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1.    Introduction 

Quality of Service (QoS) is one of the major issues in 
the dimensioning of industrial networks and embedded 
systems, particularly when timing constraints need to be 
met. Roughly, the provision of QoS in Real-Time 
Networks (RTNs) means the specification and the set-up 
of the set of mechanisms necessary to meet the QoS 
constraints. The main QoS constraint that must be 
satisfied in RTNs is the message delay (or response 
time).  

In that direction, The QoS session of the Real-Time 
Networks Workshop has focused on proposing new 
mechanisms for supporting and analyzing real-time QoS 
in industrial and home networks.  

2.    Talks 

Motivated by the inefficiency of COTS Ethernet 
switches to guarantee real-time communication, the first 
paper of this session dealt with the proposal of a 
synchronized approach for ensuring deterministic real-
time guarantees in industrial switched Ethernet based on 
Flexible Time Triggered (FTT) paradigm. The 
architecture of the FTT-SE (FTT- Switched Ethernet) is 
based on the master-slave model according to which the 
master polls its slaves periodically and the 
communication occurs during a time unit referred to as 
Elementary Cycle. It has been shown that the FTT-SE 
approach enables a noticeable improvement of timing 
constraints in switched Ethernet, but at the cost of a 
higher implementation complexity.  

 
The second paper of this session was focused on the 

ability of Universal Plug and Play (UPnP) protocols to 
provide real-time guarantees in IP-based home networks. 
This paper proposed an abstract model that enables an 
efficient QoS management without having to know all 
underlying details in lower layers.  
The last paper of this session proposed a priority based 
approach that facilitates the integration of several CAN-
based subsystems. The basic idea of the paper was to 
decouple CAN identifiers from their priorities to avoid 
any kind of conflicts when interconnecting several 
subsystems together. A comparative time-predictability 
performance analysis of different decoupling protocols 
(FTT-CAN, TT-CAN and Server-CAN) has also been 
discussed. 
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Abstract  
Switched Ethernet arose in the last decade as a means to 

increase global throughput with parallel switching paths, 
segment the network and create isolated collision domains, 
thus reducing the non-determinism of the original shared 
Ethernet. However the services provided by COTS Ethernet 
switches are not enough to guarantee real-time 
communication, which lead to the development of several 
switch Ethernet-based protocols, among which the recently 
proposed FTT-SE. This paper proposes moving the FTT 
traffic management into the Ethernet switch and discusses 
how this architectural change enhances the performance of 
the transmission control and service differentiation 
mechanisms as well as how error confinement mechanisms 
can be efficiently deployed. Preliminary experimental results 
from a prototype implementation validate the services 
provided by the enhanced Ethernet switch framework. 

1 Introduction 
Distributed Embedded Systems (DES) integrating 

intelligent cooperative nodes are found in a wide range of 
applications, from automotive to aerospace, passing through 
the lower layers of both process control and manufacturing 
industries  [1]. In these environments, applications range 
from embedded command and control systems to image 
processing, monitoring, human-machine interfacing, etc.  

Since its creation, Ethernet has been considered has a 
potential solution for use in DES due to its large bandwidth, 
cheap silicon, high availability, easy integration with Internet 
and clear path for future expandability  [2]. Furthermore, 
using Ethernet also at the lower control level facilitates the 
vertical integration and may bring along several advantages 
in maintenance effort. 

Ethernet, however, is a general purpose data network and 
was not originally designed to satisfy the requirements of 
DES. For this reason several modifications have been 
proposed, including restrictions to the traffic pattern 
generated by each node, modifications to the arbitration 
mechanism and addition of transmission control layers  [9]. 

Since the early 90’s the interest in switched Ethernet has 
been growing steadily, having practically replaced shared-
Ethernet (single segment, hub-based). Despite avoiding 
message collisions and having built-in traffic scheduling 
capabilities (Figure 1), thus improving the predictability of 
the network with regard to shared Ethernet, in general 
switched Ethernet networks are not capable of delivering the 
real-time communication services needed by DES. 

                                                           
 The material in this paper is the subject of a current patent filing. 

Therefore, as for shared Ethernet, several techniques were 
proposed to overcome its limitations, from shaping the traffic 
submitted to the switch to limiting that traffic by application 
design, providing more efficient scheduling policies and 
admission control or adding transmission control features 
 [9]. 
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Figure 1: Internal switch architecture 

The recently proposed FTT-SE  [3] belongs to this latter 
category of protocols, and exhibits, as main features, global 
traffic coordination in a common timeline, the possibility for 
fast and atomic on-line updates to the set of streams, the 
possibility to support wide ranges of streams periods and the 
possibility to enforce any traffic scheduling policy.  

While using non-standard hardware conflicts with some 
of the key arguments supporting the use of Ethernet in real-
time applications (e.g. cost, availability, compatibility with 
general purpose LANs), custom switch implementations with 
enhanced traffic control and scheduling capabilities allows 
important performance and service breakthroughs, and so a 
number of approaches of this class have also been proposed 
in the recent years (e.g.  [4],  [6]  [8]).  

This paper proposes integrating the traffic management 
and transmission control mechanisms of the FTT-SE in an 
Ethernet switch. The resulting framework allows obtaining 
important performance gains in the following key aspects: 
• A noticeable reduction in the switching latency jitter 

found in common Ethernet switches;  
• An important performance boost of the asynchronous 

traffic, which in this case is autonomously triggered by 
the nodes instead of being pooled by the master node; 

• An increase in the system integrity since unauthorized 
transmissions can be readily blocked at the switch input 
ports, thus not interfering with the rest of the system; 

• Seamless integration of standard non FTT compliant 
nodes without jeopardizing the real-time services.  

In the next section the FTT-SE protocol is briefly 
reviewed. Section  3 presents the architecture of the enhanced 
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Ethernet switch. Section  4 describes a prototype 
implementation and presents some preliminary experimental 
results. Section  5 concludes the paper. 

2 FTT-SE brief overview 
FTT-SE is a recently proposed COTS-based real-time 

protocol  [3] for micro-segmented switched Ethernet 
networks. The FTT-SE protocol is based on the Flexible 
Time-Triggered (FTT) paradigm and supports arbitrary 
traffic scheduling policies, periodic and sporadic traffic with 
temporal isolation, priority levels beyond the eight levels 
specified in IEEE 802.3D, on-line admission control and 
bandwidth management and, finally, completely avoids 
memory overflows inside the switch due to the global traffic 
scheduling mechanism. 
2.1 FTT-SE Medium Access Control layer 

The FTT-SE employs a technique called master/multi-
slave, according to which the master addresses several slaves 
with a single poll, considerably alleviating the protocol 
overhead with regard to the conventional master-slave 
techniques. The communication occurs in fixed duration 
slots called Elementary Cycles (ECs), with one master 
message per cycle called Trigger Message (TM), which 
contains the periodic schedule for that EC. The periodic 
messages are referred to as synchronous since their 
transmission is synchronized with the periodic traffic 
scheduler. The protocol also supports aperiodic traffic, called 
asynchronous, which is managed in the background, in the 
time left within the EC, after the periodic traffic (Figure 2). 

 

 
Figure 2: Traffic scheduling in FTT-SE 

2.2 Synchronous traffic scheduling 
The synchronous traffic scheduling activity is carried out 

on-line and centrally in the master and the periodic traffic 
schedules are disseminated by means of the TM (Figure 2). 
Since the traffic scheduling is local to one node, it is easy to 
enforce any kind of scheduling policy, as well as perform 
atomic changes in the communication requirements. This last 
feature allows for on-line stream admission and removal 
under guaranteed timeliness as well as on-line bandwidth 
management. Nodes decode the TM and transmit 
immediately the scheduled messages with the switch taking 
care of the serialization. All messages scheduled to one EC 
fit in that EC and so message queues have a limited and pre-

known size and cannot build up from EC to EC.  
The FTT master holds information about the nature of the 

data exchanges regarding the type of addressing (unicast, 
multicast and broadcast) and which end nodes are involved. 
With this information the master computes which messages 
follow disjoint paths (i.e., non overlapping source and 
destination nodes) and thus build schedules that exploit this 
parallelism, increasing the aggregated throughput. For non-
multicast switches only unicast and broadcast streams can be 
considered. For true multicast switches the standard Internet 
Group Multicast Protocol (IGMP, RFC 2236) is used to 
setup up multicast groups.  
2.3 Asynchronous traffic handling 

Unconstrained aperiodic communication may generate 
bursts that fill in output queues, leading to long priority 
inversions in typical FIFO queues and possibly to queue 
overflow and consequent packet losses. Using switches with 
two (or more) priority levels and assigning to the 
asynchronous traffic a lower priority level than to the 
synchronous one does alleviate the problem. Nevertheless, 
due to the non-preemptive nature of packet transmission 
asynchronous messages can still block the synchronous 
messages or the TM. The blocking effect is, however, 
bounded to one packet. Adequate mechanisms are still 
required to constrain the asynchronous load and burstiness to 
prevent buffer overflows and consequent interference with 
the high priority periodic traffic  [5] [7]. Therefore, the use of 
traffic shaping or smoothing schemes is required. 

Alternatively, polling can be used, being more robust and 
timely but less efficient. In this case, the transmission 
instants are adequately planned by the global scheduler but 
synchronization delays will increase the response times. In 
this case the asynchronous traffic is treated essentially as the 
synchronous one, except that slaves may or may not transmit 
a pooled message, depending on its readiness status.  

FTT-SE can use any of the mechanisms above, depending 
on the requirements of each application. The polling 
approach is more adequate for situations requiring precise 
timeliness. When the non-preemption blocking is tolerable, 
the dual-priority approach seems better suited.  

3 FTT enabled Ethernet switch architecture 
Figure 3 depicts the FTT enabled Ethernet switch 

integrating the traffic management services provided by the 
Master node in FTT-SE systems. The System Requirements 
Database (SRDB) is the central repository for all the 
information related to the traffic management, namely the 
message attributes for both synchronous and asynchronous 
traffic (e.g. period/minimum inter-arrival time, length, 
priority, deadline), information about the resources allocated 
to each traffic class (e.g. phase durations, maximum amount 
of buffer memory) and global configuration information (e.g. 
elementary cycle duration, data rate). Change requests to the 
message set are submitted to an admission control (plus 
optional QoS manager), ensuring continued real-time traffic 
timeliness. The SRDB is periodically scanned by a 
scheduler, which builds a list of synchronous messages (EC-
Schedule) that should be produced in the following EC. A 
dispatcher task periodically sends the EC-schedule to the 
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switch ports having attached FTT nodes.  
For FTT-SE/FTT-Ethernet systems the master role is 

confined to the functionalities defined above. However, the 
integration of the switching services with the traffic 
scheduling permits a tight control of the packet flow and 
resource utilization inside the switch. At the beginning of 
each EC the global dispatcher directly accesses the port 
dispatcher, which sends the trigger message and keeps 
temporal information about each of the phases within the 
EC. Each output port has 3 queues, one for each traffic class 
(synchronous, asynchronous and non real-time messages 
(NRT)). During the EC the port dispatcher transmits 
messages submitted to each of these queues, according to the 
EC phase. This mechanism confines the different traffic 
classes to the respective phases. If e.g. a malfunction node 
sends a synchronous message outside of the synchronous 
phase, the message is discarded and does not interfere with 
the asynchronous or non real-time phases. On the other hand 
asynchronous messages (either real-time or non real-time) do 
not need to be pooled, contrarily to what happened for FTT-
SE. The port dispatcher only transmits messages from the 
asynchronous or NRT queues if the time left within the 
respective window is enough.  

Both FTT and non FTT-compliant nodes can be 
seamlessly attached to the FTT enabled switch. Thus, on the 
ingress side the first operation carried out is the packet 
classification, which consists only in inspecting the Ethernet 
type field. When the message is identified as an FTT 
message it is subject to a verification process and, if judged 
valid, is appended to the synchronous or asynchronous 
message queues, according to its nature. Conversely, if the 
message is non-FTT it is simply appended to the NRT queue. 
The segmentation of the global memory pool, keeping the 
messages of each class in independent subdivisions allows 
avoiding memory exhaustion for the real-time messages, a 
situation that standard switches do not guarantee  [5]. The 
real-time traffic is subject to an explicit registration. During 
the registration process the producers must state the message 
properties, in particular the length and periodicity (for 
periodic messages; minimum inter-arrival time for sporadic 
ones). With this data it is possible to compute and pre-
allocate the amount of memory that each traffic class 
requires and thus guarantee that the resources are enough for 

all admitted messages. These elements, however, are not 
available for the NRT traffic. Thus it is not possible to 
predict the amount of memory necessary and, consequently, 
the NRT queue may become full, leading to drops of NRT 
packets. However, the higher layers protocols (e.g. TCP) are 
tolerant to occasional message drops, only with a negative 
impact in the performance. This situation is not critical since 
this traffic is granted with best effort guarantees, only. 

The validation process gathers data both from the EC-
schedule and from the RTDB. Regarding synchronous 
messages, the analysis of the EC-schedule allows detecting 
failures in the time domain, namely the transmission of 
unscheduled messages or the late transmission of scheduled 
messages resulting from mal-function nodes. An equivalent 
set of tests (e.g. minimum inter-arrival time, burstiness) may 
also be performed for asynchronous messages with those that 
fail the validation process being trashed. The policing and 
enforcement of the traffic attributes in the time domain 
guarantees the timeliness of the real-time traffic even in the 
presence of malfunctioning nodes. 

Whenever a message is placed in the global memory pool, 
a packet forwarding process is executed. Control messages, 
targeted to the master are submitted to the Admission 
control/QoS manager module and possibly result in changes 
on the SRDB. Data messages should be forwarded to the 
target nodes. The forwarding mechanism of FTT messages is 
based on a producer-consumer model, and does not depend 
on   MAC addresses. Whenever an FTT message arrives the 
Packet Forwarding module inquires the SRDB to determine 
the set of ports having consumers attached, and updates the 
output queue (synchronous or asynchronous, depending on 
the message nature) of each one of these ports. Non-FTT 
messages are forwarded according to the normal procedures 
of standard Ethernet switches, based on the MAC address.  

4 Experimental results 
A prototype implementation, based on the RT-Linux real-

time operating system with the Ethernet layer provided by 
the LNet network stack, was carried out to validate the 
extended services provided by the FTT-enabled switch. This 
prototype switch is based on a Pentium III PC at 550MHz 
with four 3Com 3C905B PCI network interface cards 

 

Figure 3: Switch internal architecture 
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The first experiment consists in the implementation of a 

policing service for the synchronous traffic. The ID of 
incoming synchronous messages is matched against the EC-
schedule and discarded if a positive match is not found. This 
way only scheduled messages are disseminated, guaranteeing 
that the synchronous window is not overrun. To verify the 
correct behavior of the policing service we configured a 
setup with 1 synchronous message with period Ti=3ECs 
while the respective producer slave was tampered to send 
that message every EC. With the setup we observed that the 
consumer node only received the scheduled messages, one 
every 3ECs, and the extra messages were discarded. 

The second experiment consists in the verification of the 
enforcement of the traffic temporal isolation. The 
experimental setup is configured with an EC of 40ms, with 
the last 3ms of the EC dedicated to the NRT traffic. The 
NRT test load consists in UDP packets carrying 1400 data 
bytes, periodically sent every 5ms. The load is generated 
with PackEth (http://packeth.sourceforge.net/) running on a 
plain Linux distribution (RedHat 9.0). Figure 4 depicts the 
histogram of the time differences between consecutive NRT 
messages in the uplink. 

 
Figure 4: Histogram of the differences between consecutive NRT 

messages (uplink) 

While NRT messages can be submitted at any time 
instant, the FTT-enabled switch only forwards them to the 
output port(s) in the NRT window, which in this setup is 
configured to use the last 3ms of the EC. This confinement 
mechanism significantly changes the message transmission 
pattern between the uplink and the downlink. Figure 5 shows 
the time difference between the beginning of the EC and the 
reception of the NRT messages being clear the confinement 
of these to the NRT window (37 to 40ms after the EC start). 
Therefore the NRT traffic does not interfere with the 
synchronous or asynchronous real-time traffic, despite being 
generated at arbitrary time instants by a standard node not 
implementing the FTT protocol. 

5 Conclusions and future work 
The advent of switched Ethernet has opened new 

perspectives for real-time communication over Ethernet. 
However, a few problems subsist related with queue 
management policies, queue overflows and limited priority 
support. While several techniques were proposed to 
overcome such difficulties, the use of standard Ethernet 
switches constraints the level of performance that may be 

achieved. In this paper we proposed an enhanced Ethernet 
switch, implementing FTT-class services. The resulting 
architecture inherits the FTT features, namely flexible 
communication with high level of control to guarantee 
timeliness, while permits a noticeable reduction in the 
switching latency jitter found in common Ethernet switches, 
an important performance increase of the asynchronous 
traffic, seamless integration of standard Ethernet nodes and a 
substantial increase in the system integrity as unauthorized 
transmissions from the nodes can be readily blocked at the 
switch input ports. On-going work addresses the FPGA 
implementation of the switch. 

 
Figure 5: Histogram of the differences between the beginning of 

the EC and NRT messages (downlink) 

6 References 
[1] Thomesse, J-P. “Fieldbus and Interoperability”. Control 
Engeneering Practice, 7(1), pp81-94. 1999. 
[2] Decotignie, J-D. A perspective on Ethernet as a Fieldbus. Proc 
of the FeT’2001 – 4th Int. Conf. on Fieldbus Systems and their 
Applications, pp138-143. Nancy, France. November 2001. 
[3] Almeida, L., Pedreiras, P. "Hard Real-Time Communication 
over COTS Ethernet Switches". '' Work in Progress Session of the 
26th IEEE International Real-Time Systems Symposium. 
[4] Hoang, H. Jonsson, M., Hagstrom, U., Kallerdahl, A. 
"Switched Real-Time Ethernet with Earliest Deadline First 
Scheduling - Protocols and Traffic Handling". Proc of WPDRTS 
2002, the 10th Intl. Workshop on Parallel and Distributed Real-
Time Systems. Fort Lauderdale, Florida, USA. April 2002. 
[5] Pedreiras, P., R. Leite, L. Almeida. Characterizing the Real-
Time Behavior of Prioritized Switched-Ethernet. RTLIA’03, 2nd 
Workshop on Real-Time LANs in the Internet Age, (satellite of 
ECRTS’03), Porto, Portugal, July 2003.  
[6] Varadarajan, S., Chiueh, T. “EtheReal: A Host-Transparent 
Real-Time Fast Ethernet Switch”. Proc of the 6th Int Conference on 
Network Protocols, pp. 12-21. Austin, USA. Oct 1998. 
[7] Loeser, J., H. Haertig. “Using Switched Ethernet for Hard 
Real-Time Communication”. Proc Parallel Computing in Electrical 
Engineering, International Conference on (PARELEC'04), pp. 349-
353, September 07 - 10, 2004, Dresden, Germany. 
[8] Real-Time PROFINET IRT. http://us.profibus.com/profinet/07 
[9] P. Pedreiras, L. Almeida. Approaches to Enforce Real-Time 
Behavior in Ethernet. in The Industrial Communication Systems 
Handbook, R. Zurawski (ed). CRC Press, ISBN:0-8493-3077-7, 
2005. 

Proceedings RTN'06 48 Dresden, July 4, 2006



 

The network capability model of UPnP™-QoS v3, an interoperable 
QoS framework for admission control and scheduled access 

Michael van Hartskamp1 

Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands 

 

                                                        
1 Parts of the work reported here were performed within the ongoing European Research Program BETSY- IST-004042. 

 

Abstract  —  Home networks are increasing in popularity. 
For commercial content offerings, a high guaranteed Quality of 
Service is needed. The heterogeneous nature of the IP-based 
home network complicates delivering real-time guarantees. In 
this paper we describe the network capability model of a 
proposed interoperable middleware for QoS control on the basis 
of UPnP [1]. The model describes QoS capabilities of 
underlying Layer 2 QoS technologies. It enables QoS Managers 
to manage the network and understand the impact of their 
management actions, without explicit understanding of the 
details of every technology. 
 

Key words — Home Networks, Interoperability, Quality of 
Service, UPnP, UPnP-QoS. 

I. INTRODUCTION 

Home networks are increasing in popularity. More and 
more households have (wireless) Ethernet-based home 
networks connecting their PC(s) or laptop(s) to the Internet. 
Currently applications such as IPTV and VoIP are entering 
the home, yet they are often terminated at the door step and 
do not take the final step through the home network. For 
most service providers, the lack of real-time or Quality of 
Service guarantees inhibit mass-market deployment.  

While for commercial content offerings, a high guaranteed 
Quality of Service is needed, the currently deployed 
technologies, such as the IP-protocol suite, Ethernet and Wi-
Fi / Wireless Ethernet, do not go beyond 1) best effort 
delivery and 2) an attempt at fairness to all network users. In 
other words they do not provide the required real-time 
guarantees. Future Layer 2 technologies, which are currently 
or were recently standardized, such as IEEE 802.11e, 
WiNET, and HomePlug AV do provide mechanisms for 
admission control and scheduled delivery of packets, 
bringing support for real-time. What is still lacking for an 
actual deployment is a standardized middleware that 
provides applications with a uniform interface to use those 
features of the different underlying technologies in 
heterogeneous networks.  

In this paper we contribute a network capability model. 
The network capability model indicates for heterogeneous 
networks, the devices of which have certain QoS capabilities. 
This model is proposed as part of an interoperable 
middleware for QoS control on the basis of UPnP [1]. UPnP 
is the de facto standard for discovery and description of home 
networking devices. The UPnP forum has also defined device 
control protocols for various devices such as AV media 

servers and AV media renderers.  UPnP is also the backbone 
for the standards and guidelines of DLNA [2].  

Our approach is based on the assumption that admission 
control is essential to guard a sufficient minimum level of 
Quality of Service by preventing structural overloading of the 
network. It is understood, that admission control is a 
necessary but not sufficient condition. In wireless or power 
line networks, there are no hard guarantees and hence point-
to-point solutions have to be applied to maintain an 
acceptable quality in the presence of varying resource 
availability. These techniques are not discussed in this paper. 

The remainder of this paper is structured as follows. In 
Section II we provide a short overview of the home network 
and in particular UPnP. The following section describes 
some of the relevant details and workings of IEEE 802.11e 
in more detail.  

Section V presents an overview of our solution. The 
solution is based on a network capability model. The model 
is proposed for inclusion in UPnP-QoS version 3. It allows 
the discovery of layer 2 capabilities of certain devices. This 
enables the end-to-end QoS setup.  

The following section details the behavior of the involved 
devices by describing the interaction and the relation with 
Layer 2 setup.  

Section VII shortly discusses how the proposed solution 
enables decomposition of end-to-end requirements such as 
delay and loss requirements. With our solution it is possible 
to avoid local optimizations. 

Finally we draw our conclusions. The network capability 
model is a suitable way to describe and manage the QoS 
capabilities present in current and future home networks. 
The submission to UPnP-QoS enables applications to 
manage QoS in heterogeneous networks in a standardized 
way. 

II. HOME NETWORKING 

A. Home Networking Architectures 

The DLNA guidelines provide a model for logically 
describing Home Networking AV devices (see [3]). The 
DLNA devices are assumed to be used for applications such 
as AV streaming of various quality, media uploads and 
downloads, etc. 

The DLNA model is based on, what are at least 
traditionally, standards from the IT-world: Ethernet, IP, 
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HTTP; protocols that are not traditionally known for their 
real-time capabilities. But most of them so well established 
that their unmodified adoption is essential and their 
limitations need to be circumvented.  

For discovery, description, and control, the DLNA 
guidelines use the UPnP protocol. 

B. UPnP 

In UPnP, a Control Point invokes actions on a UPnP 
service which is running on a UPnP device. The UPnP 
device advertises one or more services with certain (often 
standardized) actions. The Control Point, whose behavior is 
not standardized, determines capabilities of a device (service) 
and then decides what the device (service) will do. The UPnP 
forum has already standardized various services and devices 
for applications ranging from home automation, via 
gateways to AV-applications. 

Since 2005, services enabling priority-based QoS are 
defined. Through UPnP an application interfaces with Layer 
2 (or 3) technologies for QoS, by-passing the IP-layer [4]. 

Currently in UPnP, the QoS working committee is 
extending these services to support admission control and 
scheduled access, i.e. parameterized QoS. In this paper we 
describe our network capability model which is proposed as a 
part of these extensions. 

III. IEEE 802.11E 

For the heterogeneous home network, it is crucial to work 
on the basis of different existing layer 2 technologies. In this 
section we provide background on a popular Layer 2 
technology: Wi-Fi WMM and the underlying IEEE 802.11e 
[5] to motivate our network capability model. 

WMM is a certification program of the Wi-Fi alliance on 
the basis of IEEE 802.11e, prioritized QoS. It also offers a 
simple admission control functionality. The complete IEEE 
802.11e also specifies scheduled access and it is expected 
that this will also become part of a Wi-Fi certification 
program. In the remainder we consider the scheduled access 
function “HCCA” of IEEE 802.11e. 

In IEEE 802.11e, a wireless QoS enabled station (QSTA) 
connects to the QoS-enabled Access Point (QAP). Two 
stations connected to the same AP communicate via the AP. 
With HCCA the QAP polls a QSTA after which the QSTA 
may transmit a packet. 

 Requests for QoS are always initiated from a QSTA, 
whether the station will be sending or receiving. The 
requests present a traffic specification consisting of among 
many others mean data rate, peak data rate, delay bound, and 
minimum PHY rate to the QAP which subsequently decides 
on the viability. Typically the QAP has an overview of all 
admitted streams, but individual QSTA(s) do not. 

To save bandwidth, a direct link protocol enables direct 
transmission between two QSTA, by-passing the QAP. In 
this case, the sending station is responsible for the QoS 
request. 

IV. MAJOR DESIGN ALTERNATIVES 

In this paper, we follow a centralized approach for QoS 
management. The basic idea behind the centralized approach 
is that a QoS request is forwarded to a central entity. This 
entity decomposes end-to-end requirements and subsequently 
appropriately instructs the individual devices. Another 
example of a centralized approach is in [8] and it shows how 
real-time requirements can be met in a heterogeneous 
environment.  

We believe this centralized solution is possible given the 
small size of a typical home network. When meeting end-to-
end requirements we do not have to suffer from local 
optimizations. But to enable the central controller to make 
such “wise” decisions, some information has to flow from the 
individual devices to the controller in order to support its 
decisions.  

This is different from an RSVP-style approach (see [6]) 
where the receiver sends a QoS request to the sender. On its 
way to the sender it passes devices. Every device determines 
whether it can support the request. If not the request is 
denied and returned to the receiver. When the request 
reaches the source and is accepted, a positive 
acknowledgment is returned. Some provisions have been 
foreseen for shared media [7] but these are not really used. 
End-to-end requirements are decomposed at every 
intermediate device by tightening the requirements for the 
others upstream.  

There are two prime reasons for us to choose a centralized 
approach. First, the central approach is in line with the UPnP 
device architecture where a Control Point instructs a service 
on a device to do something.  Secondly, a centralized 
approach, at least theoretically, allows better decompositions 
of end-to-end (real-time) requirements which a per-hop 
approach does not bring. 

V. THE NETWORK CAPABILITY MODEL  

In this section we describe our network capability model. 
Our approach is based on UPnP and we follow the design 
principles of UPnP by employing discovery and description 
in this case to discovery and description of QoS capabilities. 
In this paper we describe the network capability model which 
we have proposed to version 3 of the QosDevice service. For 
space reasons we can only describe one mapping of the 
model to a layer 2 technology, which is on IEEE 802.11e.
  

The goal of the model is enabling end-to-end requirements 
decomposition into, commonly called, “per-hop 
requirements” and appropriately configuring the network 
such that those “per-hop requirements” can be met. For this 
the network capability model needs to define those “hops” 
and indicate which devices have the capabilities to manage 
“which hop”. 

In our approach the “per-hop” concept is formalized by the 
concept of QoS segment to accommodate Layer 2 
technologies such as AV Bridges [9] that come with their 
own QoS management spanning multiple “hops”. 

Proceedings RTN'06 50 Dresden, July 4, 2006



 3 

The basic QoS capabilities are admission of a stream and 
the release of resources. Another capability is to list the 
admitted streams to get an impression of the occupied 
resources. Since the model was derived with various actual 
implementations and technologies in mind, the capabilities 
to admit and release are often capabilities to perform Layer 2 
signaling that leads to admission or release. 

One of the crucial steps to take is to identify which device 
has the QoS capability to admit a certain stream in a certain 
QoS segment.  The QoS capabilities are often topologically 
qualified, i.e., certain technologies or implementations offer 
in a certain device only admission for a specific link or even 
just for the outgoing direction, etc. 

In the next section we go into the details of the model, 
provide and provide an example. 

A. Segmentation 

First consider the network as a graph consisting of vertices 
and edges. Since network connections are not necessarily 
bidirectional, edges are directed. The example of the wireless 
network where traffic can flow through the AP as well as 
through a Direct Link indicates that even with the Layer 2 
spanning tree protocol the graph is not necessarily loop-free.  

The goal of the segmentation is to capture the extent to 
which middleware actions induce Layer 2 signaling. Those 
middleware actions are the UPnP-actions invoked on a UPnP 
device by a UPnP Control Point called QoS Management 
Entity. For the middleware management to work some 
independence between the actions is needed. I.e., the 
middleware actions must not have side effects and preferably 
not unnecessary restrict the order of invocation.  

We now define a QoS segment in an abstract way as a unit 
of independent management.  

The collection of all QoS segments is closed under finite 
union and finite intersection. It is a cover of the graph. It is 
easy to see that there is a subcover such that every edge is 
contained in exactly one element of this subcover. The 
minimal QoS segments containing at least one edge typically 
coincide with the Layer 2 domains. In every actual 
deployment, such a subcover is determined through 
technology specific rules followed by the individual devices.  

As a general principle, the smaller the QoS segments in 
the home network the more management steps are performed 
by a QoS Management Entity.   

B. QoS capabilities 

The three primary QoS capabilities are: Admit, Release, 
and List. When a device has the capability to admit it is 
capable to perform an admission control function as well as 
to reserve the resources (on networks governed by scheduled 
access). 

There are different ways in which a device can support the 
capability to admit. A straight forward method is for a device 
such as a wireless QAP or another device with the Layer 2 
scheduler. Such a device could (theoretically) easily perform 
algorithms for admission control and calculate appropriate 
schedulers. However, in many actual implementations this 
capability cannot be used directly. A method which is 

supported with (nearly) every technology is to rely on Layer 
2 signaling. A device implements the capability to admit 
whenever it has the ability to use Layer 2 signaling to 
perform admission control. In this case the Layer 2 signaling 
protocol is limiting. The request may support only a limited 
set of parameters (e.g. only peak and not average 
bandwidth), return a limited answer (yes, no, but not “no, but 
you can admit x bits per second”) and most frequently only 
for a limited number of streams, e.g., only for streams that 
flow through the device. In some Layer 2 technologies the 
latter limitation is not there and similarly general results as 
with admission at the scheduler can be obtained. 

The capability to Release is similar and frees the assigned 
network resources. The capability to List enables the listing 
of streams that were assigned resources. This capability 
makes most sense when available at the device with the 
scheduler. It allows a QoS Management Entity to determine 
the viability of an admission before actually making it 
through UPnP-QoS and induced Layer 2 signaling. 

 

C. Topological Qualifiers 

As indicated by the examples most QoS capabilities are not 
general but qualified. A device can expose a limited 
capability, e.g., due to layer 2 signaling limitations. The 
following topological qualifiers are identified in the model.  

QoS segment for an Interface: this device offers the QoS 
capability for every stream on the entire QoS segment for the 
given interface. A possible device to expose this capability is 
on the QAP for the QoS segment of the Access point and its 
associated stations. But see the practical limitations above. 

Link: this device offers the QoS capability for the specified 
link. An example can again be found in IEEE 802.11e. A 
station (QSTA) identifies a link to the AP and the station has 
the capability to set up QoS for that link through the Layer 2 
signaling. The Layer 2 signaling does not enable a station to 
set up QoS both for the link to the QAP and onwards to a 
next station. As an example, a QoS Management Entity will 
read the model and derive that this station can set up QoS 
from the station to the QAP but that it needs another action 
to set up QoS from the QAP to the next station. The fact that 
both links share the same underlying network medium is 
(weakly) expressed through the fact that both links are in the 
same QoS segment. 

Direction: this device offers the QoS capability only for the 
specified direction of the identified link. Consider the Direct 
Link example. Here the device exposes the capability to 
admit only for the outgoing direction of the direct link.  
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D. Example of reported QoS capabilities 

In this section we provide a simple example. Consider 
Figure 1 below representing a home with 6 wireless stations 
in 2 wireless networks connected through a wired backbone. 
There are three “minimal” QoS segments S, T, and U. 

 
 
 
 

 

 

 

 
Figure 1 Example home network with QOS capabilities 

 
We will first describe the reported QoS capabilities and 

then in the following section how to make use of these 
capabilities. 

In segment S, device d offers the QoS capabilities to admit, 
release and list for the entire segment. Device a offers the 
admit and release capabilities for the link a ↔ d, b for b ↔ 
d, and c for c ↔ d, where x ↔ y denotes the link (in both 
directions) between x and y.  

In segment T, no QoS capabilities are available, e.g. with 
plain Ethernet. There can be no QoS management.  

In segment U, device f offers the QoS capability to list. g 
offers the admit and release capabilities for links g ↔ f and g 
→ h (i.e. only in the direction from g to h). Similarly device 
h offers it for the links h ↔ f and h → g. But k only offers 
these capabilities for k ↔ f. 

VI. USE OF THE MODEL 

A device interested in participating in QoS setup hosts the 
UPnP QosDevice service. For every interface, the device 
determines the QoS segment in which it participates. The 
QoS segment is identified through an agreed Layer 2 specific 
algorithm: typically the identity of an elected or pre-
determined leader is used, e.g., in wireless the MAC address 
of the AP or in IEEE 1394 or AV bridges the “root”. 

Next this QosDevice service reports its QoS capabilities. 
The topological qualifications are expressed via a 
hierarchically ordered structure (QoS segment, link, 
direction(s)) to avoid unnecessary repetitions.  

Let us now follow the steps of performing an end-to-end 
admission for a stream flowing from a to h in the figure. 

A QoS Management Entity is a UPnP control point for the 
(standardized) QosDevice service. The UPnP functionality is 
used to identify the available services. Through actions on 
the QosDevice service and comparison of the QoS segment 

IDs the QoS Management Entity determines the QoS 
segmentation of the network. This is also illustrated in the 
example above where the QoS Management Entity has now 
identified segments S, T, and U and may safely conclude that 
setup actions in segment S will not impact segment T or U 
(and similarly for segment T and U)  

Also the path of the stream for which QoS is requested is 
determined. The QosDevice (since version 1) provides 
information to assist in the path determination.   

Now the QoS Management Entity proceeds to setup QoS 
for every segment. For a given segment, the following steps 
are performed.  

First, identify whether a QosDevice in the segment 
advertises the QoS capability to admit for the entire segment. 
If so (for example at device d in segment S), it invokes the 
admit action on this QosDevice and the process is completed. 
If not (for example in segment U), for every link in the QoS 
segment through which the stream passes, it identifies 
whether there is a QosDevice service which advertises the 
QoS capability to admit for that link (and in the desired 
direction) and admit at this device. In our example the link f 
↔ h is a relevant link and h offers the capability to admit.  

After actually performing the admission request on the 
individual devices, device d probably performs only some 
internal calculations towards a new schedule. Device h on 
the other hand needs to rely on layer 2 signaling to f to 
effectuate its capability to admit. Device f will execute such 
signaling and then report the result to the QoS Management 
Entity. 

Observe that if the stream passes through multiple links in 
the QoS segment, every link has to be individually set up 
through an admission action (cf. the example of IEEE 
802.11e).  

Finally, a QosDevice that receives the admit action 
registers the request and either performs the admission itself 
and updates its scheduler’s polling tables, or performs a 
Layer 2 specific request which ensures schedules are setup 
and/or admission is evaluated.  

VII. SOME REMARKS ON END-2-END REQUIREMENTS 

The network capability model as described here indicates 
whether devices have the QoS capability to admit. This 
model does not describe how the admission request has to be 
formulated if such a QoS capability exists. For the latter a 
standard traffic specification needs to be used which lists 
several parameters which are commonly used in current 
Layer 2 technologies: such as mean bandwidth and peak 
bandwidth, but also other parameters relating to loss and 
delay requirements. 

We believe the approach we have taken, i.e. enabling a 
QoS Management Entity to manage the end-to-end QoS 
setup allows avoiding local optimizations. It is expected that 
through additional interaction with the QosDevice service, 
local preferences on the decomposition are brought to the 
attention of the QoS Management Entity.  

S 

T 

U
a 

b c 

d 

e 

f 

g h 
k 

Proceedings RTN'06 52 Dresden, July 4, 2006



 5 

VIII. CONCLUSIONS 

 
This paper describes a network capability model for 

discovery and description of Quality of Service capabilities of 
devices. The model is rich enough to capture common state-
of-the art link-layer QoS technologies such as IEEE 802.11e 
(others such as HomePlug AV, MoCA and AVB were 
verified outside this paper), yet sufficiently abstract to enable 
efficient QoS management without awareness of all details of 
every underlying Layer 2 QoS technology. With knowledge 
of the model a QoS management entity can perform end-to-
end admission control on the home network where needed by 
relying on layer 2 signaling and understanding 
interdependencies between setup of parts of the network.  

The model also facilitates the decomposition of end-to-end 
requirements in a centralized manner, avoiding sub-optimal 
decisions as are possible in e.g. RSVP. 

The model is part of UPnP-QoS. In this way applications 
are offered an interoperable mechanism for their QoS 
management. 
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Abstract

When integrating subsystems on a common shared com-
munication infrastructure these subsystems are likely to suf-
fer from, and introduce interference among, each other. For
CAN-based systems, the CAN message identifier is espe-
cially important, as it not only does identify the message,
but it also determines the message’s priority. Hence, spe-
cial care needs to be taken when assigning identifiers to
messages. This paper outlines how CAN-based systems are
engineered today, and indicates the potential and benefits
of decoupling the message priority from the message iden-
tifier. Three solutions to this are existing today: TT-CAN,
FTT-CAN and Server-CAN. In this paper their strengths and
weaknesses in an integration context are discussed. Also,
the flexibility offered by the solutions is compared.

1 Introduction

The Controller Area Network (CAN) [8] is one of the
major network technologies used in many application do-
mains requiring embedded communications. It is particu-
larly important in the automotive domain. A typical CAN
application is any type of embedded system with real-time
requirements and cycle times of 5− 50ms. However, CAN
is used for many non real-time applications as well.

Traditionally in many application domains, subsystems
have been developed incrementally as new functionalities
have been added to the system. Looking at the automotive
domain, value- and safety-adding functions, such as ABS
and VDC, have been introduced over the years. Initially,
they could be integrated as (mostly) independent subsys-
tems having their own dedicated hardware in terms of Elec-
tronic Control Units (ECUs) and communications network.
However, as the number of subsystems increases, there are
strong trends towards integration of the subsystems on a

common distributed architecture, rather than using a sep-
arate architecture for each subsystem. Hence, a crucial is-
sue to solve is the migration from federated systems to inte-
grated systems [10].

Looking at CAN-based embedded systems, it is a natu-
ral consequence that subsystems affect each others tempo-
ral performance once they are integrated on the same CAN
network. This is due to the characteristics of the CAN mes-
sage identifier, which defines both message priority (CAN
PRIO) and message identity (CAN ID). Hence, decoupling
the CAN ID from the CAN PRIO has the potential to sim-
plify the integration process of CAN-based systems, allow-
ing for flexible usage of CAN IDs. In this paper, three tech-
niques that decouple the CAN ID from the CAN PRIO are
presented, and their strengths and weaknesses are discussed
from an integration point of view. Also, their provided
offline (e.g., at design time) and online (e.g., allowing for
dynamic addition and removal of subsystems) flexibility is
compared.

Note that, in a CAN-based system, IDs are required to
be unique for two reasons (1) due to the CAN arbitration
mechanism (i.e., message collision resolution) and (2) to al-
low for message filtering (i.e., message identification). This
implies that not any two subsystems are allowed to send a
message with the same CAN ID at the same time. If this
would happen as a consequence when integrating subsys-
tems, one of them must change its conflicting IDs.

However, by the usage of recent schedulers, such as TT-
CAN [9], FTT-CAN [1] and Server-CAN [15, 16], that de-
couple CAN ID and CAN PRIO, this change of IDs would
not affect the temporal performance of the subsystems, thus
allowing for an easier integration.

The outline of this paper is as follows: In Section 2 the
technical properties of CAN message frame transmission
are explained, showing the role of the CAN ID. In Section 3
CAN ID assignment in practice is shown, followed by Sec-
tion 4 presenting three CAN schedulers that decouple the
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CAN ID from the CAN PRIO. Section 5 discusses the three
schedulers in the context of integration. Finally, the paper
is concluded in Section 6.

2 CAN technical properties

CAN is a broadcast bus, which uses deterministic colli-
sion resolution to control access to the bus (so-called Carrier
Sense Multiple Access / Collision Resolution, CSMA/CR).
CAN transmits messages in an event-triggered fashion us-
ing frames containing 0 to 8 bytes of payload data. These
frames can be transmitted at speeds of 10 Kbps up to
1 Mbps.

2.1 Frame arbitration

The CAN ID is required to be unique, in the sense that
two simultaneously active frames originating from differ-
ent sources must have distinct CAN IDs. Depending on the
CAN standard used, the CAN ID can be either 11 bit (stan-
dard format) or 29 bit (extended format). Besides identi-
fying the frame, the CAN ID serves two purposes: (1) as-
signing a priority to the frame, and (2) enabling receivers to
filter frames (identifying the contents of the frame).

The basis for the access mechanism is the electrical char-
acteristics of a CAN bus. During arbitration, competing
communication adapters simultaneously put their CAN IDs,
one bit at the time, on the bus. Bit value “0” is the domi-
nant value. Hence, if two or more communication adapters
are transmitting bits at the same time, and if at least one
communications adapter transmits a “0”, then the value of
the bus will be “0”. By monitoring the resulting bus value,
a communications adapter detects if there is a competing
higher priority frame (i.e., a frame with a numerically lower
CAN ID), and in such a case it stops transmission. Be-
cause CAN IDs are unique within the system, a communica-
tions adapter transmitting the last bit of the CAN ID with-
out detecting a higher priority frame must be transmitting
the highest priority active frame, and can start transmitting
the body of the frame, i.e., following the CSMA/CR rule.
CAN therefore behaves as a global priority-based queue 1,
i.e., a fixed priority non pre-emptive system, since at all
communication adapters (nodes) the message chosen dur-
ing arbitration is always the active message with the highest
priority. Globally, the message with the highest priority will
always be selected for message transmission.

3 Assigning CAN IDs in practice

The CAN ID is often used for scheduling purposes to
fulfil temporal requirements. Here, the CAN ID can be

1This is true if “FullCAN” communication controllers are used, e.g.,
Intel 82527 and Microchip MCP2510.

set manually (static) or according to some online algorithm
(dynamic). Also, the CAN ID can be assigned to message
frames by the usage of tools, allowing for a design of the
CAN-based system on a higher level than on per-message
basis. Finally, as specified by several standards, the CAN
ID can be solely used for message identification purposes.

3.1 Static CAN ID used for scheduling

From a scheduling point of view, the most natural CAN
ID assignment method is found in the context of priority-
driven scheduling, where priorities are assigned to mes-
sages according to the Rate Monotonic policy [11]. This
since Fixed Priority Scheduling (FPS) is the scheduling pol-
icy implemented by the CAN arbitration mechanism. Real-
time analysis techniques have been presented to determine
the schedulability of CAN message frames [21], and revis-
ited in [2].

3.2 Dynamic CAN ID used for scheduling

Several methods for Dynamic Priority Scheduling (DPS)
have been proposed for CAN. By manipulating the CAN
ID online, and therefore dynamically changing the message
priority, several approaches to mimic Earliest Deadline First
(EDF) type of scheduling have been presented [6, 12, 22].

For example, the usage of a Mixed Traffic Scheduler
(MTS) [22] attempts to achieve a high utilisation (like
EDF). Using the MTS, the CAN IDs are manipulated on-
line in order to reflect the current deadline of each mes-
sage. Hence, since the CAN ID is dynamically changing,
only a part of it can be used for actual identification of the
CAN frame.

Looking at non real-time messages, a common way to
send them on a CAN network is to allocate them message
identifiers with lower priority than all real-time messages.
In this way blocking of a real-time message by non real-
time messages can be restricted to at most the duration of
the transmission of one message. However, unwise mes-
sage identifier assignment to non real-time messages could
cause some of them to suffer from starvation. To provide
Quality of Service (QoS) for non real-time messages several
approaches have been presented [4, 13]. These approaches
dynamically change message identifiers in a way preventing
systematic penalisation of some specific messages.

In general, by dynamically manipulating the IDs of the
CAN frames, these solutions all reduce the number of pos-
sible CAN IDs to be used by the system designers. This
could be problematic, since it interferes with other design
activities, and is even sometimes in conflict with adopted
standards and recommendations [5, 19].
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3.3 Static CAN ID assigned by tools

The growing complexity of automotive networked sys-
tems has resulted in tools to assist the system designer in
the CAN ID allocation process. To understand this com-
plexity, consider [15] where the network architectures for
three cars are given. Here, the Volvo XC90 is said to con-
tain around 40 ECUs, the BMW 7 series has around 65, and
the VW Passat has around 45. Other car models are known
to have up to 70 ECUs. These ECUs are part of the auto-
motive subsystems to be integrated on a shared automotive
architecture. The complexity of such an integration process
is apparent, as the CAN ID represents the message priority.

As a step to overcome this, one example is found in the
case of the XC90, where Volvo is using the Volcano concept
[3, 18]. The Volcano concept provides tools for packaging
data (signals) into network frames, both for CAN and other
networks. The result is that several signals are allocated
into message frames with an appropriate static CAN ID to
fulfil these signals’ temporal requirements. This simplifies
the design, development and maintenance of an automotive
system. Using the Volcano tools it is also possible to per-
form a timing analysis of the system, needed at the design
stage to schedule the transmissions of real-time variables in
such a way that their timing constraints are met.

3.4 Static CAN ID specified by standards

Several standards specify the usage of CAN IDs for vari-
ous application domains. For example, the CANopen proto-
col [5] was released in 1995, designed for motion-oriented
machine control networks, and can be found in various ap-
plication domains today, e.g., medical equipment, off-road
vehicles, maritime electronics, public transportation, build-
ing automation etc. The CANopen standards cover applica-
tion layer and communication profile, a framework for pro-
grammable devices, and recommendations for cables and
connectors. The application layer and the CAN-based pro-
files are implemented in software.

Another example is SAE J1939 [20], published by SAE
in 1998, which specifies how messages are defined for en-
gine, transmission and brake systems in truck and trailer
applications. Nowadays, SAE J1939 is widely used in these
applications, and standardised as ISO 11992.

Looking at other application domains, for tractors and
machinery for agriculture and forestry, a SAE J1939-based
ISO standard is used: ISO 11783 [7], and NMEA 2000 R©
[14] defines a SAE J1939/ISO 11783 based protocol for ma-
rine usage.

These standards all restrict the use of message identifiers
by prescribing which identifiers to use for messages carry-
ing specific data.

4 Decoupling CAN ID from CAN PRIO

In this section we describe three CAN schedulers that
decouple the message priority from the message identifier:
TT-CAN, FTT-CAN and Server-CAN.

4.1 TT-CAN

Time-triggered communication on CAN is specified as
TT-CAN, the ISO 11898-4 standard, an extension to orig-
inal CAN. In TT-CAN, the exchange of messages is con-
trolled by the progression of time, and all nodes are fol-
lowing a pre-defined static schedule. One node, the mas-
ter node, is periodically (or on the occurrence of a specific
event) transmitting a specific message, the Reference Mes-
sage (RM), which acts as a reference in time. All nodes
in the system are synchronising with this message, which
gives a reference point in the temporal domain for the static
schedule of the message transactions. This schedule is
based on a time division scheme, where message exchanges
may only occur during specific time slots or in time win-
dows (so called Time Division Multiple Access, TDMA).
Hence, the master’s view of time is referred to as the net-
work’s global time.

4.2 FTT-CAN

Flexible Time-Triggered CAN (FTT-CAN) supports
priority-driven scheduling in combination with time-driven
scheduling. In FTT-CAN, time is partitioned into fixed size
Elementary Cycles (ECs) that are initiated by a special mes-
sage, the Trigger Message (TM). This message contains the
schedule for the synchronous traffic (time-triggered traffic)
that shall be sent within this EC. The schedule is calculated
and sent by a specific node called the master node. FTT-
CAN supports both periodic and aperiodic traffic by divid-
ing the EC in two parts. In the first part, the asynchronous
window, a (possibly empty) set of aperiodic messages are
sent using CAN’s native arbitration mechanism. In the sec-
ond part, the synchronous window, traffic is sent accord-
ing to the schedule delivered in the TM. The synchronous
window can be scheduled according to an arbitrary schedul-
ing policy. Experimental results have been shown for EDF
in [17].

4.3 Server-CAN

Using Server-CAN, as with FTT-CAN, the network is
scheduled by a specialised master node (called M-Server),
partitioning time into ECs. Also, these ECs are initiated by
a specific message, the TM, which is constructed and sent
by the master node. By having a centralised scheduler, var-
ious (also EDF-based) share-driven scheduling policies can
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. Static CAN ID used for
scheduling

Dynamic CAN ID used
for scheduling

Static CAN ID assigned
by tools

Static CAN ID specified
by standards

Objective To provide predictable
real-time message trans-
missions on the CSMA/CR
MAC implemented by
CAN.

Same as “Static CAN ID
used for scheduling” al-
though providing a higher
schedulability bound or in-
creased fairness of non
real-time messages.

To achieve a system opti-
mised with respect to, e.g.,
schedulability and/or mes-
sage response-times.

To allow for interoperabil-
ity between subsystems,
usually application domain
specific.

Usage Academically scrutinised
and nowadays often found
in embedded systems.

Academic. A common application is
found in the automotive
domain, where cars are
characterised by high
manufacturing volumes
and stringent product cost
pressures.

Examples are trucks, trail-
ers, tractors, heavy vehi-
cles etc. that usually are
more “open” for configura-
bility than cars, which in
turn require the usage of
standards.

Overhead on nodes None, as no processing is
required.

Some, as the CAN IDs are
manipulated during run-
time.

Small, due to encoding and
decoding of signals into
message frames.

None, as no processing is
required.

Overhead on
network

None, as no overhead is in-
troduced in the messages
and no protocol specific
messages are sent.

None, as no overhead is in-
troduced in the messages
and no protocol specific
messages are sent.

None, as no overhead is in-
troduced in the messages
and no protocol specific
messages are sent.

None, as no overhead is in-
troduced in the messages
and no protocol specific
messages are sent.

Offline flexibility Yes, as the system de-
signer has full control over
the CAN IDs (although it
might be complex without
assisting tools).

Less compared with
“Static CAN ID used for
scheduling”, due to a
lower number of available
CAN IDs.

Yes, more or less depend-
ing on the tool used.

None, as the standards
have to be followed.

Online flexibility None, as nothing is done
online.

None, although the online
manipulation of CAN IDs
has the potential to provide
a dynamic behaviour.

None, as nothing is done
online.

None, as nothing is done
online.

Facilitating
subsystem
integration

No, as the objective here is
predictability on a message
basis rather than simplify-
ing subsystem integration.

No, and even less com-
pared with “Static CAN ID
used for scheduling”, due
to the lower number of
CAN IDs available to use.

Yes, provided that all sys-
tem details are given to the
tool so that a proper opti-
misation can be made.

Yes, given that all subsys-
tems comply with the stan-
dard.

Table 1. Comparative assessments of CAN IDs in practice.

be implemented. The difference between Server-CAN and
FTT-CAN is that the latter has fixed size ECs whereas when
using Server-CAN the length of an EC is upper-bounded,
but can be shortened depending on the actual messages sent.
In this way, efficient usage of network slack (e.g., when
messages are not sent, or shorter than initially intended) is
provided. Also, Server-CAN does not have windows inside
an EC. Instead, all traffic is scheduled using network access
servers denoted N-Servers.

5 Discussion on subsystem integration

Looking at how CAN IDs are assigned in practice, Ta-
ble 1 outlines the differences among the four approaches
presented in Section 3. Properties evaluated are overhead,

flexibility and support of subsystem integration.
Static and dynamic CAN IDs used for scheduling pur-

poses provide valuable scheduling performance but no in-
herent mechanisms supporting subsystem integration. Us-
ing static CAN IDs there is a strong dependency between
the subsystem and its corresponding set of CAN IDs. Once
several subsystems are integrated, there is a risk of tempo-
ral conflicts caused by the originally assigned priorities of
the messages belonging to the different subsystems. Us-
ing dynamic CAN IDs the situation can even be worse, in
the sense that the number of available CAN IDs is lower
as (commonly) part of the CAN ID is used to dynamically
adjust the message’s priority.

The usage of a tool to optimise CAN ID assignments is
good from an integration point of view, however, the run-
time flexibility is limited as nothing extra (compared with
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. Decoupling using TT-CAN Decoupling using FTT-CAN Decoupling using Server-CAN
Objective To provide a time-triggered session

layer to standard CAN.
To provide flexibility to CAN, al-
lowing for a mix of statically and
dynamically scheduled messages.
Time is partitioned into fixed size
ECs that in turn are partitioned into
time- and event-triggered windows .

To provide a uniform way of
handling message streams on
CAN. Time is partitioned into
dynamic size ECs, where time- and
event-triggered traffic are jointly
scheduled using server-based
techniques.

Usage Although a SAE standard, not
widely used. Found in, e.g., some
automotive concept applications.

Academic and educational use
(robotics).

Academic only (so far).

Overhead on nodes Some, due to the TT-CAN ses-
sion layer (although hardware im-
plementations exist). Higher over-
head on the master node compared
with the other nodes.

Yes, due to the online scheduling
and TM encoding performed by the
master node. Also, some overhead
on every node due to the decoding
of the TM.

Yes, due to the online scheduling
and TM encoding performed by the
M-Server, and on every node due to
the TM decoding at the N-Servers.

Overhead on
network

Yes, one protocol message: The
cyclic transmission of RM. Also,
bandwidth is lost due to the enforce-
ment of TDMA time slots.

Yes, one protocol message: The
cyclic transmission of TM. Also
here bandwidth is lost due to the
fixed size ECs. Moreover, the
length of the EC affects the period-
icity of the EC and in turn the over-
head caused by FTT-CAN on the
network.

Yes, two protocol messages: The
cyclic transmission of TM and
STOP. Also here, as with FTT-
CAN, the length of the EC affects
the overhead.

Offline flexibility High, as message transmissions can
be optimised into time slots.

High. Some messages can be con-
sidered static, for which pre run-
time guarantees can be given.

High, as all message streams can be
encapsulated into N-Servers provid-
ing bandwidth isolation.

Online flexibility No. Yes, FTT-CAN provides admission
control for dynamic adding and re-
moving of message transmissions in
the static window.

Yes, Server-CAN provides full con-
trol over message transmissions us-
ing an admission control for dy-
namic adding, changing and remov-
ing of N-Servers. Also, the online
scheduling allows for implementa-
tion of advanced bandwidth shar-
ing algorithms for an adaptive be-
haviour.

Facilitating
subsystem
integration

Yes, as TDMA provides temporal
partitioning, hence separating sub-
systems in time avoiding interfer-
ence.

Yes, although the static window of
FTT-CAN offers a lower temporal
resolution compared with TT-CAN,
due to the scheduling of messages in
ECs.

Yes, due to the same reasons as for
FTT-CAN.

Table 2. Comparative assessments of approaches decoupling the CAN ID from the CAN PRIO.

native CAN) is done with regards to the transmission of
messages online. Also, the result of the optimisation can be
degraded if some system does not allow for re-assignment
of identifiers (due to, e.g., the usage of legacy and/or pro-
prietary systems).

When conforming to one of the standards presented in
Section 3.4 the situation is better from an integration point
of view. Of course, this requires that all subsystems follow
the same standard, and it might not always be possible to
enforce such a requirement.

Instead, we argue for decoupling the message identifier

from the message priority, since it removes a great obsta-
cle in the context of subsystem integration: A change in
an identifier to make it system-unique would not affect the
scheduling. Such decoupling is partially or totally achieved
using TT-CAN, FTT-CAN or Server-CAN. The differences
among these techniques are outlined in Table 2.

TT-CAN is a pure TDMA approach, allowing for sub-
system integration, although limiting the online flexibility
of the system. FTT-CAN performs the scheduling online.
However, the decoupling of message identifier and mes-
sage priority is only valid for the synchronous window of
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an EC. It is possible to configure FTT-CAN such to only
have a synchronous window, although there is always some
bandwidth potentially lost due to the fixed size ECs and the
lack of a bandwidth reclamation mechanism. The usage of
Server-CAN, on the other hand, completely decouples the
message identifier from the message priority, by scheduling
all messages according to EDF using server-based schedul-
ing techniques. Also, bandwidth is efficiently reclaimed
thanks to the dynamic length ECs. Hence, greatest flexi-
bility is provided using Server-CAN. However, all three ap-
proaches come at a cost in terms of protocol overhead: The
cost of using Server-CAN is evaluated in [15]. Also, note
that TT-CAN and the synchronous usage of FTT-CAN are
optimised for periodic traffic whereas Server-CAN allows
for both periodic and aperiodic traffic. Here, the two for-
mer provides less jitter for periodic traffic compared with
Server-CAN, but do not have the same support for aperiod-
ics.

6 Summary

This paper argues for the importance of decoupling CAN
IDs from CAN PRIOs in the context of subsystem integra-
tion. Three CAN schedulers that allow for this feature are
presented, where we particularly argue for Server-CAN as
a strong candidate due to its combination of flexibility and
full decoupling of CAN ID from CAN PRIO.
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