
Position Paper on Dependability and Reconfigurability in Distributed Embedded
Systems

Julián Proenza
SRV, Dept. de Matem̀atiques i Inform̀atica

Universitat de les Illes Balears, Spain
julian.proenza@uib.es

Luı́s Almeida
IEETA, DETI

Universidade de Aveiro, Portugal
lda@det.ua.pt

Abstract

Dynamic Reconfiguration (DR) has been generating a
substantial interest since it allows improving efficiency in
the use of system resources, which can impact both on the
maximum functionality that the system can execute, on the
level of resources needed for a given functionality, on the
number of instantaneous users that the system can support,
or even on the capacity to adapt to changes in the environ-
ment or on the system operational architecture such as those
caused by hazardous events. However, DR also requires ex-
tra mechanisms to manage the reconfiguration itself, which
can increase system complexity and reduce a priori knowl-
edge, increasing the potential for lower reliability. There-
fore, DR has not been considered in safety-critical systems.
In this paper we argue that adequately preventing specific
error situations at the lower levels of the architecture sim-
plifies the upper-level systemwide Fault Tolerance mecha-
nisms, and may compensate for the extra complexity and
lower a priori knowledge that DR implies, thus opening the
door to the construction of highly-reliable dynamically re-
configurable systems.

1. Introduction

Reconfigurability has long been recognized as a way to
improve efficiency in the use of system resources [22], for
example, when a system undergoes variable load situations,
when it evolves during its lifetime or even when faults affect
part of its structure [25]. This means that reconfigurability,
in a broad sense, may be beneficial to areas that range from
Quality of Service (QoS), e.g., when the number of system
users varies [20], to Dependability, e.g., throughgraceful
degradation[26].

However, achieving reconfigurability may conflict with
operational goals such as continued real-time and safe op-
eration, and it becomes more difficult when the system is
distributed, requiring adequate support from the network.

Hence, whenever either of those two operational goals are
relevant, the typical option has been to rely on a single static
configuration [7][27]. In some cases, reconfigurable solu-
tions have been devised but limited to few predefined op-
erational modes, thus still with reduced flexibility and effi-
ciency [27]. Conversely, for QoS purposes, reconfigurabil-
ity seems to bring along clear benefits [20] and the conflict-
ing goals referred for the case of safety critical systems do
not seem to apply.

In this paper we discuss the interaction between Dy-
namic Reconfiguration (DR) and Fault Tolerance. We show
that, despite its higher efficiency, DR introduces new di-
mensions in the system state space and, mainly, new mech-
anisms to mediate and enforce the system state changes. In
other words, DR reduces the a priori knowledge concerning
the exact state the system is in and introduces extra mech-
anisms that may lead to higher complexity and thus lower
reliability. We, then, discuss ways to compensate for such
negative aspects and propose using hardware-implemented
mechanisms to prevent specific error situations at the low-
est levels of the architecture, in order to simplify the upper-
level systemwide Fault Tolerance mechanisms and improve
their coverage. Several examples of recent related work will
be referred. The remainder of the paper is organized as fol-
lows, Section2 discusses the definition of DR, Section3
discusses how DR is sometimes used to improve the sys-
tem dependability making use of existing system resources,
Section4 discusses the limitations of DR in what concerns
Fault Tolerance aspects and Section5 presents the proposed
solutions. Section6 concludes the paper.

2. On the concept of DR

DR is a broad concept that spans many application do-
mains. A common or integrated perspective of DR, includ-
ing a taxonomy and boundaries of what is and what is not
DR is still to be done despite recent initiatives in that direc-
tion [1]. Concerning this paper, it is important to separate
the concepts of DR and Fault Tolerance. Notice that Fault

Tolerance mechanisms typically involve some kind of on-
line reconfiguration, e.g., disconnecting nodes affected by
faults and replacing them with spares or adding new nodes
to compensate for disconnected replicas. In this sense, Fault
Tolerance mechanisms are a subset of DR. However, these
mechanisms normally aim at maintaining the same func-
tionality, only, despite the occurrence of faults.

On the other hand, DR is normally taken in a broader
way, considering changes in the allocation of tasks and mes-
sages to resources (e.g. nodes, links, bandwidth and en-
ergy), or even changes in the operational parameters of the
system (e.g. scheduling and control parameters). The pur-
pose of DR is typically to improve resources usage, consid-
ering the resources that are already available because they
are needed for the basic functionality of the system. It is
also common to consider that DR implies a high level of
flexibility / adaptability in the system.

Therefore, Fault Tolerance mechanisms based on repli-
cation are not normally taken as DR. On the other hand,
as discussed in the next Section, DR can still be used to
improve the dependability of systems that were not de-
signed as traditional fault-tolerant systems., e.g. by reallo-
cating system resources that were currently available, pos-
sibly providinggraceful degradation.

3. Improving dependability with DR

The idea of taking advantage of the already available re-
sources relates DR to the low-cost Fault Tolerance approach
of usingUnintentional Redundancy[17]. This kind of re-
dundancy is usually available in all systems (particularly in
distributed ones). We illustrate next how Unintentional Re-
dundancy with DR can be used to tolerate faults.

First, in some interconnection topologies, such as the one
in Fig. 1, there are several paths that can be used to connect
each pair of nodes. This opens doors for dynamically re-
configurable architectures that, in case of failure of one link,
reestablish the communication using an alternate path. For
example, in Fig.1, in case the direct link between nodes 1
and 2 is faulty, the communication between these two nodes
can be reestablished though nodes 3 and 4. A specific ex-
ample of this kind of DR is described in [3].

N 6

N 1 N 2

N 5

N 3

N 4

Figure 1. A network performing DR

Second, in general distributed systems, the presence of
multiple nodes enables the reallocation of tasks from faulty
nodes to non-faulty ones. For example, in Fig.2, in case

node 2 is known to be faulty its tasks could be assigned to
another node. An example of such type of reconfiguration
in an automotive system has been pointed out in [19]

N O D E 1 N O D E 2 N O D E 4N O D E 3

Figure 2. Dynamic reallocation

4. Limitations of DR

Obviously, the use of Unintentional Redundancy with
DR has a limited capacity for Fault Tolerance. Among the
reasons for this, we point out two. First, depending on the
system, the available redundancy can be not enough to tol-
erate some faults. Therefore single points of failure may
still exist. And second, in many cases the reconfiguration
causes agraceful degradation, which means that either the
level of performance has been decreased or even the sys-
tem is no longer fully functional and some supposedly non-
critical functions have been shutdown. Notice that graceful
degradation is, normally, a positive feature in the sense that
what would be a global failure is exchanged by an operat-
ing configuration that still provides a reduced level of QoS.
Nevertheless, for certain critical systems that reduced level
of QoS might not be sufficient to meet the minimum opera-
tional requirements.

Therefore, when using Unintentional Redundancy, DR
is a suitable means to achieve a general improvement of
the system dependability, but it might be not so well suited
to reach the high levels of dependability that are usually
pursued by fault-tolerant architectures. Moreover, dynamic
reconfigurations are likely to take some time to complete,
which, depending on the specific nature of the system,
might also be constrained by the dynamics of the environ-
ment. This might rule out the use of DR in critical systems
with fast dynamics unless special architectures that support
fast reconfiguration are used, e.g. [12].

4.1. Addition of resources for DR

Despite the efficiency improvement in using already
available resources being one of the typical characteristics
of DR, the truth is that some resources must be added to a
system for it to be able to perform DR. In particular, many
systems that perform DR do it thanks to the inclusion of
suitable mechanisms in their middleware. Moreover, some
hardware additions can be also used, which, as will be dis-
cussed below, may provide an advantageous support for a
safe reconfiguration.

However, too many additions would represent a devia-
tion from the initial target of achieving low cost by effi-

ciently using the available resources. Therefore, a trade-off
has to be found between cost and functionality.

4.2. DR means flexibility, complexity and overhead

As referred before, DR is supposed to imply a (high)
flexibility in the system. But, flexibility also means com-
plexity. In the case of a distributed system, this complexity
appears in two forms. First, nodes have to perform new ac-
tions for the system to be able to react in the face of various
situations and to adapt to the ever changing reality. As indi-
cated above, these new actions are usually implemented in
the middleware. And second, the communication channel
has to transport an increased number of messages, e.g. to
coordinate the reconfiguration among nodes.

Therefore, DR normally introduces a computational
and communication overhead that may be not acceptable
for many distributed embedded systems based on low-
performance microcontrollers and low-bandwidth commu-
nication technologies. Moreover, beyond these overheads,
an increased complexity usually means a decreased reliabil-
ity.

4.3. Facets of unreliability in DR

The unreliability caused by the increased complexity of
systems performing DR is essentially provoked by the in-
creased number of scenarios that the system has to be de-
signed to deal with, arising from the multiple possible con-
figurations that the system can adopt and the faults that the
system must react to.

The presence of these multiple scenarios makes it much
more difficult to achieve the so-calledsystemwide integra-
tion of fault tolerance. This integration is pointed out in
[2] as one of the fundamental steps in the design of com-
plex fault-tolerant systems, since those are prone to suffer
failures caused by improper interactions among their non-
faulty subsystems. Some examples of parts that are difficult
to integrate are the Fault Tolerance mechanisms that are in-
tended to deal with the local faults of each subsystem with
those that provide Fault Tolerance for functions that are ex-
ecuted as a global cooperation among several subsystems.
This systemwide integration also has to prevent improper
interference among concurrently active recovery or recon-
figuration algorithms.

Similarly the increased number of scenarios to deal with
also make it difficult the qualitative evaluation [2] of the
system. This kind of evaluation is intended to verify that
the design of the system includes all the mechanisms which
are necessary to deal with the expected classes of faults.
The higher the number of error scenarios is, the higher the
difficulty in verifying the correct operation of the system in
all these scenarios will be. More specifically,model check-

ing [8] is likely to become a standard evaluation procedure
for fault-tolerant systems in the next few years, much in the
same way as simulation is already a de facto requirement in
the development of computing systems. Although modern
model checkers such asUPPAAL [18] already exhibit an en-
hanced capacity to deal with large state spaces, the nature
of model checking makes this technique quite vulnerable to
the complexity of the systems to be modeled and verified.
The amount of memory required to generate the state space
of complex models makes model checking useless in prac-
tice for the verification of highly-complex systems.

For all the reasons discussed above, keeping the com-
plexity of a system performing DR under reasonable bounds
should receive the maximum attention when dependability
is the main concern.

5. Reconciling DR and Fault Tolerance

A way of reducing the complexity, and thereby increas-
ing the reliability, is to reduce the number of scenarios that
the system has to deal with, in particular those scenarios
created by the faults that the system has to tolerate.

The techniques to be used in order to achieve this reduc-
tion of scenarios are implemented in the form of hardware
additions that prevent specific error situations as close as
possible to the faults that generate them. Since part of the
errors that the subsystems can suffer are resolved as close
as possible to their origin, the upper layers of the system
architecture, such as the middleware, are much less com-
plex and more reliable for they do not have to deal with the
aforementioned error situations or only have to deal with
simplified ones.

Examples of these techniques are, first, the use of spe-
cific circuitry to restrict thefailure semantics[9] of the
nodes. If Byzantine or arbitrary failures of the nodes are
not possible, the software of the other nodes does not have
to deal with them. And second, the use of hardware-
implemented communication protocols that provide consis-
tent communication services. Thereby the communication
channel does not cause additional complex scenarios, e.g.,
inconsistencies in the delivery of messages, to be resolved
by the upper layers of the architecture. For instance, the
MajorCAN protocol [23] is a slightly modified version of
theController Area Network(CAN) [14] that truly provides
atomic broadcast at the data-link layer.

5.1. Defining error containment boundaries

An adequate restriction of the nodes failure semantics
has the additional effect of preventing a node from acting as
ababbling idiot[16] that, by sending messages at the wrong
moment, blocks the communication channel and impedes
the exchange of messages among nodes.

In more general terms, the restriction of the failure of se-
mantics is a significant help to prevent the propagation of
errors from a faulty node to the rest of them. In the same
manner, the use of hardware-implemented communication
protocols that provide consistent communication services
also helps to prevent that errors in the communication are
propagated to the receiving nodes.

However it is important to note that the failure semantics
restriction together with the use of consistent communica-
tion services is not enough in order to completely define an
error containment boundary[2] around each node (Fig.3)
because, after all, even if we restrict the failure semantics
of a node, it is possible for it to suffer a failure. In order
to cope with these situations it is also very important to de-
sign the other nodes’ software (e.g. middleware) in such
a way that they are able to recognize these failures and to
properly react to avoid their effects. This is much easier
to achieve when the failure semantics is restricted, e.g. if
nodes present crash failure semantics, node failures can be
detected by timing out on regularly transmittedI am alive
messages. Designing the global operation of the system to
work properly in the event of node failures is an additional
concern of the design of any truly fault-tolerant system.

N O D E 1 N O D E 2 N O D E N�

B u s

Figure 3. Error containment boundaries

5.2. Advantages of defining low-level error contain-
ment boundaries

Beyond the aspects that have been already discussed
(e.g. reduction of the middleware complexity and thus in-
crease of its reliability), using techniques at the lower levels
of the system architecture to prevent error propagation ex-
hibits a number of additional relevant advantages.

First, it reduces the overhead generated by the communi-
cation since no higher-layer protocols are required in order
to ensure consistency. This has two facets, on the one hand
less messages are transmitted and, on the other hand, less
computation time is devoted in the nodes to the tasks re-
lated to communication.

Second, less nodes are required. Since failure seman-
tics are restricted, the requirements on the number of nodes
to be used in order to achieve agreement on a value under
byzantine failure semantics [10] are relaxed.

And third, it prevents the so-calledamplification of fail-
ures [13]. A typical high-level implemented consistent

communication service requiring several rounds of mes-
sage transmissions uses lower-level (and less dependable)
communication primitives, such as point-to-point message
sendsandreceives[13]. In this kind of high-level commu-
nication services, the broadcast of a message requires the
execution of several instructions, and may include several
sends and receives. It is well known that in this kind of
complex communication schemes a failure at the low level
of send and receive primitives (e.g. an omission to send a
message) does not necessarily manifest at the high level as
the same type of failure (e.g. an omission to broadcast a
message to all receivers). In fact, it is said that this kind of
broadcast algorithms are likely to amplify the importance
of failures which occur at the low level [13] (e.g. messages
delivered to different receivers in a non consistent order due
to an omission to send a message). Therefore by substitut-
ing this kind of high-level implemented protocols by low-
level services already presenting the required properties we
would make it possible to eliminate this risk.

It is important to note that the set of advantages pointed
out above are achieved when both failure semantics restric-
tion and low-layer consistent communication services are
used at the same time. However we do not claim that both
features must always be included in the architecture. Even
if only one of the features is used, significant reduction of
the potential error scenarios is obtained.

5.3. Failure semantics restriction implementation

When using any mechanism to restrict the failure seman-
tics of the nodes it is very important to achieve a high proba-
bility for the final node design to exhibit the pursued failure
semantics, i.e., to have anassumption coverage[21] as high
as possible. After all, the design of the rest of the distributed
system is based on assuming said failure semantics.

To enforce a restriction in the failure semantics of the
nodes several design techniques can be used. One of the
most effective ones isduplication with comparison[15].
This technique is based on using two identical pieces of
hardware actively performing the same operations in par-
allel, and comparing the results of said operations. In case
there is a discrepancy in the results, an error signal is acti-
vated. This allows the detection of errors in the duplicated
module and can be used to restrict the failure semantics by
using the error signal to disconnect the node from the net-
work (e.g. disabling the communication transceiver). This
scheme is shown in Fig.4. In this simple manner acrash
failure semanticsis enforced, meaning that the node either
works properly or crashes. For a high assumption coverage
to be achieved using this technique it is important to dupli-
cate as much parts of the circuitry as possible. For example,
[24] and in [12] describe CAN nodes with internal dupli-
cation and comparison that can disable their transceivers in

case of discrepancy.

D U P L I C A T E 1 D U P L I C A T E 2

C O M P

N O D E

B U S

Figure 4. Duplication with comparison for fail-
ure semantics restriction

Another technique for restricting the failure semantics of
a node in a bus-based architecture is the incorporation of a
bus guardian[11]. This mechanism is devoted to prevent a
node acting as a babbling idiot from keeping the bus busy
with the transmission of useless messages, thereby making
it more difficult for the other nodes to communicate. Sev-
eral different bus guardians have been reported in the liter-
ature, either for time-triggered and event-triggered commu-
nication as well as for flexible communication requirements
such as the one described in [12] for the FTT-CAN protocol.

5.4. Other error containment techniques

Having to modify the structure of each of the nodes is
unacceptable in some applications due to cost reasons. In
these cases a different approach for failure semantics re-
striction can be adopted. This new approach is based on
the use of star topologies instead of buses. Such a topology
allows to include mechanisms for error detection andfault
passivation[17] (e.g. disconnecting the faulty nodes from
the network) in the hub and, thereby, standard hardware
can be used for the nodes. Fig.5 illustrates this idea. By
placing the error containment mechanisms into the hub and
by preparing all nodes to deal with the scenarios caused by
faulty nodes an equivalent definition of error containment
boundaries can be achieved. Note that the hub may prevent
the propagation of errors generated either in the nodes, in
the links that connect each node with the hub or even in the
circuits that implement the communication protocol.

Besides the capacity of an active hub to enforce a re-
stricted failure semantics for each node of the network, the
aforementioned capacity of preventing the propagation of
the errors caused by faults in the circuits that implement
the communication protocol (including cables) is a signifi-
cant advantage of the star topology when it is compared to
a bus [6]. The main drawback of the bus topology is that
the structure of the network presents multiple components,
which have direct electrical connections to each other with-
out proper error containment. As a consequence, a fault in

N O D E 1

N O D E 2

N O D E 3

N O D E 4 H U B

Figure 5. A star for error containment

any of them may generate errors that propagate and effec-
tively prevent further communication to take place.

In contrast, a star topology reduces this multiplicity of
potentially failure-generating components to only one, the
hub. Although it is clear that a star significantly reduces the
probability of having more than one node affected by a fail-
ure (most of the errors caused by a single faulty component
are not allowed to affect more than one node) [5], in some
applications the presence of the single point of failure that
the hub represents is unacceptable. In these cases redundant
star topologies can be used [4].

5.5. Bringing it together

As referred before, we consider that it is possible to rec-
oncile Dynamic Reconfiguration with high levels of Fault
Tolerance as long as nodes failure semantics restriction and
low-layer consistent communication services are incorpo-
rated into the system design from the beginning. Most
of the actual components needed for the particular case of
CAN technology have been developed by our groups along
the past 8 years. Specifically, we consider that the FTT-
CAN protocol is naturally adapted to support prompt recon-
figuration under continued timeliness and that the mecha-
nisms presented in [12] can be further simplified and the
overall Fault Tolerance features improved, mainly concern-
ing their analyzability, by merging that protocol with Ma-
jorCAN [23] to achieve true atomic broadcast, and the
(Re)CANcentrate hubs [4] for strong error containment.

6. Conclusions

Dynamic Reconfiguration is gaining a growing interest
as a way to improve the efficiency in using system re-
sources. Moreover, DR has also been pointed out as a way
to achieve inexpensive Fault Tolerance, e.g., by means of
graceful degradation. However, combining DR with high
levels of FT raises several problems, mostly related with
the reduced a priori knowledge of DR systems and with the

reconfiguration mechanisms themselves that introduce ex-
tra complexity and overhead, thus lower reliability. In this
paper we have discussed the interaction between DR and
FT and we have proposed combining nodes failure seman-
tics restriction and low-layer consistent communication ser-
vices to simplify the system middleware layers and improve
their analyzability. This will allow building highly reliable
and resource efficient systems that are capable of adapting
to the environment, to systems changes or to different load
situations while tolerating the designated faults.

References

[1] Neres 2007 - artist2 workshop on networks
for reconfigurable embedded systems. http:
//www.artist-embedded.org/artist/
-NERES-2007-.html , April 2007.

[2] A. Avi žienis. Building dependable systems: How to keep
up with complexity. InSpecial Issue of the IEEE 25th Int.
Symp. Fault-Tolerant Computing. FTCS-25. Pasadena, CA,
pages 4–14, June 27–30 1995.

[3] D. Avresky and N. Natchev. Dynamic reconfiguration in
computer clusters with irregular topologies in the presence
of multiple node and link failures.IEEE Transactions on
Computers, 54(5):603–615, May 2005.

[4] M. Barranco, L. Almeida, and J. Proenza. ReCANcentrate:
A replicated star topology for CAN networks. InProceed-
ings of the 2005 IEEE Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2005). Catania, Italy,
2005.

[5] M. Barranco, J. Proenza, and L. Almeida. First results of
the assessment of the improvement of error containment
achieved by CANcentrate. InProceedings of the 6th IEEE
International Workshop on Factory Communication Systems
(WFCS 2006). Torino, Italy, 2006.

[6] M. Barranco, J. Proenza, G. Rodrı́guez-Navas, and
L. Almeida. An active star topology for improving fault
confinement in CAN networks.IEEE Transactions on In-
dustrial Informatics, 2(2):78–85, May 2006.

[7] Belschner, R.et al. FlexRay Requirements Specifica-
tion, version 2.0.2.FlexRay Consortium,http://www.
flexray-group.com , 2002.

[8] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
The MIT Press, 1999.

[9] F. Cristian. Questions to ask when designing or attempting
to understand a fault-tolerant distributed system. InKeynote
Address in Proc. 3rd Brazilian Conference on Fault-Tolerant
Computing. Rio de Janeiro, Brazil, September 1989.

[10] D. Dolev. The byzantine generals strike again.Journal of
Algorithms, 3(1):14–30, 1982.

[11] J. Ferreira, L. Almeida, and J. Fonseca. Bus guardians
for can: a taxonomy and a comparative study. InProc. of
WDAS 2005, Workshop on Dependable Automation Systems.
Brazilian Computing Society, October 2005.

[12] J. Ferreira, L. Almeida, J. Fonseca, P. Pedreiras, E. Martins,
G. Rodriguez-Navas, J. Rigo, and J. Proenza. Combining
operational flexibility and dependability in FTT-CAN.IEEE

Transactions on Industrial Informatics, 2(2):95–102, May
2006.

[13] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. J. Mullender, editor,Distributed
Systems, ACM-Press, chapter 5, pages 97–145. Addison-
Wesley, second edition, 1993.

[14] ISO. International Standard 11898 – Road Vehicles – In-
terchange of Digital Information – Controller Area Network
(CAN) for High-Speed Communication. 1993.

[15] B. W. Johnson.Design and Analysis of Fault Tolerant Digi-
tal Systems. Addison-Wesley Publishing Company, 1989.

[16] H. Kopetz. A node as a unit of failure. InReal-Time Sys-
tems: Design Principles for Distributed Embedded Applica-
tions, Real-Time Systems. Engineering and Computer Sci-
ence, chapter 6.3, pages 129–131. Kluwer Academic Pub-
lishers, Boston, Dordrecht, London, 1997.

[17] J.-C. Laprie, editor.Dependability: Basic Concepts and Ter-
minology. Springer-Verlag Wien New York, 1992.

[18] K. G. Larsen, P. Pettersson, and W. Yi.UPPAAL in a Nut-
shell. Int. Journal on Software Tools for Technology Trans-
fer, 1(1–2):134–152, Oct. 1997.

[19] J. Li, Y. Song, and F. Simonot-Lion. Providing real-time
applications with graceful degradation of qos and fault tol-
erance according to(m, k)-firm model. IEEE Transactions
on Industrial Informatics, 2(2):112–119, May 2006.

[20] R. Moghal and M. Mian. Adaptive QoS-Based Resource Al-
location in Distributed Multimedia Systems. InProceedings
of Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS), 2003.

[21] D. Powell. Failure mode assumptions and assumption
coverage. InDigest of Papers of the IEEE 22th Int.
Symp. Fault-Tolerant Computing FTCS-22, pages 386–395,
Boston, Massachusetts-USA, July 1992.

[22] D. Prasad, A. Burns, and M. Atkins. The Valid Use of Utility
in Adaptive Real-Time Systems.Real-Time Systems, 25(2-
3):277–296, 2003.

[23] J. Proenza and J. Miro-Julia. MajorCAN: A modification
to the Controller Area Network protocol to achieve Atomic
Broadcast. InProceedings of the IEEE Int. Workshop on
Group Communications and Computations. IWGCC. Taipei,
Taiwan, April 2000.

[24] J. Proenza, J. Pons, and J. Miro-Julia. A low-cost fail-safe
circuit for fault-tolerant control systems. InProceedings of
the 6th IEEE Int. Conf. on Electronics, Circuits and Systems
. ICECS’99. Pafos, Cyprus, September 1999.

[25] D. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp,
and L. DiPalma. Towards Adaptive and Reflective Mid-
dleware for Network-Centric Combat Systems, CrossTalk,
November. 2001. http://www.cs.wustl.edu/
∼schmidt/PDF/crosstalk.pdf ; accessed February
21, 2005., 2001.

[26] C. Shelton and P. Koopman. Improving system dependabil-
ity with functional alternatives. InProceedings of the 2004
International Conference on Dependable Systems and Net-
works (DSN’04), page 295. IEEE Computer Society, 2004.

[27] TTTech. Time-Triggered Protocol TTP/C High-Level
Specification Document (edition 1.0). http://www.
ttagroup.org , 2002.

http://www.artist-embedded.org/artist/-NERES-2007-.html�
http://www.artist-embedded.org/artist/-NERES-2007-.html�
http://www.artist-embedded.org/artist/-NERES-2007-.html�
http://www.flexray-group.com�
http://www.flexray-group.com�
http://www.cs.wustl.edu/~schmidt/PDF/crosstalk.pdf�
http://www.cs.wustl.edu/~schmidt/PDF/crosstalk.pdf�
http://www.ttagroup.org�
http://www.ttagroup.org�

