
©Copyright 2012 by the authors

RTSOPS 2012

Proceedings of the 3rd International

Real-Time Scheduling

Open Problems Seminar

Pisa, Italy

July 10, 2012

In conjunction with:

The 24th Euromicro Conference on Real-Time Systems (ECRTS 2012)

July 10-13, 2012

Edited by Liliana Cucu-Grosjean and Nathan Fisher

i

Foreword

Welcome to Pisa and the 3
rd

 International Real-Time Scheduling Open Problems Seminar

(RTSOPS 2012). This seminar provides a venue for the exchange of ideas and discussion of

interesting unsolved problems in real-time scheduling. The format of the seminar positively

encourages interaction between participants and provides ample time for relaxed

discussions. The goal of the seminar is to promote a spirit of cooperation and collaboration

within the real-time scheduling community.

This year, we have organized RTSOPS 2012 around joint presentation/collaboration sessions.

At the beginning of each session, we will have 2-3 short presentations on a number of

important problems in real-time scheduling that give a brief introduction to the problem

and its challenges. At the end of each session, we invite the seminar participants (authors

and audience members) to interact in small groups, exchanging ideas with the presenters on

how the problems might be solved and taking the first steps towards a solution. A total of

11 open problems were selected for presentation at the seminar. These proceedings are

also published as an INRIA research report available at hal.inria.fr.

We would like to thank the Steering Committee (listed below) for their hard work in

reviewing the open problem submission and helping to make the seminar a success.

Marko Bertogna University of Modena, Italy

Robert Davis University of York, UK

Shelby Funk University of Georgia, USA

Sathish Gopalakrishnan University of British Columbia, Canada

Special thanks also go to Giorgio Buttazzo and Gerhard Fohler for their support and

assistance for organizing this seminar.

Liliana Cucu-Grosjean and Nathan Fisher

Co-Chairs, 3
rd

 International Real-Time Scheduling Open Problems Seminar (RTSOPS 2012)

ii

iii

Table of Contents

The Real-Time Multi-Resource Task Model .. 1

Cong Liu (The University of North Carolina at Chapel Hill, USA)

Dependent Probabilistic Real-Time .. 3

Luca Santinelli (INRIA Nancy Grand Est, France)

Undoing the Task: Moving Timing Analysis Back to Functional Models .. 5

Marco Di Natale (Scuola Superiore Santa Anna, Italy) and Haibo Zeng (McGill University,

Canada)

The Chilling Effect of Parallelism: Analysis and Allocation of Parallel Real-Time Jobs for

Peak System-Temperature Minimization ... 7

Joël Goossens (Université Libre de Bruxelles, Belgium) and Nathan Fisher (Wayne State

University, USA)

Exploiting Online WCET Estimates .. 9

Sverre Hendseth (Norwegian University of Science and Technology) and Giorgio Buttazzo

(Scuola Superiore Sant’Anna, Italy)

Can Randomness Buy Clairvoyance? A Look into Stochastic Scheduling of Mixed-

Criticality Real-Time Job Systems with Execution Time Distributions .. 11

Bader Alahmad and Sathish Gopalakrishnan (University of British Columbia, Canada)

Is It Possible to Schedule Target Sensitive Recurring Tasks for Increased Utility Accrual

Using Task-Level Rather than Job-Level Information? .. 13

Raphael Guerra and Gerhard Fohler (Technische Universität Kaiserslautern, Germany)

Towards Optimal Priority Assignments for Real-Time Tasks with Probabilistic Arrival and

Execution Times ... 15

Dorin Maxim (INRIA Nancy Grand Est, France)

Exploiting Uni-Processor Schedulability Analysis for Partitioned Task Allocation on

Multi-Processors with Precendence Constraints ... 17

Mario Bambagini, Giorgio Buttazzo (Scuola Superiore Sant’Anna, Italy) and Sverre Hendseth

(Norwegian University of Science and Technology)

Energy Saving Exploiting the Limited Preemption Task Model ... 19

Mario Bambagini, Giorgio Buttazzo (Scuola Superiore Sant’Anna, Italy) and Marko Bertogna

(University of Modena and Reggio Emilia, Italy)

Heterogeneous Multiprocessor Compositional Real-Time Scheduling 21

João Pedro Craveiro and José Rufino (Universidade de Lisboa, Portugal)

iv

The Real-Time Multi-Resource Task Model

Cong Liu

Department of Computer Science, University of North Carolina at Chapel Hill

1 Problem Context

In many real-time and embedded systems, applications utilize multiple resources during execution. As the complexity and

the degree of heterogeneity of embedded systems continue to increase, the trend of utilizing multiple system resources, such

as CPUs, GPUs, and other special-purpose processors, will continue. For instance, GPGPU (general purpose computing

on graphics processing units) and FPGA (field programmable gate array)-based software/hardware co-design are becoming

increasingly popular means to assist CPUs in performing complex and intensive computations [3].

To formerly model real-time applications that utilize multiple resources, we present a new real-time sporadic multi-resource

(SMR) task model. The SMR task model extends the real-time sporadic task model by allowing tasks to request multiple

resources. We assume that there are z resources {R1, R2, ..., Rz} in the system. We consider the problem of scheduling a

set τ = {τ1, ..., τn} of n independent SMR tasks on z resources. Each resource Rh (1 ≤ h ≤ z) contains mh processors.

Each SMR task τi has at most qi phases {τ1i , ..., τ
qi
i }. Each such phase utilizes a single resource. We assume that any two

consecutive phases of any task utilize different resources; otherwise, they can just be viewed as one phase. Also any phase can

start execution only if its previous phase (if any) completes. The kth phase of τi, τ
k
i , has a worst-case execution time of eki .

The worst-case execution time of τi on resource Rh (across all of its phases that request this resource) is denoted by ei(Rh).

The worst-case execution time of task τi is thus given by ei =

z∑

h=1

ei(Rh) (ei(Rh) = 0 if τi does not request resource Rh).

An SMR task is released repeatedly, with each such invocation called a job. Successive jobs of the same task are required to

execute in sequence. Associated with each task τi are a period pi, which specifies the minimum time between two consecutive

job releases of τi, and a relative deadline di. For any task Ti, we require ei ≤ min(di, pi). The jth job of Ti, denoted Ti,j ,

is released at time ri,j and has a deadline at time di,j = ri,j + di. The kth phase of the jth job of τi is denoted by τki,j . The

utilization of an SMR task τi on resource Rj is defined by ui(Rj) =
ei(Rj)

pi
. The total utilization of task system τ on resource

Rj is defined by usum(Rj) =

n∑

i=1

ui(Rj). The density of an SMR task τi on resource Rj is defined by δi(Rj) =
ei(Rj)

di
.

Non-job-migration and non-preemptivity restrictions on certain resources. Although preemptivity is allowed on some

resources such as CPUs, there are resources that only permit non-preemptive executions. For example, execution on GPUs is

non-preemtptive [3]. Moreover, job migration, which is allowed under global scheduling approaches on CPUs, may not be

efficient on certain resources such as GPUs and FGPAs because significant migration overheads may be incurred. Therefore,

to accurately reflect the reality, we allow different scheduling policies, such as preemptive or non-preemptive GEDF, and

preemptive or non-preemptive partitioned scheduling, to be used on different resources.

An example SMR task system requesting three resources is given below.

Example 1. Consider a task set with three SMR tasks τ1, τ2, and τ3 scheduled in a system containing three resources,

R1, R2, and R3, as shown in Fig. 1(a). Each resource has two processors. GEDF, preemptive partitioned scheduling, and

non-preemptive partitioned scheduling are applied on R1, R2, and R3, respectively. For this task system, usum(R1) =
u1(R1) + u2(R1) + u3(R1) = 6/10 + 3/16 + 5/20 = 83/80. Similarly, usum(R2) = 19/40 and usum(R3) = 23/80.

Related work. A few papers have focused on cooperative scheduling of multiple resources. In [2], the problem of co-

scheduling accesses to both a CPU and a disk which are controlled from a single controller was studied. In other work [1], an

integrated real-time resource scheduler was designed that performs coordinated allocation and scheduling of multiple resources

for periodic soft real-time tasks. However, neither of these papers provide analytically provable timing guarantees as the

solutions rely on heuristics, which are purely evaluated based upon run-time performance. Moreover, no formal general real-

time multi-resource task model has yet been presented. Therefore, the open problem proposed in this paper is the following:

how to schedule real-time multi-resource tasks on multiprocessors to meet all deadlines?

1

R1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

R2 R1

R1 R2 R3 R1

R1 R2 R1 R3 R1

4 2 2

2 2 3 1

2 3 2 2 1

τ1

τ2

τ3

job release job deadline

(a)

1 2 3 4 5 6 7 8 9 100

41

1 1 5

1

job release job deadline

R1

τ1

τ2

R2 R1

R1 R2 R1

(b)

R1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

R2 R1

R1 R2 R3 R1

R1 R2 R1 R3

4 2 2

2 2 3 1

2 3 2 2 1

R1

τ1

τ2

τ3

Phase release Phase deadline

(c)

Figure 1: (a) Example SMR task system τ . Phase labels give the execution cost of each phase. τ1, τ2, and τ3 have a period of 10, 16, and 20

time units, respectively. (b) Deadline misses for a lightly-loaded SMR task system that utilizes two resources. (c) Example transformation.

2 A Transformation Approach

We next present an approach that can serve as a first step towards achieving positive results on scheduling SMR task systems.

First we show an example unschedulable task system that motivates the proposed approach, as shown in Fig. 1(b). In this

example, two tasks τ1 and τ2 are executed in a system with two resources, R1 and R2. R1 has two processors and R2 has one

processor. τ1 first executes on R1 for one time unit, then on R2 for four time units, and finally on R1 for another 1 time unit;

τ2 first executes on R1 for one time unit, then on R2 for one time unit, and finally on R1 for five time units. Both tasks have a

period of ten time units. As seen in Fig. 1(b), although this system is lightly loaded (usum(R1) = 0.8 and usum(R2) = 0.5),

τ2 still misses its deadline. The observation drawn from this example is that the dependencies among execution phases on

different resources plus the interference brought by other tasks quite negatively impact schedulability.

Therefore, our proposed approach is to eliminate such dependencies and interference due to executions on multiple re-

sources. Under our approach, each phase of every MSR task is transformed into a sporadic constrained-deadline subtask that

only requests a single resource. This is achieved by assigning phases intermediate release times and deadlines. In order for

any MSR task to meet its deadline, we need to guarantee that all phases belonging to this task complete before this deadline.

If the last phase τ qii,j of any job τi,j of any task τi completes by di,j (which is the original deadline of τi,j), then τi,j meets the

deadline as well. The slack of each task is distributed among phases to help assign intermediate release times and deadlines to

phases. The slack of any task τi, denoted by si, is defined as si = pi − ei.
Since at any point of time, any task could have at most one active phase (i.e., a phase that has not yet completed and

its previous phase, if any, has completed, and the job to which it belongs has been released), the density of any task after

transformation is determined by the maximum density among its phases. Thus, one possible way to distribute a task’s slack

among its phases is to minimize the maximum density among phases. Due to the fact that the maximum of a set of densities

is never lower than the average density of the same set, keeping the densities of all phases exactly equal can achieve this goal.

By distributing slack in this way, the resulting density of any phase of any task τi equals ei/pi (derivation details are omitted

due to space constraints). Thus, after the transformation, the density of any task τi also equals ei/pi.

Example 2. Consider the same task system as shown in Fig. 1(a). Fig. 1(c) shows the transformed task system using our

proposed transformation approach. As seen, after the transformation, each phase of each task τi has a density of ei/pi. For

example, for τ1, each of its phases has a density of 0.8.

After the transformation, each phase of each SMR task can be treated as an independent (if all assigned deadlines are met)

sporadic constrained-deadline task that requests only a single resource. Thus, by applying prior schedulability tests designed

for ordinary sporadic constrained-deadline task systems scheduled under preemptive GEDF, or preemptive and non-preemptive

partitioned scheduling, we are able to obtain the resulting schedulability tests for the original SMR task system. A quantitative

characterization of the worst-case schedulability performance under the proposed approach can also be provided by using the

resource augmentation technique.

Other insights. The above transformation approach is clearly pessimistic. In order to better understand the problem and find

more efficient solutions, studying particular task sets, where system and task parameters are fixed and simplified, might help.

Several particular cases may be worth investigation, for instance, SMR task systems that only request two resources each of

which contains a single processor, or SMR task systems in which execution times of all phases of all tasks are identical, or a

simplified SMR task model where we assume that there are only two resources in the system and each SMR task contains two

phases each of which requests one resource.

References

[1] K. Gopalan and T. Chuieh. Multi-resource allocation and scheduling for periodic soft real-time applications. In Multimedia Computing and Networking,

pp. 34-45, 2002.

[2] S. Saewong and R. Jajkumar. Cooperative scheduling of multiple resources. In Proc. of the 20th IEEE Real-Time Systems Symp., pp. 90-101, 1999.

[3] R. Wu, B. Zhang, and M. Hsu. GPU-Accelerated Large Scale Analytics. In HP Labotories Technical Report, HPL-2009-38, 2009.

2

Dependent Probabilistic Real-Time

Luca Santinelli

INRIA Nancy Grand Est, Nancy, France

luca.santinelli@inria.fr

Introduction. The real-time community has recently discovered interests
in probabilistic approaches to schedulability analysis of time constrained sys-
tems. Since the paper of Diaz et al. [1], the probabilistic analysis of real-time
systems has been used regularly and with the basic rationale of applying the
theory of probability for feasibility analyses [2, 3]. Such analyses are mainly
proposed for calculating the response time of tasks [4, 5] under a known pre-
emptive scheduling policy. Based on a rich probabilistic model (rich in terms of
associated information), the resulting flexible probabilistic analysis can reduce
the pessimism of classical deterministic approaches, refers to [6] as an example.

A probabilistic real-time system is intended as a real-time system with at least
one parameter described by a random variable. Therefore, a probabilistic real-
time analysis consists of the temporal analysis of probabilistic systems relying
on probability distributions and cumulative distribution functions. It aims to
computing probabilities of events under different conditions (i.e. the response
time of a system of tasks), also known as joint probability distributions. The
joint probability distribution of two random variables X and Y is the probability
of event defined in terms of both X and Y, P{X = x and Y = y} = P{Y =
y | X = x} · P{X = x} = P{X = x | Y = y} · P{Y = y}.

Probabilistic Modeling. A task τi is mostly characterized by an offset Oi,
a relative deadline Di, a inter-arrival time (period) Ti and a worst-case execution
time Ci. In its probabilistic instance it is possible to have any of its parame-
ters1 described by random variables. The worst-case execution time can be Ci

as the random variable providing the possible values for worst-case execution

time of task τi, Ci =

(

Ci,k

P(Ci = Ci,k)

)

k∈{1,··· ,kCi
}

, where Ci,k ∈ [Cmin
i , Cmax

i]

and kCi
∈ N

∗ is the number of values that the random variable Ci has. Each
worst-case execution time value Ci,k has a probability associated being the prob-
ability of such worst-case happening for any of the task job. A random variable

generalizes the notion of deterministic worst-case execution time Ci =

(

Ci

1

)

,

where 100% of the time task τi has Ci worst-case execution time. Consequently,
probabilistic analyses generalize the results of deterministic ones. The period

in its probabilistic model can be defined as Ti =

(

Ti,k

P(T = Ti,k)

)

k∈{1,··· ,kTi
}

;

even the offset Oi and the deadline Di can be random variables with the possible
values for the task jobs. A probabilistic task τi is then the tuple (Oi, Ci, Ti,Di).

Classical probabilistic real-time analysis assumes independency among
random variables in order to apply convolutions and obtain single task response
time as a random variable [2, 3]. Two random variables X and Y are indepen-
dent if they describe two events such that the outcome of one event does not
have any impact on the outcome of the other. This result in a joint probability
distribution P{X = x and Y = y} = P{X = x} · P{Y = y}.

1Deadline included, for a general view of the framework, although purists of real-time
prefer to have deterministic deadlines.

1

3

Independency is the case for variables of the same task since there is not
clear dependency among, for example, periods and worst-case execution time
of the same task. On the other hand, there are dependencies among tasks: the
execution of a task can affect other tasks in terms of their parameters, such as
their periods or their execution time. The system as well as the environment
can inflate dependencies among tasks through, for example, shared resources
such as memories and caches or interrupts. Complex systems have dependencies

among their elements. Therefore, probabilistic models of these systems must in-
clude dependencies among their random variables. In order to provide accurate
results, these dependencies must be taken into account in probabilistic real-
time analyses. For example, in case of dependencies the convolution cannot be
applied anymore so we need an alternative operator for the joint distributions.

Analysis with Dependencies. Since the objective of probabilistic real-
time modeling and analysis is to reduce the pessimism, what is a “dependent”
task model that can be applied? The open problem is clearly how to model

dependencies among tasks and task parameters, so to apply the probabilistic
approach to realistic real-time cases.

Bernard et al [7] have interestingly coupled the notion of copula and real-
time systems as a way of bounding dependencies among tasks. The copula of
random variables is defined as the joint cumulative distribution function of those
variables. Unfortunately, it has not been applied so far due to the complexity in
finding an accurate characterization of dependencies. To conclude, a) which is
an accurate model of the task dependencies? b) Is it possible to take into account
dependencies in the random variable distribution representation? c) How do we
ease the applicability of copulas or alternative dependency representations?

References

[1] J. Dı́az, D. Garcia, K. Kim, C. Lee, L. Bello, L. J.M., and O. Mirabella, “Stochastic anal-
ysis of periodic real-time systems,” in 23rd of the IEEE Real-Time Systems Symposium
(RTSS02), 2002, pp. 289–300.

[2] J. Lopez, J. L. Daz, J. E., and D. Garca, “Stochastic analysis of real-time systems under
preemptive priority-driven scheduling,” Real-time Systems, vol. 40, no. 2, pp. 180–207,
2008.

[3] L. Cucu and E. Tovar, “A framework for response time analysis of fixed-priority tasks
with stochastic inter-arrival times,” ACM SIGBED Review, vol. 3, no. 1, 2006.

[4] G. Kaczynski, L. Lo Bello, and T. Nolte, “Deriving exact stochastic response times of
periodic tasks in hybrid priority-driven soft real-time systems,” 12th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA’07), Greece, 2007.

[5] H. Zeng, M. D. Natale, P. Giusto, and A. L. Sangiovanni-Vincentelli, “Using statistical
methods to compute the probability distribution of message response time in controller
area network,” IEEE Trans. Industrial Informatics, vol. 5, no. 4, pp. 678–691, 2010.

[6] L. Santinelli and L. Cucu-Grosjean, “Towards probabilistic real-time calculus,” Special
issue related to the 3rd Workshop on Compositional Theory and Technology for Real-
Time Embedded Systems(CRTS 2010) at ACM SIGBED Review, vol. 8, no. 1, March
2011.

[7] G. Bernat, A. Burns, and M. Newby, “Probabilistic timing analysis: An approach using
copulas,” Journal of Embedded Computing, vol. 1, pp. 179–194, April 2005. [Online].
Available: http://portal.acm.org/citation.cfm?id=1233760.1233763

2

4

Undoing the Task: Moving Timing Analysis back to Functional Models

Marco Di Natale

Scuola Superiore S. Anna, email: marco@sssup.it

Haibo Zeng

McGill University, email: haibo.zeng@mcgill.ca

The real-time systems community has traditionally con-

sidered tasks or jobs (from the operating system concept

of thread) as the units for the analysis model. With time,

more complex task models have been created to represent

conditional execution (branching), precedence constraints,

and an increasingly complex model of time dependencies,

from the multiframe model until the most recent extended

digraph model. In the past, research works have explored the

benefits of breaking the task structure to enforce a different

management for subsets of the task execution time (for ex-

ample, by restricting preemption, or changing the execution

priority). Examples are the dual priority scheduling [3] and

the non-preemption sections at the end of the task [4].

In the meantime, the industrial world is moving away

from the traditional manual programming to adopt model-

based design. The threads (as concurrent units of execution,

managed by the operating system) are in the background,

and functional models, such as dataflows or networks of

synchronous blocks, including extended finite state machines

are the modeling entities. The task (or threads) model

becomes an intermediate artifact, and the timing analysis be-

comes part of a synthesis problem. The problem constraints

are the semantic properties of the functional model that

need to be preserved, and the task model must guarantee a

correct implementation that is feasible and memory effective

or time-robust.

I. FUNCTIONAL MODELS

Most functional models in use today are built on a

synchronous reactive (SR) semantics. For simplicity, we

restrict to discrete-time models. The system is a network of

functional blocks bj . Blocks can be of two types. Regular

blocks process a set of (discrete time) input signals at times

that are multiples of a period Tj , which is in turn an integer

multiple of a system-wide base period Tb (the model could

be extended to sporadic activations). We denote inputs of

block bj by ij,p (ij as vector) and outputs by oj,q . At all

times kTj the block reads the signal values on its inputs and

computes two functions: an output update function oj =
fo(ij , Sj) and a state update function SNew

j = fs(ij , Sj),
where Sj (SNew

j) is the current (next) state of bj . Often,

the two update functions can be considered as one oj ,

SNew
j = fu(ij , Sj). For timing analysis, the worst execution

time of the update function is estimated as γj .

State machine (SM) blocks can have multiple activation

events ej,v (as shown in the right hand side of Figure 1

with two events of period 2 and 5). At any integer multiple

of one of the events’ periods kTj,v , an update function is

computed depending on the current state, the subset of input

events that are active and the set of input values. Update

functions are typically extended by allowing the execution of

generic functions whenever a given event is active on a given

state. When multiple events are active, an order is provided

to give some events (for the given state) precedence over

others (thereby guaranteeing determinism). This is typically

summarized in a graph representation as in the right side of

Figure 1. The figure represents an SM with two events with

periods 2 and 5 and the corresponding possible activation

times and actions.

In the case of a state machine block, it pays off to

identify the worst-case execution time associated to each

update/action for each state, event and set of input values.

The structure of the state machine constrains which up-

date/actions can occur in the worst case within a given time

interval (for details refer to [2]). The procedure to calculate

the request and demand bound functions for state machines

is similar to those used for digraph task models. For the

example of Figure 1, the worst-case sequence of actions is

defined by the state graph (which transitions are possible

out of which state). Also, a trivial solution consists in an

implementation with a single task running at the greatest

common divisor of the events periods, but different task

models may be defined.

If two blocks bi and bj are in an input-output relationship

(one of the outputs of bi is the input of bj , and the output

of bj depends on its input), there is a communication link

between them, denoted by bi → bj . Let bi(k) represent

the k-th occurrence of block bi (belonging to the set of

time instants
⋃

v kTi,v if a state machine block, or kTi if

a standard block), then a sequence of activation times ai(k)
is associated to bi. Given t ≥ 0, we define ni(t) to be the

number of times that bi has been activated before or at t.

In case of a link bi → bj , if ij(k) denotes the input of

the k-th occurrence of bj , then the SR semantics specify

that this input is equal to the output of the last occurrence

of bi that is no later than the k-th occurrence of bj , i.e.,

ij(k) = oi(m), where m = ni(aj(k)). This implies a partial

order in the execution of the block functions (different from

the precedence constraints assumed in task models). The

5

top timeline on the left of Figure 1 illustrates the execution

of a pair of blocks with SR semantics. The horizontal axis

represents time. The vertical arrows capture the time instants

when the blocks are activated and compute their outputs

from the input values. In the figure, it is ij(k) = oi(m).

1

7 9

S2

S1

e

e

e

e

i

i

e e

o

o

21

2

1 1

2

e

0 2 4 5 6 81

S3

2

2

2

2

5

3/ {action ; o }

2

2
/ {action ; o }

1

 / {action ; o }2

1 1

/ {action ;o }

1 / {action ; o }

4

3

ufuf j j

time

b i jb

o i (m) o i (m+1)

o i (m) o i (m+1)ji (k)

time

ji (k)

1

1
0.25

0.2

2

0.1 2

0.15

0.3

Figure 1. input-output relationship among blocks (left) / state machine
and activation events (right)

The update functions and their action extensions are

executed by program functions (or lines of code) executed

by a task, thereby providing the level of granularity that

can be leveraged to improve schedulability (for example,

by disabling preemption). This makes the task structure a

design artifact or objective, rather than the starting point.

The function-to-task mapping consists of a relation be-

tween a block update function (or each one of them in the

case of an FSM block) and a task, and a static scheduling

(execution order) of the function code inside the task. The

i-th task is denoted as τi. M(fi,k, p, n) indicates that the

function fi,k of block bi is executed as the n-th segment of

code in the context of τp.

II. THE SYNTHESIS PROBLEM

The stage of the design process in which the functional

model is mapped into a task (thread) model is the starting

point of several optimization problems, including how to

map functions into tasks, how to assign the execution

order of functions inside tasks, how to assign the task

parameters (priority, deadline, offset) to guarantee semantics

preservation and schedulability, how to assign scheduling

attributes to functions (including preemptability and pre-

emption threshold) and even how to design communication

mechanisms that ensure flow preservation while minimizing

the amount of memory used.

The bottom-left side of Figure 1 shows the possible prob-

lems with flow preservations in multi-task implementations.

The writer finishes its execution producing oi(m). If the

reader performs its read operation before the preemption by

the next writer instance, then (correctly) ij(k) = oi(m).
Otherwise, it is preempted and a new writer instance pro-

duces oi(m+1). In case the read scheduling is delayed, the

reader reads oi(m+ 1), in general different from oi(m).
The correct set of values may be provided to the reader by

enforcing an execution order by the scheduler or by using

a suitable communication mechanism (such as an instance

of wait-free communication), with the associated memory

overhead.

The mapping of functional blocks into tasks, the configu-

ration of the task model, and the selection of the mechanisms

for the implementation of the communication over ports

(protecting against data inconsistency and possibly flow

semantics violations) have a large impact on the performance

of the system. The selection of the communication mecha-

nism and the protocol to protect state variables leverages

tradeoffs between time overhead for the execution of the

protocol, memory required for the implementation of the

mechanism, and possible blocking time. For implementation

on single-CPU architecture platforms, solutions have been

proposed (not exhaustively, many problems are still open).

Examples of problems that are open are the following:

Given a system composed of multiple communicating state

machine blocks and dataflow blocks to be executed onto a

multicore platform, find the mapping of the state machine

actions and block reactions onto a suitable set of tasks, the

placement of such tasks onto the cores and the assignment

of activation offsets and priorities to tasks such that the

partial order of execution defined by the functional model

semantics is preserved and each block processes its inputs

and computes its next state and output in time for the

next execution of the follower blocks. As starting point,

a discussion on possible task implementations for a single

state machine block is provided in [1] and the time analysis

of finite state machine actions, implemented by a single

task (with similarities to the analysis of generalized digraph

models [5]) is discussed in [2].

However, other (possibly) simpler problems also exist. one

example is the following: define the set of tasks that can

provide an implementation to a network of block actions in a

multicore platform, with the assignment of task priorities and

possibly activation offsets, and the assignment of preemption

thresholds to actions inside the tasks (to limit preemptability)

in such a way that the implementation is correct and the use

of memory (for stack and communication) is minimized.

REFERENCES

[1] M. Di Natale and H. Zeng, “Task implementation of syn-
chronous finite state machines,” in Proc. the Conference on
Design, Automation, and Test in Europe, 2012.

[2] H. Zeng and M. Di Natale, “Schedulability Analysis of Peri-
odic Tasks Implementing Synchronous Finite State Machines,”
to appear in Proc. 23rd Euromicro Conference on Real-Time
Systems, 2012.

[3] R. Davis and A. Wellings, “Dual priority scheduling,” in Proc.
the 16th IEEE Real-Time Systems Symposium, 1995.

[4] M. Bertogna, G. Buttazzo, and G. Yao, “Improving feasibility
of fixed priority tasks using non-preemptive regions”, in Proc.
the 32th IEEE Real-Time Systems Symposium, 2011.

[5] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-
time task model,” in Proc. 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2011.

6

The Chilling Effect of Parallelism: Analysis and

Allocation of Parallel Real-Time Jobs for Peak

System-Temperature Minimization

Joël Goossens1 and Nathan Fisher2

1Université Libre de Bruxelles, Brussels, Belgium joel.goossens@ulb.ac.be
2Department of Computer Science, Wayne State University, Detroit, Michigan, USA, fishern@cs.wayne.edu

I. INTRODUCTION

An oft-repeated benefit of multicore platforms over

computationally-equivalent single-core platforms is increased

energy efficiency and thermal dissipation. For these power

benefits to be fully realized, a computer system must possess

the ability to parallelize its computational workload across the

multiple processing cores. However, parallel computation of-

ten comes at a cost of increasing the total, overall computation

that the system must perform due to communication and syn-

chronization overhead of the cooperating parallel processes. In

this document, we explore the trade-off between paralleliza-

tion on real-time applications and peak-system temperature

minimization.

Very little research has addressed both parallelization and

power-consumption issues [8], [2] and the work that exists

in this area concentrates on energy consumption and has

restriction on the real-time task model [8]. While minimizing

the energy consumption and peak temperature of a system are

related problems, the solutions for addressing these problems

are fundamentally different. For example, it is well known

that in a system with dynamic voltage and frequency scaling

capabilities (DVFS) the optimal frequency assignment of each

processing core (in the presence of sequential real-time tasks)

for the purpose of energy minimization is quite different than

the frequency assignment for peak-temperature minimization

(e.g., see Wang and Chen [12]). Clearly, since sequential tasks

are a special, restrictive case of parallel tasks, this example

continues to exhibit the differences in the objective for the

parallel real-time task model. Unfortunately, while numerous

research papers have addressed peak temperature minimization

in systems comprised of non-parallelizable real-time jobs (see

[11] for a survey), to the best of our knowledge, no prior

research exists concerning job parallelization and peak tem-

perature in the real-time literature. We report in this document

open problems related to the scheduling of parallel real-time

tasks upon multiprocessors constrained the peak temperature.

We will first introduce, in sections II-A & II-B, important

concepts for thermal and parallel systems, respectively.

II. MODELS

A. Thermal Model

We consider a multicore processing platform with a set of

heat sinks for heat dissipation. Using the notation of Fisher

et al. [5] in the following, the multicore processing platform

M consists of M cores labeled by the index number, M =
{1, 2, 3, . . . ,M}. The thermal conductance between Cores j

and ℓ in M is Gj,ℓ, where Gj,ℓ = Gℓ,j . We assume that the

capacitance of Core j in M is Cj . Suppose that the thermal

conductance of a core dissipating heat to the environment is

G†. For simplicity and brevity, we do not include heat sinks

in our description; however, they can easily be incorporated

into the model.

The temperature of Core j is defined as Θj(t) and Θh(t).
For the current problem formulation, we assume that the

ambient temperature Θa is fixed. We also define Ψj(t) as the

power consumption on Core j at time t. As a starting point, we

assume that Ψj(t) equals αs
γ
j , where sj is the execution speed

of Core j and both γ (≤ 3) and α are processor-dependent

constants. In this initial problem description, we focus only

on dynamic-power consumption and ignore leakage power;

however, to be realistic, a complete solution would consider

both dynamic and static power. We hope that solutions for our

posed open question involving dynamic power can be extended

to the static-power setting.

Informally, the rate of change in the temperature on a core

is proportional to the power consumption times the quantity

of the heating coefficient minus the cooling coefficients times

the quantity of the temperature gradients among the core and

its neighboring cores. The heating/cooling process may be

calculated by using the duality principle between electrical

and thermal circuits and standard theory of electrical circuits:

Cj

dΘj(t)

dt
=Ψj(t)−

∑
ℓ∈M

Gj,ℓ(Θj(t)−Θℓ(t))

−G†(Θj(t)−Θa) (1a)

where
dΘj(t)

dt is the derivative of the temperature on Core j.

7

B. Parallel Task Models

We deal with jobs which may be executed on different

processors at the very same instant, in which case we say

that job parallelism is allowed. Various kind of task model

exist, Goossens et al. [6] adapted parallel terminology [1] to

recurrent (real-time) tasks as follows.

Definition 1 (Rigid, Moldable and Malleable Job): A job

is said to be (i) rigid if the number of processors assigned

to this job is specified externally to the scheduler a priori, and

does not change throughout its execution; (ii) moldable if the

number of processors assigned to this job is determined by the

scheduler, and does not change throughout its execution; (iii)

malleable if the number of processors assigned to this job can

be changed by the scheduler during the job’s execution.

At task level the literature distinguish between at least two

kinds of parallelism.

• Multithread. Each task is sequence of phases, each phase

is composed of several threads, each thread requires a

single processor for execution and can be scheduled

simultaneously [10]. A particular case is the Fork-Join

task model where task begins as a single master thread

that executes sequentially until it encounters the first fork

construct, where it splits into multiple parallel threads

which execute the parallelizable part of the computa-

tion [9] and so on.

• Gang. Each task corresponds to e× k rectangle where e

is the execution time requirement and k the number of

required processors with the restriction the k processors

execute task in unison [7].

Assuming that a job Jℓ has a processing requirement of eℓ
and is assigned to kℓ processors for parallel execution, then

several model are proposed in the literature to characterize the

multiprocessor speedup vector Γℓ = (γℓ,1, . . . , γℓ,m) with the

interpretation that job Jℓ that executes for t time units on j

processors completes γℓ,j · t units of execution.

• sub linear speedup ratio [8] requires that 1 ≤
γℓ,j′

γℓ,j
< j′

j

where j < j′.

• work-limited parallelism [3] j′

j
>

γi,j′

γi,j
and γi,(j′+1) −

γi,j′ ≤ γi,(j+1) − γi,j where j < j′.

• communication model [4] requires that γℓ,j =
eℓ

eℓ
ℓ
+(ℓ−1)C

where C is the constant communication overhead cost.

III. OPEN PROBLEMS

Informally, our main open problem is:

For each Core j ∈ M, determine the

speed/frequency assignment sj that minimizes

the peak system temperature (i.e., minimize

maxℓ∈M{maxt>0 Θℓ(t)}) such that all real-time

parallel jobs in a recurrent task system meet their

deadline.

Furthermore, we pose the above problem for each of the

parallel job models (i.e., rigid/moldable/malleable).

To solve the above general problem, we must answer the

following subproblems:

SP1 Development of Parallel Job Schedulability Analysis for

Uniform Multiprocessor Platforms. Since each core ex-

ecutes at a potentially different speed and any job may

execute on any core, the uniform heterogeneous multi-

processor platform model is an appropriate processing

abstraction. However, to the best of our knowledge no

schedulability analysis exists for the parallel real-time

job setting.

SP2 Development of Thermal-Aware Online Real-Time

Scheduling Algorithms. The locality of the cores and their

thermal properties are significant factors in minimizing

peak temperature. Thus, a single parallel job may gen-

erate heat from multiple sources which may have some

complex interaction. Therefore, an example showing the

benefit of parallelism for peak-temperature minimization

would be interesting and we are interested in online

algorithms for determining how a parallel job should be

“spread” across processors to optimize our objective.

SP3 Development of Thermal-Aware Frequency Assignment

Schemes. An offline allocation algorithm or online

scheduling algorithm is necessary to decide on what are

the values of sj(t) for each j ∈ M. In the offline

setting, the frequency/speed allocation algorithm should

determine the minimum assignment that respects dead-

lines and optimizes the objective function. In the online

setting, the core speed could dynamically change.

REFERENCES

[1] R. Buyya. High Performance Cluster Computing: Architectures and

Systems, chapter Scheduling Parallel Jobs on Clusters, pages 519–533.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[2] S. Cho and R. Melhem. Corollaries to Amdahl’s law for energy.
Computer Architecture Letters, 7(1):25–28, 2007.

[3] S. Collette, L. Cucu, and J. Goossens. Integrating job parallelism in real-
time scheduling theory. Information Processing Letters, 106(5):180–187,
May 2008.

[4] R. Dutton and W. Mao. Online scheduling of malleable parallel jobs.
In Proceedings of the IASTED International Conference on Parallel and

Distributed Computing and Systems, pages 1–6, 2007.
[5] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele. Thermal-aware global real-

time scheduling and analysis on multicore systems. Journal of System

Architecture, 57(5):547–560, May 2011.
[6] J. Goossens and V. Berten. Gang FTP scheduling of periodic and parallel

rigid real-time tasks. In Real-Time and Network Systems, pages 189–
196, November 2010.

[7] S. Kato and Y. Ishikawa. Gang EDF scheduling of parallel task systems.
In 30th IEEE Real-Time Systems Symposium, pages 459–468. IEEE
Computer Society, 2009.

[8] F. Kong, N. Guan, Q. Deng, and W. Yi. Energy-efficient scheduling for
parallel real-time tasks based on level-packing. In Proceedings of the

2011 ACM Symposium on Applied Computing, pages 635–640. ACM,
2011.

[9] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-
time tasks on multi-core processors. In Real-Time Systems Symposium,
pages 259–268, December 2010.

[10] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques
optimizing the number of processors to schedule multi-threaded tasks.
In ECRTS, 2012. Accepted.

[11] H. F. Sheikh, I. Ahmad, Z. Wang, and S. Ranka. An overview and
classification of thermal-aware scheduling techniques for multi-core
processing systems. Sustainable Computing: Informatics and Systems,
2011. To appear, available online.

[12] S. Wang and J.-J. Chen. Thermal-aware lifetime reliability in multicore
systems. In Proceedings of the International Symposium on Quality

Electronic Design, pages 399–405. IEEE Computer Society, 2010.

8

Exploiting online WCET estimates

Sverre Hendseth1

Department of Engineering Cybernetics, NTNU, Trondheim Norway

Email: Sverre.Hendseth@itk.ntnu.no

Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa, Italy

Email: Giorgio.Buttazzo@sssup.it

Abstract—This problem formulation builds on the acknowl-
edgment that, for some systems, offline WCET analysis is too
conservative to be useful. For many classes of programs, better
bounds on the execution time can be found effectively online
by utilizing information like input data or program state. Both
the systematic extension of the class of algorithms for which
such bounds can be found, and the general techniques for the
exploitation of the bounds are largely unexplored problems.

I. INTRODUCTION

Having upper bounds on the execution time for the jobs in

a real-time system is critically important in that guaranteeing

meeting any deadline is impossible without it. The system is

then, classically, built by over-allocating resources so that even

in the worst case, all timing requirements are met. However,

in many cases this approach is based on very pessimistic

assumptions and leads to a large resource waste. Two trends

have reinforced this picture in the last decades: First, the

embedded systems software has become more complex both in

terms of size and complexity, leading to challenges to find tight

upper bounds of the execution time. Second, with the increase

of battery-operated and wireless systems the overallocation of

resources becomes too expensive.

This paper takes the position that offline worst-case execu-

tion time analysis is not efficient as a dimensioning factor for

building and scheduling real-time systems, and we suggest

exploring the better bounds that can be found online when

input data and program state are available and can be used in

combination with the results from the offline analysis.

The idea of utilizing online job data for improving the

scheduler’s decisions is not entirely novel: Mok and Chen [1]

accept the potential importance for the scheduler to use more

information on the execution time of a job than the worst case,

but assume this data known. Choi et al. [2], take the opposite

approach of letting the application itself control CPU voltage

and frequency based on job parameters, but without notifying

the scheduler.

In scenario-based design the connection is made between

between the data available to the program and the scheduler’s

decision-making. Here, the possible executions of the applica-

tion are partitioned, offline, into scenarios, and a prediction

algorithm running online in the program’s address space

provides the scheduler with the information on which scenario

is occurring [3].

1Work done at Scuola Superiore Sant’Anna, Italy

Audsley et al. [4] uses Gain Points in the running code

to notify the scheduler of updated WCET values when the

outcome of major control flow decisions has been calculated

by the program. This can be e.g. just after the test of an if -

statement has been performed or when a loop bound has been

calculated. The application envisioned here is the execution of

optional components to hard real-time programs with online

guarantees.

We propose that using both offline and online information

for job scheduling deserves a broader and more systematic

investigation.

II. MODEL

A number of jobs τi are to be scheduled according to their

deadlines Di in presence of significant dynamicity. Each job

is described by their worst-case execution time, here denoted

WCET off and the online WCET, WCET on, which will be

calculated at the job’s release time Ri. Ci denotes the real

computation time which is unknown until the job has finished.

An estimation algorithm is assumed, which measures rel-

evant metrics available online, and converts them to the

WCET on by a transformation prepared off-line. The relevant

input data of the job is assumed either available at the release

time or inexpensive to acquire by the algorithm.

As a job becomes ready, the scheduler immediately runs

the corresponding estimation algorithm and then utilizes the

gained information in its decision making. The estimation

algorithm is assumed to have an execution cost that, while

not being insignificant, will be very small compared to that of

the job itself.

The existence of effective estimation algorithms is not

obvious: In the easiest case, information like the type of the

frame to be processed, or the length of the list to be traversed,

is directly available at job release time. On the other end of the

scale we have programs for which termination itself is an open

question, yielding the nonexistence of effective estimation al-

gorithms. Between these extreme cases we have any number of

program categories, potentially requiring different techniques

for estimation and inviting different bound qualities.

In a real-time setting we know that we never deploy

programs that do not terminate in bounded time. This can

be taken to indicate that we will not be struggling with the

hardest categories of programs.

9

Crit Job WCET off WCET on C R D

Hard τ1 12 9 8 0 16
Soft τ2 8 6 5 0 10

a)

0 2 4 6 8 10 12 14 16

τ1

τ2

b)

0 2 4 6 8 10 12 14 16

τ1

τ2

Fig. 1. Scheduling can be improved for this mixed criticality job set if
WCET on is used, enabeling the schedule in b). Using only WCET off

forces the schedule in a) where τ2 misses its deadline.

III. POTENTIAL UTILIZATION AREAS OF ONLINE WCET

DATA.

The following points envision some possible application

areas for the online WCET:

• Some schedulability or timeliness properties of a system

could be refined using the WCET on.

• Algorithms for reclaiming the CPU capacity allocated

to a job but not used, might be improved by getting

better information on the real job load at the job release

time. Similarly, strategies for overload handling, jitter

reduction, power optimization etc. could potentially be

improved.

• Figure 1 shows a simple mixed criticality job set where

access to the tighter WCET on improves schedulability.

• In a quality of service perspective, programs might offer

more modes of operation. Comparing the online WCET

of each mode with the available CPU for the next period

might be useful for selecting the mode.

• Algorithms for dynamic deployment of jobs onto proces-

sors and for load balancing can be improved using the

online execution time estimates.

IV. PRINCIPLES FOR ONLINE ESTIMATION OF WCET.

The following points suggest how the estimation challenge

can be approached for increasing algorithm complexity:

• The trivial case is when the estimation metric is directly

available. This can be the “message size”, “frame type”,

“length of the linked list”, etc. The estimation algorithm

would just look up the information and translate it into

the online WCET.

• A slightly worse class of programs would be when

a subset of the calculations must be carried out by

the estimation algorithm - like calculating the bounds

of the significant loops or the outcomes of the major

conditionals. Figure 2 gives an example of a type of

program where this would be successful. A framework

for automatically generating such estimation algorithms

is under development.

for (m=1;m<mmax;m+=2) {
for (i=m;i<=n;i+=istep) {
j=i+mmax;
tempr=wr*data[j]-wi*data[j+1];
tempi=wr*data[j+1]+wi*data[j];
data[j]=data[i]-tempr;
data[j+1]=data[i+1]-tempi;
data[i] += tempr;
data[i+1] += tempi;

}
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}

(a)

g_estimate += 1;
for(m=1;m < mmax;m+=2){

g_estimate += 13;
for(i=m;i <= n;i+=istep){
g_estimate += 32;

}
}

(b)

Fig. 2. a) shows the two inner loops of the Numerical Recipes FFT
implementation. A corresponding algorithm for estimating its the execution
time has been automatically generated in b) (here plainly counting the
applications of C binary operators). Further optimizations are apparent.

• Even more challenging could be a program which was

heavy on control-decisions like a sorting or Huffman

decoding program. However, on one hand many of these

algorithms are well analyzed already so that suitable

bounds may be found in the literature. On the other hand,

good and inexpensive metrics might still be found by

accepting uncertainties on the lower levels of granularity.

V. OPEN PROBLEMS

The two proposed open problems are:

• The systematic extension of the class of programs for

which effective estimation algorithms exists which yields

tight execution time bounds by utilizing data available

online, like input data or program state.

• The corresponding utilization of these online execution

time bounds in making systems with better timeliness

properties.

REFERENCES

[1] A.K. Mok and D. Chen, “A multiframe model for real-time tasks,”
Software Engineering, IEEE Transactions on, vol. 23, no. 10, pp. 635
–645, oct 1997.

[2] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram,
“Frame-based dynamic voltage and frequency scaling for a mpeg de-
coder,” in IN ICCAD 2000, 2002, pp. 732–737.

[3] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Mam-
agkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Vandeputte,
and K. De Bosschere, “System scenario based design of dynamic em-
bedded systems,” ACM Transactions on Design Automation of Electronic
Systems, vol. 14, no. 1, January 2009.

[4] N.C. Audsley, R.I. Davis, and A. Burns, “Mechanisms for enhancing the
flexibility and utility of hard real-time systems,” in Real-Time Systems
Symposium, 1994., Proceedings., dec 1994, pp. 12 –21.

10

Can Randomness Buy Clairvoyance? A Look into Stochastic Scheduling of Mixed

Criticality Real-Time Job Systems with Execution Time Distributions

Bader Alahmad Sathish Gopalakrishnan

University of British Columbia, Vancouver, BC, Canada

I. INTRODUCTION

Consider a system where n (one-shot) jobs contend for the

time of a single machine. In an L-criticality levels system, a

job, instead of being associated with a single nominal Worst

Case Execution Time Estimate (WCET), is rather associated

with WCET estimates at L “degrees” of overload. A higher

overload degree is quantified by higher resource demands

(e.g., greater WCET). The system operates at criticality level

greater than one if at least one job experiences an overload

condition and thus executes beyond its nominal WCET. A

job’s criticality codifies the condition(s) under which a job’s

execution has infinite marginal utility over jobs with lower

criticalities. In other words, jobs whose criticality is less than

the system criticality level can be dropped altogether without

compromising the safety and performance of the system, in

order to allow higher criticality jobs to finish their execution

fruitfully.

In the deterministic setting there is no clue as to which

criticality level the input job system is more likely to operate.

In this case, the system’s future behavior is purely adver-

sarial. In contrast, when the probability distributions of job

execution times at different criticality levels are known, we

can take a (possibly hazy) glimpse into the future evolution

of the system execution behavior. That is, such distributional

information will admit predictions about the behavior that

the system is most likely to exhibit, conditioned on the

past. Those predictions can be used to guide execution time

allocation, in order to reduce the pessimism. Further, they

will assist in deciding the earliest times at which to drop

those jobs whose criticalities are less than that of the realized

system behavior.

II. REVIEW OF DETERMINISTIC MIXED-CRITICALITY

SCHEDULING (BARUAH ET AL. [1], [2])

A. System Model

The system is composed of n independent jobs, denoted as

J = {J1, . . . ,Jn}, to be scheduled preemptively on a single

machine, with L ∈ N criticality levels. Every job Ji ∈ J is

associated with a release time ri ∈Q+, an absolute deadline

di ∈ Q+, and a fixed criticality χi ∈ {1, . . . ,L}. A greater

integer value corresponds to a higher criticality. At each

criticality level ℓ ∈ {1, . . . ,L}, every job is associated with

a WCET estimate ci,ℓ ∈Q+. Accordingly every job Ji ∈J is

completely characterized as Ji = (ri,di,χi,〈ci,1, . . . ,ci,L〉).

B. Behavior of Job Execution

The actual execution time that every job consume as it

executes upon the processor at run-time cannot be determined

a priori; rather this information is revealed only when every

job signals that it has finished execution.

A realization of job execution times for all jobs is called

an execution behavior1. A behavior of execution of a job

set, J , is defined as b = 〈b1, . . . ,bn〉, where bi ∈ Q+. Job

behaviors are therefore the uncertainties that any scheduling

algorithm needs to combat in order to achieve the maximum

useful utilization of the processor. In general, J might exhibit

infinitely many behaviors, unless we assume that jobs always

execute at their WCET estimates, in which case there can be

at most Ln behaviors. We shall assume the following

1) Every job’s WCET estimates monotonically increase

with respect to criticality levels: ci,ℓ 6 ci,ℓ+1 for every

ℓ ∈ {1, . . . ,L−1}, and

2) a job’s WCET estimate does not increase beyond its

own criticality: For every Ji ∈ J , ci,ℓ = ci,χi
for every

ℓ ∈ {χi +1, . . . ,L}.

Relative to every possible behavior of J , the system critical-

ity level critJ (b) is defined as the minimum ℓ ∈ {1, . . . ,L}
such that every ci,ℓ upper bounds its corresponding observed

behavior component bi as tightly as possible. Formally,

critJ (b) = min
{
ℓ ∈ {1, . . . ,L} : bi 6 ci,ℓ, ∀i ∈ {1, . . . ,n}

}
,

and if no such ℓ exists, then b is said to be erroneous.

C. Problem Statement

In the original problem definition ([1], [2]) it is assumed

that if the system criticality level is revealed, then all jobs

whose criticality is less than the system criticality level need

not be considered for schedulability and can be dropped

in the analysis altogether. Combining the definitions and

assumptions stated above leads to the definition below of

the Mixed-Criticality (MC)-Schedulability problem.

Definition 1 (MC-Schedulability). A job system J is MC-

Schedulable if for every valid (non-erroneous) behavior b,

every job Ji ∈ J with χi > crit(b) can receive bi units of

execution during [ri,di].

Baruah et al. [1] showed that MC-Schedulability is NP-

Hard in the strong sense, even when all jobs arrive at time

0. An exception is the case where all jobs have a common

deadline, where MC-Schedulability becomes polynomially

decidable. MC-Schedulability with arbitrary job deadlines

is still not known to reside in the class NP, and hence

the question of whether or not MC-Schedulability is NP

complete is open.

Next we make precise what a scheduling strtategy is.

Definition 2 (Scheduling Policy). A scheduling policy is a

partial function S :Z+ →J that determines, either determin-

istically or randomly, the job to be assigned the processor at

every time instance.

1Some authors use the term “scenario” synonymously to “behavior”.

11

The most general statement of the MC-Scheduling prob-

lem is: Design an on-line non-clairvoyant scheduling policy

that, given instance I = (J ,L), achieves the goal stated in

Definition 1.

III. PROBABILISTIC MIXED-CRITICALITY:

PROBABILISTIC JOB CRITICALITY LEVELS

We propose a model in which there is a probability that

a job executes at a certain criticality level, and therefore a

probability that a job hits a certain WCET estimate.

We assume that we are given as input the distributions of

job execution times at all criticality levels as follows. Define

the discrete random variable Ci : Ci →Ci as Ci(c) = 1Ci
(c)c.

The probability mass function (pmf) of Ci, fCi
(c) ≡ P(Ci =

c), reads

fCi
=

(
ci,1 . . . ci,χi

fCi
(ci,1) . . . fCi

(ci,χi
)

)
,

where ∑
χi

ℓ=1 fCi
(ci,ℓ) = 1, and fCi

(ci,ℓ) being the probability

that Ji consumes ci,ℓ units of execution (and thus that Ji

operates at criticality level ℓ), assuming that jobs always

execute only at their WCET estimates. Thus every job is com-

pletely characterized as Ji = (ri,di,χi, fCi
), i ∈ {1, . . . ,n}. We

will assume that the random variables {Ci}
n
i=1 are mutually

independent, because we do not consider resource sharing in

our model.

A. Probabilistic Model and Problem Statement

Since all job parameters are non-negative rational numbers,

we do not lose generality when working with non-negative

integer parameters; we can move from one number system

to another by a simple scaling procedure that depends on the

magnitudes of the numbers in the given problem instance.

We model the system criticality level as it evolves in

time as a discrete-time stochastic process. Suppose that a

randomized scheduling algorithm, say S, schedules the input

job system as follows: at each epoch t, starting at t = 0, S

picks (according to some rule that depends on job execution

time distributions) one of the jobs that are ready to execute

at time t, and allows it to execute upon the processor for

one time unit. We associate with every Ji ∈ J a discrete-

time stochastic process X(i) =
{
X

(i)
t

}
t∈Z+

, where X
(i)
t is an

indicator random variable that we define as:

X
(i)
t =

{
1 if algorithm S assigns the processor to Ji at t,

0 otherwise.

Let B
(i)
m = ∑

m
t=0 X

(i)
t be the total execution time allocated

to job Ji at t = m, starting from t = 0, by algorithm S.

We define the stochastic process K = {Km}m∈Z+ to capture

the evolution of the system criticality level according to

the (probabilistic) execution-time allocation of algorithm S,

where

Km = min
{

ℓ ∈ {1, . . . ,L} : B
(i)
m 6 ci,ℓ ∀i ∈ {1, . . . ,n}

}
.

Every decision made at every time instance causes a subset

of the random variables comprising our stochastic processes

to be realized (instantiated). Those instantiations are exactly

the information that the decision procedure is allowed to use

and condition upon to steer future decisions. We express

this history information abstractly as “raw data”, in terms

of sigma-algebras, as follows. Let FX
(i)

m ≡ σ(X
(i)
0 , . . . ,X

(i)
m)

be the smallest σ -field that contains
⋃m

t=0 σ(X
(i)
t). Further,

let FX
(i)

= {FX
(i)

m }m∈Z+ be the natural filtration of X(i),

where FX
(i)

m ⊂ FX
(i)

m+1 for every m ∈ Z+. Then the pro-

cess {B
(i)
m }m∈Z+ is (FX

(i)
)-adapted; that is, B

(i)
m is FX

(i)

m -

measurable for every m. Let Gm ≡ σ(B
(1)
m , . . . ,B

(n)
m) be the

smallest σ -field that contains
⋃n

i=1 σ(B
(i)
m). Then the process

K is (Gm)-adapted.

Let Ti be a random time defined as Ti = sup{t > ri : X
(i)
t =

1}. Ti is the last time that job Ji is assigned the processor

by algorithm S. Thus Ti is either the finish time of job Ji,

which occurs when Ji signals that it has executed fully, or

the time when algorithm S has decided to drop Ji from the

schedule. Since job execution times are finite, it follows that

Ti < ∞ almost surely. In particular, the makespan of any work

conserving2 schedule of the input job system, which is the

completion (finish) time of the last job to leave the system, is

upper bounded by M̃ = maxi{ri}+∑
n
i=1 ci,L, independently of

the underlying scheduling strategy. Therefore, Ti 6 M̃ almost

surely, and {Ti = m} ≡ {X
(i)
m = 1,X

(i)
m+1 = 0, . . . ,X

(i)

M̃
= 0}.

We may note that the system criticality level can only

either increase or stay at the same value, thus m 7→ Km is

monotonically increasing, and (Km+1 −Km) ∈ {0,1} almost

surely.

Define the random time T = maxi Ti. Intuitively, T is the

time at which the system criticality level is revealed, and thus

is the makespan of the job schedule according to algorithm

S (if ri = 0 ∀Ji ∈ J , then equivalently T = ∑
n
i=1 B

(i)
Ti

).

Open Problem: Stochastic Mixed Criticality Scheduling

(MC-STOCH)

We are concerned with designing a scheduling policy that

makes probabilistic decisions such that, on a given instance

I = (J ,L)

(i) for every job Ji ∈J , when the realized system criticality

level is greater than job Ji’s criticality, then Ji receives as

little execution time as possible with high probability;

that is, P

(
B

(i)
T

= 0,KT > χi

)
is high for every Ji ∈ J ;

(ii) when the realized system criticality level is ℓ, then

all jobs whose criticality is greater than or equal to

ℓ receive as much execution time as their WCET

at criticality level ℓ with high probability; that is,

P

(
B

(i)
T

∈ (ci,ℓ−1,ci,ℓ],KT = ℓ
)

is high for every Ji ∈ J

with ℓ 6 χi, and

(iii) jobs whose criticality is greater than the realized system

criticality level finish before their deadlines with high

probability; that is, P(Ti 6 di,KT = ℓ) is high for every

Ji ∈ J with χi > ℓ.

REFERENCES

[1] S. K. Baruah, H. Li, and L. Stougie, “Towards the design of
certifiable mixed-criticality systems,” in IEEE Real-Time and
Embedded Technology and Applications Symposium, 2010.

[2] ——, “Mixed-criticality scheduling: Improved resource-
augmentation results,” in CATA, 2010.

2A work conserving scheduling strategy is one that does not purposely
idles a job when the processor is not busy and a job is available for
processing.

12

Is it possible to schedule target sensitive recurring tasks for increased utility

accrual using task level rather than job level information?

Raphael Guerra, Gerhard Fohler

Technische Universität Kaiserslautern, Germany

{guerra,fohler}@eit.uni-kl.de

I. PRELIMINARIES

Real-time systems are traditionally defined as comput-

ing systems that must react to events within precise time

constraints in order to provide correct behavior [2]. There-

fore, most real-time schedulers were developed having the

deadline as a primary concern. Deadline-based timeliness

criteria are used to express an interval of time (execution

window) where the task is allowed to execute. As a result,

there is the assumption that the utility of tasks is constant

within their execution window [9].

Some applications have target sensitive constraints:

each task should preferably execute at a specific target

point within its execution window, called target point,

but can execute around this point, albeit at lower utility.

Ideally, all executions would be scheduled directly at

the respective target points, but it might not be feasible

due to overlapping executions. Under this condition, the

execution of tasks must be scheduled so that no timing

constraints are violated and the accrued system utility is

maximized.

Time utility function (TUF) scheduling as presented

in [3], [12], [9] and earliness/tardiness schedulers [1]

go beyond the starttime-deadline notion to express tasks’

temporal constraints. In TUF schedulers, tasks aggregate a

given amount of utility to the system as a function of when

they execute; the goal of the scheduler is to maximize

system utility. A study on several types of time utility

functions is presented in [8], but no solution is presented.

A best-effort solution for resource allocation in computing

systems is proposed in [11]. However, scheduling deci-

sions are based only on the utility that tasks accrue to

the system at the current point in time and not on the

shape of their utility functions over time. A TUF scheduler

assuming any kind of utility function is proposed in [3].

It uses a heuristic to find an ordering on average close

to the optimum in O(N3), N being the number of jobs

being scheduled, under the constraint that all jobs are

within the same busy period. In [12], the same problem

is solved in O(N2) assuming only non-increasing TUFs.

The result is used in ethernet packet scheduling to define

the ordering. Not the sending times are considered, but the

utility decreases upon delayed arrival. Therefore, packets

are sent as early as possible after being ordered. This

work is extended in [13] and [10] to support variable cost

functions and mutual exclusion of resources, respectively.

In [14] an energy-aware TUF scheduler is proposed, but

the focus is to satisfy statistical performance requirements.

In [4], [5], we proposed the gravitational task model

for target sensitive applications which allows each job to

express target point and utility function. This task model

is based on a physical pendulum analogy which makes

understanding of the problem and solution intuitive. We

presented a method with linear complexity to compute

the trade-off among the execution of jobs for improved

accrued utility. This method is based on an analogy with

the equilibrium of pendulum systems, and approximates

the optimum under the assumption that jobs have the same

type of utility function—elliptical. In [6], we presented an

on-line scheduler with complexity O(N× log(N)) for the

gravitational task model that uses the equilibrium, and a

heuristic to reorder the execution sequence of jobs, which

also impacts on the utility accrual of the schedule. These

work on the gravitational task model have the limitation

that jobs within a hyper-period must be scheduled at

the beginning of the hyper-period, which incurs high

overhead at runtime. This limitation was overcome in [7],

where we proposed an EDF-based scheduling algorithm

for the gravitational task model that reduces the maximum

number of jobs in any equilibrium calculation at runtime

to n2, n being the number of periodic tasks in the task

set.

II. HOW TO EXPLOIT THE KNOWLEDGE ABOUT TASK

PERIODICITY TO REDUCE SCHEDULING COMPLEXITY?

Let us consider the scheduling of recurring tasks τi,

where τi,j represents the jth job (or instance) of task τi.

TUF schedulers and the gravitational task model consider

the utility fi,j(t) that each job accrues when executing at t

to take scheduling decisions. The goal of the scheduler is

to schedule the execution of each job such that all earliest

start time and deadline constraints of each job are met

and to maximize equation 1. However, having a complete

description of every single job that will run in the system

is impractical for recurring tasks. The number of their

instances depend on how long the system will run, and

even the number of jobs within a repetitive scheduling

cycle may have a factorial number of jobs with respect to

the number of recurring tasks.

maximize:
∑i=n,j=num. instances τi

i=1,j=1
fi,j(t),

where n is the number of recurring tasks.

(1)

The question is how to schedule recurring target sensi-

tive tasks at a task level rather than a job level. In other

13

words, the scheduling algorithm should take decisions

based on parameters of every task τi, whose amount is

limited and independent of the lifetime of the system. Is

it possible to design a scheduler capable of guarantee-

ing timing constraints and increasing the utility accrual

without going down to the job level information of every

single job τi,j? Using the parameters of active jobs (i.e.

jobs ready for execution), as for example done in EDF, is

also acceptable, provided that the absolute parameters of

each job τi,j can be derived from relative parameters of

their tasks τi.

We believe there might be a way to provide timing

guarantees and take scheduling decisions which are utility-

aware and require only task level and/or active job infor-

mation, but the impact on the scheduling overhead and

utility accrual is unclear. At task level, each task τi would

have a utility function fi(?) and the scheduler’s goal is

to maximize equation 2. The parameter over which we

would define this function is unknown at the moment,

which raises the question “what is the meaning of taking

scheduling decisions based on the utility functions of tasks

from the scheduling and the applications’ perspective?”.

maximize:
∑i=n,j=num. instances τi

i=1,j=1
fi,j(t),

where n is the number of recurring tasks.

(2)

Furthermore, deferring work so that tasks can meet

their target sensitive constraints may compromise the

timing guarantees of subsequent jobs, hence making the

scheduling problem more difficult. The gravitational task

model has the advantage of being work deferrable over

the TUF schedulers mentioned in the previous section,

a very important feature for attaining higher utility ac-

crual [7]. Therefore, we would like to discuss on how to

extend or modify the equilibrium calculation to exploit the

knowledge about task periodicity to reduce the scheduling

complexity. We are also open for alternative solutions or

insights, if any.

III. SUMMARY

In this paper, we discuss an open problem on the

scheduling of recurring target sensitive real-time tasks.

Each of these tasks has the constraint that execution is

preferable at a specific target point within its execution

window, called target point, but can execute around this

point for the sake of feasibility, albeit at lower utility.

To the best of our knowledge, all utility-aware schedul-

ing algorithms available in the literature take scheduling

decisions based on the utility function of each individual

jobs that executes in the system, whether an instance of a

recurring task or not.

We question the need to consider the utility information

at job level, which incurs high scheduling overhead, and

invite the attendees of the workshop to discuss on the fea-

sibility of taking scheduling decisions based on the utility

function at a task level. We are particularly interested in

the gravitational task model, which tailors the scheduling

of target sensitive tasks, but would also like to discuss any

insights on alternative solutions.

REFERENCES

[1] K. Bülbül, P. Kaminsky, and C. Yano, “Preemption in single
machine earliness/tardiness scheduling,” J. of Scheduling,
vol. 10, no. 4-5, pp. 271–292, 2007.

[2] G. C. Buttazzo, Hard Real-time Computing Systems: Pre-
dictable Scheduling Algorithms And Applications (Real-
Time Systems Series). Santa Clara, CA, USA: Springer-
Verlag TELOS, 2004.

[3] K. Chen and P. Muhlethaler, “A scheduling algorithm for
tasks described by time value function,” Real-Time Syst.,
vol. 10, no. 3, 1996.

[4] R. Guerra and G. Fohler, “A gravitational task model
for target sensitive real-time applications,” in ECRTS08 -
20th Euromicro Conference on Real-Time Systems, Prague,
Czech Republic, July 2008.

[5] ——, “A gravitational task model with arbitrary anchor
points for target sensitive real-time applications,” Real-Time
Syst., vol. 43, no. 1, 2009.

[6] ——, “On-line scheduling algorithm for the gravitational
task model,” in ECRTS09 - 21th Euromicro Conference on
Real-Time Systems, Dublin, Ireland, July 2009.

[7] ——, “On-line scheduling of target sensitive periodic tasks
with the gravitational task model,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2012, march
2012, pp. 578 –581.

[8] E. D. Jensen, “Asynchronous decentralized real-time com-
puter systems,” in Real-Time Computing, ser. the NATO
Advanced Study Institute, W. A. Halang and A. D.
Stoyenko, Eds. Springer Verlag, October 1992.

[9] P. Li, B. Ravindran, and E. D. Jensen, “Adaptive time-
critical resource management using time/utility functions:
Past, present, and future,” in COMPSAC ’04: Proceedings
of the 28th Annual International Computer Software and
Applications Conference - Workshops and Fast Abstracts -
(COMPSAC’04). Washington, DC, USA: IEEE Computer
Society, 2004, pp. 12–13.

[10] P. Li, H. Wu, S. B. Ravindran, and E. D. Jensen, “A
utility accrual scheduling algorithm for real-time activities
with mutual exclusion resource constraints,” IEEE Trans.
Comput., vol. 55, no. 4, 2006.

[11] C. D. Locke, “Best-effort decision-making for real-time
scheduling,” Ph.D. dissertation, Pittsburgh, PA, USA, 1986.

[12] J. Wang and B. Ravindran, “Time-utility function-driven
switched Ethernet: Packet scheduling algorithm, imple-
mentation, and feasibility analysis,” IEEE Trans. Parallel
Distrib. Syst., vol. 15, no. 2, 2004.

[13] H. Wu, U. Balli, B. Ravindran, and E. D. Jensen, “Utility
accrual real-time scheduling under variable cost functions,”
in Proceedings of RTCSA’05. Washington, DC, USA:
IEEE Computer Society, 2005.

[14] H. Wu, B. Ravindran, E. D. Jensen, and P. Li, “Energy-
efficient, utility accrual scheduling under resource con-
straints for mobile embedded systems,” Trans. on Embed-
ded Computing Sys., vol. 5, no. 3, 2006.

14

Towards optimal priority assignments for real-time

tasks with probabilistic arrivals and execution times

Dorin Maxim

INRIA Nancy Grand Est

615 rue du Jardin Botanique

54600 Villers les Nancy

dorin.maxim@inria.fr

Abstract—In this paper we present the problem of optimal
priority assignments in fixed priority preemptive single processor
systems where tasks have probabilistic arrivals and execution
times. We show that Rate Monotic is not optimal for our problem.

I. INTRODUCTION

In embedded real-time systems there is a strong demand

for new functionality that can only be met by using advanced

high performance microprocessors. Building real-time systems

with reliable timing behaviour on such platforms represents

a considerable challenge. Deterministic analysis for these

platforms may lead to significant overprovision in the system

architecture, effectively placing an unnecessarily low limit on

the amount of new functionality that can be included in a

given system. An alternative approach is to use probabilistic

analysis. Probabilistic analysis techniques rather than attempt-

ing to provide an absolute guarantee of meeting the deadlines,

provide the probability of meeting the deadlines.

II. MODEL AND NOTATIONS

In this paper, we consider a task set of n synchronous tasks

{τ1, τ2, . . . , τn}. Each task τi is characterized by three param-

eters (Ci, Ti,Di) where Ti is the inter-arrival time (commonly

known as period), Di the relative deadline, and Ci the worst-

case execution time. The parameters are described by random

variables1.

In the state of the art there are analysis frameworks and

scheduling algorithms for tasks task-sets that have only on

parameter given as a random variable, either just the execution

time [1], [2], either just the period [3]. The model that we are

taking into account is an extension of the these ones, and, to

our knowledge, there are no existing solutions for task systems

that have more than one parameter given as random variables.

A random variable Xi describing a parameter of τi is

assumed to have a known probability function (PF) fXi
(·)

with fXi
(x) = P (Xi = x) giving the probability that τi has

the mentioned parameter equal to x. The values of Xi are

assumed to belong to the interval [xmin

i , xmax

i].

1In this paper we will use a calligraphic typeface to denote random
variables.

For instance the worst-case execution time Ci can be written

as follows:

Ci =

(

C0

i = Cmin

i C1

i · · · Cki

i = Cmax

i

fCi
(Cmin

i) fCi
(C1

i) · · · fCi
(Cmax

i)

)

, (1)

where
∑ki

j=0
fCi

(Cj
i) = 1.

For example for a task τi we might have a worst-case ex-

ecution time Ci =

(

2 3 25
0.5 0.45 0.05

)

; thus fCi
(2) = 0.5,

fCi
(3) = 0.45 and fCi

(25) = 0.05.

All jobs are assumed to be independent of other jobs of the

same task and those of other tasks, hence the execution time

of a job does not depend on, and is not correlated with, the

execution time of any previous job.

For example, given a tas-kset τ = {τ1, τ2}
composed of two tasks, where τ1 =
((

3 4
0.1 0.9

)

,

(

1 2
0.7 0.3

)

,

(

3 4
0.1 0.9

))

, and

τ2 =

((

6 8
0.2 0.8

)

,

(

2 4
0.6 0.4

)

,

(

6 8
0.2 0.8

))

, the

first random variable of the task representing its probabilistic

execution time and the second one, its release distribution.

Let us presume that τ1 has the higher priority and τ2 the

lower priority. In this case there are multiple scenarios that

can occur. We present in Figure 1 and in Figure 2 two of this

possible scenarios. In the first one, τ1 has four jobs represented

andτ2 has two jobs, the first one having an execution time

equal to 2 and being released at t = 0 and the second job

having an execution time of 4 and being released at t = 6. Both

of these job finish execution before their respective deadlines.

In the second scenario, there are represented two jobs of τ1
and only one job of τ2, but in this case the job of tau2 misses

its deadline. The difference now is that τ2,1 has an execution

time equal to 4 which makes it miss its deadline at t = 6.

There are multiple scenarios like this and, in consequence,

many questions that arise. We present some of these questions

in the next section.

III. OPEN PROBLEMS

One of the first questions that comes to mind in a proba-

bilistic time system is how does one analytically compute the

response time distributions of the different jobs of given tasks?

15

Fig. 1. Scenario 1

Fig. 2. Scenario 2

This is needed in order to compute the probability that the job

misses its deadline, and to know the percentages of deadline

misses.

Presuming that such an analytical tool is at hand, the

next question that arises, and maybe the most important one

in what concerns the design of a real time system is how

should the tasks be scheduled so that each task meets certain

conditions referring to its timing failures? We mention that we

are searching for a fixed priority scheduling, in a preemptive

context, i.e., all jobs of the same task have the same priority.

The timing, or deadline failure, is usually given as a maximum

percentage of deadlines that the task can miss in certain time

interval. We refer to a priority ordering that meets such a

requirement as a feasible priority assignment. We note that

this use of the term feasible is an extension of its normal use

in the deterministic case, where a feasible priority ordering is

one in which the associated schedule has zero probability of

timing failure.

The next question that immediately comes to mind is how

does one define a study interval in such a system? In the

deterministic case the study interval is, usually, the hyper-

period. Knowing that everything that happens during a hyper-

period will repeat for the next ones, it is enough to study one

hyper-period to obtain the behavior of the entire system. In the

probabilistic case the hyper-period might not be the answer to

the question, since what happens in one hyper-period might

be completely different than what happened in the previous

one and what will happen in the next one. Also, there is

the question of how does one compute the hyper-period in

a probabilistic system.

In the following we talk about the case of the Rate Mono-

tonic priority assignment algorithm and its compatibility with

a probabilistic task-system.

A. Non-optimality of Rate Monotonic

We know from [2] that Rate Monotonic is not optimal for

the problem of scheduling tasks according to a fixed-priority

policy in the case of tasks with deterministic arrivals and

probabilistic executions times.

Following the reasoning applied in [2], it is easy to prove

that Rate Monotonic does not provide a feasible scheduling,

since it does not take into account the probabilistic character of

the tasks. Furthermore, in the case of tasks with probabilistic

arrivals it would be difficult to determine the ordering of the

tasks since each task may have multiple values representing its

arrival time and even if one would apply a convention as con-

sidering the minimum value of each arrival time distribution

would still not provide a feasible scheduling. For example,

considering a task-set τ = {τ1, τ2} with τ1 defined by

(

(

4 10
0.01 0.99

)

,

(

2 3
0.5 0.5

)

,

(

4 10
0.01 0.99

)

) and τ2

defined by (

(

8 9
0.6 0.4

)

,

(

2 3
0.5 0.5

)

,

(

8 9
0.6 0.4

)

),

one can easily see that, even if τ1 has its smallest arrival time

smaller than those of τ2, it very rarely arrives with a period

equal to 4, most of the times it has a distance of 10 units of

time between instances, which Rate Monotonic does not take

into consideration.

Furthermore, since the problem of scheduling tasks ac-

cording to a fixed-priority policy in the case of tasks with

deterministic arrivals and probabilistic executions times is

a sub-problem of our problem, we can conclude that Rate

Monotonic is not optimal in the case when the arrivals are

probabilistic either.

REFERENCES

[1] Dı́az, J.L and Garcia, D.F. and Kim,K. and Lee, C.G. and Bello, L.L. and
López J.M. and Mirabella, O., Stochastic Analysis of Periodic Real-Time
Systems, 23rd IEEE Real-Time Systems Symposium (RTSS02), 2002,
289-300.

[2] D. Maxim and O. Buffet and L. Santinelli and L. Cucu-Grosjean and
R. Davis, On the Optimality of Priority Assignment for Probabilistic
Real-Time Systems, the 19th International Conference on Real-Time and
Network Systems, 2011.

[3] L. Cucu and E. Tovar, A Framework for Response Time Analysis of
Fixed-Priority Tasks with Stochastic Inter-arrival Times, ACM SIGBED
Review, 3(1), January 2006.

16

Exploiting Uni-Processor Schedulabilty Analysis for

Partitioned Task Allocation on Multi-Processors

with Precedence Constraints

Mario Bambagini, Giorgio Buttazzo

{mario.bambagini, giorgio.buttazzo}@sssup.it

Scuola Superiore Sant’Anna

Pisa, Italy

Sverre Hendseth

sverre.hendseth@itk.ntnu.no

Norwegian University of Science and Technology

Trondheim, Norway

Abstract—This paper considers the problem of scheduling
real-time tasks with precedence and communication constraints
on heterogeneous multiprocessor systems. Most partitioned ap-
proaches statically schedule the task set by computing start times
and finishing times for each task in such a way that a desired
cost function is minimized. The resulting optimization problem
is however highly complex. The open problem proposed in this
paper is to reduce the overall complexity by transforming prece-
dence relations into real-time constraints and exploit uniprocessor
scheduling results to guarantee the task set.

I. INTRODUCTION

The problem of task allocation and scheduling in multipro-

cessor systems under precedence and real-time constraints is

known to be NP-Hard and has been investigated for many

years.

Such a problem has become dominant with the development

of Multi-Processors System-on-Chips (MPSoC), distributed

embedded systems, and computer clusters. In spite of the dif-

ferent contexts, the common goal is to provide algorithms for

the automatic allocation of tasks to optimize the computational

resources.

Many algorithms [1] have been proposed in the literature

and they can be divided into global and partitioned approaches.

Global algorithms pick the highest priority task from a single

ready queue (shared by the cores) and allocate it on an avail-

able processor. Partitioned approaches first allocate the task on

the processors and then schedule them using a local scheduler.

A wide range of algorithms exist, which spread from complete

searches [2], [3], meta-heuristics [4], and heuristics [5].

Most of these approaches start from a task set with prece-

dence and time constraints and produce a static schedule,

stored in a table and executed in a time-triggered fashion.

The approach considered in this paper proposes to transform

precedence relations into activation times and deadlines for

each tasks and use an online scheduling algorithm to execute

them. The advantage of this approach is to exploit existing

uniprocessor results for analyzing the schedulability of the task

set allocated on each processor, thus reducing the complexity

to find a feasible solution.

II. MODEL

We consider a set Φ of m heterogeneous processors and a

set Γ of n preemptive real-time tasks, characterized by a set

of precedence constraints.

Each processor φj has a specific type ptj which collects pro-

cessors in groups of performance. The processors are assumed

to be linked together through a fully-connected network which

consists of a dedicated communication link for each node pair.

These links are assumed to be full-duplex and heterogeneous,

meaning that data transfer may take different time for the same

message size, depending on where tasks are allocated.

A task τi allocated on processor φj is characterized by a

worst-case computation time Ci,j . Computation times of τi are

equal for the same processor type. Precedence dependencies

are represented by a direct acyclic graph. More precisely, the

notation τi → τj indicates that τj has to start not earlier than

τi finishing time plus the communication time required for

data exchange. The data transmission delay is computed as

the amount of data exchanged between τi and τj divided by

the bandwidth guaranteed between the two hosting processors.

The whole application is considered to be periodic with a

period P and a relative deadline D. For the sake of simplicity,

P and D are assumed to be equal. We assume that in each

processor tasks are scheduled by Earliest Deadline First (EDF)

[6].

III. OPEN QUESTION

Most of the proposed partitioned algorithms produce a static

allocation and then a static schedule on each processor, and

the application feasibility is guaranteed if and only if the latest

finishing time is less than or equal to the application deadline.

Our goal is to split the multi-processor scheduling problem

into m different uni-processor scheduling problems and exploit

the well-known theoretical results to guarantee the feasibility

on each processor. In order to apply this approach, however,

it is necessary to assign an activation time and a deadline to

each task, so that EDF can schedule them.

For each processor, the feasibility can be checked using the

Processor Demand Criterion [7] or through the offset analysis

[8]. In this case the analysis is simplified because task periods

17

τ1

τ2

τ3

τ4

Fig. 1. Task Graph

φ1

φ2

τ1

τ2 τ3

τ4

t
D

d1

d2 d3

d4
a1

a2 a3

a4

Fig. 2. A possible assignment

are all equal to the application period. This also means that

the hyperperiod is equal to the application period and only

one instance for each task must be taken into account within

the analysis interval.

In this way, the problem mainly consists in an allocation

phase and a time assignment phase, leaving the scheduling

to EDF. While the allocation has been investigated for a long

time, providing an effective assignment of activation times and

deadlines is still an open question.

An example is reported in Figure 2 to show a possible

timing constraints assignment from the precedence relations

depicted in Figure 1. In the example, four tasks must be

executed on two processors running EDF as a scheduler. τ1

and τ4 are allocated on the first processor φ1 and τ2 and τ3 on

φ2. A valid timing assignment must set τ1’s deadline earlier

than the activations of τ1’s successors (also considering the

communication overheads). The same for τ4.

A similar assignment problem has been addressed by But-

tazzo et al. [9], who extended the idea proposed by Chetto et

al. [10]. Their method, however, focuses more on the path

analysis rather than on each single task and their solution

φ1

φ2

τ1

τ2 τ3

τ4

t
D

d1

d2

d3

d4a1

a2

a3

a4

Fig. 3. Buttazzo et al.’s assignment

assumes homogeneous systems and negligible communication

costs. Moreover, for the task set illustrated in the example,

assigning each flow to a different processor, their method

would make τ4’s activation time occur c4,1 units of time earlier

than its deadline, meaning that τ4 has a relative deadline

equal to its computation time (Figure 3). Since their procedure

would set a3 = a2 and d3 = d2, the task set would be

infeasible on φ2, leading τ3 to miss its deadline. In fact,

d3 − a3 = d2 − a2 > c2,2 + c3,2, although a considerable

amount of time is wasted till d1.

This example suggests that it is worth investigating alter-

native approaches to assign activation time and deadlines that

guarantee feasibility while minimizing a desired cost function.

REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Comput. Surv.,
vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1978802.1978814

[2] I. C. S. Institute, K. Shin, and D. Peng, Static Allocation of Periodic
Tasks with Precedence Constraints i Distributed Real-time Systems,
ser. Technical report (International Computer Science Institute).
International Computer Science Institute, 1988. [Online]. Available:
http://books.google.it/books?id=P3iIGwAACAAJ

[3] M. Lombardi and M. Milano, “Optimal methods for resource
allocation and scheduling: a cross-disciplinary survey,” Constraints,
vol. 17, no. 1, pp. 51–85, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10601-011-9115-6

[4] V. V. Peteghem and M. Vanhoucke, “A genetic algorithm for the
preemptive and non-preemptive multi-mode resource-constrained project
scheduling problem,” European Journal of Operational Research,
vol. 201, no. 2, pp. 409–418, March 2010. [Online]. Available:
http://ideas.repec.org/a/eee/ejores/v201y2010i2p409-418.html

[5] L.-C. Canon, E. Jeannot, R. Sakelariou, and W. Zheng, “Comparative
Evaluation of the Robustness of DAG Scheduling Heuristics,” in
Integration Research in Grid Computing, CoreGRID integration
workshop, S. Gorlatch, P. Fragopoulo, and T. Priol, Eds. Hersonissos,
Crete, Grèce: Crete University Press / Springer US, 2008, pp. 63–74.
[Online]. Available: http://hal.inria.fr/inria-00333904

[6] C. L. Liu and J. W. Layland, “Readings in hardware/software
co-design,” G. De Micheli, R. Ernst, and W. Wolf, Eds. Norwell, MA,
USA: Kluwer Academic Publishers, 2002, ch. Scheduling algorithms
for multiprogramming in a hard-real-time environment, pp. 179–194.
[Online]. Available: http://dl.acm.org/citation.cfm?id=567003.567018

[7] S. K. Baruah, R. R. Howell, and L. Rosier, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” Real-Time Systems, vol. 2, pp. 301–324, 1990.

[8] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Real-Time Systems, vol. 30, no. 1-2, pp. 105–128,
2005.

[9] G. C. Buttazzo, E. Bini, and Y. Wu, “Partitioning real-time applications
over multicore reservations,” IEEE Trans. Industrial Informatics, vol. 7,
no. 2, pp. 302–315, 2011.

[10] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling
of real-time tasks under precedence constraints,” Real-Time Syst.,
vol. 2, no. 3, pp. 181–194, Sep. 1990. [Online]. Available:
http://dx.doi.org/10.1007/BF00365326

18

Energy Saving Exploiting the Limited Preemption

Task Model

Mario Bambagini, Giorgio Buttazzo

{mario.bambagini, giorgio.buttazzo}@sssup.it

Scuola Superiore Sant’Anna, Pisa, Italy

Marko Bertogna

marko.bertogna@unimore.it

University of Modena and Reggio Emilia, Italy

Abstract—Limited preemptive scheduling has been shown to
dominate both non-preemptive and fully preemptive scheduling
under fixed priority systems, as far as schedulability is concerned.
This paper suggests the use of DVS and DMP techniques under
limited preemptive scheduling to further reduce energy con-
sumption with respect to a fully preemptive or non-preemptive
approach.

I. INTRODUCTION

Two widely used techniques to save energy are Dynamic

Voltage and Frequency Scaling (DVFS) and Dynamic Power

Management (DPM). DVFS approaches decrease the voltage

and/or frequency of the processor to reduce energy consump-

tion. On the other hand, DPM techniques aim at switching the

processor in a low-power inactive state as long as possible,

but still guaranteeing the task real-time constraints.

Most of the approaches proposed in the last years consider

a fully preemptive task model. Bini et al. [1] considered a

realistic model with discrete frequencies and non-negligible

overhead, and proposed to achieve the optimal speed by se-

lecting and modulating between two available frequencies. The

modulation between active and sleep state was investigated by

Huang et al. [2] focusing mostly on a DPM approach. Awan

and Petters [3] proposed to accumulate the task execution

slack to switch the processor off during such intervals. Rowe

et al. [4] presented a technique that harmonizes task periods

to clusters task execution such that processor idle times

are lumped together. In these papers, a limited preemptive

approach was never explored to improve energy saving.

An approach to limit preemptions consists in dividing each

task into a set of non-preemptive chunks by inserting a number

of fixed preemption points in specific parts of the code.

As Bertogna et al. [5] have shown, limited preemptive

methods increase schedulability with respect to fully pre-

emptive and non-preemptive models, even when preemption

cost is negligible. Moreover, Bril et al. [6] presented an

exact schedulability analysis for fixed priority scheduling with

deferred preemption.

To the best of our knowledge, only Maxim et al. [7] have

addressed the problem of exploiting the limited preemption

model to further reduce the energy consumption and the

number of preemptions by merging the last two chunks of

a task and adjusting the speed of the previous ones.

This paper suggests to combine limited preemptive schedul-

ing with DVS and DMP techniques to further reduce en-

ergy consumption with respect to fully preemptive or non-

preemptive approaches.

II. MODEL

We consider a set Γ of n sporadic tasks [8] τ1, τ2, . . . , τn

executing upon a single processor platform with preemption

support. The processor can vary the running speed s, defined

as the normalized frequency with respect to the nominal

frequency, s = f

fnom

. The speed set is assumed to be finite

and composed by m different speeds s1, s2, . . . , sm sorted in

ascending order, thus smin = s1, snom = 1 and smax = sm.

The selected speed is set at the system start and is never

changed.

Each sporadic task τi (1 ≤ i ≤ n) is characterized by a

worst-case execution time (WCET) Ci(s), which is function

of the speed, a relative deadline Di, and a minimum inter-

arrival time Ti, also referred to as the period. The WCET

value of τi depends on the actual speed of the processor and is

computed as Ci(s) =
Cnom

i

s
, where Cnom

i denotes the amount

of required time to execute τi at the nominal speed (under

this assumption Ci(snom) = Cnom
i). Each task generates an

infinite sequence of jobs, with the first job arriving at any time

and subsequent arrivals separated by at least Ti units of time.

When a task τi is executed with deferred preemptions, q
max
i

and qlast
i denote the length of the largest and the last non-

preemptive region of τi, respectively.

Note that, under non-preemptive scheduling, tasks may

share mutually exclusive resources without introducing ad-

ditional blocking, as long as critical sections are entirely

included inside the non-preemptive chunks.

III. MOTIVATIONAL EXAMPLE

In order to show the benefit of the limited preemption

to save energy, let us consider an example with two speeds

smin = 0.5 and smax = 1 and two tasks, τ1 and τ2,

with the following parameters: C1 = 30, T1 = D1 = 80,
C2 = 25 and T2 = D2 = 200 (computation times are

referred to snom = smax). Tasks are scheduled using Deadline

Monotonic and, for the sake of simplicity, preemption costs

are considered negligible. The utilization factor at smax is

0.5 and the task set results feasible with fully-preemptive,

non-preemptive and limited preemptive models. Switching to

smin, the computation times become C1 = 60 and C2 = 50
causing a global utilization U = 1. Although using both the

19

t

τ1

τ1

τ1

τ2

τ2

τ2

NP

FP

LP

0 80 160 200 240 320 400

Fig. 1. Schedules at s = 0.5 using Non-Preemptive (NP), Fully-Preemptive (FP) and Limited Preemptive (LP) task models.

fully-preemptive and non-preemptive models the task set re-

sults unfeasible, a scheduler exploiting the limited preemptive

model with deferred preemptions is able to guarantee the task

set feasibility (Figure 1). More precisely, with the limited

preemptive model, τ1 consists in a single chuck and τ2 is

split in three chunks of length 10, 20 and 20, respectively.
As a result, using the limited preemption model, the task

set can run at smin instead of smax as required by both fully-

preemptive and non-preemptive models.

IV. OPEN QUESTIONS

Given the effectiveness of the limited preemption approach

to increase schedulability and reduce the processor speed (with

respect to fully preemptive algorithms), the open problem to

be investigated is then to find good scheduling strategies that

leverage limited preemption models to further reduce energy

consumption while guaranteeing real-time constraints.

Three possible areas of investigations have been identified,

which reflect the main research approaches adopted for energy

saving. They are described below.

1) A first step is to develop an algorithm to efficiently com-

pute the slowest processor speed that guarantees real-

time constraints. A promising possibility is to extend the

algorithm proposed by Bertogna et al. [5] to return not

only the set of preemption points, but also the optimal

speed.

2) From a DPM point of view, a periodic server could

be developed for collecting the idle times together and

switch the system into a low-power state during its

execution. Since several parameters are involved, the

configuration of the server is not trivial. Note that a

server running at the highest priority would lead to long

continuous intervals spent in a low-power state, but it

would increase the interference in lower priority tasks

(thus reducing their blocking tolerance). On the other

hand, a server running at the lowest priority, would

fragment the idle intervals into several slices, preventing

an efficient use of DPM techniques.

3) A combination between DPM and DVS techniques could

be investigated to find a trade off between the two

approaches described above.

REFERENCES

[1] E. Bini, G. Buttazzo, and G. Lipari, “Speed modulation in energy-
aware real-time systems,” in Proceedings of the 17th Euromicro
Conference on Real-Time Systems, ser. ECRTS ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 3–10. [Online]. Available:
http://dx.doi.org/10.1109/ECRTS.2005.29

[2] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo,
“Adaptive dynamic power management for hard real-time systems,” in
Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, ser.
RTSS ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
23–32. [Online]. Available: http://dx.doi.org/10.1109/RTSS.2009.25

[3] M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A
leakage-aware energy management approach for dynamic priority
systems,” in Proceedings of the 2011 23rd Euromicro Conference
on Real-Time Systems, ser. ECRTS ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 92–101. [Online]. Available:
http://dx.doi.org/10.1109/ECRTS.2011.17

[4] A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, “Rate-harmonized
scheduling and its applicability to energy management,” IEEE Trans.
Industrial Informatics, vol. 6, no. 3, pp. 265–275, 2010.

[5] M. Bertogna, G. C. Buttazzo, and G. Yao, “Improving feasibility of fixed
priority tasks using non-preemptive regions,” in RTSS, 2011, pp. 251–260.

[6] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case response
time analysis of real-time tasks under fixed-priority scheduling with
deferred preemption revisited,” Real-Time Systems, Euromicro Conference
on, vol. 0, pp. 269–279, 2007.

[7] C. Maxim, L. Cucu-Grosjean, and O. Zendra, “Towards reducing
preemptions to save energy,” in the 5th Junior Researcher Workshop
on Real-Time Computing (JRWRTC 2011), Nantes, France, Sep. 2011.
[Online]. Available: http://hal.inria.fr/hal-00646997

[8] S. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling hard-
real-time sporadic tasks on one processor,” in Proceedings of the 11th
Real-Time Systems Symposium (RTSS’90), Orlando, Florida, 1990, pp.
182–190.

20

Heterogeneous multiprocessor

compositional real-time scheduling

João Pedro Craveiro and José Rufino

Universidade de Lisboa, Faculdade de Ciências, LaSIGE

Lisbon, Portugal

jcraveiro@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

I. MOTIVATION

Hierarchical scheduling frameworks have recently received a

lot of attention within the real-time scheduling community in

particular and the research community in general. They have

been proposed as a means to cope with different problems, such

as the coexistance of hard real-time, soft real-time and best effort

workloads in multimedia applications [1], or creating fault con-

tainment domains in safety-critical aerospace systems [2]. While

traditional approaches focused mainly on two-level hierarchies,

more advanced applications created the need for an analysis

which would support, in a seamless way, an arbitrary number

of levels.

Compositionality is the property of a complex system which

can be analysed by recursively analysing its components and the

way they are composed. In this sense, a component comprises

a workload, a scheduler, and a resource supply. Compositional

analysis in hierarchical scheduling frameworks comprises three

main points [3].

1) (Local) schedulability analysis: Analysing the schedula-

bility of a component’s workload upon its scheduler and resource

supply.

2) Component abstraction: Providing an abstract represen-

tation for the component’s resource demand (hiding the work-

load’s characteristics) as a single real-time requirement identical

to a task — dubbed an interface. This allows applying classic

task schedulers and schedulability analysis to components.

3) Interface composition: Transforming a set of interfaces

abstracting the real-time requirements of individual components

into an interface abstracting the global requirements of all those

components. This is a key point to support hierarchies with

arbitrary depths.

II. STATE OF THE ART

A. Compositional analysis

For the uniprocessor case, most work on compositional

analysis revolves around Mok et al.’s bounded-delay resource

model [4] and Shin and Lee’s periodic resource model [5].

Multiprocessor approaches extending these results include the

multiprocessor periodic resource (MPR) model proposed by

Shin et al. [6], Bini et al.’s multi supply function (MSF) [7], Bini

et al.’s parallel supply function (PSF) [8], and Lipari and Bini’s

bounded-delay multipartition (BDM) [9]. None of these works

explicitly deals with heterogeneous multiprocessors.

We will now focus on the MPR model, since it covers the three

main axes of compositional analysis. In [6], a component C

comprises a workload τ = {τi}
n

i=1 of n constrained-deadline

sporadic tasks τi = (Ci, Ti, Di), Ci ≤ Di ≤ Ti, ∀τi ∈ τ ,

scheduled under global EDF (GEDF) on a cluster of m′ identical

processors. The proposed MPR model Γ = (Π,Θ,m′) specifies

the provision of Θ units of resource over every period of length

Π with concurrency at most m′.

1) Schedulability test: Shin et al. [6] provide a sufficient local

schedulability based on a supply bound function for the MPR.

The supply bound function sbfΓ(t) equates to the minimum

amount of resource that the MPR Γ = (Π,Θ,m′) provides over

any interval with length t.

2) Component abstraction: Based on the presented schedu-

lability test, the authors provide a pseudo-polynomial algorithm

to compute the MPR for a component C. For the computation to

become tractable, the supply bound function sbfΓ is replaced by

a linear function lsbfΓ(t) which lower-bounds sbfΓ.

3) Interface composition: With the MPR, interface compo-

sition derives from the transformation of each interface into a

periodic task set (since there are no known scheduling algorithms

for MPR interfaces). Thus, first, Shin et al. [6] transform each

MPR interface Γ = (Π,Θ∗,m∗) into a set of m∗ periodic

tasks τΓ = {τi = (Ti, Ci, Di)}
m

∗

i=1
. These tasks (thus, the com-

ponents/clusters) can then be scheduled using known algorithms.

If the algorithm used is GEDF, the union of the task sets resulting

from the transformation of each MPR interface can, in turn, be

itself be abstracted with an MPR interface.

B. Global EDF on uniform heterogeneous multiprocessors

Funk et al. [10], Baruah and Goossens [11], and Baruah [12]

provide sufficient tests for schedulability of periodic and spo-

radic tasksets over uniform heterogeneous multiprocessors using

the global EDF algorithm with unrestricted migration. Without

loss of generality, we will henceforth refer to global EDF with

unrestricted migration simply as “global EDF”.

III. OPEN PROBLEM

The open problem we here discuss is that of extending virtual

cluster-based scheduling to clusters comprising uniform hetero-

geneous processors, towards compositional hierarchical schedul-

ing frameworks upon heterogeneous multiprocessor platforms.

To the best of our knowledge, there is no literature describing

compositional hierarchical scheduling frameworks on heteroge-

neous multiprocessors.

21

Fig. 1: Heterogeneous compositional framework with the HMPR

model

IV. PRELIMINARY INTUITIONS

To solve the described problem, we propose the heterogeneous

multiprocessor periodic resource model. A heterogeneous mul-

tiprocessor periodic resource (HMPR) model Γ̃ = (Π,Θ, π)
specifies the provision of Θ units of resource over every period of

length Π over a virtual cluster π = {s′′
i
}
m

′′

i=1
comprising m′′ het-

erogeneous processors. Processors are represented as normalized

relative speeds, such that 1.0 ≥ si ≥ si+1 > 0.0, ∀i < m′′. For

the purpose of establishing connections with the work of Shin

and Lee [6], let us note that an MPR Γ = (Π,Θ,m′) translates

to an HMPR Γ̃ = (Π,Θ, {s′
i
= 1.0}

m
′

i=1
). Other than this, our

system model is the same, as described in Section II-A.

Figure 1 provides a graphical representation of the kind of

hierarchy the problem and its solution shall be laid upon. A

root component, C0, receives a virtual resource provision directly

from the physical platform, whereas the remaining components

receive their virtual resource provision from C0.

Our initial intuition was that, if we consider only GEDF

scheduling, then the results of [6] up to (and partially including)

component abstraction are applicable. We were meanwhile able

to formalize and prove this intuition as follows.

Lemma 1. Let Γ = (Π,Θ,m′) be the MPR interface ab-

stracting a component C comprising a task set τ scheduled

under global EDF on a virtual cluster comprising m′ identical

processors. If τ is schedulable using Γ, then τ is schedulable

using any HMPR interface Γ̃ = (Π,Θ, {s′′
i
}
m

′′

i=1
), such that∑

m
′′

i=1
s′′
i
≥ m′.

Proof sketch: The only difference between the considered

MPR and HMPR is the virtual cluster (or platform) upon which

tasks are scheduled. Let π′ = {s′
i
= 1.0}

m
′

i=1
represent the

MPR’s platform (upon which we know τ is GEDF-schedulable)

and π′′ = {s′′
i
}
m

′′

i=1
the HMPR’s platform. Since these platforms

fulfil the conditions of Lemma 1 of [10], and GEDF is a work-

conserving algorithm, τ is GEDF-schedulable on π′′.

V. OPEN QUESTIONS

Progressing from the result in Lemma 1, further questions are

open for this problem.

Component abstraction: How do we select π′′ over the var-

ious alternatives which fulfil Lemma 1? Can we tighten the

analysis in [6] by deriving an HMPR-specific supply bound

function?

Interface composition: How do we transform an HMPR inter-

face Γ̃ = (Π,Θ, {s′′
i
}
m

′′

i=1
) into m′′ periodic tasks to be scheduled

under GEDF? Since this transformation must take into account

the different relative speeds of the processors in the virtual

cluster, how do we guarantee that each of these tasks will, in

the end, be scheduled upon the right processor in the physical

heterogeneous platform? How do we compose HMPRs?

Adopted abstraction: Could other interfaces (MSF [7],

PSF [8], BDM [9]) bring more advantage in being employed

to support heterogeneous multiprocessor platforms? Could the

HMPR be based on a simpler representation of the platform (e.g.,

only total capacity and λ parameter [12] instead of individual

processor speeds), in favour of enhanced composability?

VI. SUMMARY

We have described the problem of compositional hierarchi-

cal scheduling frameworks upon heterogeneous multiprocessor

platforms. For this, we suggest extending virtual cluster-based

scheduling to clusters comprising heterogeneous processors, and

we introuce the hierarchical multiprocessor periodic resource

(HMPR) model. Our starting point is that some results on

component abstraction obtained for the multiprocessor periodic

resource (MPR) model by Shin et al. [6] apply with due adapta-

tion, with new results being needed to complete and tighten the

component abstraction, solve the interface composition problem,

and answer other open questions.

Acknowledgments: This work was partially supported by

FCT, through the Multiannual and CMU|Portugal programs, and

the Individual Doctoral Grant SFRH/BD/60193/2009.

The authors would also like to thank Insik Shin for being

available to answer our doubts about specific aspects of MPR

interface composition in [6].

REFERENCES

[1] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in RTSS ’98, Madrid, Spain, Dec. 1998.

[2] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and
timeliness in a new generation of aerospace systems,” in Architecting

Dependable Systems VII, ser. LNCS, A. Casimiro, R. de Lemos, and
C. Gacek, Eds. Springer, 2010, vol. 6420, pp. 146–170.

[3] I. Shin and I. Lee, “Compositional real-time schedulability analysis,”
in Handbook of Real-Time and Embedded Systems, ser. Computer and
Information Science series, I. Lee, J. Y.-T. Leung, and S. H. Son, Eds.
Chapman & Hall / CRC, 2007.

[4] A. K. Mok, X. A. Feng, and D. Chen, “Resource partition for real-time
systems,” in RTAS ’01, Taipei, Taiwan, May/Jun. 2001.

[5] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS ’03, Cancun, Mexico, Dec. 2003.

[6] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework
for virtual clustering of multiprocessors,” in ECRTS ’08, Prague, Czech
Republic, Jul. 2008.

[7] E. Bini, G. Buttazzo, and M. Bertogna, “The multi supply function abstrac-
tion for multiprocessors,” in RTCSA ’09, Beijing, China, Aug. 2009.

[8] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor platforms:
Specification and use,” in RTSS ’09, Washington, D.C., Dec. 2009.

[9] G. Lipari and E. Bini, “A framework for hierarchical scheduling on
multiprocessors: From application requirements to run-time allocation,” in
RTSS ’10, Nov./Dec. 2010.

[10] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on uniform
multiprocessors,” in RTSS ’01, London, UK, Dec. 2001.

[11] S. Baruah and J. Goossens, “The EDF scheduling of sporadic task systems
on uniform multiprocessors,” in RTSS ’08, Barcelona, Spain, Nov./Dec.
2008.

[12] S. Baruah, “An improved global EDF schedulability test for uniform
multiprocessors,” in RTAS ’10, Stockholm, Sweden, Apr. 2010.

22

NOTES

