
RTSOPS 2010

Proceedings of the 1st International Real-Time
Scheduling Open Problems Seminar

Brussels, Belgium
July 6, 2010

In conjunction with:
The 22nd Euromicro Conference on Real-Time Systems (ECRTS10),

July 6-9, 2010

Edited by Robert I. Davis and Nathan Fisher

© Copyright 2010 by the authors

ii

iii

Foreword

Welcome to Brussels and the 1st International Real-Time Scheduling Open Problems Seminar
(RTSOPS 2010). This new seminar provides a venue for the exchange of ideas and the discussion of
interesting unsolved problems in real-time scheduling. The format of the seminar positively
encourages interaction between participants and provides ample time for relaxed discussions. The
goal of the seminar is to promote a spirit of co-operation and collaboration within the real-time
scheduling community.

RTSOPS 2010 is organized around presentation and collaboration sessions. Each presentation session
provides the opportunity to hear about a number of important unsolved problems in real-time
scheduling, highlighted via brief presentations. The following collaboration session gives participants
the opportunity to interact in small groups, exchanging ideas with the presenters about how the
problems might be solved, and to take the first steps towards a solution. A total of 12 open problems
were selected for presentation at the seminar. These proceedings are also published as a Technical
Report from the University of York, Department of Computer Science (YCS-2010-455) available at
http://www.cs.york.ac.uk/ftpdir/reports/2010/YCS/455/YCS-2010-455.pdf.

We would like to thank the Steering Committee listed below, for their work in reviewing the open
problems, and helping to make the seminar a success.

Björn Andersson Polytechnic Institue of Porto (Portugal)
Sanjoy Baruah The University of North Carolina at Chapel Hill (USA)
Marko Bertogna Scuola Superiore Sant'Anna, Pisa (Italy)
Liliana Cucu-Grosjean INRIA Nancy-Grand Est (France)

Special thanks also go to Jim Anderson, Joël Goossens, Vandy Berten, and Gerhard Fohler for their
support and assistance in organising this seminar.

Robert Davis and Nathan Fisher
Co-chairs
1st International Real-Time Scheduling Open Problems Seminar (RTSOPS 2010)

iv

v

Table of Contents

Conjecture about global fixed-priority preemptive multiprocessor scheduling of implicit-deadline
sporadic tasks: The utilization bound of SM-US(12 −) is 12 −
Bjorn Andersson

1

Dual Priority Scheduling: Is the Processor Utilisation bound 100%
Alan Burns

3

Influence of the task model on the precision of Scheduling Analysis for preemptive Systems
Sebastian Altmeyer and Claire Maiza

5

On the Complexity of PROFINET IRT Scheduling
Olaf Graeser and Oliver Niggemann

7

Real-Time Analysis of Round-based Distributed Algorithms
Alexander Kößler, Heinrich Moser and Ulrich Schmid

9

Open Problems in Scheduling Self-Suspending Tasks
Karthik Lakshmanan, Shinpei Kato and Ragunathan Rajkumar

12

Scheduling of self-suspending tasks: state of art and new insights
Frédéric Ridouard and Pascal Richard

14

Efficient RMS schedulability tests
Dirk Mueller and Matthias Werner

16

A note on task-parallelism upon multiprocessors
Joel Goossens and Shelby Funk

18

Improvement of schedulability bound by task splitting in partitioning scheduling
Frédéric Fauberteau, Serge Midonnet and Laurent George

20

Impact of job dropping on the schedulability of uniprocessor probabilistic real-time systems with
variable execution times
Olivier Buffet and Liliana Cucu-Grosjean

22

A sharp threshold for rate monotonic schedulability of real-time tasks
Sathish Gopalakrishnan

23

vi

Conjecture about global fixed-priority preemptive
multiprocessor scheduling of implicit-deadline

sporadic tasks: The utilization bound of
SM-US(

√
2 − 1) is

√
2 − 1

Björn Andersson
CISTER/IPP-Hurray Research Unit at the Polytechnic Institute of Porto

Email: bandersson@dei.isep.ipp.pt

Abstract—Consider global fixed-priority preemptive multipro-
cessor scheduling of implicit-deadline sporadic tasks. I conjecture
that the utilization bound of SM-US(

√

2 − 1) is
√

2 − 1.

I . PRELIMINARIES

Consider the problem of preemptively schedulingn spo-
radically arriving tasks onm ≥ 2 identical processors. A
task τi is uniquely indexed in the range 1..n and a processor
likewise in the range 1..m. A task τi generates a (potentially
infinite) sequence of jobs. The arrival times of these jobs
cannot be controlled by the scheduling algorithm and are a
priori unknown. We assume that the arrival time between two
successive jobs by the same taskτi is at leastTi. Every job
by τi requires at mostCi time units of execution over the next
Ti time units after its arrival. We assume thatTi and Ci are
real numbers and 0≤ Ci ≤ Ti. A processor executes at most
one job at a time and a job is not permitted to execute on
multiple processors simultaneously. The utilization is defined
asUs = (1/m) ·

∑n

i=1

Ci

Ti

. The utilization boundUBA of an
algorithmA is the maximum number such that all tasks meet
their deadlines when scheduled byA, if Us ≤ UBA.

Global fixed-priority preemptive scheduling is a specific
class of algorithms where each task is assigned a priority,
a number which remains unchanged during the operation of
the system. At every moment, them highest-priority tasks
are selected for execution among tasks that are ready to
execute and has remaining execution. The scheduling decisions
are therefore determined by the assignment of priorities to
tasks. The priority-assignment scheme in the current state-
of-art which offers the highest utilization bound is SM-
US(2/(3 +

√
5); its utilization bound is2/(3 +

√
5) [3]. It

categorize a task as heavy or light. A task is said to be heavy if
Ci

Ti

exceeds2/(3+
√

5) and a task is said to be light otherwise.
Heavy tasks are assigned the highest priority and the light tasks
are assigned a lower priority; the relative priority order among
light tasks is given by SM; slack monotonic, meaning that if
Ti − Ci < Tj − Cj thenτi is given higher priority thanτj .

One can show (last page of [1]) that each priority assign-
ment scheme which is scale-invariant and independent has
a utilization bound at most

√
2 − 1. (A priority-assignment

scheme is scale-invariant if the relative priority order of a
priority assignment given does not change when we multiply
Ti andCi of all tasks by the same positive constant. A priority-
assignment scheme is independent ifpriorityi = f (Ti,Ci), that
is the priority of a taskτi depends only on its own parameters.)

II. T HE CONJECTURE

Let SM-US(
√

2 − 1) denote a priority-assignment scheme
which categorized a task as heavy ifCi

Ti

exceeds
√

2−1 and a
task is categorized as light otherwise. Heavy tasks are assigned
the highest priority and the light tasks are assigned a lower
priority; the relative priority order among light tasks is given
by SM; slack monotonic, meaning that ifTi − Ci < Tj − Cj

thenτi is given higher priority thanτj .
I conjecture that the priority-assignment scheme SM-

US(
√

2 − 1) has the utilization bound
√

2 − 1.

I II. SIGNIFICANCE OF THE CONJECTURE

If the conjecture would be true then we would have at
our disposal a priority-assignment scheme that attains the
best performance possible in the class of scale-invariant and
independent priority-assignment schemes.

IV. T HE RATIONALE FOR STATING THE CONJECTURE

We can understand this conjecture by considering two task
set examples. As a first example, consider tasksτ1, τ2, . . ., τm

with Ti = 1,Ci =
√

2-1 andTm+1 =
√

2 and Cm+1 = 2−
√

2
to be scheduled onm processors. For these tasks, it holds that
the utilization of each task is

√
2−1. Increasing the execution

time by an arbitrarily small amount will cause a deadline miss
for the case that all tasks arrive simultaneously. We conclude
from this example that we cannot prove a higher utilization
bound than

√
2 − 1 for the algorithm SM-US(

√
2 − 1).

REFERENCES

[1] B. Andersson and J. Jonsson, ”The utilization bounds of partitioned and
pfair static-priority scheduling on multiprocessors are 50%”, Proceedings
of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03),
pp. 33 - 40, 2003.

[2] L. Lundberg, ”Analyzing Fixed-Priority Global Multiprocessor Schedul-
ing”, Proceedings of the 8th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’02), pp. 145-153, 2002.

RTSOPS 2010 1 Brussels, Belgium

Fig. 1. [Adapted from [2]] An example of a task set where RM-US(0.375)
performs poorly. All tasks arrive at time 0. Tasksτ1, τ2,. . ., τm are assigned
the highest priority and execute on them processors during [0,δ). Then the
tasksτm+1, τm+2,. . ., τ2m execute on them processors during [δ,2δ). The
other groups of tasks execute in analogous manner. Taskτn executes then until
time 1. Then the groups of tasks arrive again. The task set meets its deadlines
but an arbitrarily small increase in execution times causes a deadline miss.

[3] B. Andersson, ”Global Static-Priority Preemptive Multiprocessor
Scheduling with Utilization Bound 38%”, Proceedings of the 12th Inter-
national Conference On Principles Of DIstributed Systems (OPODIS’08),
pp. 73-88, 2008.

RTSOPS 2010 2 Brussels, Belgium

Dual Priority Scheduling: Is the Processor
Utilisation bound 100%?

Alan Burns
Department of Computer Science

University of York, UK

EXTENDED ABSTRACT

Fixed priority (FP) schemes have the disadvantage that
processor utilisations less than 100% must be tolerated if a
system is to be guaranteed off-line. By comparison earliest
deadline first (EDF) scheduling can theoretically utilise all of
a processor’s capacity. In this paper the dual priority scheme
is revisited: here a task may execute in two phases; each phase
has a static priority assigned, the transition from one phase to
another is made at a fixed offset in time from the release of
the task.

In their seminal paper of 1973 Liu and Layland [2] intro-
duced the fixed priority (FP) scheme known as rate monotonic
priority assignment, and the dynamic priority scheme known
as earliest deadline first (EDF). Their theoretical treatment
produced the well known utilisation (U) bounds for a set of n
periodic tasks with period T equal to deadline D; and com-
putation time, C. For FP the bound converges, approximately,
on the value 0.69 (69%) for large n. For n equal to 2 it is
close to 0.83. For EDF the bound is 1 for all n.

In 1993 a dual priority assignment scheme was introduced
[1]. This paper contained the conjecture:

Conjecture 1: For any task set with total utilisation less
than or equal to 100% there exists a dual priority assignment
that will meet all deadlines.

This remains an open question. Search techniques have
failed to find a counter example. Even if one exists then there
remains the question as to what is the utilisation bound? is
this is a function of the number of tasks (n)? and if not ‘dual’
priority then ‘triple’?, or ‘quad’?, or what? At some level (m),
‘m-priority’ assignment can be made to emulate EDF and
hence there does exist a ‘static’ scheme that can obtain the
100% bound – but is it the dual priority scheme?

The dual priority scheme is a minimal dynamic scheme
that allows a task to change (increase) its priority during its
execution. Each task has at most two priority levels: many
tasks will continue to have only one priority. At run-time only
standard preemptive priority based scheduling is required. A
standard RTOS (with a priority change primitive – which is
a commonly supported feature) could therefore support task
sets with the same utilisation bound as EDF. A dual priority
scheme could also be used with priority-based non-preemptive
communication protocols such as CAN. Here an EDF-based
protocol is not possible, but a dual-priority scheme, in which
the priority of a message is increased if it has been in a node’s

output buffer for a predefined interval of time, is certainly
feasible with only a minor change to the CAN protocol.

In addition to the usual notation each task has an interme-
diate deadline Si at which time it undergoes a step change
(increase) in priority. For all tasks: 0 ≤ Si ≤ Ti. Each task
has a phase 1 priority P 1

i and if Si < Ti a phase 2 priority
P 2

i with P 1
i < P 2

i .
The following assumptions are used. Any task, in either

phase, can be preempted by any other task running at a higher
priority. Tasks do not suspend themselves other than at the end
of their computations. The time required to perform context
switching, priority changes etc is ignored (i.e. assumed to be
zero). A single processor is assumed.

A simple example will illustrate the benefits of this scheme.
Table I gives the details of a three task system, each task has
T = D. Note that priority 1 is high and 4 is low. The total
utilisation is 100%, and the LCM of the task periods is 24.

T C P P 2 S U
τ1 6 3 2 50%
τ2 8 2 3 25%
τ3 12 3 4 1 11 25%

TABLE I
EXAMPLE TASK SET

If the dual phasing is ignored (i.e. the tasks are treated as
having single priorities) then the task set is not schedulable by
rate monotonic priority assignment (or any other static priority
assignment scheme as rate monotonic is optimal). The lowest
priority task (τ3) can only execute for two ticks before its first
deadline. But if τ3 has its priority raised at tick 11 to above
τ2 then all deadlines are met.

Another task set that requires all tasks to have a priority
change is given in Table II.

T C P P 2 S U
τ1 28 21 4 1 9 75%
τ2 100 15 5 2 84 15%
τ3 160 16 6 3 130 10%

TABLE II
EXAMPLE TASK SET

The current state of the dual priority conjecture is:
• For n = 2 a proof has been obtained (so U = 1 rather

than U = 0.83 for standard FP) – see Appendix.

RTSOPS 2010 3 Brussels, Belgium

• No counter example found with extensive searches for
n = 3.

• No counter example found for n > 3, but search is
computationally expensive as:

– Simulation up to the LCM needed as the scheduling
test.

– No formulae exists for computing the migration
points (the Ss).

• The phase 1 priorities are probably Rate Monotonic.
• The phase 2 priorities are possible also Rate Monotonic

with all phase 2 priorities higher than all phase 1 priori-
ties.

• For some task sets the highest priority tasks may have
Si = 0.

• A range of promotion points may all lead to a schedulable
system.

• The promotion points are a function of task computation
times (ie. not just task periods).

The open question is therefore: is the utilisation bound for
the dual priority scheme 1? And if it is, how are the promotion
points (Ss) computed? If it is not, what is the bound for the
dual priority scheme, and is there a m-priority scheme that
does provide the maximum bound – and is m then a function
of n?

One possible method of tackling this question is to consider
the behaviour of the EDF scheme. Whilst EDF tasks do not
have static priorities, EDF jobs do. There is therefore a fixed
number of partial orders for job executions. Does the dual
priority scheme have a similar number?

REFERENCES

[1] A. Burns and A. J. Wellings. Dual priority assignment: A practical method
of increasing processor utilisation. In Proceedings of the Fifth Euromicro
Workshop on Real-Time Systems, IEEE Computer Society Press, pages
48–53, Oulu, Finland, 1993.

[2] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. JACM, 20(1):46–61, 1973.

APPENDIX - PROOF FOR TWO TASKS

Consider two tasks, τ1 and τ2 with T1 < T2 and hence priority
of τ1 greater then the priority of τ2. Assume total utilisation is the
worst-case value of 1:

C1/T1 + C2/T2 = 1 (1)

Assume τ2 has a promotion point at time g before its deadline
(ie. g = T2 − S2). For a two task system τ1 does not need to be
promoted. Consider an arbitrary deadline of τ2, as D2 = T2 then this
deadline can be represented by the time pT2 – for some value of p
(assuming the system starts its execution at time 0). Finally let l be
the shortest interval from a previous release of τ1 and the point pT2

– see figure 1.
At point pT2, τ2 should should have executed for time pC2; τ1

will have executed for a number of complete invocations:

((pT2 − l)/T1)C1

plus a partial computation of maximum size: l−g. This implies that:

((pT2 − l)/T1)C1 + pC2 + l − g ≤ pT2 (2)

l

pT2

First task

g

pT2

Second task

Fig. 1. Two task execution

Substituting for C1 from Eqn (1) in Eqn (2) produces:

(pT2 − l)(1− C2/T2) + pC2 + l − g ≤ pT2

Expanding the first terms and canceling a number of balanced
terms allow this relation to be simplified to:

lC2/T2 ≤ g

Now the value l depends on which deadline of τ2 is considered,
but its maximum value is the maximum distance between a multiple
of T1 a corresponding ‘next’ release of τ2. Hence the maximum value
of l is equal to T1 −H , where H is the highest common factor of
the integers T1 and T2. This gives the final bound on g of

(T1 −H)C2/T2 ≤ g (3)

Note if T2 is a multiple of T1 then H is equal to T1 and g can be
zero, ie. no promotion point needed. This result would be expected
as task sets with utilisation of 1 are schedulable in this circumstance.
Also if T1 and T2 are co-primes then Eqn (3) becomes:

(T1 − 1)C2/T2 ≤ g

The other constraint on g is that τ1 must remain schedulable at its
deadlines. Here the worst case is when two deadlines coincide. Now
all of time g can be used by τ2, and hence

g ≤ T1 − C1 (4)

Now a value of g must exist (and hence the two tasks be
schedulable) if Eqns (3) and (4) can both be satisfied for any feasible
task set (ie. one satisfying Eqn(1)). If this were not the case then

T1 − C1 < (T1 −H)C2/T2,

which implies
T1 − C1 < (T1)C2/T2,

giving
1− C1/T1 < C2/T2,

and hence

1 < C2/T2 + C1/T1

which is clearly false.
This provides the proof that all two task systems have a dual

priority scheme that will guarantee schedulability if the utilisation
of the tasks is feasible (not more than 1). Moreover, the promotion
time is provided by any value of g satisfying Eqns (3) and (4).

As an example consider a simple task set with T1 = 8, C1 = 4,
T2 = 12 and C2 = 6; H has the value 4 and so the promotion point
for τ2 must be at least 2 (from its deadline) and no more that 4. A
simple simulation shows that values of 2, 3 and 4 will all lead to
schedulability.

RTSOPS 2010 4 Brussels, Belgium

Influence of the Task Model on the Precision of

Scheduling Analysis for Preemptive Systems

Sebastian Altmeyer, Claire Maiza

Saarland University, Germany

{altmeyer,maiza}@cs.uni-saarland.de

In real-time systems, tasks must obey stringent timing constraints. A ver-
ification process that checks if these constraints are met consists of a timing
analysis of each task and schedulabiltiy analysis of the set of tasks. The inter-
face between these two analyses is the task model constituting an abstraction
of the task’s timing properties in the system. A very basic task model was pre-
sented by Liu and Layland [4]: the execution demand of a task i, often denoted
as Ci, abstracts all possible execution times to a single value. The aim of the
timing analysis is to compute this abstraction of the timing behavior of the
tasks by safely bounding their worst-case execution time (Ci).

By the abstraction step from timing analysis to task model some precision
is lost. Especially in preemptive systems or systems with interrupts, timing
analysis computes, in addition to the pure time bound for uninterrupted exe-
cution, the additional delay due to interrupts or preemptions. As research on
this topic has shown [1], preemption costs strongly depend on the specific pre-
emption points and on the preempting task; preemption costs may vary from
nearly zero to large fractions of the task’s execution time. Thus, timing analysis
may compute not only an upper bound on the preemption costs for a task i but
also additional bounds for preemption of task i by task j [2, 6], or for the nth

preemption of task i, or for preemption occurring at point p [1, 3]. If a schedu-
lability analysis is able to take into account such precise information about the
preemption costs, the results may exhibit a higher precision.

However, schedulability analyses are often based either on the basic task
model by Liu and Layland with a unified bound on the execution time including
preemption costs or on a model using only one separated value for the preemp-
tion costs per task [5]. The second task model improves over Liu and Layland’s
model by distinguishing preemption costs depending on the actual number of
preemptions instead of considering an upper bound. Nevertheless, both models
exhibit an inherent pessimism. The bound on the additional preemption delay—
no matter if part of the execution time bound or considered separately—must
comprise all possible preemption scenarios regarding preemptions points, pre-
empting task etc., even if they do not occur in the actual schedule. However,
schedulability analysis generally uses a simple model like the one of Liu and
Layland to reduce the complexity of the schedulability test.

So, on the one hand, the abstraction of the timing behavior in the task model
comes at the cost of inherent pessimism and on the other hand, schedulability
analysis may rely on a simplified task model to reduce complexity. The tradeoff
between precision and complexity of the schedulability analysis is determined
by the task model and its abstraction of the timing of tasks. This tradeoff raises
some questions:

RTSOPS 2010 5 Brussels, Belgium

• How high is the inherent pessimism and imprecision of a specific task
model due to the precision of the abstraction of the timing properties?

• What is a good tradeoff between precision of the task model and complex-
ity of the schedulability analysis?

• How to integrate such detailed information about the timing of tasks in
the schedulability analysis?

Furthermore, incorporating more precise information, such as preemption points
or preempting task, may be infeasible in general; thus, the following question
arises in this context:

• Is it possible to adapt the schedule or the system in order to better benefit
from the precision provided by timing analysis?

A typical example in which the system is adapted to achieve higher precision is
the use of deferred preemption, i.e., preemption limited to predefined program
points. Although flexibility of the schedule is lost to some degree, schedulability
may be achieved only due to a strongly reduced bound on the preemption costs.

Answers to the questions listed above enable a better understanding of the
influence of preemptions costs on the schedule and provide guidelines for the
design and schedulability analysis of real-time systems. Note that the tradeoff
between precision of the task model and complexity of the schedulability analysis
becomes especially apparent in case of preemptive systems—but is not limited
to such. Other issues where more precision from timing analysis could be taken
into account are for instance the cache contention for multicore systems or
the difference between first and all further executions of one task, which often
strongly varies due different initial cache states.

References

[1] S. Altmeyer and C. Burguière. A new notion of useful cache block to improve
the bounds of cache-related preemption delay. In ECRTS 2009.

[2] S. Altmeyer, C. Burguière, and J. Reineke. Resilience analysis: Refinement
of the CRPD bound for set associative caches. In LCTES 2010.

[3] C.-G. Lee, J. Hahn, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S.
Kim. Analysis of cache-related preemption delay in fixed-priority preemptive
scheduling. In RTSS 1996.

[4] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. J. ACM, 20(1), 1973.

[5] P. Meumeu Yomsi and Y. Sorel. Extending rate monotonic analysis with
exact cost of preemptions for hard real-time systems. In ECRTS 2007.

[6] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-time
systems with precise modeling of cache related preemption delay. In ECRTS

2005.

RTSOPS 2010 6 Brussels, Belgium

On the Complexity of PROFINET IRT Scheduling
Olaf Graeser

Institut Industrial IT
Liebigstrasse 87
32657 Lemgo

Germany
Email: olaf.graeser@hs-owl.de

Oliver Niggemann
Institut Industrial IT

Liebigstrasse 87
32657 Lemgo

Germany
Email: oliver.niggemann@hs-owl.de

Abstract—In industrial automation, fieldbus systems are used
to enable decentralised factory automation and process control.
These fieldbusses are specialised communication systems tailored
to meet the requirements of these applications. Such require-
ments are often hard real–time constraints which can only be
guaranteed using deterministic communication systems like time–
triggered networks. Such deterministic communication systems
require a preplanning of the communication timing during the
design phase of the automation system.

In our work, the communication system Profinet IRT will
be formalised as an example of a time–triggered network.
Furthermore the complexity of the communication planning
(scheduling) will be investigated with respect to different network
topologies and different variants of the scheduling problem.

I. INTRODUCTION

Current communication systems in industrial automation are
often based on Ethernet. Thereby, the communication tech-
nology on the factory floor (field level) is the same as in the
office network of a company. This allows to have compatible
communication technologies across all levels of automation
and supports therefore a seamless vertical communication
between all these levels. Hence,at least in theory, even an office
PC can collect manufacturing process data from a field device
on the factory floor.

Examples of such communication systems for the field
level are PROFINET [Pop05], EtherCAT [JB03], SERCOS
III [SER08] and Ethernet/IP [Ope10]. Since the Ethernet
standard was not developed with respect to the requirements
of industrial automation, the mentioned fieldbus systems must
face some technical challanges [Jan02], [Fel00]. However, by
modifications in the Ethernet’s MAC layer it is possible to
comply with the typical hard real–time requirements of factory
automation [Dop08], [Jas05].

II. OPEN PROBLEM

In this work, PROFINET IRT (Isochronous Real–Time)
will be used as an application example of modified switched
Ethernet which complies with hard real–time requirements but,
at the same time is compatible with standard Ethernet. This
is achieved by using two communication phases: One phase
for real–time communication and another phase for non real–
time communication (see Fig. 1). To guarantee deterministic
transmission times, during the the real–time phase a Time–
Division–Multiple–Access (TDMA) approach is used.

Fig. 1. Communication phases in Profinet IRT

By minimising the length of the real–time communication
phase, more bandwidth becomes available for the other phase
or for additional real–time communication. This minimisation
task requires a preplanning of communication throughout the
network.

For each message, the route, the release time, and the start
times for forwarding this message in every single switch on
the planned route must be preplanned. Since ”cut through”
switching is more performant and therefore preferable to ”store
and forward” switching, the start times for forwarding depend
on the release time of the message and the transmission delays
on the route.

An additional possibility to reduce the length of the real–
time communication phase is to use macro cycles. The idea
is, that a message might not be sent in every cycle, but only
every n–th cycle.

The complexity of this complete preplanning depends on
the traffic in the network, the usage of macro cycles and,
particularly, on the network topology.

III. STATE OF THE ART OF PROFINET IRT SCHEDULING

The work in [Dop08] describes an approach, starting with a
simplified, PROFINET IRT communication system that uses
conflict graphs in combination with edge and node colouring
to derive local communication schedules for each network
switch. These local schedules then have to be synchronised.
This approach with local schedules does not work for a
real PROFINET IRT network with variable frame length,
broadcast– and multicast messages, because in this case a
global conflict graph is necessary and the exact colouring of
such a graph is NP-complete.

The work in [HBv09] formulates the PROFINET IRT
scheduling problem as Resource Constrained Project Schedul-
ing with Temporal Constraints. Messages are represented as

RTSOPS 2010 7 Brussels, Belgium

chains of tasks where each task stands for the communication
over an link between network switches. Each message has
a release date, an end–to–end delay and a deadline. In the
first step, these constraints are transferred into a directed and
weighted (constraint–) graph. In the second step a solver finds
a suitable schedule for the constraint graph. The solver itself
is not presented.

The Siemens Software Simatic Step 7 [Sie08] is able to
create communication schedules for PROFINET IRT, but the
implemented algorithm has never been published.

IV. FORMALISATION

In our previous work [GN09] we presented a first formal-
isation of a PROFINET IRT network. A PROFINET IRT
network was described as a directed and weighted graph
G = (V,E,w), with V as a set of switches used as vertices
and E as the set of network cables connecting the ports of a
the switches as edges.

G = (V,E,w) (1)
V = {s1, s2, s3, ..., s|V |} (2)
E = {e1, e2, e3, ..., e|E| } (3)
w : E → N (4)

The function w provides the weight of a given edge. The
weight of an edge represents the transmission delay between
two switches. This delay is the sum of the bridging and the
sending delay (tx–delay) of the sending switch, the delay over
the network cable and the receiving–delay (rx–delay) of the
receiving switch.

Further definitions for a path through the network, a sched-
ule and an optimal schedule and the quality of a schedule
can be found in [GN09]. But still, this formalisation is not
complete. Multicast messages and macro cycles have not been
considered so far. Also ”Dynamic Frame Packing” [SJW08],
an extension of the PROFINET standard, is not part of the
formalisation. For a complete model of the communication
system, some hardware specific parameters like, for example,
the minimum gap between two messages are also necessary.

Within our work we will go one step further to a complete
formalisation of PROFINET IRT.

V. USE–CASES

PROFINET IRT can be set up in any network topology. For
this reason, following topologies will be considered: line, line
with branches, star, circle, full meshed and (partially) meshed.
Additionally, the different kinds of communication traffic (uni–
and multicast messages), different optimisation goals, message
dependencies and combinations of these variables will also
be considered as use–cases. For each of these use–cases,
the corresponding complexity of the scheduling problem is
analysed.

While the communication planning in the line topology is
rather simple, the planning for a partially or fully meshed
network is far more difficult. In our work we will classify the

different use–cases in complexity classes. This can be seen as
a pioneering work to find a suitable algorithm for each use–
case.

VI. SUMMARY AND OUTLOOK

Current communication systems in industrial automation are
often based on Ethernet. This allows for vertical integration.
For example, (in theory) it is possible for an office PC to
communicate with an i/o–device on the factory floor. But to
comply with the real–time requirements of factory automation
it is necessary, among other things, to plan the communication
in advance. The complexity of this planning task depends
directly on the network topology.

The contribution of our work will be a formal definition of
the communication system PROFINET IRT. Furthermore, the
different network topologies and the planning (scheduling) of
communication in these networks will be divided into use–
cases which will be investigated with respect to the complexity
of the necessary planning task.

REFERENCES

[Dop08] F. Dopatka. Ein Framework für echtzeitfähige Ethernet-Netzwerke
in der Automatisierungstechnik mit variabler Kompatibilität zu
Standard–Ethernet. PhD thesis, Fachbereich Elekrotechnik und
Informatik der Universität Siegen, 2008.

[Fel00] M. Felser. Ethernet als Feldbus? Kommunikationsmodelle für indus-
trielle Netzwerke, 2000. http://felser.ch/download/FE-TR-0005.PDF
(09.01.2009).

[GN09] O. Graeser and O. Niggemann. Planning of time triggered com-
munication schedules. In W. A. Halang and P. Holleczek, edi-
tors, Software–intensive verteile Echtzeitsysteme, Informatik aktuell,
Berlin Heidelberg, 2009. Springer.

[HBv09] Z. Hanzalek, P. Burget, and P. Šucha. Profinet io irt message
scheduling. In ECRTS ’09: Proceedings of the 2009 21st Euromicro
Conference on Real-Time Systems, pages 57–65, Washington, DC,
USA, 2009. IEEE Computer Society.

[Jan02] D. Janssen. Ethernet–Kommunikation in
Echtzeit — Echtzeit ohne Isolation, 2002.
www.plastverarbeiter.de/ai/resources/e0aed1e95ba.pdf (January
2009).

[Jas05] Jürgen Jasperneite. Echtzeit–Ethernet im Überblick. atp — Automa-
tisierungstechnische Praxis, 3, März 2005.

[JB03] D. Jansen and H. Büttner. Ethercat — der ethernet–feldbus, teil 1:
Funktionsweise und eigenschaften. Elektronik, (23):62–67, 2003.

[Ope10] Open DeviceNet Vendors Association. Ethernet/ip, 2010.
http://www.ethernetip.de (April 2010).

[Pop05] M. Popp. Das Profinet IO–Buch — Grundlagen und Tipps für
Anwender. Hüthing–Verlag, Heidelberg, 2005.

[SER08] SERCOS International. Funktionsweise SERCOS III, Januar 2008.
http://www.sercos.de/Funktionsweise.179.0.html (January 2008).

[Sie08] Siemens. Simatic Manager. Technical Documentation, 2008.
[SJW08] M. Schumacher, J. Jasperneite, and K. Weber. A new approach

for increasing the performance of the industrial ethernet system
profinet. In 7th IEEE International Workshop on Factory Communi-
cation Systems (WFCS 2008), pages 159 – 167, Dresden, Germany,
May 2008.

RTSOPS 2010 8 Brussels, Belgium

Real-Time Analysis of Round-based
Distributed Algorithms

Alexander Kößler, Heinrich Moser, Ulrich Schmid
Embedded Computing Systems Group (E182/2)

Technische Universität Wien, 1040 Vienna, Austria
{koe,moser,s}@ecs.tuwien.ac.at

I. D ISTRIBUTED COMPUTING VS. REAL-TIME SYSTEMS

RESEARCH

Designing sound fault-tolerant distributed real-time systems
requires a scientific basis, which allows to cope with three
very different and partially conflicting major issues:

(SD) Spatial distribution, i.e., multiple processors, typically
coupled via some network(s), executing multiple pro-
cesses that are working towards a common goal.

(PF) Partial failures of system components, which may fail
independently and without immediate recognition of
each other.

(RT) Real-time requirements, put on the response times of
certain events by the environment. Additional concerns
may be low power consumption, costs, etc.

The major consequence of (SD) and (PF) isuncertainty
of the local processes about the global system state: One
never knows exactly how far the execution of other processes
proceeded and how long it takes for a message to arrive.
Fault-tolerant distributed algorithms [1] have been invented
to cope with this uncertainty.

Unfortunately, however, distributed algorithms research
usually ignores real-time aspects: First, the wealth of research
on (lock-step)synchronous systems assumes that all processes
are perfectly synchronized by means of a common clock, and
that all messages sent in stepk are received by stepk + 1.
This is a very convenient restriction, as it rules out any
uncertainty due to asynchrony and leaves only uncertainty due
to failures; application-level modeling, (real-time) analysis
and programming are hence easy. At the same time, however,
it makes the system critically dependent on the continuous
maintenance of synchronization: A synchronous system may
even lose untimed safety properties like consistency of repli-
cated data—not just timeliness properties—if synchronization
is lost. Moreover,implementing synchrony (e.g. by means of a
distributed clock synchronization algorithm [2], [3]) is costly
and requires a priori bounds on end-to-end message delays.

Asynchronous distributed algorithms do not suffer from
such problems. Unfortunately, however, modeling, (real-time)
analysis, and programming are considerably more involved:
(1) Most important distributed computing problems, like
consensus, are impossible to solve in purely asynchronous
systems in the presence of failures [4] (which makespartially
synchronous (ParSync) systems like [5], [6], [7] attractive).

(2) The convenient time-triggered (periodic) invocation of
processes, which is a prerequisite for all existing real-time
scheduling approaches, is replaced by a message-driven in-
vocation. (3) Timing aspects are usually abstracted away:
Processes are modeled as state machines, which performzero-
time computing steps; time can only be modeled via the
interval between computing steps here. Hence, the issues of
queueing effects and scheduling do not arise at all.

As a consequence, the time complexity results obtained in
distributed algorithms research are typically not particularly
meaningful for real systems, and sometimes even too opti-
mistic [8]. Bridging the gap between distributed algorithms
and real-time systems research requires new approaches and
analysis methods.

II. T HE REAL-TIME DISTRIBUTED COMPUTING MODEL

We developed areal-time distributed computing model (RT
model) [9], [10], [11], which replaces the zero-time steps
of “classic” distributed computing models by non-zero-time
jobs, shown in Figure 1, and hence allows to deal explicitly
with queueing and scheduling. Most importantly, it allows
to remove the classic assumption ofa priori given end-to-
end message delay bounds∆, which are just considered as
model parameters in classic distributed algorithms research.
In reality, however,∆ not only depends on “raw” system pa-
rameters like computing step timesµ and transmission delays
δ, but also on the load (message transmissions, computations)
created by a distributed algorithmA, and the scheduling
disciplinesS employed for processes and messages. Hence,
∆ = F (A, δ, µ,S) for some functionF . On the other hand,
the distributed algorithmA itself may of course depend on∆,
just recall the round duration of a synchronous algorithm or
the need for setting message time-outs. As a consequence,
we usually haveA = D(∆) for some functionD. This
creates a cyclic dependency of the algorithm and the end-to-
end delays as shown in Figure 2, i.e.,∆ = F (A, δ, µ,S) =
F

(
D(∆), δ, µ,S

)
.

To break the cyclic dependency, the “real” equation∆ =
F

(
D(∆), δ, µ,S

)
must be derived and solved by means of

a detailed real-time analysis. This analysis must incorporate
the generated system load, the scheduling disciplines for
processors and network, and of course the raw computing and
transmission delays in order to derive a bound∆ that indeed
holds when algorithmA is executed in a given system. This

RTSOPS 2010 9 Brussels, Belgium

classic model

∆

RT model

δ

µµ

Figure 1. Comparison between the “classic” distributed computing model and “our” RT Model

paper is devoted to some preliminary results of our research
on this problem.

III. ROUND DURATION OF A SYNCHRONOUS

ALGORITHM: A SIMPLE EXAMPLE

We examined a simple “oral messages” Byzantine Generals
algorithm [12], running onn processors in a completely
synchronous lock-step round-based system. This algorithm
works as follows: Thecommander (= one designated pro-
cessor) broadcasts some initial value. Afterwards, each round
basically consists of echoing all information heard so far, to
ensure that, afterf+1 rounds, all (non-faulty) processors have
enough information to decide on a common value, despite
the fact thatf < n/3 of these processors (including the
commander) might be faulty and send out incorrect data.

Although this kind of “full information exchange” is a com-
mon pattern in fault-tolerant distributed algorithms, it causes
the amount of data exchanged to increase exponentially with
each round (reflected by an increasing number of messages).
As it turns out [13], when using an optimal scheduling policy,
the worst-case duration of a fault-free round for this algorithm
is exactlyW = max{W a, W b, W c}, with

W a = C + S · #S + R · #R,
W b = C + δ+ + R · #R,
W c = C + S · (#S − 1) + δ+ + R · (n − r − 1),

representing three possible critical paths. Herein,C/S/R is the
worst-case execution time of a computation/sending/receiving
job, δ+ is an upper bound on the message transmission delay,
#S/#R is the number of send/receive jobs in the current
round, andr is the round number.

Distributed Algorithm A

Distributed Computing Model

ParSync System Model

End-to-end delay∆

Step timeµ
Message delayδ

Message pattern
Computing load

Figure 2. Dependency of the distributed computing model, thesystem model
and a distributed algorithm.

IV. ROUND DURATION WITHOUT LOCK-STEP

SYNCHRONY: AN OPEN PROBLEM

In the above “toy example”, all rounds start (periodically)
in perfect synchrony. This convenient feature is lost in close-
to-asynchronous ParSync algorithms, where some roundr+1
is started upon certain trigger events, like the arrival of
the n − f -th round r message from different processes.
Since the latters’ roundr starting times are not synchronized
and the end-to-end delays may vary considerably, the round
r + 1 starting times of different processors are typically even
further apart. Keeping track of the resulting non-linear mutual
depencencies requires a powerful mathematical method. Two
promising approaches are illustrated below:

A. Max-Plus Algebra

When analyzing the time complexity of (non-fault-tolerant)
asynchronous algorithms, one typically observes a certain
structure of the resulting expressions, consisting ofmax and
+ operations only. To analyze such equations, there exists
a well studied algebraic framework, namely, the Max-Plus
algebraRmax = (Rmax,⊕,⊗, ǫ, e) whereǫ := −∞, e := 0,
andRmax := R∪ ǫ. For elementsa, b ∈ Rmax, the operators
are defined asa ⊕ b := max(a, b) anda ⊗ b := a + b [14].
To illustrate its use, consider the following simple distributed
round synchronizer algorithm for the classic zero-step-time
model: After initialization, every process (out ofn) sends its
round1 message to every other process. If a process received
all n − 1 round k messages, it switches to roundk + 1
and broadcasts its roundk + 1 message. The time series
xi(k), k ≥ 1, of every processi’s round switching times,
and derived quantities like the average round duration up to
roundk, can be calculated as follows: Given a transmission
delay matrix [δ] ∈ R

n×n where [δ]ij = δij is the delay
of a message from processi to processj, we obtain the
recursive formulaxi(k) =

⊕n

j=1
xj(k − 1) + δji. Using

Max-Plus matrix multiplication with the delay matrix[δ]
and introducing the round switching time vector

−→
X (k) ∈

R
n
max := (x1(k), x2(k), . . . , xn(k))T , this can be expanded

to
−→
X (k) = (δT)⊗k ⊗

−→
X (0), with

−→
X (0) containing the initial

starting times of the processes.

B. When Max-Plus is not Enough

Unfortunately, when making the transition to the RT model,
where every incoming message triggers a non-zero-time job,
queuing effects require an additional operation to be con-
sidered in time complexity expressions: themin operation.

RTSOPS 2010 10 Brussels, Belgium

Note that the same is true, even in the classic model, when
fault-tolerant asynchronous algorithms are considered. Deal-
ing with the resulting equations requires theMin-Max-Plus
algebra [15], where, in contrast to Max-Plus, not too many
general results seem to be available yet.

We believe that combining the RT model and Min-Max-
Plus algebra will result in a powerful framework for the
analysis of partially synchronous fault-tolerant distributed
algorithms. Needless to say, however, there is still a long
way to go in order to solve the various research problems
that arise in this context.

REFERENCES

[1] N. Lynch, Distributed Algorithms. San Francisco, USA: Morgan
Kaufman Publishers, Inc., 1996.

[2] B. Simons, J. Lundelius-Welch, and N. Lynch, “An overview of clock
synchronization,” inFault-Tolerant Distributed Computing, ser. LNCS
448, B. Simons and A. Spector, Eds. Springer Verlag, 1990, pp. 84–96.
[Online]. Available: http://faculty.cs.tamu.edu/welch/papers/lncs90.ps

[3] U. Schmid, Ed.,Special Issue on The Challenge of Global Time in
Large-Scale Distributed Real-Time Systems, ser. J. Real-Time Systems
12(1–3), 1997.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,”Journal of the ACM,
vol. 32, no. 2, pp. 374–382, Apr. 1985.

[5] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,”Journal of the ACM, vol. 35, no. 2, pp. 288–323,
Apr. 1988.

[6] J. Widder and U. Schmid, “The Theta-Model: Achieving synchrony
without clocks,”Distributed Computing, vol. 22, no. 1, pp. 29–47, Apr.
2009.

[7] P. Robinson and U. Schmid, “The Asynchronous Bounded-
Cycle Model,” in Proceedings of the 10th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS’08),
ser. Lecture Notes in Computer Science, vol. 5340. Detroit, USA:
Springer Verlag, Nov. 2008, pp. 246–262, (Best Paper Award).
[Online]. Available: http://www.vmars.tuwien.ac.at/php/pserver/extern/
docdetail.php?DID=2398%\&viewmode=paper\&year=2008

[8] H. Moser and U. Schmid, “Optimal clock synchronization revisited:
Upper and lower bounds in real-time systems,” inProceedings
of the International Conference on Principles of Distributed Systems
(OPODIS), ser. LNCS 4305. Bordeaux & Saint-Emilion,
France: Springer Verlag, Dec 2006, pp. 95–109. [Online].
Available: http://www.vmars.tuwien.ac.at/php/pserver/extern/docdetail.
php?DID=2068%\&viewmode=paper\&year=2006

[9] ——, “Reconciling distributed computing models and real-
time systems,” in Proceedings Work in Progress Session of
the 27th IEEE Real-Time Systems Symposium (RTSS’06), Rio de
Janeiro, Brazil, Dec 2006, pp. 73–76. [Online]. Avail-
able: http://www.vmars.tuwien.ac.at/php/pserver/extern/docdetail.php?
DID=2055%\&viewmode=paper\&year=2006

[10] H. Moser, “Towards a real-time distributed computing model,”Theo-
retical Computer Science, vol. 410, no. 6–7, pp. 629–659, Feb 2009.

[11] H. Moser and U. Schmid, “Optimal deterministic remote clock es-
timation in real-time systems,” inProceedings of the International
Conference on Principles of Distributed Systems (OPODIS), Luxor,
Egypt, Dec. 2008, pp. 363–387.

[12] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,”ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, July 1982.

[13] H. Moser, “The byzantine generals’ round duration,” Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-2,
1040 Vienna, Austria, Research Report 9/2010, 2010.

[14] B. Heidergott, G. J. Olsder, and J. von der Woude,Max plus at work.
Princeton Univ. Press, 2006.

[15] Y. Cheng, “A survey of the theory of min-max systems,” inSpringer
LNCS 3645 (Advances in Intelligent Computing ICIC’05, Part II), 2005,
pp. 616–625.

RTSOPS 2010 11 Brussels, Belgium

Open Problems in Scheduling Self-Suspending Tasks

Karthik Lakshmanan†, Shinpei Kato†‡, and Ragunathan (Raj) Rajkumar†
†Department of Electrical and Computer Engineering, Carnegie Mellon University

‡Department of Computer Science, The University of Tokyo

Abstract

Self-suspension intervals are becoming increasingly
common in various systems such as: (i) multi-core proces-
sors, where tasks running on one core have to synchronize
with tasks running on other cores, (ii) heterogeneous ISA
multi-core processors, where certain instructions can only
be executed on specific processor cores, and (iii) systems
with accelerated co-processors such as Digital Signal Pro-
cessors (DSPs) or Graphics Processing Units (GPUs). In
the light of these developments, a few key questions arise:
(a) What should be the standard task model for specifying
suspension intervals in such systems? (b) Given that clas-
sical scheduling algorithms such as Earliest-Deadline First
(EDF) suffer from scheduling anomalies in self-suspending
task systems, does there exist a competitive anomaly-free
scheduling algorithm for such systems? (c) Given that the
feasibility problem of scheduling periodic tasks with at most
one self-suspension per task and implicit deadlines is NP-
Hard, what can we say about the feasibility condition for
scheduling sporadic self-suspending task systems? In this
position paper, we provide some preliminary ideas and in-
tuitions towards answering these questions, and seek to en-
gage the broader real-time research community in solving
these open problems.

1. Problem Context

Recent years have seen significant changes in the land-
scape of processor technologies, ranging from the emerging
trend of massively multi-core processors to general-purpose
computing support in Graphics Processing Units (GPUs).
These technology trends project a future in which computa-
tion is no longer independently carried out on one processor
core but needs to be often synchronized with other proces-
sor cores and GPUs. Synchronizing with external events
results in suspension intervals, where tasks voluntarily re-
lease control of the processor for extended invervals of time.
In such systems, classical real-time task models need to be
augmented with upper bounds on the duration of suspension
intervals. This is an important problem since dealing with

suspension intervals as just part of the computation time it-
self is not a scalable approach as tasks on each processor
core are going to increasingly rely on other processor cores
and co-processors.

2. Task Models

Developing an useful and practical task model is the first
basic requirement for advancing the state of the art in an-
alyzing self-suspending tasks. Traditional approaches have
looked at the following task models:

2.1 The τ : (C,E, T,D) Traditional Model

τ is a task that releases jobs with a minimum inter-arrival
time of T time units, each job of τ has a relative deadline
of D time units from its release, C is an upper bound on
the total execution time of each job of τ , and E is an upper
bound on the total suspension time for each job of τ .

From an analysis perspective, this leads to quite pes-
simistic results since the locations of the suspensions within
the jobs of τ are unknown. From a system designer perspec-
tive, this is a task model that is easy to specify and reason
about. It alleviates the burden of finding the exact number
of suspension intervals and their locations with respect to
job releases. This approach has been used in work reported
in [5, 3, 4].

2.2 The τ : ((C1, E1, C2, E2, ..., Cm), T,D) Ex-
tended Model

τ is a task that releases jobs with a minimum inter-
arrival time of T time units, each job of τ has a rela-
tive deadline of D time units from its release. The exe-
cution of each job of τ comprises of m computation seg-
ments interleaved by m − 1 suspension intervals. This
model subsumes the (C,E, T,D) model in that tasks in
the ((C1, E1, C2, E2, ..., Cm), T,D) model can be mod-

eled using (C,E, T,D) as (
m∑

j=1

Cj ,
m−1∑
k=1

Ek, T,D). This

approach has been used in [2, 6].

RTSOPS 2010 12 Brussels, Belgium

0 2 4 6 8 10 0 2 4 6 8 10
Schedulable Unschedulable

(a) Anomaly under EDF

0 2 4 6 8 10 0 2 4 6 8 10
Schedulable Schedulable

(b) EDZL Scheduling

Figure 1. Scheduling anomaly with self-suspending tasks under EDF and prevention using EDZL

2.3 Computation Graphs

A more exhaustive approach could be to model the
computation of each job as a Directed Acyclic Graph
(DAG), which enables the modeling of branches and leads
to a more precise representation of the task. Analyz-
ing the schedulability of such DAGs might be more com-
plex but it has the best potential for achieving an exact-
case analysis since it subsumes both the (C,E, T,D) and
((C1, E1, C2, E2, ..., Cm), T,D) models.

An open question related to this is the following: What
is a practical and useful model for specifying suspension
intervals in real-time tasks?

3. Scheduling Anomalies from Self-Suspension

Reference [6] showed that scheduling anomalies can
arise from using classical scheduling algorithms such as
EDF in self-suspending task systems. The example task set
used in [6] is given in Figure 1(a), where a job J1 with ex-
ecution pattern (2, 2, 2) and deadline 6 is released at time
0, job J2 with execution pattern (1, 1, 1) and deadline 4
is released at time 5, and job J3 with execution pattern
(1, 1, 1) and deadline 3 is released at time 7. Reducing the
execution-time requirement of the first segment of J1 by
1 time unit causes J3 to miss its deadline under EDF, as
shown in Figure 1(a).

An open question is whether there exists a competitive
anomaly-free scheduling algorithm for such task systems
with better performance than EDF.

In terms of answering this question, it is known that
EDZL (Earliest-Deadline First with Zero-Laxity) [1] per-
forms better than EDF on non-suspending tasks. An in-
teresting point to start would be applying EDZL (Earliest-
Deadline First with Zero-Laxity) [1] scheduling to self-
suspending tasks. We show in Figure 1(b) that EDZL can
avoid the anomaly introduced in EDF.

An open question related to this is Does dynamic-
priority scheduling strictly outperform fixed-priority
scheduling in self-suspending task systems?

4. Self-Suspending Sporadic Task Systems

It is known from [6] that the feasibility problem of
scheduling periodic tasks with at most one self-suspension
per task and implicit deadlines is NP-hard in the strong
sense. However, it remains to be seen whether a polynomial
time or pseudo-polynomial time exact-case feasibility con-
dition can be developed for sporadic self-suspending task
systems, due to their potential for having a more simpler
characterization of the worst case.

An open question is whether we can develop an
anomaly-free exact feasibility condition for self-suspending
sporadic task systems.

In this regard, with respect to fixed-priority schedul-
ing, [2] provides an exact characterization of the critical
scheduling instant for a self-suspending task with respect to
interference from higher-priority non-suspending sporadic
tasks.

References

[1] T. P. Baker, M. Cirinei, and M. Bertogna. Edzl scheduling
analysis. Real-Time Syst., 40(3):264–289, 2008.

[2] K. Lakshmanan and R. R. Rajkumar. Scheduling self-
suspending real-time tasks with rate-monotonic priorities. In
RTAS ’10: Proceedings of RTAS 2010, 2010.

[3] C. Liu and J. H. Anderson. Supporting sporadic pipelined
tasks with early-releasing in soft real-time multiprocessor sys-
tems. In RTCSA ’09: Proceedings of the 2009 15th IEEE
International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pages 284–293, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

[4] C. Liu and J. H. Anderson. Task scheduling with self-
suspensions in soft real-time multiprocessor systems. In RTSS
’09: Proceedings of the 2009 30th IEEE Real-Time Systems
Symposium, pages 425–436, Washington, DC, USA, 2009.
IEEE Computer Society.

[5] J. Liu. In Real-Time Systems. prentice hall, 2000.
[6] F. Ridouard, P. Richard, and F. Cottet. Negative results

for scheduling independent hard real-time tasks with self-
suspensions. In RTSS ’04: Proceedings of the 25th IEEE
International Real-Time Systems Symposium, pages 47–56,
Washington, DC, USA, 2004. IEEE Computer Society.

RTSOPS 2010 13 Brussels, Belgium

Scheduling of self-suspending tasks:
state of art and new insights

Frédéric Ridouard, Pascal Richard
LISI-ENSMA and University of Poitiers
{frederic.ridouard,pascal.richard}@ensma.fr

1 Introduction

Most of real-time systems contain tasks with self-suspension. A task with a self-suspension is a task that during its execution
prepares specifics computations (e.g. In/Out operations or FFT on a digital signal processor). The task is self-suspended to
execute the specifics computations upon external dedicated processors. External operations introduce self-suspension delays
in the behavior of tasks. The task waits until the completion of the external operations to finish its execution. Generally,
the execution requirement of external operations can be integrated in the execution requirement of the task. But, if self-
suspension delays are large, then such an approach cannot be used to achieve a schedulable system. Thus, self-suspension
must be explicitly considered in the task model.
We consider sporadic tasks with self-suspension. Let I be a task system of n tasks. Every occurrence of a task is called a
job. Every task τi (1 ≤ i ≤ n) arrives in the system at time 0, its relative deadline is denoted Di and its period Ti. We
assume that tasks are subjected to constrained-deadlines (Di ≤ Ti). Tasks are allowed to self-suspend at most once. Every
task τi (1 ≤ i ≤ n) has two subtasks (with a maximum execution requirement Ci,k, 1 ≤ k ≤ 2) separated by a maximum
self-suspension delay Xi between the completion of the first subtask and the start of the second subtask. Such delays change
from one execution to another since they model execution requirements of external operations. Consequently every task τi is
denoted: τi : (Ci,1, Xi, Ci,2, Di, Ti).
Only few positive results have been defined for schedulability analysis of self-suspending tasks. Most of them exploit par-
ticular task sets and restrictive assumptions. But to the best of our knowledge, no solution provides simultaneously results
for efficiently scheduling and analysing self-suspending tasks. In this note, we present the state of the art about the self-
suspending tasks. Then, we present some possible insights to define solutions to this scheduling problem.

2 Known results

It has been already proved in [9, 8] that the feasibility problem of scheduling self-suspending task systems is NP-Hard in
the strong sense. We have also shown the presence of scheduling anomalies under fixed priorities and EDF for scheduling
independent tasks with self-suspension upon an uniprocessor platform when preemption is allowed. We have also proved that
classical on-line scheduling algorithms (EDF,LLF,RM,DM) are not better than 2-competitive to minimize the maximum re-
sponse time and not competitive to minimize the number of tardy tasks. Response Time Analysis for fixed-priority scheduling
algorithm RM, [2, 6] have been proposed for computing response time upper bounds. Finally, we have also shown that it is
impossible to define an optimal on-line algorithm to schedule sporadic tasks systems when tasks are allowed to self-suspend
(cf. [8]).
In [3], the authors characterize the exact critical instant for self-suspending sporadic tasks. They deduce a pseudo-polynomial
response-time tests for analysing the schedulability of such self-suspending tasks. In [5], the periodic tasksets with suspen-
sions, pipelines, and non-preemptive sections are considered. The authors show how to transform such a task system into a
periodic taskset with only suspensions. Then, they use prior results [4] to derive tardiness bounds for more complex systems.

From a practical scheduling point of view, in [1] is presented a configurable synchronization protocol for self-supending
process sets. In fact, the protocol extends the concept of priority ceilings. Furthermore, an algorithm for computing the
corresponding maximum blocking times is presented.

RTSOPS 2010 14 Brussels, Belgium

3 New insights

We next present some ideas to develop in order to achieve valuable positive results on scheduling self-suspending tasks:
Particular task characteristics. Most of negative results are based on instance problems in which suspension delays are
quite huge. A recurrent problem with the scheduling of self-suspending tasks is the duration of suspension delays since it
can be so important that the computation time is negligible. Studying particular task set, while fixing some properties of
task parameters usually help to understand the difficulties encountered while solving a general complex problem. For that
purpose, we think that it is important to investigate some particular cases such as: suspension delays cannot exceed processing
time for each task, suspension delays are all equal a constant, suspension delays are all equal to 1, etc. It is surely one way to
achieve some positive results.
Resource augmentation technique. Classical scheduling algorithms are not optimal for scheduling tasks allowed to self-
suspend. An important question is: is there a processor speed s so that a classical scheduling algorithm (e.g., RM or EDF)
will lead to a feasible schedule if one exists upon a unit-speed processor (i.e., computed by an optimal off-line scheduling
algorithm).
Impact of scheduling anomalies. What is the impact of considering only worst-case execution time and suspension delays
while performing a schedulability analysis? Is-it possible to establish simular results as these one obtained by Mok et al.
in [7] that analyses the robustness of non-preemptive scheduling for RM and EDF. They proved that scheduling anomalies
can lead to miss at most 50% of deadlines. If such a positive result cannot be achieved for the general self-suspending
task scheduling problems, but may be some basic assumptions on task parameters will help (e.g., bounding the ratio Xi

Ci
) to

formulate sufficient conditions for the self-suspending robustness.
The multiprocessor point of view. Self-suspending taskset can in fact be modelled by chains of tasks, where suspension
delays are tasks run upon some dedicated processors (e.g. I/O processing devices). We think that known results in the
multiprocessor scheduling theory can be used to derive some results for uni-processor scheduling of self-suspending tasks.

References

[1] Y.S. Chen and L.P. Chang. A real-time configurable synchronization protocol for self-suspending process sets. Real-Time
Systems, 42:34–62, 2009.

[2] I-G. Kim, K-H. Choi, S-K. Park, D-Y. Kim, and M-P. Hong. Real-time scheduling of tasks that contain the external
blocking intervals. Real-Time and Embedded Computing Systems and Applications(RTCSA’95), 1995.

[3] K. Lakshmanan and R. (Raj) Rajkumar. Scheduling self-suspending real-time tasks with rate-monotonic priorities.
Proceedings of the 16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’10), Stockholm,
Sweden, (12–15), April 2010.

[4] C. Liu and J.H. Anderson. Task scheduling with self-suspensions in soft real-time multiprocessor systems. Proceedings
of the 30th IEEE Real-Time System Symposium, pages 425–436, 2009.

[5] C. Liu and J.H. Anderson. Scheduling suspendable, pipelined tasks with non-preemptive sections in soft real-time mul-
tiprocessor systems. Proceedings of the 16th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’10), Stockholm, Sweden, (12–15), April 2010.

[6] Jane W. S. Liu. Real-Time Systems, chapter Priority-Driven Scheduling of Periodics Tasks, pages 164–165. Prentice
Hall, 2000.

[7] A.K. Mok and W.C. Poon. Non-preemptive robustness under reduced system load. Proceedings of the 26th IEEE
Real-Time System Symposium (RTSS’05), 2005.

[8] F. Ridouard and P. Richard. Worst-case analysis of feasibility tests for self-suspending tasks. In proc. 14th Real-Time
and Network Systems, Poitiers, 2006.

[9] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling independent hard real-time tasks with self-
suspensions. Proceedings of the 25th IEEE International Real-Time Systems Symposium (RTSS’04), 1, December 2004.

RTSOPS 2010 15 Brussels, Belgium

Efficient RMS schedulability tests

Dirk Müller, Matthias Werner
Operating Systems Group, Chemnitz University of Technology

D-09111 Chemnitz, GERMANY
{dirkm,mwerner}@cs.tu-chemnitz.de

28 May, 2010

1 Introduction

Priority-based scheduling branches into static and dynamic priority scheduling. The optimal static
priority algorithm is Rate-Monotonic Scheduling (RMS, for the case of implicit deadlines). In the
dynamic priority case where priorities are no longer attached to an entire task, Earliest-Deadline
First (EDF) and Least-Laxity First (LLF) are optimal algorithms. While an exact schedulability
test both for EDF and LLF is very simple (utotal ≤ 1), exact tests for RMS are much more complex.
Time-Demand Analysis (TDA) [7] is, besides simulation along the entire hyperperiod, a solution,
but one with pseudo-polynomial complexity.1 Thus, several only sufficient tests with linear, log-
linear, quadratic or cubic complexity have been suggested.

In [8], we have recommended the increased use of the sufficient RMS schedulability tests
Distance-Constrained Tasks (DCT) and Specialization with respect to r (Sr), first given by Han
and Tyan [2][3]. Related to their medium computational complexity of O(n2) and O(n log n), their
performance is very good. They outperform established ones of comparable computational com-
plexity and both are based on the concept of accelerated simply periodic task sets. This crystal-clear
principle plays a central role in the field of RMS schedulability tests [8].

2 Open Problem 1: DCT/Sr for MP Scheduling

The two tests DCT and Sr serve as good uniprocessor schedulability tests in partitioned multipro-
cessor scheduling, see [8]. Thus, a further application to multicore scheduling algorithms - especially
global ones - shall be investigated. Preliminary work using task splits can be found in [5] and [4]
where simply periodic task sets up to 100% utilization are scheduled on multiprocessors, first with
a minor dynamic element in [5] and then statically in [4]. The step to include in the approach is
the acceleration.

1This means that TDA requires a polynomial number of operations in terms of the number of tasks which is
exponential in the length of the input when coding in a non-trivial, i.e., not in unary, denominational number
system.

RTSOPS 2010 16 Brussels, Belgium

3 Open Problem 2: Parallelization Potential of DCT/Sr

Compared to some linear complexity algorithms like RBound [6] and Burchard criterion [1], DCT
and Sr completely exclude expensive operations like logarithms or powers. They are perfectly suited
for parallelization since it is a minimization problem with a moving pivot. Thus, even in this meta
perspective, state-of-the-art hardware with multicores should be considered. Because of that, a
closer investigation of run-time behavior seems to be promising. Minimzing the run-time of the test
is a key factor for its application not only offline but also online.

4 Open Problem 3: DCT/Sr for E-efficient Scheduling

For the emerging field of energy-efficient scheduling, the application of DCT and Sr to Dynamic
Voltage Scaling (DVS) as done with the Pillai/Shin (PS) test [9] shall be tried. Although DCT and
Sr seem to be superior to PS since they provide guarantees, it is not yet clear whether they are
suited for DVS. What makes them attractive is the same (DCT) or even better (Sr) computational
complexity compared to the Pillai/Shin test. Quick scheduling is of key importance in online
scheduling and in DVS since a too long overhead could easily eat up some of the gain.

References

[1] A. Burchard, J. Liebeherr, Yingfeng Oh, and S.H. Son. New strategies for assigning real-time
tasks to multiprocessor systems. Computers, IEEE Transactions on, 44(12):1429–1442, Dec
1995.

[2] C.-C. Han and H.-Y. Tyan. A better polynomial-time schedulability test for real-time fixed-
priority scheduling algorithms. Real-Time Systems Symposium, IEEE International, 0:36–45,
1997.

[3] Ching-Chih Han, Kwei-Jay Lin, and Chao-Ju Hou. Distance-constrained scheduling and its
applications to real-time systems. Computers, IEEE Transactions on, 45(7):814–826, Jul 1996.

[4] Myoung-Jo Jung, Yeong Rak Seong, and Cheol-Hoon Lee. Optimal RM scheduling for simply
periodic tasks on uniform multiprocessors. In ICHIT ’09: Proc. of the 2009 Int’l Conf. on
Hybrid Information Technology, pages 383–389, New York, NY, USA, 2009. ACM.

[5] Shinpei Kato. REAL-TIME SCHEDULING OF PERIODIC AND APERIODIC TASKS ON
MULTIPROCESSOR SYSTEMS. PhD thesis, Keio University, 2008.

[6] Sylvain Lauzac, Rami Melhem, and Daniel Mossé. An improved rate-monotonic admission
control and its applications. IEEE Trans. Comput., 52(3):337–350, 2003.

[7] John P. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In RTSS, pages 166–171, 1989.

[8] Dirk Müller. Accelerated simply periodic task sets for RM scheduling. In Proc. of Embedded
Real Time Software and Systems (ERTS2), page 46, 2010.

[9] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-power em-
bedded operating systems. SIGOPS Oper. Syst. Rev., 35(5):89–102, 2001.

RTSOPS 2010 17 Brussels, Belgium

A note on task-parallelism
upon multiprocessors

Joël Goossens
Université Libre de Bruxelles

Brussels, Belgium
Email: joel.goossens@ulb.ac.be

Shelby Funk
University of Georgia

Athens, GA, USA
Email: shelby@cs.uga.edu

We consider the scheduling of arbitrary deadline periodic
task systems on multiprocessors. When the deadline
of a task can exceed its period, it is possible that a
task may have several jobs be simultaneously active.
For uniprocessor systems these jobs are serialized (i.e.,
scheduled in FIFO order). For multiprocessors, we may
be able to execute them simultaneously on different
processors. Often, the jobs of all tasks are serialized
without discussion (see, e.g., [1], [2], [3]). This type of
execution would be required if each of a given task’s
jobs uses data generated by the predecessor jobs. If,
on the other hand, each job uses data gathered from
environmental sensors, then multiple jobs generated by
a single task may be able to execute simultaneously
without conflict.

The conventional belief is that disallowing task paral-
lelism is “worse” than allowing it. Below, we demon-
strate that there are scenarios in which serialization
and simultaneous execution are incomparable schedul-
ing paradigms. In particular, we demonstrate these
paradigms are incomparable for systems satisfying the
following description:

• All tasks are synchronous and strictly periodic –
i.e., a task τi with period Ti will generate jobs at
times k · Ti, for k = 0, 1, 2,

• The tasks are scheduled using either the Earliest
Deadline First (EDF) algorithm or the Deadline
Monotonic (DM) algorithm. EDF gives higher pri-
ority to jobs with earlier deadlines1. DM gives
higher priority to jobs generated by tasks with
smaller relative deadlines.

While these assumptions are not uncommon, there are
many other types of systems. For example, we might
want to consider other scheduling algorithms or the
more relaxed sporadic task model, in which the period

1Throughout this discussion, we assume deadline ties are broken in
favor of lower-indexed tasks.

Ti indicates the minimum amount of time between the
releases of τi’s consecutive jobs.

Given that allowing and prohibiting task parallelism
are incomparable scheduling variants for the specific
scenarios described above, we must consider a number
of questions. Specifically,

• Under what conditions does allowing / forbidding
task parallelism improve schedulability?

• Are there specific analysis techniques that can be
employed when task parallelism is permitted?

• Do these scheduling paradigms remain incompara-
ble when using the sporadic task model?

• Do these paradigms continue to be incomparable
for other scheduling algorithms such as LLREF [4],
BF [5] or DP-Wrap [6] or the Pfair [7] family of
algorithms?

We now demonstrate that these two scheduling variants
are incomparable. We begin by defining the terms we
will use in the subsequent discussion.

Model and definitions. A periodic or sporadic task set is
denoted τ = {τ1, τ2, . . . , τn}. Each task τi is described
using the 3-tuple (Ti, Ci, Di), where Ti, Ci and Di

are τi’s period, execution time and relative deadline,
respectively. The jobs of a periodic tasks arrive exactly
Ti time units apart, with the first job arriving at time 0.
The jobs of a sporadic task arrive at least Ti time units
apart, with the first job arriving no earlier than time 0.
If a job of periodic or sporadic task τi arrives at time t,
it must be allowed to execute for Ci time units during
the interval [t, t + Di). In the special case where the
relative deadline is the same as the period, we describe
τi using the pair (Ti, Ci). We say task (job) parallelism
occurs when a task (job) runs simultaneously on several
processors. Assuming job parallelism is prohibited, we
explore the implications of allowing or prohibiting task
parallelism.

RTSOPS 2010 18 Brussels, Belgium

τ1

τ2

τ3

0 5 10

(a) Task parallelism required.

τ1

τ22

τ3

τ4

0 10 20 30 40 50 60 70

(b) Sequential execution required.

Fig. 1. Allowing and forbidding task parallelism are incomparable paradigms.

Theorem 1. Allowing / disallowing task parallelism
are incomparable variants for both the EDF and DM
scheduling of periodic task sets. Specifically,

• There are periodic task systems that are schedula-
ble using EDF and DM when task parallelism is
allowed, but are unschedulable using these algo-
rithms when task parallelism is forbidden, and

• There are periodic task systems that are schedulable
using EDF and DM when task parallelism is forbid-
den, but are unschedulable using these algorithms
when task parallelism is allowed.

Proof: We show each case separately. First, consider
the task set τ = {(3, 2), (3, 2), (4, 2, 6)}. Figure 1(a)
illustrates a schedule of this task set upon two processors
for 12 time units (the hyperperiod of the system). The
color of the tasks indicates which processor the job
executes upon. The schedule in Figure 1(a) arises when
using either the EDF or the DM scheduling policies. The
schedule meets all deadlines only because the second job
of task τ3 is allowed to execute simultaneously with the
first and third jobs. If parallelism were forbidden for τ3
then its second job would clearly miss its deadline.

The theorem’s second statement is less intuitive. Even
so, we show that this statement also holds. Consider
the task set τ = {(7, 2, 2), (7, 2, 2), (10, 7, 11), (72, 50)}.
Figure 1(b) illustrates a schedule of this task set upon
two processors. As in Figuire 1(a), the color of the
tasks indicates which processor the job executes upon
and the figure illustrates the schedule generated by both
EDF and DM. However, in Figure 1(b) task parallelism
is forbidden. Because τ3’s jobs overlap, its jobs have
alternating light and dark outlines.

When parallelism is forbidden, the tasks never migrate.
Tasks τ1 and τ3 execute on processor π1, and tasks
τ2 and τ4 execute on processor π2. Observe that τ4

completes execution at time 70 and τ2 must execute
during the interval [70, 72). Therefore, if τ3 ever executes
simultaneously on both processors then τ4 will miss a
deadline. When task parallelism is permitted, τ3 would
occupy both processors during the intervals [10, 11)
and [30, 31), which would cause τ4 to miss its first
deadline. Observe that in Figure 1(b), all tasks meet their
deadlines during the interval [0, 72). Because the tasks
are effectively partitioned, this interval presents the worst
case scenario for this system.

Consequently our intuition is incorrect in the sense
that allowing/disallowing task-parallelism are incompa-
rable scheduling variants – at least for EDF and for
DM. This observation opens new questions about the
multiprocessor scheduling of tasks with unconstrained
deadlines. A few of these questions are listed above.
We believe additional questions will follow as we gain
deeper understanding of these two scheduling paradigms.

REFERENCES

[1] T. P. Baker and M. Cirinei, “A unified analysis of global EDF
and fixed-task-priority schedulability of sporadic task systems on
multiprocessors,” Embedded Computing, 2007.

[2] T. P. Baker, “An analysis of EDF schedulability on a multipro-
cessor,” IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 8, pp. 760–768, 2005.

[3] S. Baruah and N. Fisher, “Global fixed-priority scheduling of
arbitrary-deadline sporadic task systems,” Lecture Notes in Com-
puter Science, vol. 4904/2008, pp. 215–226, 2008.

[4] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-
time scheduling algorithm for multiprocessors,” in The Real-Time
System Symposium (RTSS), Los Alamitos, CA, USA, 2006.

[5] D. Zhu, D. Mosse, and R. Melhem, “Multiple-resource periodic
scheduling problem: how much fairness is necessary?” in Real-
Time Systems Symposium (RTSS), Cancun, Mexico, 2003.

[6] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor schedul-
ing,” in EuroMicro Conference on Real-Time Systems (ECRTS),
Brussels, Belgium, 2010.

[7] S. K. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel, “Pro-
portionate progress: A notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, June 1996.

RTSOPS 2010 19 Brussels, Belgium

Improvement of schedulability bound by task splitting in partitioning
scheduling

Frédéric Fauberteau
Université Paris-Est

LIGM, UMR CNRS 8049
Email: fauberte@univ-mlv.fr

Serge Midonnet
Université Paris-Est

LIGM, UMR CNRS 8049
Email: midonnet@univ-mlv.fr

Laurent George
ECE, LACSC

37, quai de Grenelle,
75015 Paris, France

Email: lgeorge@ieee.org

Abstract

We focus on the class of static-priority partitioning scheduling algorithm on multiprocessor. We are
interested in improving the schedulability of these algorithms by splitting the tasks which cannot be
successfully allocated on processors.

1. Context

Unless P = NP , no polynomial time algorithm exists to solve the MULTIPROCESSOR-TASK-PARTITIONING
problem. Indeed, this problem can be transformed from BIN-PACKING problem which is NP-hard in the strong
sense. Fortunately, there are several heuristics which solve BIN-PACKING problem and they may be adapted to
produce partitioned schedulings. For instance, the algorithm FBB-FDD is based on First-Fit Decreasing [1] and
the algorithm RM-DU-NFS is based on Next-Fit [2].

We are interested in proposing a partitioning algorithm which is robust to task Worst Case Execution Time
(WCET) overruns faults with the same objective as in [3]. This partitioning tends to maximize the capacity of the
system to handle the WCET overruns by offering the maximum Allowance to each faulty task of the system. The
Allowance of a task is the execution duration which can be added to its WCET such that all the deadlines in the
system are met [4].

We have shown in [5] that the Worst-Fit heuristic offers good results in order to maximize the robustness of
a partitioned system. Worst-Fit selects the least loaded processor (in terms of utilization) which can accept a
task. Unfortunately, the performances of Worst-Fit in terms of schedulability are less efficient than those of the
heuristics widely used in partitioning algorithms (First-Fit Decreasing/Best-Fit/Next-Fit). In order to improve the
schedulability bound of Worst-Fit and potentially those of the other heuristics, we propose to split the tasks which
cannot be allocated one a single processor. Contrary to the portioned scheduling approach proposed in [6] and [7],
we don’t migrate a job from a processor to another during its execution but we allocate jobs on different processors
such that the migrations occur at job boundaries [8].

2. Task splitting approach

Description. Let Π be a multiprocessor composed by m identical processors denoted by Π = {π1, . . . , πm}.
Let τ be a set of tasks made of n periodic (or sporadic) real-time tasks denoted τ = {τ1, . . . , τn}. Each task is
characterized by its WCET, its deadline and its period (or minimum interarrival time). We consider a partitioning
algorithm denoted A which allocates the tasks of τ on Π. A is designed as follows:

• τ is sorted according to a decreasing order policy (for instance Decreasing Utilization),
• a heuristic chooses the processor on which a given task should be allocated,
• a schedulability test is used to decide whether the task can be allocated on the processor chosen by the heuristic.

The resulting algorithm A produces a partition of τ on Π. If A fails to allocate the task τi, the set of pending tasks
{τi, . . . , τn} is unallocated.

In order to schedule these unallocated tasks, two approaches can be considered: portioned scheduling and
scheduling at job boundaries (i.e. restricted migration). To illustrate the first one, we show in Figure 1 four tasks

RTSOPS 2010 20 Brussels, Belgium

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

P 1

P 2

P 3

1 1 1 1 1 1 1

2 2 2 2 2

3 3 3 3

4

4

4

4

4

4 4

4

4

4

4

4

Figure 1. Portioned scheduling.

1

1 1

1

1 1

1

2 2

2

2

2 2

3

3

3

3 34

4 4

4

0 2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

P 1

P 2

P 3

Figure 2. Scheduling at job boundaries.

{τ1(2, 3), τ2(3, 4), τ3(3, 5), τ4(3, 6)} scheduled on three processors. No partition can be found because ui + uj >
1, ∀i 6= j, i, j ∈ {1, 2, 3, 4} (ui = WCET

period). In this example, the tasks are allocated in decreasing utilization order
and τ4 is the last one. Therefore τ4 is portioned and its jobs are scheduled on the three processors.

This approach can be difficult to implement because it is not easy to split a job in many parts. A job consists in
pieces of code which can contain indivisible sections. Moreover, a large number of migrations occurs since a job
can migrate several times. The second approach is attractive because the migrations are at job boundaries. Therefore
no migration overhead are incurred if the consecutive jobs of a task don’t share any data. We propose to plit a task
in several k subtasks. Each subtask has the same WCET and deadline as its parent task but the subtasks are less
frequently activated (their periods are multiplied). k − 1 subtasks are unsynchronized with an offset to avoid the
jobs overlaps. We represent in Figure 2 the same example as in Figure 1. For instance, the subtasks τ1

1 (0, 2, 3, 9)
on P1, τ2

1 (3, 2, 3, 9) on P3 and τ3
1 (6, 2, 3, 9) on P3 produce the same execution as τ3 (2, 3) (where (w, x, y, z)

is (offset, WCET, deadline, period)).

Open problem. We consider the case where a partitioning algorithm doesn’t succeed to partition the set τ of tasks.
Our aim is to build an algorithm which can split the pending tasks in subtasks such that a feasible partition of
τ can be found. If no pending task can be split, already allocated tasks can be split until a feasible partition is
found. The problem is to build an algorithm which finds a valid splitting scheme if such a scheme exists such that
a feasible partition can be found.

Insights. We want to build an algorithm which splits the tasks such that the migration occurs at job boundaries. A
first approach is to build a static-priority restricted migration scheduler. This scheduler allocates jobs of the tasks
when they are activated on a ready processor according to a static-priority scheme. By logging the allocations made
by this scheduler, we can build our splitting scheme. Notice that, this approach can be complex because it may
require the consideration of an interval of study which can be exponential. . Moreover, it is not obvious to decide
on which processor a task must be activated to minimize the number of subtasks.

References

[1] N. Fisher, S. K. Baruah, and T. P. Baker, “The partitioned scheduling of sporadic tasks according to static-priorities,” in
Proc. of ECRTS, 2006, pp. 118–127.

[2] B. Andersson and J. Jonsson, “Preemptive multiprocessor scheduling anomalies,” in Proc. of IPDPS, 2002, pp. 12–19.

[3] R. I. Davis and A. Burns, “Robust priority assignment for fixed priority real-time systems,” in Proc. of RTSS, 2007, pp.
3–14.

[4] L. Bougueroua, L. George, and S. Midonnet, “Dealing with execution-overruns to improve the temporal robustness of
real-time systems scheduled FP and EDF,” in Proc. of ICONS, 2007, p. 8pp.

[5] F. Fauberteau, S. Midonnet, and L. George, “A robust partitioned scheduling for real-time multiprocessor systems,” in Proc.
of DIPES, September 2010, p. (to appear).

[6] S. Kato and N. Yamasaki, “Portioned static-priority scheduling on multiprocessors,” in Proc. of IPDPS, 2008, pp. 1–12.

[7] S. Kato and N. Yamasaki, “Semi-partitioned fixed-priority scheduling on multiprocessors,” in Proc. of RTAS, 2009, pp.
23–32.

[8] S. K. Baruah and J. Carpenter, “Multiprocessor fixed-priority scheduling with restricted interprocessor migrations,” in Proc.
of ECRTS, 2003, pp. 195–202.

RTSOPS 2010 21 Brussels, Belgium

Impact of job dropping on the schedulability of uniprocessor probabilistic real-time
systems with variable execution times

Olivier Buffet & Liliana Cucu-Grosjean
INRIA Nancy Grand-Est

54600 Villers-lès-Nancy, France
firstname.lastname@loria.fr

Abstract—In this paper we address the problem of uniproces-
sor probabilistic fixed-priority scheduling of real-time systems
with variable execution times. For these systems the tasks have
an associated probability of missing the deadline, i.e., some jobs
may miss their deadlines without affecting the schedulability
of the system. Therefore dropping these jobs does not affect
the schedulability of the system and it could increase the
probability of other jobs to meet their deadline. The problem
of deciding what jobs to drop is not trivial and we discuss a
possible solution.

I. INTRODUCTION

Requests in real-time environment are often of a recur-
ring nature. Such systems are typically modeled as finite
collections of simple, highly repetitive activities (e.g., tasks,
messages). When the different instances of those activities
are generated in a very predictable manner, we deal with
periodic activities. The real-time performances of periodic
activities on uniprocessor, distributed or network systems
have been extensively studied when all their parameters
are known. For some applications the parameters can be
unknown until the time instant when the activity is released,
or the environment can change forcing the application to
adapt. Different approaches can be considered to address
these uncertainties (probabilistic approaches, agent systems,
learning or game theory, etc) and this paper uses a proba-
bilistic formulation.

II. STATEMENT OF THE OPEN PROBLEM

We deal with the uniprocessor fixed-priority scheduling
problem of synchronous periodic tasks with variable exe-
cution times. We consider τ = {τ1, τ2, · · · , τn} a set of n
periodic tasks.

Each task is characterized by an exact inter-arrival time
Ti, a relative deadline Di and a probability of meeting the
deadline pi. It means that the jth activation of τi is released
at time instant (j − 1)Ti and must finish its execution by
time instant (j − 1)Ti + Di. Among all (representative)
activations, at least pi of them must finish their execution by
their deadline. Each activation τi has an associated execution
time given by a discrete random variable. We denote by Ci
the random variable indicating the execution time of any

job of τi (see Equation (1)). It is assumed that the random
variables giving the execution times are independent.

Ci =
(

ck
P (C = ck)

)
k∈{1,··· ,ki}

(1)

In Equation (1), ck ∈ [cmin
i , cmax

i] and ki ∈ N∗ is
the number of values that the random variable Ci has. We
consider that cmin

i , cmax
i are known.

We denote a task τi by (Ci, Ti, Di, pi).
A schedule is said feasible if any task τi has the proba-

bility of missing the deadline smaller than pi.
A schedulability analysis like [1] calculates the response

time of a job for the fixed-priority scheduling problem.
All jobs released within a hyperperiod contribute to the
response time of the corresponding task. Some jobs may
always have the obtained response time larger than the
deadline, i.e., the probability of missing the deadline is
100%. Therefore we may decide to drop such job before
its execution without increasing the probability of missing
the deadline for the corresponding task. Nevertheless this
mechanism may decrease the probability of missing the
deadline for other jobs of the same task or of other tasks.

The problem of deciding what jobs should be dropped in
order to obtain a feasible schedule is not trivial. For instance
if we decide to drop all jobs that have the probability of
missing the deadline of 100%, then we are too pessimistic.
After dropping some jobs, lower priority jobs may decrease
their probability of missing the deadline and among them,
those with the probability originally equal to 100%.

III. PRELIMINARY SOLUTION

Intuitively the problem is difficult, even if no such proof
exists (to our best knowledge). Therefore we believe that
approaches based on systematic search algorithms may
propose interesting solutions. In this case (the value of) a
solution might be tested using the sum of the probabilities
to miss the deadlines of all jobs within a hyperperiod.

REFERENCES

[1] J. Díaz, D. Garcia, K. Kim, C. Lee, L. Bello, L. J.M.,
and O. Mirabella, “Stochastic analysis of periodic real-time
systems,” in 23rd of the IEEE Real-Time Systems Symposium
(RTSS02), 2002, pp. 289–300.

RTSOPS 2010 22 Brussels, Belgium

A sharp threshold for rate monotonic
schedulability of real-time tasks

Sathish Gopalakrishnan
Department of Electrical and Computer Engineering

The University of British Columbia

I. SETTING

For a set of n known task periods T1, T2, . . . , Tn, let Au

represent the set of all implicit-deadline task sets of uti-
lization u that are schedulable using the rate monotonic
scheduling policy. In other words, every task set τ ∈ Au is
schedulable using RM and can be represented by a vector
of utilizations {ui} such that 0 ≤ ui ≤ u and

∑n
i=1 ui = u.

For large n and any given set of task periods, there exists
a u∗ such that, for any ε, 0 < ε < 1,

µ(Au) =

{
0 if u > (1 + ε)u∗

1 if u < (1− ε)u∗ ,

where µ(Au) is the uniform probability measure of the
set Au on the n-dimensional simplex

∑n
i=1 ui = u, ui ≥ 0

(i.e., the Lebesgue measure of Au suitably normalized).
This result can be obtained by an application of sharp
threshold results for random graphs due to Friedgut and
Kalai, and Bourgain.

II. OPEN PROBLEM

As n → ∞, for a given set of task periods T1, . . . , Tn,
what is the sharp threshold u∗?

III. MOTIVATION

This problem is interesting for several reasons. An
understanding of the measure of RM-schedulable task sets
presents us with a much clearer sense of the effectiveness
of rate monotonic scheduling. Additionally, in many sys-
tems, task periods are fixed and it is useful to understand
when a task may be admitted or denied resources. Fur-
ther, the study of large task sets is interesting because we
do not have efficient schedulability tests for this situation.
Thus, this direction provides some tools for reasoning
about large task sets whereas existing exact tests may be
more useful when task sets are small. Lastly, empirical
observations indicate that the sharp threshold is higher
than known utilization bounds and this allows systems
to either admit more tasks or optimize metrics such as
energy consumption subject to ensuring that almost all
tasks meet their deadlines.

IV. PROBLEM STATUS

Whereas it has been difficult to identify the sharp
threshold for rate monotonic scheduling, application
of Bourgain’s work on sharp thresholds in random
graphs [2] allows us to reason about the existence of such
a threshold for rate monotonic real-time scheduling and
other problems [3]. Further, empirical work by several
researchers confirms that sharp thresholds exist for mul-
tiprocessor scheduling problems [1] as well, although the
goal of such empirical work was not to investigate sharp
threshold behaviour. The idea of using work from random
graphs appears promising and may open up the area for
new methods on the average case behaviour or the ex-
pected schedulability for real-time scheduling policies. It
is also worthwhile noting that the work by Lehoczky, Sha
and Ding on breakdown utilization for RM scheduling [4]
was intended to capture the average case behaviour of
RM scheduling but the notion of breakdown utilization
is not as strong as that of a sharp threshold. Further-
more, several approximations were needed to compute
the breakdown utilization and the hope is that we can
now identify new methods to accurately characterize the
probability measure of schedulable (or unschedulable)
task sets, thereby gaining a stronger understanding of
when task sets are schedulable with high probability. We
do, however, know that the relationship between task
periods is important. When task periods are harmonic,
i.e., of the form P, kP, k2P, k3P, . . ., where P is the base
period and k is some positive integer, the schedulable
utilization bound and the sharp threshold coincide at 1.

REFERENCES

[1] BRANDENBURG, B., CALANDRINO, J., AND ANDERSON, J. On the scal-
ability of real-time scheduling algorithms on multicore platforms: A
case study. In Proceedings of the IEEE Real-Time Systems Symposium
(December 2009), pp. 157–169.

[2] FRIEDGUT, E. Sharp thresholds for graph properties, and the k-
SAT problem; with an appendix by Jean Bourgain. Journal of the
American Mathematical Society 12, 4 (1999), 1017–1054.

[3] GOPALAKRISHNAN, S. Sharp utilization thresholds for some real-
time scheduling problems. http://arxiv.org/abs/0912.3852v1, De-
cember 2009.

[4] LEHOCZKY, J. P., SHA, L., AND DING, Y. The rate-monotonic
scheduling algorithm: Exact characterization and average case be-
havior. In Proceedings of the IEEE Real-Time Systems Symposium
(1989), pp. 166–171.

RTSOPS 2010 23 Brussels, Belgium

	RTSOPS2010Proceedings
	Binder1
	1_Final_Manuscript
	3_Final_Manuscript
	6_Final_Manuscript_letter3
	8_Final_Manuscript
	9_Final_Manuscript
	13_Final_Manuscript
	5_Final_Manuscript_NoPageNumbers
	7_Final_Manuscript_letter2
	10_Final_Manuscript_letter2
	References

	11_Final_Manuscript
	12_Final_Manuscript
	14_Final_Manuscript

