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Foreword 
 
We would like to extend a warm welcome to you all to the 4th Real-Time Scheduling 
Open Problems Seminar (RTSOPS 2013). The goal of this meeting is to continue the 
tradition of providing a venue for the exchange of ideas and discussion of interesting 
unsolved problems in real-time scheduling. This seminar is intended as an enabler 
for collaborative and cooperative work within the real-time systems research 
community. 

The day-long seminar is structured around a set of presentation sessions, each 
followed by sufficient time for collaborative work. During the collaborative sessions, 
we invite all participants to interact in groups to explore initial steps towards solving 
some of the presented problems and, sometimes, refining the problem definition and 
scope to make the problems more germane. 
 
RTSOPS 2013 features 10 open problems and one invited talk. The invited talk is the 
novelty of this year edition. Alix Munier from the operations research community will 
present us techniques used to solve general cyclic scheduling problems. These 
problems are close to those of real-time scheduling. The abstract of this talk is also 
included the proceedings. The proceedings are available as INRIA research report.  
 
Another novelty of this year is that we followed a new approach towards paper 
submissions. We did not enforce a deadline and reviewed submissions until 
we accepted 10 problems for discussion.  
 
We would like to thank the program committee for their generous time contribution 
and efforts in providing feedback to the authors. The program committee for RTSOPS 
2013 included: 
 
- Marko Bertogna, University of Modena (Italy) 
- Vincent Nelis, CISTER/IPP-Hurray (Portugal) 
- Sebastian Altmeyer, University of Amsterdam (Nederland) 
 
We are also grateful to the advice and support, and reviewing effort provided by the 
RTSOPS steering committee members: 
 
- Rob Davis, University of York (UK) 
- Nathan Fisher, Wayne University (USA) 
- Gerhard Fohler TU Kaiserslautern (Germany) 
 
A further "thank you" is extended to ECRTS '13 general chair Laurent George for his 
assistance in helping us organize this seminar. We thank Dorin Maxim with helping 
having in time the printed version of these proceedings. 
 
 
We look forward to a productive RTSOPS 2013, 
Liliana Cucu-Grosjean and Sathish Gopalakrishnan 
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INVITED TALK  
 
 
Alix Munier (Professor, University of Marie et Pierre Currie, Paris, France) 
 
    - Liveness Evaluation  for Synchronous and Cyclo-Static DataFlow Graphs 
 
(Join work with Mohamed Benazouz, Bruno Bodin and Thomas Hujsa) 
 
 
 
Synchronous DataFlow Graphs and Cyclo-Static DataFlow Graphs (respectiveley 
SDF and CSDFG in short) are  formalisms commonly used to model parallel 
applications composed by actors communicating through buffers. The liveness of a 
SDF/CSDFG ensures that all actors can be executed infinitely often. This property is 
clearly fundamental  for the design of embedded applications. 
 
This talks aims to present an original method to compute sufficient conditions for the 
liveness of a SCD/CSDF. It is based on two simple polynomial  transformations of the 
initial problem (namely normalization and useful tokens). Two algorithms of 
polynomial-time for checking the liveness are then derived for CSDF and compared 
to a symbolic execution of the graph. The performance of our methods are 
comparable to those existing in the literature for industrial applications.  
However, they are far more effective on randomly generated instances, 
ensuring their scalability for future more complex applications and their possible 
implementation in a compiler.                      
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Towards a shared-data-aware multicore real-time
scheduler

Giovani Gracioli and Antônio Augusto Fröhlich
Federal University of Santa Catarina, Florianópolis, Brazil

{giovani,guto}@lisha.ufsc.br

I. THE PROBLEM

Multicore processors have been established in the multicore embedded real-time system domain. Several applications that
used to be implemented in dedicated hardware, such as digital signal processing algorithms and baseband processing in wireless
communication, can now be ported to software with similar performance and more support flexibility for developers (e.g., bug
fixes, online updating, maintainability) [1]. Such applications process a considerable amount of data under real-time conditions
and are composed of several real-time cooperating threads (threads that share data and run concurrently in the available cores).
In this scenario, due to multicore processor organization, we must consider some important characteristics, specifically, the
memory hierarchy [2]. The memory hierarchy holds an important role, because it affects the estimation of the Worst-Case
Execution Time (WCET), which is extremely important in the sense of guaranteeing that all threads will meet their deadlines
through the design phase evaluation (schedulability analysis) [3], [4].

Several works have been proposed to deal with memory organization in multicore architectures and provide real-time
guarantees [1], [5]. However, they only consider scenarios in which threads are independent (without data sharing). In this
case, the influence among threads (contention for cache space and interference in the cache lines) can be solved by memory
partitioning/locking mechanisms provided by a special hardware [4] or implemented into the real-time scheduler [2], [6].

The problem we are addressing in this paper rises from the memory hierarchy present in today’s SMP architectures and
their memory coherence protocols (e.g., MESI, MOESI, or MESIF). Each core has its own data and uses its private data
cache for speeding up processing. However, when cores share data, each copy of the data is placed in the core’s private cache
and the cache-coherence protocol is responsible for keeping the consistency among copies (through bus snooping). When a
core writes into a data that other cores have cached, the cache-coherence protocol invalidates all copies, causing an implicit
delay in the application’s execution time. In the same way, when a core reads a shared data that was just written by another
core, the cache-coherence protocol does not return the data until it finds the cache that has the data, annotates that cache line
to indicate that it is shared, and recovers the data to the reading core. These operations are performed automatically by the
memory controller hardware and take hundreds of cycles (about the same time as accessing the off-chip RAM), increasing
the application’s execution time which may lead to deadline losses [7]. Two kinds of scaling problems occur due to shared
memory contention [7]: access serialization to the same cache line done by the cache coherence protocol, which prevents
parallel speedup, and saturation into the inter-core interconnection, also preventing parallel processing gains.

II. OPEN QUESTIONS

Based on the problem description, we have identified the following open questions:
• Task model. Traditional real-time task models do not take into account the parallelism and data dependencies presented in

multicore processors. The parallel synchronous [8] and multi-phase multi-thread [9] task models are important steps toward
formally defining a task model for parallel real-time tasks. However, the task model presents restrictions and supports only
DM and EDF scheduling policies. Moreover, is the parallel synchronous task model adequate for the described problem?
We believe that there is a need for better parallel task models.

• Cache contention. Are there techniques to reduce the contention for cache spaces and decrease the influence of the cache
coherency protocols in applications that share data without relying on hardware redesign? Cache partitioning/locking
techniques may be the answer for eliminating the contention for cache spaces. Partitioning/Locking isolates application
workloads that interfere with each other, increasing the predictability. Nevertheless, when there is data sharing between
parallel threads, cache partitioning does not solve the problem, because threads will access the same data location on the
memory hierarchy. Moreover, what is the influence of partitioning on global, partitioned, and semi-partitioned real-time
schedulers? There is still room for combining cache partitioning with other techniques to provide real-time guarantees for
data sharing application.

• Real-time scheduling. To the best of our knowledge, there is no shared-cache-aware real-time scheduler proposed in the
literature. We believe that a shared-cache-aware real-time scheduler may benefit from static information collected by offline
analyzers and run-time information collected by the hardware support, such as hardware performance counters (HPCs).
However, which static information must be collected and which hardware events are more suitable for the scheduler are
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still open questions. Moreover, which techniques could the scheduler use to decrease the contention for shared data?
For example, the scheduler can prevent a thread from being run to avoid the contention, but how about the real-time
guarantees? How much time can a thread wait? Also, the schedulability tests must not be too pessimistic, such as the
very pessimistic Global-EDF sufficient tests.

III. ENVISIONED SOLUTION STATEMENT

Towards a solution for the problem, we envision a set of OS techniques designed to provide predictability and real-time
guarantees for embedded multicore real-time applications. The proposed architecture is depicted in Figure 1 and is a step
forward to mitigate the effects of contention for shared cache memory. It is composed of a two-level OS cache partitioning
to minimize the contention for cache space between different applications (inter-application partitioning) and between threads
of the same application (intra-application partitioning). It also has a shared memory-aware scheduler responsible for detecting
and minimizing the influence of memory coherence from threads that share data (e.g., access serialization to the same cache
line and saturation in the inter-core interconnection), while still compromising with real-time guarantees.

Figure 1. Proposed envisioned solution architecture.
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Figure 2. HPCs evaluation on Intel Q9550 processor: snoops HITM.

We are currently investigating which hardware events can be used together with the scheduler and which techniques the
scheduler could use to mitigate the cache coherency effects. For example, in an experiment carried out using the Intel Q9550,
we measured the number of snoop requests in a synthetic benchmark. Figure 2 shows the obtained results. We can note that
the parallel application (in which there is data sharing) presents up to three orders of magnitude more snoop requests than the
other two applications that do not share data. This experiment shows the feasibility of HPCs: they could correctly feed the
scheduler with run-time information. The RTOS can use HPCs to detect sharing patterns among threads and take a scheduling
decision, such as stopping a thread for a short period by sending an Inter-Processor Interrupt (IPI). We are also improving the
multicore real-time support on the EPOS RTOS [10].

IV. SUMMARY
In this position paper we presented the problem of scheduling real-time threads considering data sharing and the implicit

delay caused by the cache coherency protocols implemented on today’s SMP processors. Our proposal towards a solution is a
combination of OS techniques to alleviate the effects of the shared cache coherency. As future work, we intend to investigate
techniques to be incorporated into the OS real-time scheduling and evaluate our proposed solution. Moreover, there are still
relevant open questions, as described in Section II. This work was partially supported by the Coordination for Improvement of Higher Level
Personnel (CAPES) grant, projects RH-TVD 006/2008 and 240/2008, and CAPES-DFAIT 004/2011.

REFERENCES

[1] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling algorithm for multiprocessors,” in RTSS ’06: Proceedings of the 27th IEEE
International Real-Time Systems Symposium. Washington, DC, USA: IEEE Computer Society, 2006, pp. 101–110.

[2] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared resource contention in multicore processors via scheduling,” in Proceedings of the
15th edition of ASPLOS on Architectural support for programming languages and operating systems, ser. ASPLOS ’10, 2010, pp. 129–142.

[3] L. Wehmeyer and P. Marwedel, “Influence of memory hierarchies on predictability for time constrained embedded software,” in DATE ’05: Proceedings
of the conference on Design, Automation and Test in Europe. Washington, DC, USA: IEEE Computer Society, 2005, pp. 600–605.

[4] V. Suhendra and T. Mitra, “Exploring locking & partitioning for predictable shared caches on multi-cores,” in DAC ’08: Proceedings of the 45th annual
Design Automation Conference. New York, NY, USA: ACM, 2008, pp. 300–303.

[5] J. M. Calandrino and J. H. Anderson, “Cache-aware real-time scheduling on multicore platforms: Heuristics and a case study,” in ECRTS ’08: Proceedings
of the 2008 Euromicro Conference on Real-Time Systems. Washington, DC, USA: IEEE Computer Society, 2008, pp. 299–308.

[6] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and analysis for multicores,” in EMSOFT ’09: Proceedings of the seventh ACM
international conference on Embedded software. New York, NY, USA: ACM, 2009, pp. 245–254.

[7] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris, and N. Zeldovich, “An Analysis of Linux Scalability to Many
Cores,” in OSDI 2010: Proceedings of the 9th USENIX conference on Operating Systems Design and Implementation.

[8] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time scheduling for generalized parallel task models,” in 2011 IEEE RTSS, 29 2011-dec.
2 2011, pp. 217 –226.

[9] B. Bado, L. George, P. Courbin, and J. Goossens, “A semi-partitioned approach for parallel real-time scheduling,” in Proc. of the RTNS ’12. New York,
NY, USA: ACM, 2012, pp. 151–160.
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I. INTRODUCTION 

As a result of stringent requirements on size, weight, and power consumption (SWaP), as well as the need to provide 

advanced new functionality through software, critical real-time embedded systems in the aerospace, space, and automotive 

markets are beginning to make use of multicore processors for hard real-time applications.  The deployment of hard real-time 

applications on advanced multicore processors requires a number of challenges to be overcome. A wealth of research has been 

done on scheduling and schedulability analysis for multicore platforms (see [7] for a survey); however, this work needs to be 

underpinned by safe and tight estimates of the Worst-Case Execution Time (WCET) of component tasks. Considerable work 

has been done on WCET analysis assuming non-pre-emptive execution on single processors (see [13] for a survey), and the 

impact of Cache Related Pre-emption Delays (CRPD) has been taken into account for multitasking systems [1], [2], [11]. 

However, research into adapting WCET techniques to address the challenges of multicore processors, and specifically the use 

of caches that are shared between two or more processors, is in its infancy. 

Many multicore processors make use of a cache hierarchy with private L1 caches per core and an L2 cache shared between 

cores. Sharing the L2 cache provides a significant performance boost over private L2 caches of the same total size, improving 

average-case performance and energy efficiency; however, the inter-core cache interference makes the WCET analysis 

problem extremely challenging. The problem is exacerbated by timing anomalies: The worst-case path for code executed in 

isolation may no longer be the worst-case path when inter-core cache contention is accounted for – see Figure 2 in [14]. 

The simplest and, as far as we are aware, the only compositional solution available so far is to assume that all L2 accesses 

are cache misses; however, as L2 latencies are typically high this is extremely pessimistic. Initial papers in this area [10], [14], 

[15], and [16] provide analysis which has complex dependencies on the detailed execution behaviour of contending tasks on 

other cores. However, details of the contending tasks may not necessarily be available for analysis, and even if they are, then 

such cross dependencies go against requirements for composability, which are necessary for the efficient development and 

integration of complex systems. 

II. PROBABILISTIC APPROACH 

One possible solution is to make use of randomisation techniques, in particular random cache replacement policies, which 

make the probability of pathological cases vanishingly small. Static Probabilistic Timing Analysis (SPTA) has been developed 

for single processor systems assuming both evict-on-access [4] and evict-on-miss policies [8], with analysis of probabilistic 

CRPDs also given in [8]. Such approaches have the potential to provide an increase in the level of performance of hard real-

time systems that can be guaranteed with respect to an acceptable threshold for the timing failure rate [3], particularly as the 

bounds provided degrade far less rapidly, with respect to incomplete information about the execution history, than the WCET 

computed assuming deterministic cache replacement policies [12]. 

It is our conjecture that in the multicore case, with shared caches, random cache replacement policies have the potential 

to break dependencies on execution history and specific inter-core cache contention, and so permit effective probabilistic 

WCET analysis that supports timing composition. This is particularly important in the case of mixed-criticality systems 

where the tasks running on other processors may be of lower criticality. Separation via a simple interface, independent of task 

behaviour or misbehaviour, ensures that lower criticality tasks have a strictly bounded effect on higher criticality tasks of 

interest through interactions via the shared cache. A similar argument applies to open systems, where non-real-time tasks 

may be downloaded and run on a specific core. Here the complete set of tasks is not available at design time for analysis. 

A. Single processor SPTA 
We now recap on SPTA for single processor systems with an evict-on-miss random cache replacement policy for the 

instruction cache and no data cache. With the evict-on-miss policy, whenever an instruction is requested and is not found in the 

cache, then a randomly chosen cache line is evicted and the memory block containing the instruction is loaded into the evicted 

location. We assume an N-way associative cache, and hence the probability of any cache line being evicted on a miss is 1/N. 

For simplicity, we assume a single path program (extensions to multipath programs are given in [8]) comprising a fixed 

sequence of instructions. We represent these instructions via the memory blocks they access, with a superscript indicating the 

re-use distance k. (The re-use distance is the maximum number of evictions since the last access to the memory block 

containing that instruction). For example, a, b, a1, c, d, b3, c2, d2, a5, e, b4, f, e2, g, a5, b4, h. For each instruction, the probability 

of a cache hit is lower bounded by: 

k

hit N
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Provided that k < N, otherwise 0)(  kPhit
, (details of this latter restriction are given in [8]). Given fixed costs for the cache-hit 

latency (e.g. H = 1) and the cache miss latency (e.g. M = 10), then an upper bound pWCET distribution of a program can be 

computed as the convolution (� ) of the probability mass functions (PMFs) of each instruction. For example, given two 

instructions with PMFs with cache hit probabilities of 0.8 and 0.7 respectively, we get a pWCET distribution for the ‘program’ 

that has a probability of the execution time being 2 on any given run of 0.56, a probability that it will be 11 of 0.38, and a 

probability that there will be two cache misses and hence an execution time of 20 of 0.06. 
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We note that for larger numbers of instructions, the probability of a large number of cache misses quickly becomes vanishingly 

small, as illustrated by the graphs of 1-CDFs or exceedance functions shown in Figure 1 and Figure 2 below. 

B. Open problem: Multicore SPTA with shared cache 
In the multiprocessor case, we would like to develop SPTA that derives the probabilities of cache hits / misses and hence the 

pWCET distribution for a sequence of instructions (i.e. a task) running on one core, given an instruction cache with an evict-

on-miss random replacement policy that is shared with one or more other cores which also execute tasks that can cause 

evictions. (For clarity and simplicity in our initial investigation we consider only instruction cache and do not consider a 

cache hierarchy). Clearly there is a mutual dependency between tasks; however, we aim to use simple interface models to 

restrict the information required to analyse each task and hence support a compositional approach to system development. 

For example: 

(i) A simple interface might state that the tasks running on each contending core can cause at most ª ºMt /  evictions in 

a time interval of length t, where M is the cache miss latency. This interface description holds irrespective of the 

details of the tasks and hence supports composition. 

(ii) An upper bound may also be derived on the number of evictions caused in a time interval by all cores, reflecting the 

limited bandwidth of the memory bus. Due to limited bandwidth, there can be at most ª ºbt /  evictions in a time 

interval of length t, where b is the time required to transfer one cache block.  

(iii) More complex analysis of the number of bus requests may be possible. Thus more complex interfaces might provide 

sub-additive functions giving the maximum number of evictions that can possibly occur due to all cores as a 

function of the length of the time interval. We note; however, that modelling the maximum number of bus requests 

from tasks on other cores as done in [5], [6], while providing more precise analysis, goes against the requirements 

for composition. Related work could look at how hardware might potentially police a maximum rate of evictions 

due to tasks on a particular core. 

To fully develop the theory in this area, a detailed model of the behaviour of the hardware is needed to correctly and 

accurately model the worst-case number of evictions that can occur due to contention from other cores in a time interval of 

length t, as well as to determine the maximum amount of time required for a sequence of instructions to execute on one core 

given some number of cache misses. 

A first attempt at solving our open problem integrates simple interface models of additional evictions into existing 

SPTA.  

 

Figure 1: pWCET distributions (1-CDF) for FAC 

 

Figure 2: pWCET distributions (1-CDF) for FIBCALL 

 

As an example, we model the contention from other cores as increasing the maximum number of evictions between 

instructions and hence their re-use distances. With m cores, the re-use distance k of each instruction (assuming execution in 

isolation) could potentially be increased by contention to mkm �� )1( . Figure 1 and Figure 2 show the effect that this 

increase in re-use distances has on the pWCET distributions for the FAC and FIBCALL programs from the Malardalen 



benchmark suite [9]. PROG represents the program run in isolation, while the lines on the graphs for 2 Core, 3 Core, and 4 

Core show the effect on the pWCET distribution due to contention from other cores. We observe that the increase in 

execution time at a given probability (shown for 10
-9

) though significant, is much less than would have to be assumed for a 

deterministic system. In the deterministic case, with no knowledge of which cache blocks programs on other cores are using, 

the only safe assumption is the ‘all misses’ scenario shown as the final line in the figures. (Note, the results are for an evict-

on-miss random cache replacement policy, a cache block size of 1 instruction, and a cache size of N=128 blocks). 

The provision of WCETs and pWCETs form the basis for schedulability analysis. The context for the problem presented 

is one of higher level task allocation and scheduling. Assuming, for example, partitioned scheduling, pWCETs are needed as 

part of the schedulability analysis for each processor, and hence as part of the task allocation algorithm. These pWCETs 

could potentially vary depending on the detailed task allocation, indicating the need for an integrated approach. However, 

with simpler models fully supporting composition, then it would be sufficient to obtain pWCETs that account for the 

maximum impact of contention. Such pWCETs distributions would be independent of the task allocation and could be used 

directly in a separate task allocation and schedulability analysis algorithm, i.e. without integration. Further, with the 

development of a SPTA for shared caches, a comparison can be made to see if better pWCET estimates are obtained with a 

shared cache or with partitioning of the cache to individual cores.  
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Abstract

Two widespread techniques, Dynamic Voltage/Frequency Scaling (DVFS) and Dynamic Power Management (DPM), rely on
speed reduction and low-power state exploitation, respectively, to reduce energy consumption in modern computing platforms.
Traditionally, dynamic power was the main source of processor power consumption, therefore DVFS was more effective than
DPM to reduce energy consumption in processing elements, whereas DPM was mainly used to shut down system components
not currently in use. As the technology continues to miniaturize processors, leakage power has become dominant with respect to
dynamic power consumption, hence today most people believe that DPM is the most effective technique also in processing units.

This paper shows that, considering a more realistic task model derived from the analysis of actual executed code, tasks may
exhibit different energy requirements, so requiring an integrated DVFS-DPM approach.

I. INTRODUCTION

Two widely used techniques to save energy are Dynamic Voltage/Frequency Scaling (DVFS) and Dynamic Power Management

(DPM). DVFS approaches [1] decrease the voltage and/or frequency of the processor to reduce energy consumption, while
DPM techniques [2] aim at putting the processor in a low-power inactive state as long as possible, but still guaranteeing
tasks timing constraints. Nowadays, DPM techniques are more effective for reducing the overall energy consumption as they
significantly affect the leakage dissipation whose impact has become dominant in actual hardware due to shrunk transistor size
and low supply voltage. However, such energy reduction is obtained by taking into account only hardware features, without
considering any characteristic related to the application. For instance, for intensive I/O-bound applications, task execution times
are less dependent on the processor speed, hence the energy consumption ascribable to the leakage dissipation is barely affected
by speed changes, offering the possibility of achieving higher reductions due to dynamic consumption by scaling the speed.
Experimental measurements show that DPM techniques work better for CPU bound tasks, while DVFS techniques are more

appropriate for I/O bound tasks. Hence, this paper suggests to enrich the task model to consider the types of operations carried
out by tasks, to apply the most appropriate technique or integrate them to achieve a better performance.
This paper also introduces several ideas for dealing with applications with mixed energy requirements. To the best of our

knowledge, the state of art algorithms that cope with tasks and devices together consider only DVFS features for the task set
and low-power states for the devices [3]. Moreover, tasks with different energy requirements was analyzed by Aydin et al. [4],
but the solution considered only a DVFS approach for CPU bound tasks with different critical speeds.

II. SYSTEM MODEL

We consider a set Γ of n sporadic tasks τ1, τ2, . . . , τn executing upon a single processor. The processor can vary the running
speed s, defined as the normalized frequency with respect to the maximum frequency, s = f

fmax
. The speed set is assumed to

be finite and composed of m different speeds s1, s2, . . . , sm sorted in ascending order, thus smin = s1 and smax = sm = 1.0.
Each sporadic task τi (1 ≤ i ≤ n) is characterized by a worst-case execution time (WCET) Ci(s), which is a monotonic not

decreasing function of the speed, a relative deadline Di and a minimum inter-arrival time Ti, also referred to as the period.

The WCET value of τi depends on the actual speed of the processor and is computed as Ci(s) = αiC
max
i + (1 − αi)

Cmax

i

s
,

where Cmax
i denotes the amount of time required to execute τi at the maximum speed and αi ∈ [0, 1] represents the fraction

of execution time that does not scale with the speed (e.g., due to I/O operations). The larger αi, the bigger the portion of τi
that does not scale with the speed.
The power consumption of each gate depends on the supply voltage V and clock frequency f as reported in Equation 1:

Pgate = CLV
2psf + psV Ishort + V Ileak. (1)

A generic formulation to model the power consumption of the entire processor in the active state has been proposed by Martin
et al. [5] as a function of the running speed, P (s) = K3s

3 +K2s
2 +K1s+K0.

Moreover, the processor provides a set of low-power states during which the task execution is suspended while the power
consumption is low. Typically, sleep states characterized by a lower power consumption have longer wake-up times to restore
the fully operating state. This feature leads to discarding several low-power states when the available idle time is shorter than
such a wake-up time (also referred to as break-even time).
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III. MOTIVATIONAL EXAMPLE
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Fig. 1. Execution and consumption of τ1 and τ2 at speed 1.0 and 0.5

This section provides an example that shows how the type of code executed by a task (either CPU or I/O bound) can affect
the strategy to minimize energy consumption, between pure DPM, according to which the task is executed at the maximum
speed to exploit low-power states, and pure DVFS, where the processor is set at a slower speed reducing idle intervals.
Let us consider two tasks τ1 and τ2 with computation times C1(1.0) = C2(1.0) = 10, α1 = 0 and α2 = 0.9.
Concerning the hardware, let us consider a NXP LPC1768 equipped with an ARM Cortex M3. Such a processor supports

frequencies within [36, 96] MHz with steps of 4 MHz and the normalized power function is P (s) = 0.4s + 0.6 (sm = 1.0
corresponds to 96 MHz). Note that, since this processor does not support voltage scaling, according to Equation 1 the power
consumption can be considered a linear function of the speed. However, a quadratic or cubic power function would only
decrease the impact of the dynamic power component. Considering the normalized power function reported above, 60% of
the overall power consumption is due to static dissipation, while the remaining 40% is affected by the speed dependent part
(which may be linear, quadratic or cubic).
For this architecture, the energy required for the execution of CPU bound code is minimized when the system runs at the

maximum speed. For the sake of simplicity, let us exploit only the frequencies 48 and 96 MHz (s1 = 0.5 and s2 = 1.0).
The two values for α are obtained by executing, on the platform in use, the Coremark benchmark (α = 0.0) and a test

program that heavily exchanges data within an external storage unit (α = 0.9).
Figure 1 shows the execution of the two tasks for different processor speeds with the corresponding power consumption.

Note that when τ1 (characterized by α1 = 0.0) executes at speed s = 1.0, its computation time is C1(1.0) = 10 and the
corresponding energy consumed by the processor is 10 × P (1.0) = 10. When the same task executes at speed s = 0.5, its
computation time is C1(0.5) = 20 and the consumed energy is 20 × P (0.5) = 16. For task τ2 (with α2 = 0.9) the situation
is quite different. Indeed, at speed s = 1.0, we have C2(1.0) = 10, consuming an energy equal to 10×P (1.0) = 10, whereas
at speed s = 0.5, we have C2(0.5) = 11, consuming an energy equal to 11× P (0.5) = 8.8.
Hence, for CPU bound tasks, like τ1, the energy is minimized at the highest speed s = 1.0, whereas for I/O bounded tasks,

like τ2, energy is minimized at lower speed (s = 0.5 in the example), leaving space for DVFS techniques.

IV. OPEN QUESTIONS

Given the different energy characteristics of CPU and I/O bound tasks, the open problem to be investigated is then to
find energy-efficient scheduling strategies that mix DPM and DVFS approaches for exploiting the characteristics, in terms of
computational time and energy-efficiency, of the software that composes the task set.
Two possible approaches have been identified, which may lead to a further energy saving.
The first approach consists of extrapolating from the task set and platform a generalized parameter representing the dominant

behavior to find out which kind of technique is more appropriate (either DPM or DVFS). More precisely, such a parameter
would be useful to select at design-time the most appropriate technique (DPM or DVFS).
A second and more sophisticated approach may exploit speed scaling according to the task in execution [4] (for instance,

the speed would increase at the maximum value when running a CPU bound task). In practice, scaling speed for every task
introduces a significant overhead [6] and affects the system reliability [7]. For overcoming these drawbacks the algorithm could
try to compact the execution of tasks which belong to the same category, so reducing the number of speed scaling events.
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1 Introduction
For fixed priority scheduling, the allocation of priorities to the application’s tasks is
a fundamental activity. If all possible allocations have to be checked (to find the op-
timal one) then a total n! ordering must be examined (for n tasks). For any large n
this is prohibitive. Fortunately for simple task models straightforward optimal pri-
ority schemes are available; for example rate monotonic for sporadic task sets with
implicit deadlines [6], deadline monotonic for tasks with constrained deadlines [5] and
deadline-jitter monotonic for tasks with constrained deadlines and release jitter [9].

Where these simple schemes are not applicable, for example with non-preemptive
scheduling, or task sets with arbitrary deadlines or mixed criticality systems, there
exists a scheme with n2 complexity that is often applicable. This scheme was first
proposed in 1991 and is generally known as Audsley’s algorithm [1, 2]. Unfortunately
not all task models have the prerequisites (see below) that allow this algorithm to be
applied. Examples of such models are to be found in fixed priority multiprocessor
scheduling. Often when Audsley’s algorithm is found to be not applicable the only
option remaining is to develop and use heuristics that aim for good, rather than optimal,
priority orderings. This leads to the question being asked in this paper: if Audsley’s

algorithm is not applicable can an optimal priority assignment scheme only be found

by enumerating all n! possibilities?

2 Audsley’s Priority Assignment Scheme
An optimal priority assignment scheme is one that will find an ordering that will deliver
a schedulable task set if a successful priority ordering exists for that task set. Obviously
an enumeration of all possible orderings is optimal is that sense, but is impractical for
large n.

To apply Audsley’s algorithm requires the task model to satisfy a set of prerequi-
sites [3, 4].
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• The schedulability of a task may be a function of the set of higher priority tasks,
but not their specific priorities.

• The schedulability of a task may depend on the set of lower priority tasks, but
not on their specific priorities.

• A schedulable task that has its priority raised cannot become unschedulable, and
conversely an unschedulable task that has its priority lowered cannot become
schedulable.

Although these prerequisites are sufficient, it has not actually been proved that they
are all necessary. This is offered as a second open research question.

The algorithm works by first finding any task that is schedulable at the lowest pri-
ority. If none can be found then the task set is unschedulable. If one is found then that
task can be given this lowest priority, and the algorithm continues to try and allocate a
task to the lowest+1 priority. This is repeated for all priority levels. If at any level no
schedulable task can be found then the task set is unschedulable. Backtracking will not
improve on this, so in the worst-case n(n � 1)/2 single task schedulability tests need
to be undertaken with this scheme.

A typical property that prevents the use of Audsley’s algorithm is when the response-
time of a task is not only dependent of the set of higher priority tasks but also on their
relative priorities. For example, in some forms of multiprocessor analysis the amount
of interference from a higher priority task is a function of the interval during which
that task is executing. If the task’s deadline is used to define this interval then this is a
static property that does not depend on the task’s priority; and hence Audsley’s algo-
rithm can be used. But more effective analysis is possible if calculated response time
rather than deadline is used [3, 4]. Unfortunately the task’s response-time will depend
on its own priority and hence is not static. As a result Audsley’s algorithm cannot be
used. A trade-off must therefore be made, between an adequate form of analysis sup-
ported by optimal priority assignment, or a superior form of analysis only supported
by sub-optimal priority assignment [3, 4].

Another example of non-compliance is with the Abort-Restart model [7]. Here
tasks are aborted rather than preempted. When a task is released for execution its
effective execution time is the sum of its own computation time and the maximum
computation time of lower priority tasks. Hence computation time is a function of pri-
ority ordering with the result that the first prerequisite for Audsley’s algorithm does not
hold. Interestingly, an evaluation of a heuristic priority assignment scheme was only
able to compare itself with an optimal ordering (derived via complete enumeration) for
task sizes up to n = 8 [8]. After that n! was too large for the required experiments
(using thousands of task sets). Remember 10! is 3,628,800.

3 Open Research Question
The open research question is simple stated. With uniform hardware and run-time sup-

port, if the prerequisites for Audsley’s algorithm do not apply can an optimal priority

ordering only be delivered by complete enumeration of all possible priority orderings?
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Here we are concerned only with optimal priority assignment. There are many ef-
fective heuristics, using for example backtracking and bounding. But in the worst-case
(with, for example, a ‘just’ schedulable or ‘just’ unschedulable task set) an exponential
number of checks need to be made or only a sufficient but not necessary pronounce-
ment can result.

The Open Question requires the hardware to have uniform behaviour. By which is
implied that tasks are treated fairly and equally. To illustrate this pre-condition consider
a model that can be optimally assessed using an n3 algorithm, but for which Audsley’s
algorithm does not formally apply. Assume a single processor with an accelerator that
can execute the highest priority task at twice its usual speed. The single task must be
statically mapped to the accelerator and will itself be schedulable if its computation
time is less that its deadline (as its execution time is now C/2 rather than C). Now
Audsley’s algorithm does not apply as the schedulable at the lowest priority level will
depend on which task will be given the highest priority (i.e. it will use the accelerator).
However, it is easy to see that an optimal scheme exists. First, assign one (arbitrary)
task to the top priority and then use Audsley’s algorithm to see if the others can be
scheduled. If they cannot, try a different task at the top level. In total n distinct tests
need to be undertaken each requiring (n�1)(n�2)/2 steps; delivering n3 complexity.

Although this example seems to give a counter example to the Open Question; it
is contrived and would be excluded on the basis that the hardware is not uniform. In
reality it is really a task allocation problem (rather than a priority assignment problem).
So the question remains: do more realistic counter examples exist?

4 Conclusion
As far as the author is aware there are no published polynomial time optimal priority
ordering schemes that do not conform to the prerequisites of Audsley’s algorithm. If
it is indeed the case that no such schemes can exist then this is a very useful result. It
implies that if in any new scheduling scheme there is not this conformity then effort
need not be wasted trying to derive optimal priorities. A sub-optimal heuristic is the
best that can be employed.

A further open question raised in this paper concerns the prerequisite for Audsley’s
algorithm. Are they all necessary?
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I. INTRODUCTION

In uniprocessor scheduling, both EDF and LLF are found to be optimal, in the sense that both are able to schedule any feasible
task set. EDF has received more preference and attention because, both being optimal, it leads to less preemptions than LLF. In
global multiprocessor, neither EDF and LLF are optimal [1]. EDF, for instance, is subject to the Dhall effect [2], which causes
relatively light task sets to be unschedulable. The prototypical task set for this effect has a high utilization task which, due to its
characteristics, is relegated to a lower priority. LLF does not suffer from the Dhall effect, but is still characterized by a higher
number of preemptions. To capture the best of these algorithms, Lee [3] has proposed EDZL (Earliest Deadline until Zero Laxity),
a variation of EDF that promotes tasks to highest priority when they reach zero laxity; this allows scheduling task sets which are
unschedulable with EDF [4].

In this paper, we focus on the problem of scheduling a task set on a multiprocessor resource reservation, i.e., in a scenario
in which some (or all) processors may be at some times unavailable. We focus on the approach of adding laxity-based priority
assignment decisions to EDF, as in the case of EDZL.

II. SYSTEM MODEL AND BACKGROUND

Constrained-deadline sporadic task model: Each task, ⌧i
def
= (Ti, Ci, Di), releases an infinite sequence of jobs, whose release

times are separated by at least Ti time units. The jth job of task ⌧i, Ji,j
def
= (ai,j , ei,j , di,j) is released at time instant ai,j �

ai,j�1 + Ti and must receive ei,j  Ci units of execution capacity within the time interval [ai,j , di,j [ (with di,j = ai,j +Di). A
job which has arrived and has not yet executed ei,j is said to be active. At some instant t, the laxity of an active job Ji,j is the
difference between how much time there is until the deadline (t � di,j) and the remaining execution (i.e., the units of execution
capacity that such job must receive within the time interval [t, di,j [). We assume the first jobs of all tasks arrive at t = 0.

Scheduling algorithms: We consider that jobs are scheduled over the multiprocessor resource reservation using a work-conserving
unrestricted-migration global policy. This means that, at each instant, the highest priority active jobs will be selected for execution;
the number of jobs that will execute is upper-bounded by the number of available processors. An active job may be preempted
from one processor and, eventually, resume execution on another processor. We now describe the priority assignment policies
used by the algorithms refered to in this paper:

• EDF Active jobs are prioritized according to their absolute deadlines. The higher a job’s deadline, the higher its priority.
• LLF Active jobs are prioritized according to their laxities. The less laxity a job has, the higher its priority.
• EDZL Jobs with zero laxity are assigned highest priority. The remaining jobs are prioritized as EDF.
Resource reservation: To describe the open problem, we will consider a simple model for a resource reservation R

def
= (⇧, a,m),

which is defined as a reservation of an identical multiprocessor platform (with m unit-capacity processors) for a consecutive time
units every ⇧ time units; this means that, at any instant, there are either 0 or m processors available. When a job is scheduled on
one of the processors for one time unit, its remaining execution decreases by one unit. We also assume that the first a-long interval
of availability of the resource starts at t = 0.

III. MOTIVATING EXAMPLE AND PROBLEM

We describe the open problem resorting to a contrived task set T — with independent tasks ⌧1 = (20, 6, 20), ⌧2 = (20, 7, 20),
⌧3 = (20, 8, 20), and ⌧4 = (21, 12, 21)— and a resource reservation R = (20, 12, 3). When simulating1 scheduling this example
using EDF, we have the first job of task ⌧4 miss a deadline at t = 21 (Fig. 1a); grayed-out boxes represent platform unavailablity,
and the bar traced in orange is the job’s execution beyond the deadline (its response time is 5 time units beyond the deadline).
This is because the jobs of the remaining three tasks, having earlier deadlines, occupied the three processors for enough time to
push the execution of ⌧4’s job forward. The observed phenomenon is the same we see in classical examples of the Dhall effect [2],
which EDZL aims to eliminate. However, when simulating the scheduling of the same example using EDZL we see no difference
(Fig. 1b). When the laxity of ⌧4’s job reaches zero, the jobs of the remaining tasks have already finished, so the promotion to the
highest priority has no practical effect.

This work was partially supported by FCT/Égide (PESSOA programme), through the transnational cooperation project SAPIENT; by the EC, through project
IST-FP7-STREP-288195 (KARYON); and by FCT, through project PTDC/EEI-SCR/3200/2012 (READAPT), multiannual funding to LaSIGE (UI 408), and
Doctoral Grant SFRH/BD/60193/2009.

1Source code available at http://lasige.di.fc.ul.pt/⇠jcraveiro/EDzetaL/.
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Fig. 1: Scheduling T on R = (20, 12, 3) using (a) EDF; (b) EDZL; (c) LLF; (d) ED⇣L.

Problem: The classical notion of laxity does not consider the unavailability of the platform. As such, comparing laxity to a
constant value (e.g., EDZL) is inappropriate when dealing with resource reservations.

We did not observe deadline misses when simulating with LLF either (Fig. 1c); the classical notion of laxity is not an issue for
LLF, since it only compares the laxities of different jobs among them (not against a constant value, like EDZL). A higher number
of preemptions is, however, clearly seen.

To the best of our knowledge, the problem of analysing laxity-based scheduling algorithms on multiprocessor resource reser-
vations has not been approached in the literature.

IV. PROOF OF CONCEPT: ED⇣L
As a proof of concept, we have implemented an algorithm which we call Earliest Deadline until ⇣ Laxity (ED⇣L)2. The value of

⇣ may be greater than zero, and should be appropriate for the available resource reservation. For our simple example and model,
we can simply assign ⇣ = ⇧ � a. We implement the priority assignment policy as follows: jobs with laxity  ⇣ are prioritized
as LLF among them, all of them having higher priority than jobs with laxity > ⇣; the latter are prioritized among them as EDF.
Any remaining ties are broken arbitrarily but consistently. This implementation of ED⇣L has the advantage of generalizing other
algorithms: with appropriate values for ⇣, ED⇣L behaves like EDF (⇣ ⌧ 0), LLF (⇣ > max⌧i2⌧ (Di � Ci)), or EDZL (⇣ = 0).

We have simulated scheduling our example using ED⇣L, with ⇣ = 20�12 = 8, for 840 time units — 2⇥ lcm⌧i2⌧ Ti. The trace
for the initial 40 time units of the simulation can be seen in Fig. 1d. For the whole length of the simulation, no deadlines were
missed, and there are less preemptions than with LLF (cf. Fig. 1c).

V. CONCLUSION AND FUTURE WORK

We have presented the inappropriateness of EDZL for the case when scheduling is performed over a multiprocessor resource
reservation — i.e., a multiprocessor platform which can be partially or totally unavailable at some times. We have illustrated
the problem with a contrived example and (deliberately simple and optimistic) resource model, and shown ED⇣L as a proof of
concept for the general idea of a possible solution. The main open questions are: (i) What is the dynamics of ⇣ which achieves
better performance? (ii) How can we determine schedulability with such a scheduling policy on various multiprocessor resource
reservations [6]–[9]? Our intuition is that the solution for this problem may be based on comparing an adapted notion of laxity to
0 (or, equivalenty, comparing classical laxity to a dynamic ⇣); in turn, this adapted notion of laxity should consider the difference
between how much execution capacity one single job can have available until its deadline (according to the resource model) and
its remaining execution.
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I. INTRODUCTION

Hierarchical scheduling is a current trend in embedded software, with applications ranging from multimedia applications [3] to
safety-critical domains such as the civil aviation, aerospace and automotive industries [4]. The need for independent development
and arbitrary number of levels are the main motivation and advantages of compositional analysis; compositionality is the property
of a complex system that can be analysed by analysing some properties of its components (without knowing their internal structure
or hierarchy) and the way they are composed. In this sense, a component comprises a workload, a scheduler, and a resource
supply. Compositional analysis comprises three main points [5]. (i) Local schedulability analysis Analysing the schedulability
of a component’s workload upon its scheduler and resource supply. (ii) Component abstraction Obtaining the component’s
interface from its inner characteristics. (iii) Interface composition Transforming the set of interfaces abstracting the real-time
requirements of individual subcomponents into an interface abstracting the requirement of scheduling them together according to
a given intercomponent scheduling strategy.

Motivation and problem: Multiprocessors are entering the realm of embedded systems, namely safety-critical and hard real-
time systems as those employed in the aerospace and the automotive industries. However, the multiprocessor capabilities are
routinely not exploited, because of a lack of support in terms of verification and certification [6]. Due to these industries’ prevalent
use of and interest in TSP systems, compatibility between TSP and platforms with multiple processors, both identical and non-
identical, is highly desired. The ARINC 653 specification, a standard for TSP systems in civil aviation and aerospace, shows
limited support thereto [7]. To allow reusing the obtained results in a wider range of systems and applications, we approach this
problem through compositional analysis of hierarchical scheduling frameworks (HSF), of which TSP systems are a special case.

Contributions: In [1], we presented the problem of compositional analysis of HSFs on uniform multiprocessors. In this fast
abstract, we overview the progress made on the problem since then, and some ongoing work. For a detailed description with
proofs, the reader is referred to [2]. This is the first work explicitly dealing with compositional analysis of HSFs on uniform
multiprocessor platforms. Our contributions so far [2] are: (i) the uniform multiprocessor resource (UMPR) model to serve as a
component interface for compositional analysis; (ii) a sufficient local schedulability test for sporadic task workloads using global
EDF (gEDF) on the UMPR resource model; (iii) component abstraction guidelines to select the platform for the UMPR interface;
We also briefly describe how we are dealing with the remaining open point — interface composition/intercomponent scheduling.

Related work
Compositional analysis: There is no previous literature explicitly dealing with compositional analysis of HSFs on uniform

multiprocessor platforms. Approaches for identical multiprocessors include the multiprocessor periodic resource (MPR) model;
an MPR interface (⇧,⇥,m) abstracts the provision of ⇥ processing units over every period with ⇧ time units length over a virtual
platform consisting of m identical unit-speed processors [8]. The UMPR extends the MPR for uniform multiprocessors; we chose
the MPR because of its simplicity and compositionality potential; other approaches present a less pessimistic approach, at the
expense of less simple abstractions specifying the individual contribution of each processor in the virtual platform [9]–[11].

gEDF on dedicated uniform multiprocessors: Schedulability analysis of gEDF on uniform multiprocessors was introduced by
Funk et al. [12]. Baruah & Goossens [13] provide a sufficient gEDF-schedulability test for constrained-deadline sporadic task sets
of uniform multiprocessors; we extend their approach, since their analysis does not take into account that the platform may be at
times partially or totally unavailable.

II. SYSTEM MODEL

Task model: A component C comprises a workload (task set) T , with n constrained-deadline sporadic tasks ⌧i
def
= (Ti, Ci, Di).

We denote by �
max

(T )

def
= max⌧i2T

Ci
Di

the maximum density among all tasks in T . The demand bound function DBF(⌧i, t) gives
an upper bound to the maximum cumulative execution requirement by jobs of sporadic task ⌧i which have both their arrival and
deadline times within any time interval with length t [13].

Platform and scheduling model: We assume a uniform multiprocessor platform with m processors, defined and represented
as ⇡

def
= {si}mi=1

, with 1.0 � si � si+1

> 0.0 for all i < m. Each si represents a processor’s schedulable utilization; this
value corresponds to the amount of processor capacity units it provides within one time unit; the total capacity of the platform is
expressed as Sm(⇡)

def
=

Pm
i=1

si. We also make use of the lambda parameter, �(⇡) def
= max

m�1

`=1

Pm
j=`+1 sj
s`

, which and abstracts
how close is ⇡ to an identical multiprocessor platform [12]. We also assume a work-conserving global EDF scheduling strategy
with unrestricted migration; without loss of generality, we refer to it simply as gEDF.

This paper partly reports progress on the problem presented at RTSOPS 2012 [1], and summarizes results described in [2]. This work was partially supported
by FCT/Égide (PESSOA programme), through the transnational cooperation project SAPIENT; by the EC, through project IST-FP7-STREP-288195 (KARYON);
and by FCT, through project PTDC/EEI-SCR/3200/2012 (READAPT), multiannual funding to LaSIGE (UI 408), and Doctoral Grant SFRH/BD/60193/2009.
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Resource model — UMPR: To solve the described problem, we propose the uniform multiprocessor periodic resource model,
extending and generalizing the MPR model. An interface expressed with the uniform multiprocessor periodic resource (UMPR)
model U def

= (⇧,⇥,⇡) specifies the provision of ⇥ units of resource over every period of length ⇧ over a virtual uniform
multiprocessor platform ⇡. The supply bound function SBF(U , t) expresses the minimum resource supply U guarantees over
any time interval of length t (see [2] for its definition).

III. LOCAL SCHEDULABILITY TEST

We extend Baruah and Goossens’s [13] “busy interval” analysis, taking into consideration that the processors available to the
component at each instant may not be the fastest processors in the platform. Due to this, we introduce some pessimism regarding
the upper bound on the number of jobs that carry in some execution into the “busy interval” (⌫).

Theorem 1 (See proof in [2]). Let ⌫ = m � 1. A component C comprising a constrained-deadline sporadic task set T is
schedulable under gEDF using a UMPR interface U = (⇧,⇥,⇡), if for all tasks ⌧k 2 T and all Ak � 0,

nX

i=1

DBF(⌧i, Ak +Dk) + (⌫ + �(⇡)) · (Ak +Dk) · �max

(T )  SBF(U , Ak +Dk) . (1)

IV. COMPONENT ABSTRACTION

For the (identical) multiprocessor resource model, the technique presented in [8] to generate the component interface for C
consists of (i) assuming ⇧ is specified by the system designer; (ii) computing the values of ⇥ and m so that C is schedulable with
the least possible resource bandwidth (⇥/⇧); for the computation of the schedulability to become tractable, the SBF is replaced by
a linear lower bound. For the UMPR, component abstraction is not this simple, because the notions of numbers of processors and
total capacity are no longer represented together as only m (and consequently the number of candidate virtual platforms for each
component explodes). On the other hand, the available physical platform may impose restrictions on this. As such, we assume both
period ⇧ and platform ⇡ are specified (for instance, as a requirement presented to the component’s developers by their contractor,
which will in the end integrate the multiple components), and only ⇥ needs to be computed to guarantee schedulability. We
nevertheless provide important analytically proven guidelines for the selection of platform ⇡.

1) For the same number of processors and total capacity, UMPR interfaces with non-identical uniform multiprocessor platforms
are better than those with identical multiprocessor platforms. This is coherent with previous findings in the literature [13].

2) UMPR interfaces with platforms providing the same total capacity with a lower number of faster processors are better than
those with a greater number of slower processors.

Our experiments with randomly generated task sets are consistent with these guidelines.

V. ONGOING: INTERCOMPONENT SCHEDULING AND INTERFACE COMPOSITION

We have proven experimentally [2] and analytically that, in the presence of uniform multiprocessor platforms, classical gEDF
scheduling does not guarantee compositionality. We currently have the definition of a scheduler, umprEDF, that guarantees that
the effective supply that each component receives is consistent with the interface derived for it. We are working on formally
proving its properties, and on interface composition (deriving a global-level resource interface).

Acknowledgments. The authors would like to thank I. Shin and A. Easwaran for being available to answer our doubts about
specific aspects of their work, and the organizers and attendees of RTSOPS 2012 for the fruitful discussions there.
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1 Introduction

The choice of periods in a periodic task set has a significant impact on its utilization bound under Rate-
monotonic Scheduling (RMS). It ranges from the Liu/Layland bound [3] in the worst, and thus general, case to
the full uniprocessor utilization of 1 in the case of simply periodic (aka harmonic) task sets.

First, it is a challenge to exploit period values in order to obtain better uniprocessor utilization bounds
also for non-extreme cases. A better grouping has then the potential of improving partitioned RMS on a
multiprocessor system. Finally, based on such an understanding, period modification suggestions can be given
in a rapid system design process.

2 Circular Statistics

Standard statistics is mainly based on scalar data. Opposed to this, directional statistics makes use of unit
vectors with the information contained in their directions. In two dimensions, directional statistics specializes
to circular statistics, see, e.g., [2]. Here, the angular direction is taken modulo 360�. A full circle is a period.

The example of determining an average wind direction will show the need for circular statistics. The average
of two data points, Northeast (NE) and Northwest (NW), shall be calculated. Taking the numerical average of
the corresponding azimuth (north-based, clockwise) values 45� and 315� results in an average wind direction of
180�, i.e. South (S). But the only reasonable result is North (N), the opposite direction. This example already
indicates that linear statistics is not appropriate for such types of data.

Due to the local approximation of the Earth’s surface by a plane, geography is a relevant application field
of circular statistics as could be seen in the wind direction example. Other appropriate applications of circular
statistics are the analysis of time series with respect to repetitive time events like time of day or day of the

week. More general, all data resulting from modulo operations are suitable for an analysis by circular statistics.
The time period (the divisor) is then mapped to a full circle of 360�.

3 Circular Range for Measuring Period Compatibility under

Uniprocessor Preemptive RMS

A utilization bound taking all period values into account was first proposed by Burchard et al. [1]. There,
so-called S values are defined as fractional parts (modulo 1) of the binary logarithms of the periods. Then, �
is defined as the linear range of all obtained S values. The case � = 0 means a simply periodic task set, while
a � ! 1 corresponds to a most-di�cult-to-schedule situation according to Burchard’s test.

Utilization bounds based on � turned out to be pessimistic [4] [5]. The simple dispersion measure linear

range is not appropriate for the modulo-based S values and leads to the paradox situation of scale-dependent
(i.e., dependent upon the choice of time unit) utilization bounds, cf. Fig. 1. As mentioned in the introduction,
modulo-based data shall be treated as circular data. Hence, circular range coined �0 instead of � shall be used.
The problem with the old � approach is that it maps zero to powers of two. Thus, periods slightly below and
sligthly above a power of two, say 15 and 17, are considered to be incompatible which is wrong. As shown in
[4] and [5], this small modification leads to both less pessimism and a simpler utilization bound formula based
on the Burchard bound [1].

The change of perspective from linear to circular statistics was crucial for these improvements. An at-first-
glance tiny cosmetic operation turned out to be conceptually correct and to increase the obtained utilization
bound which is a classic goal of the design of this kind of schedulability tests.
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4 Challenges

1. The grouping of tasks with compatible periods based on the linear S value range � was successful in the
RMST algorithm [1] which tackles partitioned multiprocessor RMS. What is the gain of a change from
linear to circular range there? How beneficial is it for hierarchical scheduling with RMS?

2. A typical situation in system design is the question for reasonable period modifications in order to make
a task set schedulable. A viable approach for reducing circular range could be circular autocorrelation.
The result is then a subset of tasks to be scaled and the scaling factor. How useful is such an approach
and how does it compare to other system design methods?

5 Summary

It was shown that period compatibility estimation under RMS can be improved using circular instead of linear
statistics which leads to increased uniprocessor utilization bounds and removes scale dependency. Since the
uniprocessor schedulability test is one of the cornerstones of partitioned RMS, we ask for the usefulness of the
approach for partitioned multiprocessor scheduling.

References

[1] Almut Burchard, Jörg Liebeherr, Yingfeng Oh, and Sang H. Son. New strategies for assigning real-time
tasks to multiprocessor systems. Computers, IEEE Transactions on, 44(12):1429–1442, December 1995.

[2] S. Rao Jammalamadaka and A. Sengupta. Topics in Circular Statistics. World Scientific Pub Co Inc,
Singapore, har/dskt edition, 2001.

[3] Chung Laung Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, January 1973.

[4] Dirk Müller. Period Fitting for Rate-monotonic Scheduling Using a Circular Similarity Measure. In Proc.

of the 18th IEEE Int’l Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA

2012), WiP Session, pages 427–430, Seoul, Korea, August 2012.

[5] Dirk Müller and Matthias Werner. Comment on “New Strategies for Assigning Real-Time Tasks
to Multiprocessor Systems”. Computers, IEEE Transactions on, PP(99):1, 2012. to appear,
http://dx.doi.org/10.1109/TC.2012.244.

17



Reality Check: the Need for Benchmarking in RTS and CPS

Marco Di Natale
Scuola Superiore S. Anna

email: marco@sssup.it

Chuansheng Dong
McGill University

email: chuansheng.dong@mail.mcgill.ca

Haibo Zeng
McGill University

email: haibo.zeng@mcgill.ca

Compared with other embedded systems research commu-
nities, including electronic design automation (EDA), com-
pilers, or signal processing, the real-time systems (RTS) and
the more recent cyber-physical systems (CPS) communities
suffer from the lack of uniformly accepted benchmarks and
even models on which to evaluate algorithms and solutions.
Correspondingly, and not surprisingly, there is lack of con-
sensus on what is realistic or applicable.

The problem is not minor as most researchers in the area
continue to experience such a difficulty. It is also quite
fundamental, touching upon very well established results,
models, and techniques. We shortly review (and possibly
challenge) some methods, models, and tools, and then move
to a proposal for a shared (and public) repository of test
cases and benchmarks.

Of course it is not by chance that our community lacks
consensus on benchmarks or realistic system models. The
main reason is probably the need for high-level system
models, which are often application-specific (as opposed to
general-purpose and well established algorithms that make
up most of the benchmark libraries for other communities).
Any application-specific model is often considered as part
of the company IP (if industrial) and name masking is
typically not enough to remove concerns. Hence, the only
option is to patiently wait until the product (line) gets out
of the market. A secondary reason is that citation-oriented
metrics are inevitably leading to diminishing returns from
realistic system-level (applicable) research and possibly to
more limited interaction(s) with the industrial world.

Even if available, an industrial task model is probably
not the best benchmark. Industrial task models are often
the product of a designer’s interpretation of the code-level
solution to a functional problem. In many cases, the designer
will seek a simplified task model to reduce concurrency
and simplify its job (dealing with race conditions). The
task model should be considered as the product of a design
synthesis or optimization activity and the functional model,
when existing, should always be the preferrable input.

I. SYSTEM (TASK AND MESSAGE) MODELS

Several methods and algorithms that are developed in
literature are often validated against randomly generated task
sets, where the task set complies with a defined activation,
synchronization (dependency) and communication model.

Quite often task sets are treated as abstract entities and
uniform coverage of the space of attributes is sought. For
example, confuting the analysis in [6] that stated that the
average least upper bound for fixed-priority rate monotonic
scheduling is 89%, the UUniFast algorithm [1] was devel-
oped to randomly generate task sets with a more accurately
uniform distribution of task periods and utilizations. In
reality, task periods are not arbitrarily selected, but are often
the result of oversampling and undersampling at fixed ratios,
giving rise to (pseudo-)harmonic sets or constranied by the
processing rates of commercial off-the shelf smart sensors.

Also, the community has analyzed several task models
as logical evolution of existing ones or as a possible repre-
sentation of program-level constructs. Several of these did
not originate from an application problem defined as a set
of tasks but as a possible variation/extension of previous
models. The models took a life of their own and researchers
are often dealing with the backward work of finding a real-
world motivation or match to the task model (and scheduling
problem) they know how to solve.

In many real-world cases, the communication and syn-
chronization problems are either much simpler (simple
communication by sampling), or not easily represented by
using the existing models (such as the activation modes
in the Controller Area Network interaction layer, and the
scheduling problems defined by synchronous state machine
models [8]). As a further example, the model of linear
transactions (possibly with offsets) is much more studied
but much less common than a more general model of tasks
and messages interacting in a graph pattern.

A. Realism and Details
In general, any engineering model should be detailed

enough to capture the system attributes of interest to provide
an accurate analysis of selected properties. Although aspects
like the impact of cache, context switch, interrupt handling
delays, and other architectural aspects can play a significant
roles in some cases, they are often hidden by considering
them (usually after upper-bounding) as part of other system
parameters (such as the WCET of tasks) or neglected alto-
gether, under the assumption that their impact is negligible.

Common examples include the assumption that context
switch costs are much smaller than the execution times of
tasks. However, measures of typical context switch times
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for real operating systems on real execution platforms are
not often readily available to validate this assumption and
experimental results on real OS are required.

Similarly, tradeoffs between policies should be defined
by the actual times that are used to perform operations.
One example is the comparison between locked-based multi-
processor synchronization protocols like MPCP and MSRP.
Unfortunately, a large body of study on this topic has
assumed that the critical sections can be larger than 500µs or
even 1ms, which is probably not realistic for critical sections
implementing access to shared memory buffers. Even with
a very large data buffer (around 1k byte), the access time
is measured to be in the range of 50µs on a 120MHz
embedded microprocessor. Examples of (possibly longer)
critical sections in (real-world) applications are required.

B. Random Task/System Generation

When a randomly generated system configuration is ac-
ceptable, standarized tools are needed to make experiments
repeatable. Among the available generators, TGFF (Task
Graph For Free) [2] and SMFF (System Model For Free) [7]
are the most popular.

TGFF [2] is widely used in research domains other than
real-time systems. It generates random task models, includ-
ing the task parameters (periods and WCETs), the commu-
nication topology, and application-level timing constraints
(end-to-end deadlines). However, TGFF does not represent
the execution platform and the mapping of tasks. To partially
address this issue, SMFF [7] covers the description of
the entire system, including the hardware architecture, the
software applications, and their mapping onto the platform
with the associated scheduling and timing parameters.

Of course, the relevance to reality of these random
task/system generation tools is largely decided by the pa-
rameter settings. It is also restricted by the underlying
assumption in the random generation algorithm. For exam-
ple, TGFF assumes that the task graph is directed acyclic
(which is not suitable for tasks captured by cyclic graphs
such as finite state machines), while SMFF assigns task
activation periods assuming a uniform distribution between
the specified minimum and maximum values.

C. Available Benchmarks

EEMBC [3] is one of the earliest efforts towards develop-
ing performance benchmarks for use in embedded systems.
It organizes the test suites by specific focus of embedded
systems hardware and software development, for application
domains including automotive, consumer electronics, and
telecommunications, or to address specific design concerns
such as energy and floating point performance.

MiBench [4], collected in the early 2000s, follows the
model of EEMBC by dividing a set of 35 applications
(available as C code) into 6 categories, including automotive

and industrial control, consumer devices, office automation,
networking, security, and telecommunications.

For a specific purpose of evaluating WCET analysis
methods and tools, the Mälardalen WCET research group
maintains a benchmark [5], containing 35 programs (pro-
vided in C source files) collected from several different
research groups and tool vendors around the world.

However, these benchmarks have their limitations.
EEMBC is not freely available, access requires a member-
ship with the associated cost. MiBench (besides its out-of-
date) and Mälardalen benchmark are collections of programs
rather than entire systems with a defined task structure.

II. A WEBSITE FOR BENCHMARK

Of course, this lack of benchmarks asks for concrete
action. We present our project for the construction of a web-
site [9] meant to store, classify, manage, and provide access
to tools, tests and examples constructed and accessible using
an open text-based format.

The website (or portal if preferred) is organized with
sections for tools (for random generation) and real-world
examples or case studies, classified in turn along two di-
mensions: type of models (Functional, describing functions
and signals; Task, with tasks and messages; and Platform
models, with physical architectures and possibly OS, device
driver or communication stack models), and according to the
execution platform (single-core, multicore, or distributed).

Examples are available and can be provided in an open
text format, according to the description provided in the
format section. We started collecting message sets and ap-
plication descriptions from automotive systems. The website
will be hosted at McGill University [9], with the collection
of the above mentioned tools and benchmarks. Please feel
invited to contribute with representative test cases and links.
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I. INTRODUCTION : THE TIME TRIGGERED LANGUAGES CONTEXT

The development of embedded software is a highly platform dependent process. The main difficulty lies in both formulating the
functional specification of the system and correctly determining its temporal behavior. While the former is facilitated by the high-level
programming languages which abstract from many hardware aspects, getting the expected temporal characteristic of the system involves
usually much more efforts due to the implementation of scheduling policies and synchronization or inter-processes communication
protocols.

To answer the problem of managing efficiently these two crucial aspects to the correctness of the system features, time triggered
languages for embedded programming were devised. These languages are based on a clear separation between the functional part of
applications and their timing definition. The basic functional unit in these languages are tasks that periodically execute some piece
of code. Each task ⌧i is characterized by its worst case execution time Ci. Several concurrent tasks make up a mode. A mode is
characterized by its period that is a common multiple of the periods of tasks that make up the mode. Tasks are invoked within the
mode at a declared frequency Fi that determines their period Ti. Tasks can be removed or added by switching from one mode to
another. Tasks communicate with each other, as well as with sensors and actuators, only by means of ports.

Time triggered languages provide a programmer’s abstraction which was firstly introduced within the Giotto programming lan-
guage [5], [6], [7]. Giotto assigns a Logical Execution Time (LETi) [8] to each task ⌧i. Periodic invocation of tasks, reading of sensor
values, writing of actuator values, completions of tasks and mode switches are all triggered by real time. They take place in the LET
interval assigned to the task. Thus, tasks are invoked and sensors are read at the start instant of this LET interval while actuators are
updated and tasks are completed at the end instant of the LET. Mode switches may occur only at instants defined by the common
multiples of the LET of all the tasks belonging to that mode when they are all completed. It must be noted that in these languages
the LET of a task is restricted to be equal to its period : 8⌧i LETi = Ti. Ti and LETi time intervals are then equal. This means
considering that a task ⌧i is released at the start instant of Ti and is completed at the end instant of Ti.

The LET abstraction and its time-triggered semantics enables efficient reasoning about the time behavior of applications. This allows
control designers and developers to focus on the control systems aspects instead of the platform (hardware and operating system)
without being interested in where, how and when tasks are actually scheduled: this may be on platforms with a single CPU or with
many CPUs, on platforms with a preemptive priority scheduling or not. The compiler is in charge of generating the timing code for
the given platform and needs to ensure that the LET semantics is preserved. To this end, it must guarantee the schedulability for a
specific platform and so is faced to a possibly complex schedulability problem because the actual scheduling scheme of the operating
system and the schedulability test of the compiler must be compatible.

Based on the concepts developed by Giotto, the Timing Definition Language (TDL) [2], [3], [14] introduced additional features
together with appropriate tools for structuring large real-time systems and analyzing their schedulability, and proposed new syntactical
and semantic modular structures for describing the temporal behavior of applications. In particular a set of periodic tasks and the set
of the different modes of execution of these tasks may be declared inside a module definition. An application can be devised as a
set of modules that are the actual distribution unit in TDL. Tasks of modules are concurrently activated. Nonetheless, each module
can execute only the tasks of its current mode. Mode switches may occur only at specific time instants that are hyperperiods of tasks
in the current mode. Figure 1 depicts a sample physical execution pattern of the exemplary TDL system composed of three different
modules: M1, M2, M3. Module M1 can execute tasks of modes m11 or m12, M2 those of modes m21 or m22 and M3 these of modes
m31 or m32.

m31 m31 m32

m21 m22

m11 m11 m12 m12M1

M2

M3

Fig. 1: Sample execution pattern of TDL system scheduled with fixed priority

m31 m31

m21 m22

m11 m11 m12 m12M1

M2

M3 � �

� �

Fig. 2: Sample execution pattern of TDL-extended system scheduled with fixed priority

II. THE PROBLEM STATEMENT

We feel that Giotto and TDL framework may be extended in three ways. Firstly, we suggest that the LET of a task and its period
denote in fact two different concepts. Consequently, we allow that LET assumes values less than task period: LETi  Ti. Differently
from what was suggested in section I, the LETi interval is included in the Ti interval. Then a task may be released after the
beginning of its period and may be completed before the end of this period. Therefore, this means extending the TDL task definition
⌧i = (Ci, LETi) with an initial offset �i and a LETi  Ti ⌧i = (�i, Ci, LETi, Ti). Figure 2 represents a sample physical execution



pattern of 3 TDL modules with these new extensions. The actual deadline Di of task ⌧i is given by Di = �i + LETi. Secondly,
we suggest that an application may be heterogeneous and may combine time triggered components (with their timing definition) and
classical event triggered components (without timing definition). Thirdly, we suggest that mode changes should be made more reactive
by allowing mode switches not only at instants that are hyperperiods but also at some possible other idle (or made idle) instants in the
mode. As it can be seen on Figure 2 there is an idle interval in module M3 between the deadline (end of its LET) of the only task of
mode m31 (red arrow) and the end of the m31 mode (black arrow). Therefore, to provide better reactivity, it might be considered to
advance mode change instant instead of waiting idly until the end of the mode period. Moreover, when a mode change is requested,
some tasks whose completion is not vital for the consistency of the system, might be aborted [10].

The question is now: what new schedulability problems does the compiler of the timing definition language face under these three
new hypotheses ?

III. CURRENT STATE

A schedulability analysis of TDL definitions, where tasks ⌧i = (Ci, LETi), was developed in [2]. The author proposes schedulability
tests for Fixed Priority (FP) and Earliest Deadline First (EDF). Because 8⌧i LETi = Ti = Di and the critical instant occurs at
simultaneous start of the tasks from all the modules in this TDL scheme, the EDF schedulability analysis is performed by evaluating
the utilization factor : the sum of maximal modules utilization factors cannot exceed 1. FP policy schedulability analysis is based on
the evaluation of the worst-case response time taking into account mode changes. The line of reasoning founding this analysis follows
the general idea detailed in [10].

IV. OPEN SCHEDULABILITY PROBLEMS ARISING IN OUR EXTENDED FRAMEWORK

Our objective is to establish schedulability tests for FP and EDF under the three new hypotheses that define an extended TDL model
and that were discussed in section II : disjointing LET from task period (LETi  Ti), performing schedulability analysis with the
assumption that processor resources can be shared between timing defined tasks and not timing defined ones, and finally improving
the reactivity of the mode change.

Relaxing constraint which was fixing LET to the task period, in the domain of scheduling boils down to the analysis of real-time
tasks described by the four parameters model (�i, Ci, Di, Ti) calculated according to the principles exposed in section II. The notion
of modes and modules implies that the system taskset is composed of tasksets from all modules of the system and each one of these
tasksets is allowed to interchange old mode tasks with the new ones at precisely defined mode switch instants. Selecting these instants
only at common multiple of all tasks periods within given mode determines that the mode change is synchronous within the module
because the old mode tasks are necessarily completed when the new ones are released. Nonetheless, as the mode change within some
module can occur during the mode execution of another module, its interference should be properly examined during schedulability
analysis. Moreover, the time interval between starts of different modes belonging to distinct modules can assume the values depending
on these modes periods and their predecessors periods. The values of these time intervals can be examined in the similar manner as
the tasks offsets in [11].

To handle heterogeneous systems we feel that it could be worthy to combine into the scheduling analysis the Delivery Curves
and the Remaining Delivery Curves as introduced in [15]. In this way it would be possible to evaluate how much of processor a
time defined modules demand in a time interval � and then to check that this demand remains compatible with the given processor
consumption of all the other not time defined elements. To this end, if mode periods in different modules are selected so that their
start instants are not correlated and, as a consequence, the highest demand intervals of both modes can occur at the same time, the
approaches for EDF proposed by Phan in [12] and Fisher in [4], based on the processor demand criterion [1], may be used and may
give satisfactory results. Otherwise, a method can be proposed where the allocation of the processor resources to modules is not only
a function of the the time interval but also of the specific time instant this interval starts. The problem of scheduling FP tasks is
concerned by the similar difficulties, however, as the approaches based on the response time analysis as well as Real Time Calculus
provide sufficient conditions, a correct choice should be made.

As regards mode changes, in [9] Martinek presents some new protocols for Giotto aiming to increase their promptness. Once our
previous questions and problems will be answered, we should like to find some improvements that allow more reactive mode changes
in our timing definitions. Particularly, its impact on the time interval between start instants of modes in distinct modules is a key point
that should be examined.
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I. INTRODUCTION 

Critical real-time systems such as those deployed in space, aerospace, transport, and medical applications require 
guarantees that the probability of the system failing to meet its timing constraints is below an acceptable threshold (e.g. a 
failure rate of less than 10-9 per hour). Advances in hardware technology and the large gap between processor and memory 
speeds, bridged by the use of cache, make it difficult to provide such guarantees without significant over-provision of 
hardware resources. The use of deterministic cache replacement policies means that pathological worst-case behaviours need 
to be accounted for, even when in practice they may have a vanishingly small probability of actually occurring. Further, the 
quality of deterministic WCET estimates for such systems can be highly sensitive to missing information, making them 
overly pessimistic. Random cache replacement policies negate the effects of pathological worst-case behaviours while still 
achieving efficient average-case performance, hence they provide a means of increasing guaranteed performance in hard real-
time systems [6]. 

Determining the timing behaviour of applications running 
on a processor with a random cache replacement policy 
requires probabilistic analysis of worst-case execution 
times. This can be achieved using Static Probabilistic 
Timing Analysis (SPTA) to compute an upper bound on the 
exceedance function (1 - CDF) for the probabilistic Worst-
Case Execution Time (pWCET) of a program. An example 
exceedance function is given in Figure 1, taken from [3]. 
From the exceedance function, it is possible to read off for a 
specified probability, an execution time that has that 
probability of being exceeded on any single run. Static 
Probabilistic Timing Analysis (SPTA) has been developed 
for single processor systems assuming both evict-on-access 
[2], [1] and evict-on-miss random cache replacement 
policies [3]. 

 
Figure 1: pWCET distributions (1-CDF) for different memory block sizes  

 

II. EXISTING STATIC PROBABILISTIC TIMING ANALYSIS  

We now recap on SPTA for an evict-on-miss random cache replacement policy [3] for the instruction cache and no data 
cache. With the evict-on-miss policy, whenever an instruction is requested and is not found in the cache, then a randomly 
chosen cache line is evicted and the memory block containing the instruction is loaded into the evicted location. We assume an 
N-way associative cache, and hence the probability of any cache line being evicted on a miss is 1/N. 

For simplicity, we assume a single path program comprising a fixed sequence of instructions. We represent these 
instructions via the memory blocks they access; with a superscript indicating the re-use distance k. (The re-use distance is the 
maximum number of evictions since the last access to the memory block containing that instruction, and is omitted if it is 
infinite). For example, a, b, a1, c, d, b3, c2, d2, a5. For each instruction, it has been shown [3] that the probability of a cache hit 
is lower bounded by: 
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provided that k < N, otherwise 0)(  kPhit  (details of this latter restriction are given in [3]). Given fixed costs for the cache-hit 
latency (e.g. H = 1) and the cache miss latency (e.g. M = 10), then an upper bound pWCET distribution of a program can be 
computed as the convolution (� ) of the probability mass functions (PMFs) of each instruction. For example, given two 
instructions with PMFs with cache hit probabilities of 0.8 and 0.7 respectively, we get a pWCET distribution for the ‘program’ 
(comprising the two instructions) that has a probability of the execution time being 2 on any given run of 0.56, a probability 
that it will be 11 of 0.38, and a probability that there will be two cache misses and hence an execution time of 20 of 0.06. 
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We note that for larger numbers of instructions, the probability of a large number of cache misses quickly becomes vanishingly 
small, as illustrated by the graphs of 1-CDFs or exceedance functions in [3] one of which is reproduced in Figure 1. 

We note that the SPTA given for evict-on-miss [2], [1] and evict-on-access [3] policies are somewhat pessimistic. This 
pessimism arises because when computing the probability of a hit for a particular instruction, the analysis assumes that all of 
the intervening instructions that could potentially be misses are in fact misses, which is a pessimistic assumption. For example, 
for the sequence a, b, a1, c, d, b3, c2, d2, a5, when computing the probability of a hit for the third occurrence of ‘a’ i.e. ‘a5’, it is 
assumed that the five intervening instructions that could potentially be misses are all misses. The corresponding memory 
blocks are c, d, b3, c2, d2; however, the probability that b3, c2, d2 are all misses is actually very small, for example if N=256, 
then this probability is no greater than 7.1x10-7. 
 
 

III. OPTIMISTIC STATIC PROBABILISTIC TIMING ANALYSIS  

In an attempt to remove the source of pessimism described above, an alternative formula is given in [5], for computing the 
probability of a cache hit as follows: 
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where the summation in the exponent is over the probabilities of misses of the intervening instructions. No proof is given for 
this formulation [5]. Below, we show that it is optimistic. We first illustrate what led us to look very carefully at this formula: 
the fact that it can produce irrational numbers. This was suspicious given that probabilities must necessarily be rational, as in 
this case, each probability is computed by counting the number of scenarios that result in a particular outcome and then 
dividing by the total number of possible scenarios. As an example, we assume that 2 N  and the summation is over just one 
instruction that has a probability of being a hit of 1/2 (i.e. the second ‘b’ in the sequence a, b, a1, b1), hence we have: 
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Counter example: 
We now show that (2) is optimistic. For simplicity we consider the same sequence of four instructions a, b, a1, b1, now with a 
cache size 4 N . Further, we assume that the latency of a cache hit is 1 and the latency of a cache miss is 10. In our example, 
the first two instructions are certain misses, so using (1), the probability distributions for the first three instructions are as 
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Now let us consider the only two possible scenarios separately and compute the exact pWCET distribution. 
Case 1: the second ‘a’ is a cache hit. This scenario has a probability of occurrence of 0.75 (as the first ‘b’ is a certain cache 
miss and has a probability of 0.75 of not evicting ‘a’ from the cache). Given that the second ‘a’ is a cache hit, then the second 

‘b’ is also certain to be a cache hit, hence the partial pWCET for this scenario is ¸̧
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Case 2: the second ‘a’ is a cache miss. This scenario has a probability of occurring of 0.25 (as the first ‘b’ is a certain cache 
miss and has a probability of 0.25 of evicting ‘a’ from the cache). Given the second ‘a’ is a cache miss, the second ‘b’ has a 

probability of 0.75 of being a cache hit, hence the partial pWCET is: ¸̧
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Combining Case 1 and Case 2, we have an overall pWCET of ¸̧
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Notice that the exact pWCET distribution derived above by examining all possible scenarios is different from that obtained 
using the formula (2) from [5]. The precise calculation gives a higher probability of 0.0625 (versus 0.01735) of the absolute 
WCET of 40 occurring. Thus the formula from [5] does not deliver a valid upper bound pWCET distribution, instead it 
provides an optimistic pWCET that is unsafe to use. (Formally, we may say that a pWCET distribution (describing a random 
variable 8 ) is a valid upper bound on the exact pWCET distribution (describing a random variable = ) if 

}{}{ xPxP d=dd8  for any x). 
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We can also compute an upper bound pWCET for our example using the analysis given in [3] i.e. using (1) as follows: 
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 Notice that in this case the pWCET obtained is not 

itself exact, but it is a valid upper bound on the exact distribution. 

IV. OPEN PROBLEM  

In this short paper, we have refuted the SPTA formula for the probability of a cache hit given in [5] used to compute 
pWCET distributions. We have also shown that previous SPTA methods do not compute an exact pWCET distribution even 
for the simplest of programs. Computation of an exact pWCET distribution appears to require enumeration and composition 
of all the different possible scenarios. While this was possible for our simple example, in general it would lead to a 
combinatorial (exponential) number of cases to consider, hence rendering such an approach intractable even for moderately 
sized examples. 

The open problem that we propose is therefore how to improve upon the simple SPTA analysis [2], [1], and [3] that exists 
today, so as to obtain tighter bounds on the actual pWCET distribution while keeping the amount of computation required 
within acceptable limits. 
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