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Foreword 
 
Welcome to Porto and the 2nd International Real-Time Scheduling Open Problems Seminar 
(RTSOPS 2011). This seminar provides a venue for the exchange of ideas and the discussion of 
interesting unsolved problems in real-time scheduling. The format of the seminar positively 
encourages interaction between participants and provides ample time for relaxed discussions. The 
goal of the seminar is to promote a spirit of co-operation and collaboration within the real-time 
scheduling community.  
 
RTSOPS 2011 is organized around presentation and collaboration sessions. Each presentation 
session provides the opportunity to hear about a number of important unsolved problems in real-
time scheduling, highlighted via brief presentations. The following collaboration session gives 
participants the opportunity to interact in small groups, exchanging ideas with the presenters about 
how the problems might be solved, and to take the first steps towards a solution. 
 
A total of 12 open problems were selected for presentation at the seminar, along with a status 
report on an open problem from the previous year. These proceedings are also published as a 
Technical Report from the University of York, Department of Computer Science (YCS-2011-466) 
available at http://www.cs.york.ac.uk/ftpdir/reports/2011/YCS/466/YCS-2011-466.pdf. 
 
We would like to thank the Steering Committee listed below, for their work in reviewing the open 
problems, and helping to make the seminar a success. 
 
Björn Andersson   Software Engineering Institute, Carnegie Mellon University (USA) 
Marko Bertogna   Scuola Superiore Sant'Anna, Pisa (Italy) 
Liliana Cucu-Grosjean  INRIA Nancy-Grand Est (France) 
Shelby Funk   University of Georgia (USA) 
 
Special thanks also go to Karl-Erik Arzen, Eduardo Tovar, Stefan Petters, and Gerhard Fohler for 
their support and assistance in organising this seminar. 
 
 
Robert Davis and Nathan Fisher 
Co-chairs 
2nd International Real-Time Scheduling Open Problems Seminar (RTSOPS 2011) 
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Influence of the Task Model
on the Precision of Scheduling Analysis for Preemptive Systems

Status Report

Sebastian Altmeyer, Saarland University, altmeyer@cs.uni-saarland.de
Claire Maiza, INP Grenoble, VERIMAG, Claire.Maiza@imag.fr

Problem Statement

In last year’s RTSOPS workshop, we raised several ques-
tions along the interface between timing analysis and schedul-
ing analysis for preemptive systems.

The interface between these two analyses is the task model
constituting an abstraction of the task’s timing properties in
the system. A simple task-model exhibits a single value for
the execution demand. In preemptive systems, this value then
must contain the preemption cost overhead—independent of
the number of preemptions and any additional information.
Schneider [7] proposed such a timing analysis including
preemption cost. Timing analysis, however, can compute, in
addition to the pure time bound for uninterrupted execution,
the additional delay due to interrupts or preemptions. These
costs strongly depend on the specific preemption points and
on the preempting task; preemption costs may vary from
nearly zero to large fractions of the task’s execution time.
Thus, timing analysis may compute not only an upper bound
on the preemption costs for a task i but also additional
bounds for preemption of task i by task j [2], [9], or for
the nth preemption of task i, or for preemption occurring at
point p [1], [6]. The tradeoff between precision and complexity
of the schedulability analysis is determined by the task model
and its abstraction of the timing of tasks.

Open question in this area are:
• What is a useful abstraction level?
• Which task model to use; what is a good tradeoff between

precision of the analysis and complexity?
• How to integrate detailed information of preemption cost

within the schedulability analysis?
Towards solutions to these open problems, we have in a

first step worked on a precise view of task model and the
cooperation of timing and scheduling analysis. We have also
classified the existing work that includes preemption costs
according to the applied task model. While in case of fixed
priority scheduling, several approaches [10], [8], [3], [6] exist
that include the preemption cost explicitly, most of them
using different task models, there is only one [5] for dynamic
priorities published this far.

Interaction Timing Analysis/Scheduling Analysis

We denote the collection of all input variables to the schedu-
lability analysis as a task model. A task model includes at
least execution time bounds, periods, deadlines and priorities.

Within the complete timing verification (including timing
analysis and schedulability analysis), different task models
may be used. Figure 1 shows the basic verification process:
the task model as the interface between timing analysis/system
constraints and scheduling analysis.

Period, PrioritiesTasks

Timing Analysis

Task Model

Schedulability Analysis

Yes/No

Fig. 1. Verification process with basic task model only

In some cases, the task model delivered by the timing
analysis and the one used by the scheduling analysis may
differ; a precomputation step may then transform the first task
model to the derived one (see Figure 2)—this precomputation
may iteratively refine the task model based on the preliminary
schedulability results (see Figure 3). In view of these verifica-
tion processes, we need to define two different task-models:
basic task model and derived task model.

Definition (Basic Task Model) Basic task model consists of
(a) information by the overall system (period, priority) and (b)
the set of all values directly delivered by the timing analysis
and used in subsequent steps.

Definition (Derived Task Model) Derived task model con-
sists of all direct input-values to the schedulability analysis.

For instance, assume task i with execution demand Ci can be
preempted at most b times and the preemption cost for such a
preemption is given by pi. The basic task model with implicit
preemption cost is then given by C ′i = Ci+b ·pi. An example
of the iterative refinement (as in Figure 3) is given, if bound b
is adapted depending on the results of the schedulability analy-
sis, i.e. depending on preciser response time estimations. Note
that the precomputation may be iterative, i.e., may be refined
during the schedulability analysis. A complete separation of
timing analysis and scheduling analysis is not possible. Precise
bounds for a specific (possibly nested) preemption scenarios
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may be needed by the scheduling analysis—precomputation
of all possibly needed scenarios is computationally infeasible.

Period, PrioritiesTasks

Timing Analysis

Task Model

Precomputation

Derived Task Model

Schedulability Analysis

Yes/No

Fig. 2. Verification process with basic and derived task model

Period, PrioritiesTasks

Timing Analysis

Task Model

Precomputation

Derived Task Model

Schedulability Analysis

Yes/No

Fig. 3. Verification process with iteratively refined derived task model

Note that the critical instance, i.e., the activation scenario
causing the highest tasks’ response times depend on the
chosen task model. Synchronous release times—the worst-
case scenario in Liu and Layland’s simple task model—does
not necessary lead to the highest preemption cost. Releasing
all tasks consecutively with short offsets and in decreasing
priority order usually leads to higher preemption costs. For
precise preemption costs taking the effect of preempting and
preempted task into account, it can be proven that even this
scenario is not the critical instance.

Fixed Priority Scheduling

In case of fixed priority scheduling, the common response
time analysis [4] has been extended to include preemption cost
explicitly. We classified these different analyses and identified
the basic and derived task-model (as depicted in the figures).
Note that we omit this list due to space limitations. The
analyses often only differ in the used task model. Although we
cannot determine the inherent imprecision of the taskmodel by
this, we can evaluate the precision of the different analyses.

As a first result, we have seen that information about the nth
preemption of a task provide little or no additional precision.
The reason is that preemption points exhibiting the worst-
case preemption cost often occur within loops. Thus, this
approach may lead to preciser results only when the number of
preemptions is greater than the number of iterations of such a
loop. Furthermore, incorporation of such information requires
a high degree of computational overhead and thus, does not
pay off. We plan to conduct extensive comparisons of the
different analyses based on random test-cases and case-studies.
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How Many Boundaries Are Required to Ensure
Optimality in Multiprocessor Scheduling?

Geoffrey Nelissen†1, Shelby Funk‡, Dakai Zhu§, Joël Goossens†

†PARTS Research Center ‡Department of Computer Science §Department of Computer Science
Université Libre de Bruxelles (ULB) University of Georgia University of Texas

Brussels, Belgium Athens, GA, USA San Antonio, TX, USA

I. INTRODUCTION

To the best of our knowledge, all current optimal scheduling
algorithms for multiprocessor platforms divide the time into
intervals. Within each interval, a predefined set of scheduling
rules is applied to schedule the task set. At each interval
boundary, the tasks’ characteristics are updated so that, ac-
cording to the set of scheduling rules, all tasks can meet their
deadlines without parallelism during the next time interval.
These boundaries are needed to ensure the correctness of the
schedule. Unfortunately, they introduce many time overheads
by increasing the number of scheduling points, preemptions
and migrations.

All recent optimal scheduling algorithms impose such
boundaries at every job’s arrival and/or deadline ( e.g., [1]–
[4]). We believe that the number of required boundaries is
currently overestimated and we wonder how many of them
are really necessary to ensure the optimality.

II. MODEL

We consider a set of n periodic tasks with implicit deadlines
scheduled on m identical processors. Each task τi in the set
τ is characterized by its worst case execution time Ci and its
period Ti (Ci ≤ Ti). That is, τi releases an infinite number
of jobs separated by Ti time units and each job must execute
during Ci time units before the next job arrival. We define the
utilization of τi as Ui

def= Ci

Ti
. The total utilization of the system

is the sum of all the tasks’s utilization; i.e., U def=
∑
τi∈τ Ui.

We say a task set τ is feasible on m processors if U ≤ m and
Ui ≤ 1 for all τi ∈ τ .

Note that, according to the boundary-based scheduling rules,
tasks may be preempted and migrate between processors.

III. PROBLEM STATEMENT

There are multiple optimal multiprocessor scheduling algo-
rithms for periodic tasks [1]–[5] (i.e., algorithms capable to
schedule any task set τ with U ≤ m and Ui ≤ 1 ∀τi ∈ τ
without deadline miss or intra-job parallelism). All optimal
multiprocessor scheduling algorithms are executed using time
slices. These time slices are bounded by two consecutive
boundaries. As such, these schedulers have two phases —a

1Supported by the Belgian National Science Foundation (F.N.R.S.) under
a F.R.I.A. grant.

boundary phase and an execution phase. During the boundary
phase, local execution parameters are allocated to each task
and/or each processor. During the execution phase, tasks are
executed and each task and/or processor must complete its
allocated local execution before the next boundary.

With the exception of the EKG algorithm proposed by
Andersson and Tovar in [3], all recent optimal multiprocessor
scheduling algorithms impose boundaries at the jobs’ dead-
lines, even if the number of processors m is equal to 1.
However, the earliest deadline first (EDF) algorithm correctly
schedules any task set with U ≤ 1 on a uniprocessor
platform, without modifying the tasks’ properties during the
schedule [6]. Hence, boundaries are obviously not required
when m = 1. We could thereby reasonably wonder if they
are really needed when m is greater than 1. We strongly
believe that the answer to this question is “yes”. Indeed,
a new constraint arises when the number of processors is
greater than 1: a job cannot be executed on two (or more)
processors simultaneously. Hence, time boundaries play the
role of synchronization points between tasks, guarantying
that no intra-job parallelism will be required during the next
time interval to respect all jobs’ deadlines. However, many
scheduling algorithms have been proposed for multiprocessor
platforms without using the boundary approach [7], [8]. Even
though they are no longer optimal, they successfully schedule
most task sets.

Therefore, the open question becomes: how many time
boundaries should be added to ensure the optimality?

IV. A FIRST CONJECTURE

Consider a system where tasks are categorized as migratory
and non-migratory. A non-migratory task is statically assigned
to a processor πj and can only be executed on this processor.
On the other hand, a migratory task can migrate between
multiple processors. If we assume that there is at most one
non-migratory task per processor and m − 1 migratory tasks
in the system (i.e., there are at most (2 ·m)−1 different tasks
in τ ), then we have the following conjecture:

Conjecture 1: Assume τ is a task set that is feasible on m
processors and contains at most 2 ·m− 1 tasks. If one task is
statically allocated to each processor and the remaining tasks
are permitted to migrate, then there exists an optimal algorithm
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Tasks
Non-migratory Migratory

C T
N1 2 6
N2 4 8
N3 16 24

C T
M1 10 12
M2 16 24

TABLE I
CHARACTERICTS OF TASKS USED IN FIG. 1.

that can schedule τ using boundaries only at the migratory task
deadlines.

To illustrate Conjecture 1, we propose an example. Consider
three non-migratory tasks N1, N2 and N3 and two migratory
tasks M1 and M2 with the characteristics given in Table I.
This task set τ has six distinct job deadlines within its hyper-
period (i.e. the least common multiple of all task periods), but
only two distinct migratory task deadlines (at time 12 and 24).
We show in Fig. 1 that we can successfully schedule τ with
Rule Set 1 when considering only the migratory task deadlines
as boundaries. Note that we do not say that Rule Set 1 will
succeed in the schedule of all task sets. However, we believe
that it is a good starting point for future investigations.

Rule Set 1:
1) Every task τi must execute Ui × L time units between

two consecutive boundaries separated by L time units
(i.e. between two migratory task deadlines).

2) A migratory tasks Mi has always a higher priority than
a non-migratory task Nk, unless Nk has a zero laxity.

3) Any job with a zero laxity must be executed immedi-
ately.

The main idea behind Rule Set 1 is the following:
By definition, there is no risk that a non-migratory task
could be executed simultaneously on two different processors.
Therefore, we must execute the migratory tasks whenever it
is possible to schedule them without parallelism. Hence, a
migratory task Mi must have a higher priority than a non-
migratory task Nk, unless Nk will miss its deadline if it is
not executed immediately.

V. OPEN PROBLEMS

• Assuming that Conjecture 1 is true, could we directly
extend this result to the general case where there are
an arbitrary number of non-migratory tasks on each
processor?

• Could we still reduce the number of time boundaries or
does the number of migratory tasks’ deadlines constitutes
a lower bound?

• Could we extend this approach for sporadic tasks?
These are a few questions for which we do not have answers
yet. However, these results could have a strong impact on the
design of future multiprocessor schedulers. Indeed, it could
help to reduce the run-time overheads during the schedule

M2

M1πa

πb

M2

N1

M1

πc

0 6 8 12

N1

N2 N2

N3 N3

Zero laxity:
N1, N2

Zero laxity:
N3

Boundaries

M1

16 18 24

N2M2

M1 N1

M1

N1

N2

M1

N3N3 M2

M2

Zero laxity:
N3, N1

Zero laxity:
N2

Zero laxity:
N2

Fig. 1. Schedule using Rule Set 1, when only considering deadlines of
migratory tasks as boundaries.

and hence improve the practicality of future multiprocessor
scheduling algorithms.
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How Different are Offline and
Online Scheduling?

Gerhard Fohler, University of Kaiserslautern, Germany

The heated debate on whether offline or
online scheduling (e.g., [7], [2], and [9]) is
preferable for real-time systems has taken
attention away from the question how the
two are actually defined and what their
essential differences are. Results and ar-
guments in the debate are typically based
on a conglomerate of assumptions, sys-
tem design issues, and particular views of
scheduling rather than the actual cores of
the ways to schedule themselves. We do
not wish to get involved into the “TT’ vs.
ET” debate, rather have a look the related
scheduling paradigms to determine what
their differences are. We will argue they are
much smaller than perpertuated clichees.

One of the central choicesfor scheduler
design is that of the activation paradigm,
i.e., when are events recognized, who ini-
tiates activities, when are these decisions
taken? In conventional systems, the event
triggered approach is prevalent, in which
occurrences of events initiate activities in
the system immediately. In time triggered
systems, activities are iniated at predefined
points in time [7].

I. OFFLINE SCHEDULING

Initiating activities in the system with the
progression of time requires complete un-
derstanding of the system and the environ-
ment it will operate in. Scheduling for TT
is usually carried out via a scheduling table,
with tasks and activation times. An offline
algorithm takes complete information about
the system activities, which reflect the
knowledge about anticipated environmental
situations and requirements, and creates a
single table, representing a feasible solution
to the given requirements. As the algo-
rithm is performed offline, fairly complex
task sets can be handled, e.g., precedence
constraints, distribution and communica-
tion over networks, task allocation, mutual
exclusion, separation of tasks, etc. - e.g.

[8], [3], [5], [6], [4], [1], [10] Should a
feasible solution not be found, retries are
possible, e.g., by changing the parameter-
ization of the algorithm or the properties
of the task set. At runtime, a very simple
runtime dispatcher executes the decisions
represented in the table, i.e., which (portion
of a) task to execute next. Typically, a min-
imum granularity of time is assumed for
the invocations of the runtime scheduler,
so called slots.

II. ONLINE SCHEDULING

In event triggered systems, events invoke
an online scheduler, which takes a decision
based on a set of pre defined rules, e.g.,
represented as priorities. An offline schedu-
lability test can be used to show that, if a
set of rules is applied to a given task set
at runtime, all tasks will meet their dead-
lines. Major representative lines of such
algorithms are based on fixed priorities, e.g,
rate monotonic or dynamic priorities.

III. FUNDAMENTALLY DIFFERENT?

Given the different assumptions, ap-
proaches, and properties, offline and on-
line scheduling could be perceived as very
different, or even opposing paradigms. We
will take a closer look.

The ET real-time scheduling process
takes sets of tasks with timing constraints
and performs a test if these constraints can
be met if a given algorithm is used at run-
time. The algorithm may take properties of
tasks, notably priority or deadline, as input,
or determine them as directives, artifacts
for the online scheduling algorithm Then,
the task properties, “priority” are separated
from the importance of a task, “deadline”
from the timing constraint. Rather, they
both serve only to direct the online schedul-
ing algorithm to execute the proper rules
for schedulability.
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The scheduling table of offline schedul-
ing provides a “proof by construction” that
all timing constraints will be met. In con-
trast to a proof that no timing constraints
could be violated in any situation, an offline
approach only needs to show that one sit-
uation exists, i.e., the scheduling table, in
which the timing constraints are met: in-
stead of a “for all” proof, considering even
situations which may never occur during
the runtime of a system, a “there exists
one” suffices.

Thus, the process follows the steps: task
set with timing constraints – schedulability
test and determination of rules (e.g., via
directives priority or deadline) – execution
of rules by runtime scheduler – timing
constraints met.

Looking closer, we can see that TT real-
time scheduling work in the same way. In-
stead of an definition of rules, e.g., “earliest
deadline first”, the decisions on which task
to execute are represented in the scheduling
table, “schedule next task as given table”.

While TT scheduling has to assume a
periodic world and ET provides flexibility
for tasks with not fully known parame-
ters, e.g., aperiodic, the difference concerns
mostly runtime execution without guaran-
tees. When offline guarantees are required,
task parameters have to be known offline:
without worst case execution, period or
maximum arrival frequency, offline guar-
antees cannot be given, independent of the
scheduling paradigm used.

Hence, we can conclude that the terms
“offline” and “online” scheduling can-
not be seen as disjoint in general. Real-
time scheduling requires offline guaran-
tees, which require assumptions about on-
line behavior at design time. At runtime,
both offline and online execute accord-
ing to some (explicitly or implicitly) de-
fined rules, which guarantee feasibility. The
question “offline” vs. ”online” is thus less
black and white, but more about how much
of the decision process is Thus, both of-
fline and online are based on a substantial
offline part. The question is then where to
set the tradeoff between determinism - all
decisions offline - and flexibility - some
decisions online.

IV. CONCLUSION AND QUESTION

Mixing system design issues and actual
scheduling of TT and ET, offline and online
scheduling appear very different. Separat-
ing activation paradigm, i.e., when is the
scheduler invoked, from the actual schedul-
ing reveals a different situation: the essen-
tial steps of (i) offline analysis and feasibil-
ity test, either via proof that no infeasible
situation can occur or by constructing a
complete schedule, (ii) determination of
scheduling rules, whether in explicit forms,
e.g., EDF, or implicit as scheduling table,
and (iii) runtime execution according to
these rules, are the same, albeit in different
forms.

The difference between offline and on-
line scheduling appears to be as much
about asking the right question and looking
at the right level as it is about where to
draw the line.
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A Generalized View on Beneficial Task Sortings for
Partitioned RMS Task Allocation on

Multiprocessors
Dirk Müller, Matthias Werner

Operating Systems Group
Chemnitz University of Technology
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Email: {dirkm,mwerner}@cs.tu-chemnitz.de

Abstract—Partitioned scheduling algorithms are typically
based on Earliest Deadline First (EDF) or Rate-Monotonic
Scheduling (RMS). Often, heuristics like First Fit are applied for
task allocation to processors. The performance of the heuristics
can be improved by sorting tasks in a preprocessing step. While
for partitioned EDF, Decreasing Utilization is the approved
sequence, there is a variety of sort sequences to be considered for
partitioned RMS. The reason is that periods have to be taken
into account. Close-to-integer-ratio periods allow for a higher
utilization bound than in the general case as all ratios being
integer means a simply periodic task set with utilization bound
100% on a uniprocessor. The open problem is a systematization
and generalization on proposed sort sequences including the
question for the best one.

I. INTRODUCTION

Partitioned scheduling on a multiprocessor is characterized
by a static mapping of n tasks with worst-case execution times
(WCETs) ei and periods pi to processors. The deadlines shall
be implicitly given, thus, ∀i : di = pi. On the processors
themselves, widely approved uniprocessor scheduling algo-
rithms can be used. Hence, the core problem of partitioned
scheduling is task allocation.

Since the problem is closely related to bin packing, it is
NP-hard. The exploding number of possibilities makes an
exhaustive search impractical or even impossible for greater
numbers of processors and tasks.

Thus, the use of heuristics like Next Fit (NF), First Fit
(FF) and Best Fit (BF) is a good compromise. Initially, they
are thought as online algorithms where computation time is
crucial. Purely applied, BF yields the best performance, but
there is only a marginal difference to FF. Thus, FF is consid-
ered most suitable due to its lower average calculation effort
[8]. Worst Fit as a fourth approach aims at load balancing
and reduction of energy consumption. Balancing is reasonable
because of a supralinear influence of frequency on power
consumption [2].

II. SORTING AS PREPROCESSING

A clever refinement of the heuristics is the inclusion of a
presorting. Only for offline scheduling, such a preprocessing

is possible. But the online situation for which the above men-
tioned heuristics where originally designed can be emulated
by presenting the tasks one after another to the scheduler.
Note that due to the exponential explosion of cases, the
avoidance of an exhaustive search by the heuristics is still
reasonable for offline scheduling. Thus, in the offline case,
there is an additional degree of freedom: the sequence of the
tasks in which they are presented to the (online) scheduler.
So, the choice of a good sorting criterion is a naturally arising
question. Traditionally, Decreasing Utilization is favored. This
is reasonable for partitioned EDF [8] where period values have
no influence on the fitting of tasks. Period-aware FF, a presort-
ing according to increasing base periods, separating harmonic
chains and reducing scheduling overhead, was suggested in
[10] for cluster scheduling.

The situation is more complex for rate-monotonic schedul-
ing where periods have an impact on schedulability. Here,
spare utilization is determined not only by the utilizations, but
also by the periods of the already allocated tasks and the new
task. Two relevant contributions regarding partitioned RMS are
Rate-Monotonic Small-Tasks (RMST) by Burchard et al. [3]
using increasing S values and R-BOUND-MP by Lauzac et al.
[7] using increasing transformed periods as sorting criterion.

RMST reorganizes the list of tasks in order to form clusters
of tasks with well-fitting periods. The degree of fitting is
quantified by the maximum absolute difference among the
tasks’ so-called S values. A task’s S value is the decimal
fraction of the binary logarithm of its period. Then, tasks
are allocated to processors using NF and a uniprocessor
scheduling criterion as well based on the S values.

R-BOUND-MP reorders tasks after a transformation of all
task sets to the same (binary) order of magnitude. This scaling
operation uses the binary logarithm of the ratio between max-
imum and own period. Thus, clusters of tasks with well-fitting
periods are formed. Then, FF and the R-BOUND uniprocessor
criterion based on the ratio between maximum and minimum
period is applied for allocation of tasks to processors. Note
that R-BOUND-MP served as a basis for the breakthrough
algorithm R-BOUND-MP-NFR (Next Fit Ring) with 50%
utilization bound [1]. The modification there is the substitution
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of FF by NFR. The difference compared to NF is the second
chance of allocating a task to the first processor when not
succeeding allocating it to the last available processor. Note
that this additional policy breaks the principle that closed bins
are never touched again which was typical for classical NF.

Both sortings aim at exploiting period similarity for task
allocation. Their performance in terms of success rate for
synthetic task sets is similar, cf. [4] and [7]. Is this performance
similarity by accident or does it have structural reasons? We
claim that the small advantage of R-BOUND-MP compared to
RMST detected in [7] is mainly due to the better uniprocessor
criterion. Substituting the simplified form used in original
RMST by an advanced one reverses the situation as shown in
[9]. This underlines the impact of the uniprocessor criterion.

Interestingly, considering decreasing utilization or period
similarity alone as sorting criterion comes with a limited
potential of success. Attempts to unify them often apply a two-
stage sorting: first decreasing utilization and then period sim-
ilarity. Examples are Rate-Monotonic General-Tasks (RMGT)
[3] with just two utilization classes and a threshold of 1

3 , and
k-Rate-Monotonic-Matching (k-RMM) [5] with three main
utilization classes (rough thresholds 1

3 and 1
2 ) and k subclasses

where k = b
√
nc turned out to be a good choice [5]. Note

that this square-root choice corresponds to the default number
of bins in the histogram macros of common spreadsheets.
The two-stage sorting with decreasing utilization as the first
criterion might be reasonable for partitioned RMS since the
comprehension of period values beneficial for RMS can be
regarded as a refinement.

III. GENERALIZATION

How can these different approaches be generalized and
sorted into a common scheme? First, we will show that the
sorting sequences [3] [7] differ just by an index shift. The S
values shaping the Burchard sequence [3] are set by (1) to the
decimal fraction of the binary logarithm of the period.

Si := log2 pi − blog2 pic (1)

Lauzac et al. first transform the task set with a procedure
ScaleTaskSet [7] such that all pairwise period ratios are less
than 2, see (2). Then, increasing (transformed) periods give
the sequence. Note that there is a mistake by an oversight in
[7], flooring and logarithmization have to be exchanged.

pi
′ := pi2

blog2(pmax/pi)c (2)

Since logarithmization with a base greater than 1 is strictly
increasing, it does not change the order. We obtain (3) by
performing a log2 operation on both LHS and RHS of (2)
which is an equivalent transformation.

log2 pi
′ := log2 pi + blog2 pmax − log2 pic (3)

Here, pmax denotes the maximum period in the task set.
This period serves as an offset just yielding an index shift.
This index shift is arbitrary, there is no distinguished one.
Thus, period similarity is a circular, not a linear similarity
relationship. A further development of RMST should consider

different index offset values. Is this circular relationship of
period similarity the reason for the success of the NFR
heuristics in R-BOUND-MP-NFR [1]?

This close relationship among independently suggested ap-
proaches shows the potential for generalization and integration
of the other mentioned algorithms. We see this as a relevant
problem which we want to solve in the future.

The theoretical consideration given above has to be extended
and refined. Additionally, a case study on synthetic task sets
will be performed in order to verify the hypothesis of a close
relationship between RMST and R-BOUND-MP.

IV. SUMMARY

Summing up, we question whether there exists an optimal
sorting sequence for the preprocessing step in partitioned RMS
heuristics as it is Decreasing Utilization for partitioned EDF.
This shall include a systematization and generalization on
proposed sort sequences.

Although, according to Kato, ”[..] sorting the tasks does
not dominate a schedulable utilization very much for the
case in which the utilization of every individual task is less
than 50%.” [6] the problem is of paramount interest from a
theoretical point of view. This includes the consideration of
one-dimensional sorting criteria as well as two-stage sortings
which might be more powerful. Next, both worst and average
case considerations shall be performed.
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Abstract— We consider non-preemptive fixed-priority scheduling 
of a set of constrained-deadline sporadic tasks on a single 
processor. We assume that the execution time of a job J depends 
on the sequence of jobs executed before J, that is, the execution 
time of a job of a task is not a constant.  We raise the following 
two open problems (i) given a priority assignment, can the 
response time of a task be computed in pseudo-polynomial time? 
and (ii) how to create an optimal priority-assignment scheme? 

I. MOTIVATION 
With today’s processors, the execution time of a task is 

heavily dependent on whether a memory operation (load/store) 
results in a cache hit or a cache miss. Even with non-
preemptive scheduling and even with a single processor, the 
execution time of a job of a task depends on the scheduling of 
other tasks. As an illustration, consider tasks τ1, τ2 and τ3 which 
are scheduled non-preemptively on a single processor. Jobs of 
task τ1 start their execution by reading a variable x, where x is 
an array. Ditto for the jobs of task τ2: jobs of task τ2 start their 
execution by reading a variable x. However, jobs of task τ3 
never access variable x. For each of the tasks τ1 and τ2, it holds 
that its jobs have the execution time 5 milliseconds if variable 
x was not in the cache. If a job of task τ2 executed immediately 
after a job of task τ1, then τ1‘s job will experience a cache miss 
when referencing the variable x but we may be able to prove 
than when the job of task τ2 references variable x, it results in 
cache hits when τ2 references x and hence the execution time 
of τ2‘s job becomes 4 milliseconds. 

Therefore, we need a scheduling theory which takes into 
account the fact that the execution time of a job may depend on 
which jobs executed just before it. Unfortunately, the current 
research literature offers no such scheduling theory. 

II. MODEL 
Task and platform characterization. We consider a system 
comprising a single processor and a software system 

comprising a task set τ composed of n constrained-deadline 
sporadic tasks. A task τi∈τ is characterized by integers Di and 
Ti with the interpretation that the task generates a (potentially 
infinite) sequence of jobs where the arrival times of jobs by τi 
are separated by at least Ti time units and a job of task τi must 
finish its execution within Di time units after its arrival. 

The execution time of a job depends on the job executing 
before it, and we therefore define the following concepts for 
taskτi. The symbol nhistoriesi is an integer greater than or equal 
to one. historylengthi

h is an integer greater than or equal to one 
and it is defined for 1 ≤ h ≤ nhistoriesi. The symbol 
historyitemi

h,k is an integer in {1,2,3,…,n} and it is defined for 
1≤ h ≤nhistoriesi and 1≤ k ≤historylengthi

h. 

We say that the for job J generated by task τi, the execution 
time Ci

h is historyallowed if it holds for the historylengthi
h jobs 

that executed before J that for each j∈{1,2,…,historylengthi
h}, 

the jth job before J is the generated by the task with index 
historyitemi

h,j. The execution time of a job is the minimum 
among all its historyallowed execution times.  Note that Ci

h is 
historyallowed if historylengthi

h=0. We assume that for each 
task τi there is one h such that historylengthi

h=0. 

Figure 1a shows an example task set in this model. 

Scheduling. We assume that each task τi is assigned a priority 
prioi and each job generated by task τi is given the priority of 
the task that generated the job.  We say that a job J is eligible 
for execution at time t, if (i) job J arrives at t or earlier and (ii) 
job J finishes execution later than t. 

We assume non-preemptive scheduling, that is, if a job has 
started to execute then it will continue to execute until it 
finishes. When a job finishes, the job selected for execution is 
the one with the highest priority among the jobs that are 
eligible for execution at that time. Figure 1(b) and Figure 1(c) 
show examples of schedules. 
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n=3,   
T1=50, D1=11,  T2=150, D2=14,  T3=500, D3=500,  

nhistories1=2 nhistories2=2 nhistories3=1 

C1
1=5, historylength1

1=0 C2
1=5, historylength2

1=0 C3
1=5, historylength3

1=0 

C1
2=4, historylength1

2=1, historyitem1
2,1=2 C2

2=4, historylength2
2=1, historyitem2

2,1=1  

(a) An example of a task set. This task set models that task τ1 and τ2 share some variables and therefore executing one of them just 
before the other reduces the execution time of the other. 

 

 

 

 

 

 

(b) A schedule generated for a specific arrival pattern for the task set in (a). 

 

 

 

 

 

 

(c) A schedule generated for another specific arrival pattern for the task set in (a). 

Figure 1. An example of a task set and two examples of schedules that can be generated for different arrival patterns. 

Response time and schedulability. The response time of a job 
is the time that the job finishes execution minus the arrival time 
of the job. The response time of a task τi (denoted Ri) is the 
maximum response time that a job of τi can experience. We say 
that a task set is schedulable with respect to priority assignment 
P if ∀i: Ri ≤ Di. We say that a task set is non-preemptive fixed-
priority feasible if there exists a priority assignment such that 
the task set is schedulable with respect to this priority 
assignment. We say that a priority-assignment scheme A is 
optimal if for each task set that is non-preemptive fixed-priority 
feasible, the task set is schedulable with respect to the priority 
given by the priority-assignment scheme A. 

Note that in Figure 1(b), the job of task τ2 has execution time 
of four time units because it executes after a job of task τ1. 
Hence the job of task τ2 meets its deadline. Classical non-
preemptive analysis however, which does not consider that the 
execution time of a job depends on the job that executes before 
it, would calculate an upper bound on the response time being 
one time unit longer than the one in the example in Figure 1(b) 
and hence classical non-preemptive analysis would deem the 
task set in Figure 1(a) unschedulable. 

Figure 1(c) shows an example of a schedule for another 
arrival pattern. Note here that the job by τ2 does not execute 

directly after a job of task τ1 and hence the execution time of 
the job of task τ2 is five, that is, one time unit more than it was 
in Figure 1(b). 

III. OPEN PROBLEM FORMULATION 
We propose the following two open problems: 

OP1. Is it possible to create an algorithm, with 
pseudo-polynomial time-complexity, which computes 
Ri? 

OP2. How to create an optimal priority assignment 
scheme. 

We believe these two problems are interesting because both 
of them have (affirmative/positive) answers/solutions for the 
case that the execution time of a job does not depend on its 
history. But for our model they are unresolved. 
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I. INTRODUCTION

In real-time worst-case execution time (WCET) analysis,
an upper bound is calculated, for each job in the system,
on the total aggregate amount of execution required to suc-
cessfully complete the job. Real-time schedulability analysis
has traditionally used the estimates determined from WCET
analysis to determine whether every job in a system can be
completed by its deadline. Thus, the effectiveness of the result-
ing schedulability analysis hinges upon the precision of WCET
estimates. Unfortunately, many of scheduler properties that
simplify schedulability analysis often introduce pessimism into
WCET analysis. For example, the oft-assumed property that
jobs are arbitrarily preemptible leads to significant increase
in the WCET estimates, as the analysis must assume that a
preemption occurs often and the overhead of such preemption
(due to context switch time and cache effects) must be
added to the estimate. Furthermore, most real-time scheduling
algorithms and associated schedulability analysis do not take
the heterogeneous “cost” of preemption overhead into account
when making scheduling decisions. For instance, preemption
of a job may cause cache lines to be invalidated that are
needed in subsequent instructions; the memory access pattern
of nearby instructions will greatly influence the cost of the
preemption due to such invalidations. Thus, a better strategy
may be to delay the preemption of a job that is executing
instructions with a degree of spatial or temporal locality (in
terms of memory access) until it reaches instructions with a
lower level of memory locality.

Very recently, Bertogna et al. [1] (in ECRTS 2011) proposed
such an approach that explicitly and efficiently determines
(prior to runtime) the optimal choice of explicit preemption
points (EPPs) in a job’s code that minimize the preemption
overhead while ensuring that system schedulability is not
affected due to increased non-preemptivity. However, their
proposed approach only deals with linear (non-branching)
code and cannot handle jobs with control flow such as con-
ditional statements (e.g., if-then-else statements) and loops.
In this abstract, we propose specific open problems towards
extending the EPP approach of Bertogna et al. [1] for handling
general conditional code. Furthermore, our objective is to
obtain a solution that retains the efficient running time of the
non-branching version of the problem. We believe that such

extensions are absolutely necessary for the EPP approach to
be widely applicable and useful to a real-time system designer.

II. MODEL

We refer to the problem of determining the optimal choice
of EPPs for a program (i.e., job) as the explicit preemption
placement problem. To model the explicit preemption place-
ment problem, we assume that a program P has been divided
into a set of non-preemptive basic blocks (BBs). (Currently, [1]
assumes that any conditional code is entirely contained within
a single BB). A directed graph GP = (V,E) describes the
control flow of P . Each vertex v ∈ V represents a BB in P .
An edge (u, v) ∈ E ⊆ V ×V means that the execution of BB u
immediately precedes the execution of BB v in some execution
path of P , and that a preemption is permitted between the two
BBs, i.e., E is the set of possible EPPs. We assume that there
is a special vertex s that indicates the initial BB of the P .
Similarly, there is a special vertex z that is the terminating BB
of P , i.e., that has no successor BB. A path p is an ordered
set of consecutive vertices, such that each vertex in p has an
edge from its predecessor. Let paths be the set of possible
execution paths from the initial BB s to the terminating BB
z.

For the purposes of quantifying the preemption overhead of
selecting an EPP, we assume that a function ξ : E 7→ R≥0 is
given. Similarly, the WCET of a BB is given by a function
C : V 7→ R≥0. Finally, since the selection of EPPs will create
non-preemptible regions in P , the schedulability of the system
is affected by a choice of EPPs. Thus, we will assume that
a constant Q is determined which quantifies the maximum
duration of any non-preemptive region in P .

Note that since every structured program can be ex-
pressed as a combination of sequential instructions, conditional
branches and loops, the adopted model is general enough to
express every real-time task implemented with a structured
programming language.

III. OPEN PROBLEMS

Given the above model, our goal is to find a selection of
EPPs that minimize the WCET of P . More formally, our main
open problem is:
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Given GP and associated functions ξ and C, find
S ⊆ E that minimizes

max
p∈paths


∑
u∈p

C(u) +
∑

u,v∈p
(u,v)∈S

ξ(u, v)

 (1)

subject to the constraint that, for each path in paths
and for any two u, v ∈ p, if the total execution of
BBs from u to v in path p is greater than Q then
some edge of p must be in S.

To solve the above general problem, we must answer the
following subproblems:
SP1 Given conditional, non-looping code, can a solution be

determined in a time polynomial in the number of EPPs?
Systems without loops, or with loops entirely contained
inside a BB, can be modeled using Directed Acyclic
Graphs (DAGs), simplifying the problem. However, no
optimal method is known even for this simplified prob-
lem, due to the presence of conditional branches. In fact,
the selection of EPPs for one path of the DAG might be
conflicting with the selection for other paths that share
some vertex.

SP2 How do loops affect the analysis? As it is common in the
timing analysis domain, we are only interested in loops
that have a deterministic number of iterations.
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I. I NTRODUCTION

Probabilistic real-time systems and probabilistic real-
time analysis became a common practice in the
real-time community, [3]. Probabilistic approaches are
promising because they answer questions or provide
solutions that cannot be addressed in a deterministic
manner such as the distributions for the response times.
Moreover, they consider models that are more realistic,
for instance regarding the message activation patterns
or the expression of soft real-time constraints.

Papers related to our work had equally used the
words stochastic analysis[8], probabilistic analysis
[11], statistical analysis[1] and real-time queuing the-
ory [9]. Since the paper of Diaz et al. [5], the term
stochastic analysisof real-time systems has been used
regularly by the community regardless of the approach
(probabilistic or statistical). While the wordstochastic,
is often associated with unpredicted behavior, we make
use of the wordprobabilistic in order to indicate that
the work is based on the theory of probability. Moreover
by probabilistic real-time systemwe mean a real-time
system with at least one parameter defined by a random
variable, [10], [7], [12], [4].

II. M ODEL

We consider a real-time systemΓ composed ofn
tasks where each taskτi is characterized by three pa-
rameters(Ci, Di, Ti). Ci is the execution time described
by a random variable with a known probability function
fCi

(·) with fCi
(c) = P (Ci = c), Ti is the random vari-

able describing the task period with a known probability
function denoted byfTi

(·) with fTi
(T ) = P (Ti = T );

Di ≤ min{Ti} is the relative deadline of the task. The
discrete random variables of the execution time can be
written as follows

Ci =

(

Cmin

i
= C0

i
C1

i
· · · Cmax

i
= Cm

i

fCi
(Cmin

i
) fCi

(C1

i
) · · · fCi

(Cmax

i
)

)

,

with m the possible execution times for the tasks,
each one with a probability of happening associated, as
already introduced in [5]. For the periods, the random

variable can be

Ti =

(

Tmin

i
= T 0

i
T 1

i
· · · Tmax

i
= T r

i

fTi
(Tmin

i
) fTi

(T 1

i
) · · · fTi

(Tmax

i
)

)

,

with r the possible periods for the task instances. On
top of such a model, it has been developed the analysis
based on the response time computation, as in [5]. As a
result, the distribution of the response time is obtained.

Example 2.1:Let τi be a task with the execution time
described by the random variable

Ci =

(

3 4 5 6 7
0.05 0.1 0.15 0.4 0.1

)

∪

(

8 9 10 11 12 20
0.06 0.04 0.03 0.03 0.03 0.01

)

;

Figure 1 describes the cumulative distribution func-
tion of Ci.
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Figure 1. Cumulative distribution function of the executiontime Ci.

III. SENSITIVITY ANALYSIS

The sensitivity analysis relies on the context of a new
representation of the feasibility condition as a region
defined in the space of those task attributes X considered
as design variables. In particular, most of the works
defines the schedulability region in the space of the
worst-case computation times (X = C), referred to
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as theC-space. Since the sensitivity analysis provides
theory and algorithms for measuring the distance of a
scheduling solution from the boundary of the feasibility
region, such a distance, expressed in theC-space is
an exact measure of the available slack or, conversely,
of the correcting actions that must be taken on the
computation times to make the system schedulable.

The sensitivity analysis has been exploited in both
cases of fixed priority and dynamic priority scheduling,
[2], [6], based on the classical deterministic model of
real-time systems. Instead, the probabilistic model of
tasks has to be applied on top of the results and the
conditions derived by the classical sensitivity analysis
allowing to further conclude about the system and
its requirements. For example, the probabilistic model
could fractionate the feasibility region into

• total feasibility regions: where the feasibility is
guaranteed100%, e.g. all the job instances and
100% of the time the deadline are guaranteed.

• partial feasibility regions: where the feasibility is
not guaranteed100%, but there are probability
thresholds associated; i.e. a feasibility region at
90% where each point inside that region represents
a system configuration where at least90% of the
job instances are guaranteed to meet their dead-
lines.

The probabilistic characterization will bring flexibil-
ity into the sensitivity analysis allowing one to differ-
entiate among feasible conditions. Such a flexible prob-
abilistic sensitivity analysis could cope with particular
schedulability conditions and the real-time degree asked
by the system under investigation. Indeed, it could deal
with both hard and soft real-time systems and all the
grades in between with probability thresholds applied.
Furthermore, the probabilistic schedulability analysis

• could extend the analysis to multiple execution
time requirements;

• it could reduce the pessimism of deterministic anal-
ysis by facing the specific schedulability condition
required;

• it could allow a more detailed feedback to the
design of real-time system.

Those benefits have to be verified with an accurate
investigation and an effective application of the prob-
abilistic sensitivity analysis that has to tackle with the
representation of the probabilistic model within theC-
space and the possible outputs of the analysis as well
as other open issues.
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I. PRELIMINARIES

Time utility function (TUF) scheduling goes beyond
the starttime-deadline notion to express tasks’ temporal
constraints. The goal of the scheduler is to maximize
system utility under the assumption that tasks aggregate
a given amount of utility to the system as a function of
when they execute. Work available in the literature include
the characterization of time utility functions to express
applications’ requirements [5], [7], and several proposals
of scheduling algorithms for increased utility accrual [8],
[9], [3] which differ in their supported utility functions,
overhead, etc.

Most work on TUF scheduling, including all previously
mentioned scheduling algorithms, do not consider pre-
emption. Many simple embedded system do not support
preemption, and some applications, like network packet
scheduling, are inherently non-preemptive. However, if
allowed, preemption opens up possibility for more efficient
resource utilization, and being able to explore it is advan-
tageous. We believe that the scarcity of work considering
preemption reflects the lack of understanding of the impact
of preemption on the utility accrual. Moreover, preemp-
tive scheduling imposes extra challenges such as context
switch overhead, which may lead to poor and inefficient
resource utilization.

II. THE RELATION BETWEEN PREEMPTION AND
UTILITY ACCRUAL

To the best of our knowledge, preemptive TUF schedul-
ing has been addressed only in [6] and [2]. The work
in [6] proposes a TUF preemptive scheduling algorithm
assuming that the time of completion of a task defines
the utility accrual to the system. A previous version of
the work had focused on network packet scheduling,
where this assumption holds, but the problem is inherently
non-preemptive. However, as we will see later in this
section, not all applications accrue utility to the system
as a function of the completion time. Therefore, this
model does not generalize the expression of the impact
of preemption on the accrued utility.

The work in [2] proposes a preemptive TUF based
scheduler which assumes that each instruction of a job’s
execution accrues utility to the system as a function of
the moment of execution. The utility of a job is, then, the
integral of the utility function within the time intervals
this job executes (see figure 1). This figure depicts the
schedule of a job which executes in the time intervals
[t1, t2] and [t3, t4], and the corresponding utility accrual.

Figure 1. TUF model in [2].

We believe that this task model has some flaws in ex-
pressing the utility accrual of applications as a function
of time. For example, the authors of [2] use as motivating
example a tracking system which verifies whether objects
cross a certain boundary and intercepts them. This system
reads the coordinates of the objects from registers that
are periodically updated by a sensory system, processes
some data, and generates as output the interception point
based on trajectory pattern and speed. The utility of this
application depends on the age of the sensed position
when applying the interception (the older the data, the
less accurate the position of the object), and the time of
the output (early or late action will fail to intercept the
object). Therefore, not all instructions of the code alter
the utility that the application accrues to the system.

Let us analyze the timeliness requirements of other
2 applications for a better understanding of the impact
of preemption on system utility: multimedia and con-
trol. Video decoding and playout require strictly periodic
frame display for maximum Perceived Quality of Video
(PQV) [1]. The PQV varies as a function of the display
time of each frame, and frames can be displayed only
after decoded. Since buffering frames in advance is not
an option for high consumer electronics [4], frames must
be displayed before the next frame starts being decoded.
In this application, the utility relates to the PQV, which
depends only on the decoding completion (moment of
frame display), and hence, is independent of preemptions.

The basic timing parameters of control tasks are shown
in figure 2. Control tasks are released (e.g., inserted
into the ready queue of the real-time operating system)
periodically at times rk, and rk+1 − rk = p, where p is
the period of the controller. Due to preemption from other
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Figure 2. Control timing constraints.

tasks in the system, the actual start of the task may be
delayed for some time Ls(k). This is called the sampling
latency of the controller. A dynamic scheduling policy
will introduce variations in this sampling latency across
intervals. These variations are called sampling jitter. The
maximum sampling jitter is quantified by the difference
between the maximum and minimum sampling latencies
in all task instances, thus JMAX

s = LMAX
s − LMIN

s .
The sampling interval latency hk is the interval of

time between two consecutive samplings Ik, thus hk =
Ik+1 − Ik. The nominal sampling interval is such that
hk = p. Jitter in the sampling latency will of course
also introduce jitter in the sampling interval latency, called
sampling interval jitter. The maximum sampling interval
jitter is JMAX

h = LMAX
s + LMIN

s .
After some computation time and possibly further pre-

emption from other tasks, the controller will actuate the
control signal (or control output) at time Ok. The delay
from the sampling to the actuation is the input-output
latency LIO(k) = Ok − Ik. Varying execution times or
task scheduling preemptions will introduce variations in
this interval. The maximum input-output jitter is quantified
by the difference between the maximum and minimum
input-output sampling latencies in all task instances, thus
JMAX
IO = LMAX

IO − LMIN
IO .

Basic control theory assumes all latencies to be zero,
which also implies that all jitters are zero, for optimum
control performance (maximum utility). Latencies and jit-
ters are tolerable, albeit at lower utility. In this application,
preemptions may impact on the utility accrual due to
input-output latency.

III. HOW TO EXPRESS THE RELATION BETWEEN
PREEMPTION AND UTILITY ACCRUAL IN TASK

MODELS?

One of the open problems is which instructions of a
task contribute to the utility accrual. The examples and
observations of the previous section lead us to conclude
that the utility that an application accrues to the system
varies as a function of the moment of I/O operations.
The internal computational state of an application is not
visible to the system, and hence, should not alter the utility
accrual.

Another problem is the task model abstraction which is
necessary to express the utility accrual of applications. We
believe that a potential solution is to extend task models
with the information of which instructions of a task accrue

utility to the system. Such an extension to real-time task
models provides for the generalization of the task models
proposed in [2] and [6]. A task may express that only one
instant of the execution defines the utility accrual, like
the moment completion as proposed in [6], and that every
instruction accrues utility, as the model in [2]. We wonder
which other application examples back up our proposal,
and whether a designer can define all points of utility
accrual for every application.
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Consider the problem of executing a multimode real-
time system using partitioned scheduling on a multipro-
cessor platform. The model of computation is as follows
(all technical terms are interpreted according to their usual
definitions):
• Platform: The platform is composed of m identical

processors {π1, . . . , πm}.
• System: The system is composed of a task set
τ = {τ1, τ2, . . . , τn}, where each task is assumed
to be sporadic and implicit-deadline. The n tasks are
divided into k subsets {τ1, τ2, . . . , τk}, where each
subset τ j represents the tasks that have to be executed
while the system is running in mode Mj . The system
can run in k different operational modes. These
subsets τ j are exhaustive but not mutually exclusive,
i.e., τ1 ∪ τ2 ∪ . . . ∪ τk = τ and ∃j, i : τ i ∩ τ j 6= ∅.
The tasks belonging to more than one mode are called
Mode-Independent (MI) tasks.

• Mode Transition: At run-time, the application is
either running in one of the modes (say Mi) or it
is switching from one mode (i.e., the old mode) to
another (i.e., new mode). A mode transition phase
starts with a Mode Change Request (MCR) and ends
when all the old mode tasks have completed the
execution of their last released job (those old mode
tasks do not release new jobs after an MCR) and
all the new mode tasks have been activated, i.e.
they have started to release jobs. Note that a mode-
independent task that belongs to both the old and
new mode should not be affected by the mode change
in progress. Additionally no deadlines in the system
may be violated.

• Scheduling: We consider partitioned scheduling, i.e.,
the task set τ j of each mode M j is partitioned into
m subsets τ j,1, τ j,2, . . . , τ j,m. Each partition τ j,` is
statically assigned to processor π` and is scheduled
by preemptive EDF.

• Assumptions: Tasks are not allowed to migrate be-
tween processors during the execution of any mode.
Furthermore, we assume that every subset of tasks
τ j,` (∀j, `) is EDF-schedulable.

Open problem: For any given transition phase, what is
the earliest time-instant after the MCR at which all the
new mode tasks can be safely activated?

Observation 1. In order to preserve the schedulability
of the system, it might be the case that some MI tasks
have to migrate from one processor to another when a

τ1 τ2 τ3 τ4 τ5 τ6

Ci 20 14 20 30 1 6
Ti 39.2 30 60 60 10 10
Ui 0.51 0.46 0.4 0.5 0.1 0.6

belongs to τ1 MI MI MI τ1 τ2

Table I: A task set to illustrate the necessity of task migration
across different modes.

τ2τ2
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τ2 τ2

τ4

τ2

τ4

Figure 2: Schedule missing deadline with uniprocessor protocol
adaptation

mode transition is initiated.

Consider a system with two modes M1 and M2, and
six tasks {τ1, . . . , τ6}. These tasks have to be scheduled
on two processors π1 and π2, and their parameters are
given in Table 1. The notation MI indicates that the
task belongs to both modes M1 and M2. Thus we have
τ1 = {τ1, τ2, τ3, τ4, τ5} and τ2 = {τ2, τ3, τ4, τ6}. It can
be shown that the only EDF-schedulable partitions for
τ1 is {{τ1, τ2}, {τ3, τ4, τ5}}. Similarly, the only EDF-
schedulable partitions for τ2 is {{τ2, τ4}, {τ3, τ6}}. That
is, there is no EDF-schedulable partitions in which every
MI task is assigned to the same processor in both modes
M1 and M2, hence providing Observation 1.

Observation 2. While it is commonly believed that unipro-
cessor scheduling techniques can be directly applied to
partitioned multi-core scheduling, the presence of MI tasks
may lead to counter-intuitive results.

Consider the following uniprocessor result [1]: for any
transition phase from mode Mi to mode Mj , the new-
mode tasks can be safely activated at any time t ≥ tMCR+
Yi,j , where tMCR is the time-instant of the last MCR and
Yi,j

def=
∑
τ`∈τ i C` +

∑
τ`∈τ i∩τj

⌈
Yi,j

T`

⌉
× C`. A direct

adaptation of the above protocol to partitioned multi-core
would be: for any transition phase from mode Mi to mode
Mj , the new-mode tasks can be safely activated at any
time t ≥ tMCR + maxmk=1

{
Y ki,j
}

, where tMCR is the
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Figure 1: schedule of the two partitions with mode transition prolonged

instant of the last MCR and

Y ki,j
def=

∑
τ`∈τ i,k

C` +
∑

τ`∈τ i,k∩τj,k

⌈
Y ki,j
T`

⌉
× C`.

However, the example using the system described in
Figure 1 proves that this straight-forward extension of the
protocol lead to deadline miss. In Figure 2 a deadline is
missed at time t = 90 after the assumed end of the mode
transition phase which completes at t = 52 since tMCR =
1 and maxmk=1

{
Y ki,j
}

= 51. It thus shows that waiting for
the old mode workload to finish in every cores is not a
sufficient condition to command the mode transition.

Observation 3. There exist time intervals in which mode
transition can be performed without missing any deadlines
in the system. These intervals are separated by time
intervals in which mode transition cannot be performed
without missing a deadline.

The extended schedule of the system discussed in
Observation 1 is shown in Figure 1. We can observe from
the schedule that the time intervals where it is safe to
perform mode transition and time intervals where it is
not safe to perform mode transition alternate. Hence, it
is difficult to find at design time a time instant (using a
uniprocessor multimode protocol) at which it is always
safe to perform mode transition (as MCR is a run-time
event).

Hence, from Observations 2 and 3, we can conclude
that the uniprocessor multimode scheduling techniques
cannot be directly applied to a multiprocessor multimode
partitioned scheduling scenario.
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I. I NTRODUCTION

Consider the problem of non-migratively scheduling a
set of implicit-deadline sporadic tasks to meet all deadlines
on a two-type heterogeneous multiprocessor platform.

A. System Model and Assumptions

The system is as follows:

• Computing Platform (denoted as Π): The com-
puting platform consists ofm processors; Of those,
m1 ≥ 1 are of type-1, andm2 ≥ 1 are of type-2, i.e.,
m1 + m2 = m. A processor is denoted asπj ∈ Π,
wherej ∈ {1, · · · ,m}.

• Task Set (denoted as τ ): The task set comprisesn
implicit-deadline sporadic tasks (i.e., for each task, its
deadline is equal to its minimum inter-arrival time).
A task is denoted asτi ∈ τ , wherei ∈ {1, · · · , n}.

• Utilization (denoted as U ): The utilization of a task
τi on a processorπj is given byuj

i , a non-negative
real number.

The following assumptions are made:

• No job parallelism: A job can be executing on at
most one processor at any given time instant

• Independent tasks: The execution of jobs are in-
dependent, i.e., they neither share any resources nor
have data dependency and

• No migration: All the jobs released by a task must
execute on the same processor to which the task is
assigned.

B. Phase Transition

A behavior in which a given system transitions from
one state to another is known asphase transition be-
havior. During the phase transition, certain properties
of the system change “drastically”. In context of real-
time scheduling, one way to relate this concept is to
reason about the difficulty of scheduling problems. We
can say that when a scheduling problem satisfies certain
property (i.e., when the system is in a certain phase),
it is almost certain to schedule the task set and upon
changing the property (the system enters a new phase),
it is hardly possible to schedule the task set. For example,
such a behavior has been observed for a uniprocessor
non-preemptive scheduling problem. It has been shown
that there exists a utilization thresholdU∗ such that, for
large task sets, task sets with utilizationU < U∗ can
almost surely be scheduled and task sets with utilization
U > U∗ almost surely cannot be scheduled [3]. It is

also believed that such a behavior exists for identical
multiprocessor scheduling problem [4]. We are interested
in finding whether such a behavior exists for two-type
heterogeneous multiprocessor platforms.

II. OPEN PROBLEM

Does there exist a phase transition behavior for the two-
type heterogeneous multiprocessor scheduling problem?

III. SOME INSIGHTS

In a quest to find an answer to the question, we
performed some simulations and did not observe the phase
transition behavior in our simulations. We understand that
these simulations/observations are not enough to answer
the question and hence more work needs to be done in this
regard. We brief our simulation setup and observations in
this section.

We randomly generated the problem instances compris-
ing the task set (with an upper bound of15 tasks) and the
computing platform (with an upper bound of2 processors
of each type). We then formulated the task assignment
problem as Zero-One Integer Linear Program (ILP) as
discussed in [1]. This formulation is shown in Figure 1.
HereZ denotes the maximum capacity of any processor

Minimize Z subject to the following constraints:
C1.

∑m

j=1
x
j
i = 1 (i = 1, 2, · · · , n)

C2.
∑n

i=1

(

x
j
i · u

j
i

)

≤ Z (j = 1, 2, · · · ,m)

C3. x
j
i is a non-negativeinteger (i = 1, 2, · · · , n);

(j = 1, 2, · · · ,m)

Figure 1. ILP formulation – ILP-Feas(τ,Π)

that is used and is set as the objective function (to be
minimized).Z ≤ 1 implies that the sum of utilization of
tasks assigned to any processor is less than or equal to
the available capacity on that processor – hence,Z ≤ 1
indicates that the task set is feasible on the platform. The
variablexj

i (referred to asindicator variable) indicate the
assignment of taskτi to processorπj , i.e.,xj

i = 1 implies
that τi is (entirely) assigned to processorπj , x

j
i = 0

implies thatτi is not assigned to processorπj . The first
constraint (C1) indicates that every task must be assigned
to processors. The second constraint (C2) indicates that
no processor capacity should be used more thanZ. The
third constraint (C3) indicates that the indicator variables
must be non-negative integers.

We extracted only those problem instances that are
feasible (i.e., a problem instance in which the task set
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could be assigned on the platform without missing any
deadlines when EDF [2] is used to schedule the tasks
on each processor – ILP solver returnsZ ≤ 1 for such
task sets). For each of the feasible problem instances, we
computed thesuccess ratio which is defined as follows:

success ratio=
Nsucc

Nvalid

where,Nsucc denotes the number of assignments that meet
all the deadlines of the tasks andNvalid denotes the total
number of possiblevalid assignments. A valid assignment
is one in which (i) no task is left unassigned and (ii) the
task assignment in one valid assignment is different from
other valid assignments. All the possible valid assignments
are generated using exhaustive enumeration.

We then plotted our observations for 10000 feasible task
sets withZ on X-axis and ‘average success ratio’ (for
eachZ) on Y-axis as shown in Figure 2. As we can see
from the graph, there is a gradual decrease in the value of
‘average success ratio’ and hence no sharp threshold on a
particular value ofZ where ‘average success ratio’ reduces
significantly. The fluctuation in the ‘average success ratio’
in the initial half of the graph (where0 < Z ≤ 0.45)
can be attributed to the fact that our task set generator
generated very few task sets for which ILP solver gave
the output0 < Z ≤ 0.45 — to be precise, among 10000
task sets, only 250 were in this category. Hence, we believe
that with a more balanced task set generator, we will not
observe those fluctuations.
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Figure 2. Average success ratio of randomly generated 10000 (feasible)
task sets

From the observations made, we tend to believe that
with the parameters that we have chosen, it may not be
possible to observe the phase transition behavior if there is
one. However, these are initial observations and we need
to carry out more work to answer the following questions:

1) Does there exist a phase transition behavior? If there
is one, then with what parameters we can observe
such a behavior?

2) If there is no phase transition, then what is its
implication considering the fact that such a behavior
has been observed in the past for a uniprocessor
scheduling problem [3][4]?
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Adaptive Schedulability Analysis
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INRIA Nancy Grand Est, Nancy, France

luca.santinelli@inria.fr

I. I NTRODUCTION

Real-time systems are becoming highly dynamic hence
with an explicit requirement of changing their behavior
according to the needs encountered at run-time.Actual
real-time systems are required to adapt their functionalities
depending on the external environment or their internal
state. So far it has been investigated the case when the
applications are the system elements that can change their
requirements, hence their functionalities, which fulfills just
part of the requirements of complex and dynamic real-
time systems. Indeed, whenever resource reservation (RR)
mechanisms are applied to achieve temporal isolation among
applications, the reservation parameters may need to change
from one condition to another making the system even more
complex. This implies that one of the main needs of actual
dynamic real-time systems is theadaptivity of both the
resource reservation and the applications. Consequently, the
real-time analysis need a degree of flexibility to efficiently
cope with such changing conditions.

The classical view of dynamic real-time systems refers
to different operational modes designed to achieve different
functionalities or to respond to changes of the system. Each
mode specifies functional and non-functional characteristics
and consists of specific resource requirements and resource
availabilities. Thus, multi-moded real-time systems require a
more accurate analysis than classical single-mode systems,
because of the criticality of mode transitions. In fact, there
are situations in which, although timing constraints can
be guaranteed to be met within each individual mode (in
steady state conditions), deadlines can still be missed during
mode transitions.The schedulability guarantees have to be
provided during re-configurations, which in the multi-mode
case are the mode transitions.

A. Related Work

The problem of timing analysis across mode changes
has been addressed in the real-time literature. First, mode-
changing applications have been considered, examples
are [1], [2], [3], with the underlying idea to wait for a certain
amount of timeδ before changing the schedule. The problem
is then identifying a safe time instant where the new mode
can be activated without causing deadline misses. However,
it could be highly likely that all the changing applications
require to change during the same idle time making such a
extremely long so that it is impossible to guarantee specific

treq tgo

δ

mode II mode II

application

resource

?

?

Figure 1. An example of transition with resource provisioning and
application execution before and after the mode changetreq.

timing behaviors. In such a case the analysis could be useless
to solve probabilistic real-time problems.

As we said, even resource reservation mechanisms can
be affected by the mode-change. In that case, fixed reser-
vation paradigms e.g. static reservations implemented with
servers, [4], [5] are not appropriate to achieve the desired
performance in case of applications with an highly dynamic
resource demand. Recently, adaptive mechanisms have been
proposed for servers. In [6], [7] respectively adaptive TDMA
servers and periodic servers are studied from the mode-
change perspective. The classical RR paradigms are changed
to face dynamic conditions an derive the resource guarantees
for the schedulability of the real-time applications. The
server proposed are investigated during their mode change
in order to derive the resource and to guarantee the schedu-
lability of the real-time applications.

II. SCHEDULABILITY ANALYSIS

In order to investigate mode transitions in real-time sys-
tems it is necessary to characterize both the resource request
of the applications and the resource provisioning of the
RR mechanisms during such transitions from an old mode
(mode I) to a new one (mode II). The multi-mode analysis
assumes mode I and mode II feasible. Figure 1 describes a
generic mode transition withtreq denoting the time instant
at which the mode change is requested; the transition starts
at treq. From this time on, all the required changes in the
system are initiated, while the new mode begins attgo after
a transition delayδ = tgo − treq. The transition finishes at
tgo.
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A possible abstraction for real-time systems refers to
bounding functions in the interval domain. In literature it
exists the following notions.

• Theworkload bound functionwbf(t) for the task com-
putational resource requirement (the workload) in the
interval [0, t]. In case of fixed priority (FP) scheduling
the workload bound function, in its level-i, wbfi(t) =
∑

j∈hp(i)

⌈

t
Ti

⌉

Ci is the workload of thei-th task and

all the high priority tasks thani, hp(i).
• The demand bound functiondbf(t), for the task min-

imum resource demand in order to meet its timing
constraints (the resource demand). i.e. for a taskτi it
is dbfi(t) = max

{

0,
(⌊

t−Di

Ti

+ 1
⌋

Ci

)}

. The com-
putational demand of a task setΓ of periodic tasks
synchronously activated at timet = 0 can be computed
as the sum the individual demand bound functions of
each task, that isdbfΓ(t) =

∑

τi∈Γ dbfτi(t), expressing
the total computation that must be executed by the
processor in each interval of time when tasks are
scheduled by earliest deadline first (EDF) paradigm.
in order to meet all the task set constraints.

• The supply bound function, sbf(t) which is known
as the minimum amount of resource provided (the
resource provisioning).

With the bounding functions abstraction the schedulability
criteria translates into bound comparison criteria, i.e. in case
of EDF the schedulability of a task set within a resource
provisioning is guaranteed if∀t dbf(t) ≤ sbf(t), [8]. In case
of FP, the schedulability is guaranteed if∃ t0 ∈ schedPi /

wbfi(t0) ≤ sbf(t0); schedPi is the set of relevan points
where to verify the schedulability, [9], [10].

With the bounding curves, there are the tuples
(wbfI , dbfI , sbfI) describing resource request and resource
provisioning in mode I and(wbfII , dbfII , sbfII) for the
resources in mode II. Besides,(wbfT , dbfT , sbfT ) describes
the transition between modes in terms of workload, resource
demand and resource provisioning. The schedulability has to
be guaranteed in all the possible scenarios for the applica-
tions and the RR mechanisms, so the stable modes (mode I
and mode II) as well as along the transitions.

The multi-mode analysis is one of the first results toward
the schedulability for adaptive real-time systems. It relates
on having different application demand bound functions and
resource supply bound functions for each composing mode.
As a cost, it demands to verify multiple scenarios and to
compute multiple (and accurate) bounding functions. Fur-
thermore, the analysis together with the mode abstraction,
are limited to specific cases such as single transition per
interval, [11].

III. O PEN PROBLEMS

Adaptive real-time systems demand a complete adaptive
schedulability analysis which, among other requirements,

• has to consider any possible system element changing
in the system;

• it has to tackle with the case of complex transitions
where many system elements could be asked to change
at the same time.

Furthermore, it could ask for alternative representations to
the multi-mode one to explore further degrees of flexibility
that adaptive systems have.

What else is required for having a mature enough adaptive
schedulability analysis?
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Is Process Scheduling a Dead Subject?

Neil Audsley
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The move towards multiprocessor commodity CPUs
has led to a resurgence in multiprocessor scheduling
research [1]. The main focus of this research has been the
study of existing scheduling policies (eg. fixed priority,
earliest deadline first, least laxity) when applied to typical
small scale multiprocessor architectures (eg. multicore
desktop machines). Promising advances have been made in
scheduling policy and associated feasibility analysis. How-
ever, current research only addresses a constrained part of
the more general multiprocessor scheduling problem. This
short paper questions the fundamental assumptions behind
current multiprocessor scheduling efforts and identifies
other, more general areas of research required to match
future system architectures and applications.

ASSUMPTIONS

In general, current scheduling research (uniprocessor
and multiprocessor) makes a number of fundamental im-
plicit assumptions, including:

A1: The schedulable entity is the process (or task).

The process represents a unit of computation, for which
some value of worst-case execution time (WCET) can be
calculated or measured. The CPU (or CPUs) is multiplexed
between the processes ensuring that all receive sufficient
CPU time.

A2: The number of schedulable entities (ie. processes,
tasks) is greater than the number of CPUs.

This assumption is the essence of the conventional
scheduling problem - that CPUs are multiplexed between
the application processes.

A3: The architecture is fixed i.e. the number and type of
CPUs remains constant.

This assumption is partially relaxed when considering
fault-tolerance in multiprocessor systems, where the feasi-
bility of different numbers of CPUs is considered, noting
that as CPUs are reduced there is a reduction in the amount
of processes and/or the computation that the processes
perform. This assumption is also considered by energy
aware scheduling, where the performance of the CPU can
be reduced whilst still enabling all processes to meet their
deadlines.

A4: The memory hierarchy forms a single static uniform
shared address space.

The WCET for a process must consider the memory
hierarchy to determine load times, cache or scratchpad
behaviour, and/or cache consistency (for typical multipro-
cessor architectures).

ARCHITECTURAL TRENDS

Whilst these assumptions have been adopted for con-
ventional real-time systems research, they should be ques-
tioned in the light of current architectural trends and future
applications. Architectural trends include:

T1: Massive parallelism.

The degree of potential parallelism available within a
single chip is increasing almost exponentially. Current
commodity CPUs, with conventional memory hierarchies,
contain upto 16 cores. They represent a scaling of con-
ventional SMP architecture with cache consistency. This
approach is known to be limited in scalability due to
the expense of cache-consistency logic. General purpose
massively parallel architectures, such as Tilera (100 cores)
[7] are based upon Network-on-Chip (NoC) [2] concepts.
Within single chips upwards of around 1K CPUs can be
achieved with todays fabrication technologies, with active
research into larger (10K+ CPU) devices ongoing [3].

T2: Simpler CPUs.

As more CPUs are placed within a single chip, energy
provision to, and cooling of, the CPU core become critical
dictating that slower simpler cores will be used, with lower
amounts of cached (or scratchpad) memory than seen in
todays commodity packages.

T3: Non-uniform Memory Architectures (NUMA).

As the number of CPUs within a chip scales, there are
practical limitations on the uniformity of the memory
structure - in essence, physical memory locations will be
at different distances (in terms of cycles) from each CPU.
Such NUMA architectures are already seen in (some)
desktop commodity CPU multicores (so-called ccNUMA
architectures). Whilst NUMA architectures are often pre-
sented to the programmer as a uniform address space
(eg. in conventional multicore desktop systems), NUMA
(and more extreme architectures) are essentially message
passing between islands of coherent memory space [5],
posing challenges to WCET and schedulability analyses.

T4: Heterogeneous architectures.

In general, the CPUs within multicores will have different
capabilities. This could be merely the presence or not of
an floating point unit on some CPUs, but is more likely
to include specialisations of CPUs for specific purposes,
eg. the inclusion of a SIMD unit to aid vector processing.
Different CPUs entirely can be included within the same
chip, eg conventional, GPU, DSP. Function accelerators
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can also be included (eg. for I/O processing, or com-
munications). The architecture can also be heterogeneous
in terms of the communications - particularly for NoCs.
Examples of heterogeneous architectures today include
Cell (different CPUs and communications); various mixed
CPU/GPU architectures (eg. ARM Tegra).

T5: Reconfigurable architectures.

Increasing flexibility is being built into single and multi-
processor architectures. Driven by embedded systems and
the need for specialist functionality, Application Specific
Instruction Processors (ASIPs) [4] are increasingly avail-
able, with some portion of the instruction set defined
by the application. Also, CPUs and FPGA technology
on the same chip [6] enable application specific function
accelerators to be defined. Pure FPGAs represent the ex-
treme reconfigurable architecture, and can be reconfigured
dynamically at run-time to be different CPUs, or mixtures
of CPUs and function accelerators.

CHALLENGES

The architectural trends summarised above challenge
the fundamental assumptions of scheduling theory. Two
main challenges are now articulated:

C1: Schedule data not threads.

Massive parallelism (T1) will lead to a number of CPUs
greater than the number of application processes, breaking
(A2). Even if some of the additional parallelism is used
for achieving fine-grained parallelism within a process
(ie. parallel for loop), the ratio of CPUs to processes is
increasing, to at least 1.

When it is no longer necessary to schedule processes
on CPUs (breaking (A1)), the fundamental challenge is
to schedule the movement of data and code around the
architecture. The trend towards NUMA (T3) makes this
a difficult problem, as memory structures and hierarchies
are no longer uniform, breaking (A4). Additionally, sim-
pler CPUs (T2) imply less local memory adjacent to
a particular CPU, removing the assumption often made
(particularly in NoC research) that there is sufficient local
memory to hold all code. Hence the challenge is to
schedule the movement of data (including code).

This challenge is also supported by application trends
towards faster larger data I/O. This is exemplified by hand-
held mobile devices, whose data-rates are increasing ex-
ponentially from low quality sound / data through to high-
definition. The movement of this data into the platform,
processing the data, and outputting data, has become the
dominant design consideration.

C2: Time-Space and Heterogeneous Scheduling.

Heterogeneous (T4) and reconfigurable architectures (T5)
break assumptions over architectures being fixed (A3).
They enable the fundamental computer science trade-off
of time-space to be examined within the context of real-
time system scheduling. Essentially, it allows for different
implementations of an application, using different amounts
of hardware capacity - in general, the more hardware

resource used, the shorter the execution time. When these
decisions can be made dynamically at run-time (noting
reconfiguration overheads), then the scheduling problem
is widened to including the architecture itself.

This challenge suggests a movement towards joining
scheduling research with that of hardware / software co-
design research (where application specific architectures
are defined) and with that of embedded systems (where
systems are designed with limited space and energy con-
straints).
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I. MOTIVATION

Evaluating the time-behavior of distributed embedded
real-time systems can be performed in many ways. Mainly
three different approaches can be used as shown in fig-
ure 1. The first one is to test the implemented system, the
second one is to perform a simulation and the third one
is to conduct a real-time analysis. Each of them has its
advantages and disadvantages.

Testing the implemented system is certainly the most
realistic approach concerning the results, because the final
system is used. But correcting any failures discovered at
this late design stage can lead to enormous costs. To
prevent this situation other approaches have to be used
that are suitable for early design stages where mistakes
are less expensive to fix.

Such methods are the simulation or the analysis of a
system. These can also be used in late design phases. For
example a tool like chronSIM [1], which allows simulating
a system, can provide information on what a system is
actually doing especially in the average case. With a
simulation however the border cases like the best-case and
worst-case time behavior cannot be determined. Due to
the coverage problem that simulations have, it is unknown
whether such a border case has been simulated or not. An-
alytical approaches like those based on Tindell and Clark
[2] construct the border cases and calculate guaranteed
bounds for the time behavior. In [3] an automotive case
study was conducted where both approaches - simulation
and analysis - are compared. The conclusion of the paper
is that both approaches are needed for the design process
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Figure 1. Different evaluation techniques

of embedded hard real-time systems. The focus in the
paper is to determine the worst-case time behavior. But
to consider only the border cases during a system design
is often not sufficient to construct a reliable system.

An example for this can be found in the domain of
control systems. To design a reliable controller on the one
hand the border cases are required to verify the stability
of the control loop. On the other hand the most important
part in the design is the knowledge of the average-case
time behavior, because a controller should perform best
in the average case. Therefore both values are needed to
design a reliable controller. In [4] the impact of the time
behavior on a control system is discussed more in detail.

As mentioned with a simulation the average case can
be obtained, because it will most likely describe the actual
system behavior. However the more complex a system
is, the longer will be the runtime of the simulation. A
good impression about the costs required to perform a
simulation can be obtained by considering the results in
[3]. The runtime can easily be in the magnitude of days
to get significant data regarding the average case due to it
depending on the history of the simulation. Therefore such
an approach cannot be parallelized easily. It is possible to
start various simulation runs simultaneously, but it is not
clear how long each run has to be executed in order to
obtain the desired data. So the question arises whether
other methods can be used to determine the average case
while needing less time than a simulation.

Analytical approaches currently only construct the bor-
der cases and calculate guaranteed bounds for them.
Naturally the average case must be between the calculated
best case and worst case. The question is if an analytical
approach like the SymTA/S approach [5] or the real-time
calculus [6] can be modified or extended in such a way
that the average case or at least an approximation of the
average case can be obtained more quickly than with a
simulation. In [7] an extension of the real-time calculus is
proposed where probabilistic arrival and service curves are
considered. But it is an open question if the approach is
able to construct the average-case behavior, because with
the presented model it seems improbable that the average
case of the system can be found.

We now sketch a proposal on how an analytical ap-
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proach can be modified to possibly obtain the average case.
The idea is based on a Monte-Carlo simulation [8] and to
the best of our knowledge there is no successful work
which describes how schedulability analysis techniques
can be used with a Monte-Carlo simulation to compute
the average-case behavior of a system.

In [9] a technique is presented which is based on a sim-
ilar idea. A Monte-Carlo simulation is used to determine
the time-behavior of a system, but it is not clear which
method is used for the Monte-Carlo simulation. It is stated
that the network-calculus is not used, because the system
behavior cannot be modelled adequately.

II. PROPOSAL

We now present our proposal and start our discussion
with the simulation approach, because it is reasonable
to understand why it is able to find the average case.
The advantage of such a method is that the different
correlations/dependencies between the tasks are covered
inherently. But dependencies within a system are an issue
that analytical approaches have. Ignoring them in the anal-
ysis results in more pessimistic bounds, therefore as many
dependencies as possible must be considered to obtain an
average case. Many approaches have been developed to
consider data dependencies [6] or task dependencies [10].
It is however unclear whether the existing work regarding
the dependencies is sufficient to be able to calculate the
average-case behavior.

The question is now how the average case can be
determined efficiently. We propose to use a Monte-Carlo
simulation based on a schedulability analysis by vary-
ing parameters like stimulation, execution time, etc. The
stimulation may only be varied within its bound as well
as the execution time may only be varied between its
best-case and worst-case execution time. To be able to
freely vary the stimulation the periodic model with jitter
is insufficient, instead more expressive models have to be
used like the event streams [11] or the arrival curves used
by the real-time calculus [6]. Some questions which have
to be answered to obtain the average-case behavior are:

• Is a Monte-Carlo simulation based on a schedulability
analysis even suitable to obtain the average-case
behavior?

• How must the parameters be randomized?

• Which dependencies must be modeled in order to
obtain acceptable results?

• How many samples have to be gathered in order to
be able to approximate the average case?

• Is it possible to bound the error of the approximation?
The first question addresses the fact that analytical ap-

proaches always construct the corner cases. Is it therefore
possible to obtain the average case with a Monte-Carlo
simulation? The next question considers the issue of how

the parameters for the Monte-Carlo simulation have to be
randomized. Can we use the same method as used by
simulation approaches or do we have to consider anything
else? To approximate the behavior of a simulation, task
dependencies have to be considered during an analysis.
So which are the important dependencies that influence
the time behavior? The last two questions relate to the
results of the Monte-Carlo simulation, where the quality
of the results has to be determined and a threshold has to
be set for which the quality is deemed acceptable.
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