the least common multiple of the periods) can be
insufficient to check the schedulability of EDF schedule.

We consider a task model where each task ⌧i is described by a tuple (Oi, Ci, Di, Ti) where Oi

is the arrival time of the first job (or offset), Ci is the execution time of each job, Di is the relative
deadline of each job, and Ti is the exact time between two consecutive job arrivals.

For fixed priority scheduling and EDF scheduling with this task model, if there is a time t0

such that 8t � t0 we have that the state of the execution is the same at t and at t � k (where
k is a constant superior to 0), then we call the interval [0, t0] the transient phase and the rest of
the execution the periodic phase (composed of a repeating pattern of size k called the Period). By
definition, in order to determine if a system is schedulable by EDF, it is sufficient to simulate its
execution over the transient phase (i.e. until the periodic phase is reached). It has been shown
that for systems such that

P
i
Ci
Ti

 1 (a necessary condition of feasibility), the execution reaches
its periodic phase at the latest at t = O

max

+ 2H [3], [1], with a Period of size H.
This model assumes preemption costs to be negligible. When this is not the case, a common

approach to integrate them is to inflate the tasks WCET by some value (e.g. the cost of one
preemption multiplied by the maximal number of preemption per job). This is very pessimistic as
the number of preemptions for each job of the same task can vary greatly, so this approach often
leads to resource waste.

In this paper, we want to integrate the preemption costs into the model on a per-preemption
basis. Therefore systems are now described as a set of tasks (as before), with the addition for each
task ⌧i of a parameter ↵i, which is an upper bound of the cost associated with the preemption of
one of its jobs. During the execution, when a previously preempted job of task ⌧i is re-activated,
it first has to execute a (preemptive) recovering interval during ↵ time units before resuming its
actual execution. In the case of fixed priority scheduling, the feasibility interval [0, O

max

+ 2H]
remains valid in this model [4]. We now show that this is not true for EDF scheduling.

2 Size of the transient phase and Period

We show that both the transient phase and the Period may be larger than the results presented
in the previous section when the preemption costs are taken into account, by giving the example
of the system described by ⌧

1

= (0, 4, 10, 10), ⌧
2

= (3, 11, 30, 30), ⌧
3

= (13, 4, 30, 30) and ↵
1

= 0,
↵
2

= ↵
3

= 2.
If we execute this system under EDF scheduling and with the preemption costs taken into

account (as seen in Figure 1), we see that the system does not reach its periodic phase until
t = O

max

+ 6H = 193, where it is at the same state as in t = O
max

+ 4H = 133. This means that
not only the transient phase is longer than O

max

+ 2H, the Period is also longer than H.

1
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Figure 1: Longer transient phase and Period. Darker schedule units represent recovering intervals
caused by a previous preemption.

3 Non-sufficiency of the feasibility interval

Now consider the same system, but with D
2

= 28. This system has the exact same EDF schedule
(as seen in Figure 2) and thus does not miss any deadline before O

max

+2H, however it does miss
a deadline at t = 121 > O

max

+ 3H. This invalidates the previous result stating that it is sufficient
to simulate EDF for the first O

max

+ 2H time units to determine schedulability by EDF. This is a
consequence of the results of Section 2, but this example confirms that a deadline miss can indeed
occur after O

max

+ 2H.

Figure 2: Deadline miss after O
max

+ 2H.

4 Conclusion

We have shown that when the preemption costs are integrated into the feasibility analysis, the
classic results on the length of the feasibility interval and the periodic behaviour for EDF are
invalidated. The determination of the minimal length of the transient phase for EDF in that
context remains an open problem.
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I. INTRODUCTION

Recent research on thermal-aware real-time systems has focused upon developing design frameworks that ensure predictable
timing behavior for systems executing in dynamic thermal environments. For such dynamic environments, a thermally-resilient
real-time system [4] must adapt both its timing requirements and thermal-dissipation rates in response to a changing environ-
mental temperature. On the hardware side, thermal dissipation rates might potentially be reduced via dynamic voltage/frequency
scaling (DVFS) and/or dynamic power management (DPM) techniques such as putting the CPU into low-power/idle states.
On the software side, the adaptation of timing requirements can be achieved through multi-modal tasks systems, providing the
means to change task timing parameters (e.g., execution requirement, period, deadline, etc.) and/or to add/drop tasks from the
system. The ultimate goal for thermal-resilient real-time systems is the capability of a real-time system designer to accurately
predict (at design time) what real-time mode can be supported for any given environmental temperature.

Our initial work on the development of a design framework for thermal-resilient real-time systems focused on single-core
systems (see Hettiarachchi et al. [4]). To achieve both adaptivity and predictability in our design framework, we introduced the
concept of a real-time performance mode which explicitly coupled hardware and software modes together. The hardware mode
was characterized by the periodic resource model [12] which can quantify the execution supply of a non-continuously executing
resource (e.g., a processor that switches from an active to an inactive state periodically to change the thermal dissipation of the
CPU). Each software mode was characterized by a sporadic task system [7]. In complementary work, we developed single-core
schedulability analysis for the real-time performance mode model [2] specified by this periodic-resource/sporadic-task-system
combination; thus, the resulting framework is able to provide hard-real-time guarantees.

The above design framework has subsequently been extended to multicore platforms [5]. However, a restrictive limitation
is that currently the framework supports only partitioned scheduling of tasks for each mode. The reason for this limitation is
that there is a fundamental gap in multi-mode scheduling theory for multicore platforms with non-continuous execution

patterns. As our thermal-resiliency framework (and thermal-aware real-time systems, in general) requires schedulability analysis
for dynamic processing platforms that utilize DVFS/DPM, it is important that new analysis techniques be developed that will
permit these systems to implement a larger set of the global-scheduling algorithms. In this abstract, we will briefly describe the
real-time performance mode (i.e., HW/SW-coupled multi-modal) model in the context of global scheduling, outline important
scheduling theory questions for this model, and review relevant prior research.

II. REAL-TIME PERFORMANCE MODE MODEL FOR GLOBALLY-SCHEDULED SYSTEMS

We consider a system with m number of identical CPU cores. The set of real-time performance modes is denoted M. Each
real-time performance mode M (i)

2 M is characterized by a three-tuple (⌧ (i),⌦(i),�(i)
). The first parameter ⌧ (i) denotes a

sporadic task system with ni tasks. Each sporadic task ⌧ (i)j 2 ⌧ (i) is characterized by a three-tuple (e(i)j , d(i)j , p(i)j ) where e(i)j is
the worst-case execution requirement, d(i)j is the relative deadline, and p(i)j is the minimum inter-arrival separation parameter.
The first job of ⌧ (i)j may arrive at any time after mode M (i) is activated.

The second parameter of the real-time performance mode ⌦

(i) denotes the resource parameters (i.e., the execution supply
guaranteed by the underlying multicore platform). In our previous work, we used a periodic resource (⇧

(i),⇥(i)
) to represent

the periodic active/idle times of each core. The term ⇥

(i) represents the minimum resource active durations that is guaranteed in
periodic ⇧

(i) length intervals when the system is operating in mode M (i) mode. However, this model is not expressive enough
or flexible enough for global scheduling. Thus, for globally-scheduled systems, ⌦(i) may be expressed in a more appropriate
compositional scheduling model. Potential candidate models for ⌦(i) include the parallel-supply function (PSF) abstraction [1]
and the multiprocessor periodic resource (MPR) [11] model. As an example, in the MPR model, ⌦(i) can be characterized by
a three-tuple (⇧

(i),⇥(i),m(i)
) where the MPR guarantees a total of ⇥

(i) units of execution in each ⇧

(i)-length period with
maximum level of parallelism of m(i) (i.e., at any given time there are at most m(i) processors executing tasks of ⌧ (i)).

The third parameter �(i) denotes the minimum amount of time that the processor will remain in mode M (i). The motivation
for this parameter comes from discrete control where changes in a system (plant) occur only at discrete intervals of time. In
our thermal-resilient design framework, the mode changes occur only at these sampling intervals. In fact, it is convenient and
often the case that �(i) can be set as a multiple of the resource period ⇧

(i).

This work has been supported in part by the US National Science Foundation (Grant Nos. CNS-0953585 and CNS-1205338).
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§Mode-Change Semantics. A mode-change request mcrk ⌘ (M (i),M (j), tk) consists of transition time (tk), the old mode
M (i) executing prior to tk, and the new mode M (j) executing after tk (where i, j 2 {1, . . . , q}). We assume that if i < j then
mcri occurs prior to mcrj . For mcrk�1 ⌘ (M (h),M (i), tk�1) and mcrk ⌘ (M (i),M (j), tk), the difference tk � tk�1 must be
at least �(i) to ensure the minimum activation time for mode M (i). Figure 1 illustrates a mode-change-request sequence.

M (h) M (i) M (j)

tk�1 tk

t
⌦(i)

⌧ (h) ⌧ (i) [ (⌧ (h) \ ↵(hi))

⌦(h) ⌦(j)

⌧ (j) [ (⌧ (i) \ ↵(ij))

� �(i)
Task System:

Resource:

Fig. 1. Mode-change sequence.

Tasks may be divided into groups based on their
importance at the time of the mode change request
mcrk ⌘ (M (i),M (j), tk). (See Real and Crespo [10] for
complete taxonomy). Some important tasks may need to
continue to execute without being affected by the mode

change request. We call these tasks unchanged tasks denoted by ⌧ (ij). Some less important tasks may be removed from the
system immediately at the time of the mode change request. We call these tasks aborted tasks and denote them by ↵(ij).
For some tasks, immediate termination may leave the system in an inconsistent state; we call such tasks finished tasks and
characterize them as being members of the set ⌧ (i) \ (↵(ij)

[ ⌧ (ij)). We allow a job from a finished task at the time of a mode
change request to complete its remaining execution. Given the above definitions, we may distinguish three phases with respect
to a mode-change request mcrk = (M (i),M (j), tk) (from the previous request mcrk�1 = (M (h),M (i), tk�1)):

1) [tk�1, tk): jobs of ⌧ (i) are executed upon ⌦

(i);
2) [tk, tk+1): incomplete jobs of (⌧ (i) \ ↵(ij)) at tk and jobs of ⌧ (j) execute upon ⌦

(j);
3) [tk�1, tk+1): unchanged tasks (⌧ (ij)) will act independent of mode change request.

III. OPEN PROBLEMS & RELATED WORK

Informally, our main open problem statement is simple to state: given an m-core platform and multi-modal system M

determine whether all tasks of every modes will always meet all deadlines under any possible legal mode-change sequence.
However, there are many dimensions to this problem that make it possible to define a “family” of related subproblems. In
particular, we may consider the following different aspects of the system:
D1 Global Scheduling Algorithm: schedulability analysis is needed for both global earliest-deadline-first and fixed-priority

scheduling algorithms to be applicable for real systems that implement the thermal-resiliency framework.
D2 Multiprocessor Resource Model: As mentioned in the previous section, we can consider different models such as PSF or

MPR for expressing the ⌦

(i) parameter.
In addition to the schedulability analysis problem, an important variant problem is determining the minimum allocation for
each mode to maintain schedulability. Some open questions for the allocation problem are: 1) What is the most appropriate
definition of “minimum allocation” for thermal-resilient systems? (e.g., if ⌦

(i) is an MPR, is minimizing the sum of the
capacities a good objective to decrease total thermal dissipation?); and 2) How do we efficiently deal with the combinatorial
nature of the problem? (I.e., there might be numerous combinations of capacities that are schedulable).
§Relevant Prior Work. Extensive research effort has been focused on developing multi-modal schedulability analysis for
multicore platforms (e.g., see [3], [6], [8], [9]). To the best of our knowledge, each of these prior works assumes the underlying
processing cores execute at a fixed speed/rate. However, we hope that these multi-modal results for fixed-rate multicore platforms
might be extendable to platforms with DVFS/DPM capabilities to solve the open problems posed in this abstract. A starting
point might be trying to extend the multi-modal analysis for uniform multiprocessors [13] to real-time performance modes.
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I. BACKGROUND

For safety-critical embedded systems, an increasing trend is to integrate multiple independent functionalities on a single
shared computing platform; this trend is evident in industry-driven initiatives and standards such as ARINC653 [1] and IMA
and AUTOSAR [2] in automotive. However among all the functionalities in a system, only some functionalities are critical
for the correctness of the system and need to be certificated by statutory certification authorities (CAs) and the rest of the
functionalities will not influence the safety of the system to the same extent. Under normal conditions, all tasks providing
different functionalities will receive enough processing resource. But more critical tasks should be given preference if something
abnormal happens in the system (i.e. when tasks exceed their expected worst-case execution times (WECTs) [3] which in fact is
highly unlikely to happen). Such systems comprised of tasks of different criticalities are called mixed-criticality (MC) systems.

In many previous studies of mixed-criticality real-time systems, the model proposed by Vestal is widely used [3]. In this
model, a task can be specified as ⌧i = (Ti, Li, Ci, Di), where Ti denotes minimum separation between job releases, Li denotes
criticality level based on the task’s importance to the system, Ci = C1

i , C2
i , · · · , Cmax

i is a list of WCET values measured with
different degrees of confidence (here Cj

i denotes ⌧i’s WCET when the system is at criticality level j), and Di ( Ti) denotes
⌧i’s deadline. Jobs of ⌧i are released with a separation of at least Ti time units, and each job needs to execute for no more
than Cj

i time units within Di time units from its release time when the system is at criticality level j. Once any task executes
more than Cj

i time units then the system criticality level increases to j+1 and all tasks with criticality lower than j+1 are no
longer required to finish. But tasks with criticality higher than j will need to execute for Cj+1

i time units within Di. According
to the relationship between Ti and Di, the system can be classified into three categories: constrained deadline task systems
(for any ⌧i, Di  Ti), implicit deadline task systems (for any ⌧i, Di = Ti) and arbitrary deadline task systems (for any ⌧i,
Di > Ti). We will focus on 2-level mixed-criticality task systems on uniprocessor platforms in this paper where ⌧i is either a
low-criticality task or a high-criticality task. Hence Li 2 {L,H} (L denotes low criticality and H denotes high criticality) and
Ci 2 {CL

i , C
H
i }.

II. PREVIOUS WORK

Many mixed-criticality scheduling algorithms like EDF-VD [4], AMC [5], GREEDY [6] and ECDF [7] have been developed
based on the model proposed by Vestal [3], and different metrics like run-time complexity, schedulability, feasibility are used
to evaluate them. Among multiple metrics, the speedup bound is a very important one because the problem of scheduling
mixed-criticality workloads is proven to be NP-hard [8], and a speedup bound can show how good this algorithm can be
compared to an optimal algorithm in a very intuitive way.

Definition 1: The speedup bound of an algorithm denotes the minimal processor speed the algorithm needs to successfully
schedule any mixed-criticality real-time system which is feasible on an unit speed uniprocessor platform.

Previously, it has been shown in the paper [8] that 1+
p
5

2 is a bound of speedup for 2-level mixed-criticality constrained
deadline systems. This speedup bound is based on a fixed-priority algorithm, namely OCBP [9], and is proved to be tight i.e.,
1+

p
5

2 is the best speedup bound that can be derived from OCBP. A better bound of 4
3 is derived from a dynamic-priority

algorithm, namely EDF-VD [4], but only valid for implicit deadline task systems. EDF-VD uses a deadline tightening strategy
to deal with the most challenging problem that mixed-criticality systems face. This problem arises from the need to execute an
additional demand of up to CH

i �CL
i for each high-criticality task as system criticality changes, while task deadlines remain

the same.
Definition 2: If the algorithm is optimal with regard to the speedup bound factor, then no non-clairvoyant scheduling

algorithms can have a tighter speedup bound.
It proves that EDF-VD is optimal from the perspective of speedup bound by using an example taskset to show that no non-
clairvoyant scheduling algorithm1 can schedule the taskset on a processor with speed less than 4

3 , although the taskset is
feasible on an unit speed processor [4]. So 4

3 is the best speedup bound for any non-clairvoyant scheduling algorithm for
2-level mixed-criticality implicit deadline task systems on uniprocessor platform.

1Non-clairvoyant scheduling algorithms have no knowledge of when a job may trigger a mode-switch.
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For 2-level mixed-criticality arbitrary deadline task systems, the best known speedup bound is 1+
p
3
2 , which is also derived

from the algorithm EDF-VD [10]. An example is given to show that there exist feasible tasksets on an unit speed processor but
cannot be scheduled by EDF-VD on a processor that is 1 +

p
3
2 � " times fast, where " tends to 0. However, this only proves

that 1+
p
3
2 is a tight speedup bound for EDF-VD scheduling for 2-level mixed-criticality arbitrary deadline task systems, and

it is possible that other algorithms may have a tighter speedup bound.

III. OPEN QUESTION

From the previous sections, the best known speedup bound for 2-level mixed-criticality constrained deadline task system is
1+

p
5

2 , and the best known speedup bound for 2-level mixed-criticality implicit-deadline and arbitrary-deadline task systems are
4
3 and 1 +

p
3
2 respectively. As 4

3 is already proved to be optimal from the perspective of speedup bound, the only remaining
open problem in this area is that of finding optimal speedup bounds for constrained and arbitrary deadline task systems.

Note that an algorithm with better schedulability2 is more likely to have a better speedup bound if it has one because it may
need less extra speed to schedule feasible tasksets. Besides we should also note that to find the speedup bound of an algorithm,
we should always consider the worst case scenario, meaning tasksets whose successful scheduling by the algorithm requires the
maximum speedup. So we can try to derive better speedup bound from other algorithms that have better performance in terms
of schedulability. However from the observation of existing speedup bounds, only simple algorithms3 tend to have a speedup
bound. For example, EDF-VD uses a very simple but almost unreasonable deadline tightening strategy: tightened deadline
for all high-criticality tasks are proportional to their period Ti. In fact there exist many more reasonable deadline tightening
strategies. For instance, one could assign tightened deadlines in proportion to the increase in execution requirement (CH

i �CL
i )

Ti
,

or efficient heuristic strategies like those in ECDF [7] and GREEDY [6]. Although ECDF and GREEDY have been shown to
have better schedulability than EDF-VD, no speedup bounds are known for either of these approaches. This is mainly because
they use demand bound functions (dbf) [11] (dbf is the maximum demand that the task can impose in any time interval of
that length) in their schedulability tests, and dbfs are mathematically complex and generally not suitable for deriving speedup
bounds.

Many mixed-criticality algorithms like GREEDY [6] or ECDF [7] use the strategy of tightened deadlines, but it looks unlikely
that these algorithms with good performance but complex deadline tightening strategies would also have good speedup bounds.
Maybe an alternate method is to use dbf to bound the demand of a taskset. Though there is no exact dbf for a mixed-
criticality sporadic taskset, sufficient schedulability tests based on approximate dbf have shown good performance in in terms
of schedulability [7]. In the paper [6], there were 2 dbfs, one for low-criticality mode and another for high-criticality mode.
The pessimism in carry-over jobs was high and therefore the dbf approximation was pessimistic. This has been improved with
ECDF [7] because the new dbf is a combined dbf for low-criticality mode and high-criticality mode. This means the load
resulting from the new dbf will be more tight compared to the earlier separate dbf. This will help with a tighter load-based
schedulability test and hence can lead to improved speedup bounds. With this test, it’s possible to approximate the schedulability
of an algorithm with more complex deadline tightening strategy. To find a speedup bound for dbf-based tests, we first need
to approximate the dbf using simple linear upper bounds similar to ”load” used for multiprocessor tests [12]. We then need
to derive load-based schedulability tests and corresponding deadline tightening strategies that would lead to efficient speedup
bounds. Since load-based tests have resulted in good speedup bounds for multiprocessor scheduling algorithms [12], we believe
that this direction of research has potential for mixed-criticality scheduling as well.
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