

PREPRINTS

12th International Workshop on
Real Time Networks RTN’13

Paris, France, July 9, 2013

In conjunction with the 25th ECRTS

http://irt.enseeiht.fr/scharbarg/rtn2013.html

Chairs:

Jean-Dominique Decotignie

CSEM
Jean-Luc Scharbarg

Université de Toulouse – IRIT/INPT/ENSEEIHT
Eduardo Tovar
IPP-HURRAY

Workshop Chairs

Jean-Dominique Decotignie, CSEM, Switzerland

Jean-Luc Scharbarg, Université de Toulouse - IRIT/INPT/ENSEEIHT, France

Eduardo Tovar, IPP-HURRAY, Portugal

Program Committee

Luis Almeida, University of Porto, Portugal

Leandro Buss Becker, Federal University of Santa Catarina, Brazil

Moris Benham, MRTC/Mlardalen University, Vsteras, Sweden

Gianluca Cena, Politecnico di Torino, Italy

Rob Davis, University of York, UK

Christian Fraboul, Université de Toulouse - IRIT/INPT/ENSEEIHT, France

Lucia Lo Bello, University of Catania, Italy

Thilo Sauter, Austria Academy of Science, Austria

Michael Short, Teesside University, UK

Ye-Qiong Song, LORIA, France

Andreas Willig, University of Canterbury, New Zealand

Advance Program

8:30-9:15 Registration

9:15-9:30 Welcome and opening remarks

9:30-11:00 Session 1 - Keynote Talk
Taking up the challenge of a Co-Design approach for Networked Control Systems
in a Wireless Context
Guy Juanole

11:00-11:30 Coffee Break

11:30-13:00 Session 2
PCI Express as a Killer of Software-based Real-Time Ethernet
Rostislav Lisovy, Michal Sojka and Zdenek Hanzalek

Probabilistic timing analysis of a simple network switch: some preliminary
investigations
Michael Short and Muneeb Dawood

On the Gap Between Mathematical Modeling and Measurement Analysis for
Performance Evaluation of the 802.15.4 MAC Protocol
Francois Despaux, Ye-Qiong Song and Abdelkader Lahmadi

13:00-14:30 Lunch

14:30-16:00 Session 3
Calculation of Worst Case Backlog for AFDX Buffers with Two Priority Levels
using Trajectory Approach
Naga Rajesh Garikiparthi, Rodrigo Coelho and Gerhard Fohler

MTU Assignment in a Master-Slave Switched Ethernet Network
Mohammad Ashjaei, Moris Behnam, Luis Almeida and Thomas Nolte

Implementing Virtual Channels in Ethernet using Hierarchical Sporadic Servers
Zahid Iqbal, Luis Almeida and Moris Behnam

16:00-16:30 Coffee Break

16:30-18:00 Panel discussion and closing remarks

Session 1 -Keynote talk

Taking up the challenge of a Co-Design

approach for Networked Control

Systems in a Wireless Context

Guy Juanole
LAAS-CNRS, Toulouse, France

Abstract

The Networked Control Systems are a very important research area
because of their multidisciplinary aspect (Automatic Control, Computer
Science, Communication Network). Here we only consider the aspect
(Automatic Control, Communication Network) by focusing on Wireless
LANs (WLANs) based on a Collision -Free CSMA type MAC protocol (
the collision -free property is got by using priorities which allow to trans-
form a situation, which would be a ”collision situation ” with a strict
CSMA type protocol, into a ”winner-looser(s) situation”; such a protocol
is called the CANlike protocol). The aim of the paper is, by considering
several process control applications distributed on a WLAN, to present
a co-design ,of the frame scheduling of the frames of the process control
applications AND of the controllers of these applications, on the basis of a
bidirectional relation between the Quality of Control (QoC) provided by
the controllers and the Quality of Service(QoS) provided by the schedul-
ing of the frames on the WLAN (relation QoC ← QoS) i-e we have both
the relation QoC → QoS (QoS is QoC driven i-e we have a ”Application
performances aware dynamic QoS adaptation”) and the relation QoS →
QoC (QoC is QoS driven i-e we have a ”Network performances aware dy-
namic QoC adaptation”). The relation QoC → QoS is implemented by
considering hybrid priorities for the frame scheduling(it is the dynamic
part of these priorities which provides this relation QoC → QoS) .The re-
lation QoS→ QoC is implemented on the basis of the delay compensation
method called dominant pole method. Finally we show the interest of the
proposed co-design approach in order to have an efficient control system.

Session 2

PCI Express as a Killer of Software-based
Real-Time Ethernet

Rostislav Lisový, Michal Sojka, Zdeněk Hanzálek
Czech Technical University in Prague,

Faculty of Electrical Engineering
Technická 2, 121 35 Prague 6, Czech Republic
Email: {lisovros,sojkam1,hanzalek}@fel.cvut.cz

Abstract—The time-triggered Ethernet gains in popularity in
many different industrial applications. While several hardware
implementations exist, software implementations are also very at-
tractive for their price-to-performance ratio. The main parameter
that influences the performance of time-triggered protocols is the
transmission jitter, which is greater in software implementations.

In this paper we evaluate one source of transmission jitter
occurring in such software implementations – the PCI Express
bus, which interconnects the CPU, memory and the network
interface card in modern multi-core computers. We show that
the contribution of the PCI Express to the transmission jitter
of Ethernet frames is significant and is in the same order of
magnitude as the scheduling jitter of modern real-time operating
systems. PCI Express latency and jitter are evaluated under
various loads produced by virtual machines running on dedicated
CPU cores. We use the IEEE 1588 feature of the network card
for precise timing measurements.

I. INTRODUCTION

Ethernet-based networks are becoming more and more
popular in industrial communication. This is because it is a
historically well proven technology, it offers high bandwidth
and many real-time (RT) extensions that make the Ethernet
communication deterministic exist. Unfortunately, there is no
single universal real-time Ethernet extension. Several compa-
nies offer their proprietary solutions [1]. Together with the high
price of those solutions, this might be the reason why software-
based real-time Ethernet implementations are so popular [2–6].

We investigate the possibility of implementing a software-
based real-time Ethernet protocol while utilizing the exten-
sive virtualization capabilities of modern x86 hardware. Our
focus is on the commercial-off-the-shelf (COTS) networking
and computing hardware, which is gaining in popularity for
industrial automation, not only because its favorable price
and widespread availability but also because of the familiar
environment when used with any of the real-time Linux
derivatives.

One way of achieving deterministic medium access is to
use time division multiple access method employed by the so
called time-triggered (TT) protocols [7, 8]. TT protocols need
to maintain a notion of global time in order to synchronize
the transmission in all nodes. One way to achieve this is
to use Precision Time Protocol (PTP), standardized in IEEE
1588 [9], that allows one to synchronize the time with sub-
microsecond precision over the Ethernet. The advantages of TT
networks are determinism and trivial evaluation of the worst-
case behavior. A disadvantage is inefficient use of available

bandwidth, because temporarily unused slots must be either
retained in the schedule or complex rules for their skipping
must be introduced. In addition, if the used technology exhibits
transmission (TX) jitter1, which is common with software-
based solutions, it is necessary to insert large inter-frame gaps
that decrease bandwidth utilization even more. Examples of
TT protocols are TTEthernet [8], ProfiNet IRT [10] or FlexRay
[11].

Some of the drawbacks of TT protocols are mitigated
by event-triggered protocols. There, the medium access is
controlled by the reception of specific messages from other
nodes. For example Ethernet Powerlink [5] has a managing
node that controls it when so called controlled nodes can access
the medium. In Node Ordered Protocol [12], the medium
access is determined by the predefined order of nodes. Another
principle is used in Avionics Full-Duplex Switched Ethernet
(AFDX) [4], which employs bandwidth limiting to ensure that
the network is not overloaded and latencies remain low.

For today’s industry, determinism of the network communi-
cation is necessary but not sufficient. The efficiency of resource
usage is also important but it contradicts the demand for
determinism. Therefore, there are attempts to integrate multiple
subsystems of different criticality in a single platform to
improve the efficiency. This contrasts to the federated principle
applied so far, where every subsystem was implemented as a
separate node. The examples of modern integrated architec-
tures are IMA [13] in avionics and AUTOSAR [14] in the
automotive domain. One of the means for efficient integration
of subsystems is the use of virtualization. Here, hypervisors
are used to provide strict separation of independent subsystems
[15] allowing one to build a mixed-criticality system.

In the past, it was believed that the biggest source of
TX jitter occurring in software implementations of the real-
time Ethernet was the operating system’s (OS) scheduler [3].
With appropriate hardware and modern RT operating systems,
the worst-case scheduling latencies are below 30µs [16].
Nowadays, with the advent of multi-core CPUs, it is possible
to dedicate one or more cores for network processing and
completely eliminate the non-determinism of the OS scheduler.
We have performed this by using a NOVA microhypervisor
[17]. We isolate one CPU from all unrelated activities such as
timer interrupts. This is not yet possible with standard Linux
and their virtualization platforms such as KVM. Moreover, the

1Transmission jitter is the difference between maximum and minimum
deviation from the intended transmission time.

minimalist design of NOVA, together with a small memory
footprint of our network processing code, ensures that all the
network processing code and related data can be fetched from
the CPU’s private level-2 cache memory without interference
caused by memory traffic from other cores. Additionally, the
isolation and fault-containment properties of the NOVA system
make it suitable for use in safety-critical environments, which
would be impossible for systems such as Linux or RTAI,
where a huge amount of code (Linux kernel) runs in the most
privileged CPU mode.

We believed that our implementation outlined in the pre-
vious paragraph would provide very good performance, espe-
cially in terms of TX jitter figures. To our surprise, the real
jitter was greater than 10µs, which was comparable to other
Linux-based solutions found in the literature. Therefore, we
decided to investigate the cause of it.

The contributions of this paper are: We evaluate the prop-
erties of the PCI Express bus (PCIe), which interconnects the
CPU, memory and the network interface card (NIC). We show
that the contribution of the PCIe to the TX jitter of Ethernet
frames is significant. PCIe latency and jitter are evaluated
under various loads produced by virtual machines running
on other CPU cores. We use the IEEE 1588 feature of the
NIC for precise timing measurements. Our findings are useful
for all SW-based real-time protocols implemented on modern
x86 hardware. For time-triggered networks our results can be
used to determine the proper size of inter-frame gaps. For
event-triggered networks, the TX jitter influences the timing
precision, which might be an important parameter for many
applications.

The paper is structured as follows: After reviewing the
related work in Section II, we describe the architecture of
modern computers and of our hardware and software used for
measurements in Section III. The results of our experiments
are presented in Section IV and we conclude with Section V.

II. RELATED WORK

Many software implementations of real-time Ethernet exist.
Probably, the most well known is RTnet [18]. It is a generic
networking stack for RTAI and Xenomai – real-time extensions
of Linux. As RTnet is implemented as a kernel module sharing
an address space with the Linux kernel, it is not well suited
for safety-critical applications.

Grillinger, Ademaj, Steinhammer, et al. [3] describe soft-
ware implementation of the Time-Triggered Ethernet (TTE)
implemented in RTAI. The authors evaluated the achieved
latencies and jitters and found them in the order of tenths of
microseconds. They claim that the main bottleneck of their
implementation is the interrupt latency that influences the
precision of software packet timestamping and that hardware
time stamping would help. In this paper, we show that despite
the fact that hardware timestamping is used, the PCI Express
causes significant jitter.

Bartols, Steinbach, Korf, et al. [19] analyzed the latencies
of the TTE hardware by using a Linux kernel with rt preempt
patches. They implemented software-based timestamping of
the packets and report that the precision of their measurements
is in units of microseconds. Since the system used for their

measurement was based on a PCI Express bus, it is question-
able whether the precision was really so low. We show that a
PCI Express can introduce jitter over 10µs.

Cena, Cereia, Bertolotti, et al. [20] describe a software
implementation of the IEEE 1588 time synchronization pro-
tocol based on RTnet. The accuracy of their implementation
is assessed by generating a signal on a parallel port of a
PC and measuring the properties of that signal. Since the
parallel port is connected over a slow LPC bus as detailed in
Section III-A, the jitter of the parallel port’s generated signal
is also influenced by the PCI Express jitter, which can be quite
high.

Pure software implementation of the OpenPOWERLINK,
open source Industrial Ethernet solution, are described in [5].
Safety-certifiable software implementation of the AFDX stack
and the achieved latencies are analyzed in [4]. None of those
papers give sufficient details on the CPU-NIC interconnect.

III. ARCHITECTURE

A. Today’s PC architecture

The architecture of the modern PC and of many industrial
computers is determined by the architecture of the PCI Express
(PCIe) bus [21]. The central component called a root complex
connects the CPU cores with memory controllers and other
peripherals (Fig. 1). It is usually integrated on the same chip as
the CPU. The other components of the PCIe topology are end-
points, which usually represent devices, and switches, which
are responsible for interconnecting all of the endpoints with
the root complex. All those components are interconnected
via PCIe links that are formed by one or more lanes. The
more lanes the higher bandwidth of the link. N -lane link is
denoted as xN . All PCIe communication is packet-based and
packets are routed from the root complex via switches to the
destination endpoints and back. Since one link can transfer
only one packet in one direction at a time, packets may be
delayed by waiting for a free link.

Root complex typically has several PCIe links. In PCs,
one is dedicated to a graphics adapter, another is connected
to a so called platform controller hub [22] (or chipset in
short). It contains PCIe switch(es) interconnecting different
PCIe endpoints and conceivably a bridge to the legacy PCI bus.
PCH also integrates other controllers such as USB, SATA, LPC
(low pin count interface – used to connect legacy peripherals
such as a parallel port or a PS/2 keyboard). Those additional
controllers appear to the operating system as PCI devices.
Besides PCI devices, PCH also contains non-PCI devices such
as high-precision event timers (HPET).

Due to the packet-based character of the PCIe communica-
tion, sharing of PCI links between devices and several sources
of latency in the PCIe communication protocol [23] (e.g. the
need for acknowledging received packets), the total latency of
PCIe communication can be relatively high compared to an
older parallel PCI bus.

B. Intel 82576 Gigabit Ethernet Controller

In our experiments, presented in Section IV, we used a
modern network interface card (NIC) based on Intel’s 82576
Gigabit Ethernet controller. The main reason we chose this

Core 0

Root Complex RAM DDR3

PCIe
Graphics
Adapter

PCIe
16 lanes
16 Gb/s

CPU

DMI / PCIe
PCH

SATA

USB

PCIe

LPC

Core 1 Core 2 Core 3

Serial / Parallel
port; Keyboard,
Mouse PS/2

HPET

PCIe
Switch

PCIe
Switch

PCIe to PCI
Bridge

PCIe
end-
points

PCIe
Switch

Figure 1. Typical architecture of a modern PC

COTS NIC was the built-in hardware support for the IEEE
1588 standard. This support was used for precise measure-
ments of the PCIe latencies in this paper. The NIC contains
two Ethernet controllers but in our experiments we use only
one of them.

The key features supporting the implementation of PTP on
this device are an adjustable clock and hardware timestamping.

The adjustable clock is implemented as a 64-bit up counter.
The readout is possible through two 32-bit registers (the higher
half of the value is latched when the lower half is read). The
clock is periodically incremented. Both, the period and the
increment are configurable. The increment period can be set
as a multiple of 16 ns.

The hardware timestamping feature allows one to capture
timestamps (i.e. the value of clock described above) of the
received PTP packets and of arbitrary transmitted packets.
Only one RX and TX timestamp may be stored at the same
time in dedicated pairs of 32-bit wide registers. The hardware
responsible for timestamping is as close as possible to the
PHY circuit, which performs the conversion between logical
signals and the physical layer. This ensures a high precision
of the captured timestamps, which are taken immediately after
transmitting/receiving the Ethernet Start of frame delimiter.

C. Software architecture

Our longer-term goal is to build a software-based time-
triggered Ethernet stack on COTS x86 computers with a NOVA
microhypervisor. While this stack is not yet implemented,
we outline its planned software architecture in this section,
because it is the same as in our experimental setup for this
paper.

The software architecture is depicted in Figure 2. The
lowest level consists of a NOVA microhypervisor [17]. It is
responsible for hardware resource management and scheduling
and it is the only component that runs in privileged processor
mode (kernel mode). Its very small trusted computing base (9

CPU 0 CPU 1 CPU 2 CPU 3

NOVA microhypervisor

VMM VMM VMM

RTEth
+ NIC
driver

VM 1 VM 2 VM 3

VMM

VM 4

Kernel mode

User mode

Hardware

Figure 2. Software architecture of our implementation

kLoC) together with the virtualization support makes it a very
interesting solution for safety-critical applications. Note that
in NOVA, device drivers are not the part of the kernel.

NOVA can execute applications in two modes: native mode
and virtual machines (VM). Virtual machine monitor (VMM)
is a NOVA application running in the user mode comprising
the native part that emulates the PC platform and the VM part
that executes the VM code.

The code implementing the real-time Ethernet functionality
is placed in RTEth application running in the user mode. It
is a native NOVA application and besides other things, it
contains the device driver for the NIC. The application is
responsible for managing the transmission and reception of
the Ethernet frames according to the predefined schedule. It
is important to note, that the application does not touch (i.e.
copy) the data to be transmitted or received. The data to be
transmitted is stored in the main system memory directly by
the application that produces it (e.g. a virtual machine). This
application only notifies the RTEth application that the data is
ready in the memory and RTEth instructs the NIC to transmit
it. A similar principle is applied for packet reception. This is
possible because of the use of the shared memory between
the RTEth application and its clients. The implementation is
simplified by the use of IOMMU.

The RTEth application itself is pinned to one CPU core,
which is reserved solely for it. The size of application’s code
and data is 40 KiB, which means it fits into the CPU’s 256 KiB
of L2 cache. Note that the kernel code used for inter-process
communication and scheduling is less than 2 KiB in size and
it fits into the cache together with the application. This means
that the application does not suffer from interference caused by
memory traffic from other cores in the system. This reduces the
execution time jitter of the application and makes its execution
more predictable.

D. Testbed setup

The computer used for the evaluation was a common PC
computer equipped with an Intel i5-3550 CPU (IvyBridge, 4
cores, no hyper-threading), 4 GiB of RAM and a network
add-on card with an Intel 82576 GbE controller (NIC in the
following). The NIC is equipped with an x4 PCIe connector.

The computer comprises two PCIe slots. One of them is
an x16 slot connected directly to the root complex inside the
CPU, the other, an x4 slot, is connected to the chipset (PCH).

+-00.0 Intel Corp. Ivy Bridge DRAM Controller
+-01.0-[01]--+-00.0 Intel Corp. 82576 Gigabit Network Connection
| \-00.1 Intel Corp. 82576 Gigabit Network Connection
+-02.0 Intel Corp. Ivy Bridge Graphics Controller
+-14.0 Intel Corp. Panther Point USB xHCI Host Controller
+-16.0 Intel Corp. Panther Point MEI Controller #1
+-19.0 Intel Corp. 82579LM Gigabit Network Connection
+-1a.0 Intel Corp. Panther Point USB Enhanced Host Controller #2
+-1b.0 Intel Corp. Panther Point High Definition Audio Controller
+-1d.0 Intel Corp. Panther Point USB Enhanced Host Controller #1
+-1e.0-[02]--
+-1f.0 Intel Corp. Panther Point LPC Controller
+-1f.2 Intel Corp. Panther Point 6 port SATA AHCI Controller
\-1f.3 Intel Corp. Panther Point SMBus Controller

Figure 3. Logical PCIe topology as shown by lspci -tv command

For the purpose of this paper we call the former the GFX slot
and the latter the IO slot.

Besides experimenting with the NIC, we also utilized
the SATA controller to generate interfering PCIe traffic. We
connected a common rotating hard drive with a SATA 3.0
interface to one of the on-board SATA ports.

We tried to extract the physical PCIe topology of our
system, but it does not provide the relevant PCIe capabilities to
do that. The logical PCI topology presented to the operating
system is flattened and does not correspond to the physical
topology. Nevertheless, Figure 3 shows the output of the
lspci tool. In this case, the NIC was connected to the GFX
slot, which is denoted as PCI bus number 1 ([01] in the
figure). When the NIC was connected to the IO slot, the
corresponding entries appeared on bus 2 ([02] in the figure).

In our measurements, we did not identify any anomalies
that could be caused by System Management Interrupts, so
we did not attempt to eliminate or mitigate them.

IV. EVALUATION

This section presents the results of our measurements of the
PCI Express latencies. We measured two types of latencies in
our experiments: the latency of the NIC clock register readout
and the hardware TX latency. The experiments are described
in more details in the following subsections.

All measurements were performed under several different
loads of the system:

• No load: No intentional load was placed on the PCIe
or CPU.

• CPU load: Three Linux 3.6 VMs running on dedi-
cated CPUs (VM1-3 in Fig. 2) run a Sysbench CPU
benchmark2.

• Disk load: One Linux 3.6 VM with direct ac-
cess to the SATA controller (connected to the PCIe
bus) was run on a dedicated CPU. This VM was
executing a dd if=/dev/sda of=/dev/null
bs=8M count=1 iflag=direct command in
an infinite loop. The size of the block (8 MB) was
chosen on purpose to fit into the on-disk cache. This

2Available from http://sysbench.sourceforge.net/; the command was
sysbench --test=cpu --cpu-max-prime=999999999 run
--num-threads=1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 2 3 4 5 6 70

N
u
m
b
e
r

o
f

m
e
a
s
u
r
e
m
e
n
t
s

Latency (microseconds)

IO PCIe slot
GFX PCIe slot

Figure 4. Latency profile of the NIC clock register readout (for NIC in two
different PCIe slots). System with no load.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 2 3 4 5 6 70

N
u
m
b
e
r

o
f

m
e
a
s
u
r
e
m
e
n
t
s

Latency (microseconds)

IO PCIe slot
GFX PCIe slot

Figure 5. Latency profile of the NIC clock register readout (for NIC in two
different PCIe slots). System with CPU load.

way, the disk traffic consumes the maximum possible
PCIe bandwidth.

• Combined load: A combination of disk and CPU load
– one VM with disk load and two VMs with CPU
load.

• Disk + serial load: The same as disk load but the
output of the dd command (about 100 characters) was
sent to the serial line.

Besides changing the load, we also changed the PCIe slot
where the NIC was plugged in during the experiment (the GFX
and IO PCIe slot).

We present the results of some experiments in the form
of a latency profile. This is a cumulative histogram of the
measured values with a reversed vertical axis in log scale. The
advantage over a plain cumulative histogram is that the worst-
case latencies are magnified by the log scale (see for instance
lower right hand corner of Fig. 4).

A. Latency of NIC clock register readout

In this experiment, we measured the time spent by reading
the clock register located in the NIC. The resulting latency
was calculated as the difference between the values obtained
from two consecutive reads of the whole 64-bit clock register
(tclk2−tclk1 in Fig. 6). Despite the fact we do not exactly know
how big a fraction of the total time was spent in the NIC’s
internal logic and what was caused by the PCIe latencies, we
believe that the measured time represents the lower bound of
the communication latencies between the CPU and the NIC.

Figure 4 shows the values measured for the no load
scenario whereas Figure 5 contains values measured with CPU

http://sysbench.sourceforge.net/

NIC

CPU
NIC clock
readout

NIC clock
readout

tclk1 tclk2

tTX

PCIe
commu-
nication

Frame processing by the NIC

Time

RAM

Figure 6. Explanation of the measured latencies

load. It can be seen that there are significant differences in
the latency and jitter figures between the PCIe slots. We
summarize the measured values in the table below:

Avg. latency Jitter
Slot No load CPU load No load CPU load
GFX 1.38µs 1.41µs 5.31µs 5.76µs
IO 3.11µs 3.12µs 1.87µs 2.21µs

Figure 7 shows the results of the disk + serial load scenario
for the NIC in the IO slot. There are periodic spikes of
increased latency. Although we first thought that the spikes
are caused by disk transfers, it turned out that they are brought
about by communication over the serial port that we used as
a console for the VM. In NOVA, the serial driver uses polling
to wait for an empty TX buffer register and this results in a
high PCIe bus load. In production systems, polling is avoided
whenever possible but sometimes device drivers have to use
polling to work around hardware bugs [24].

A careful reader can also identify a small increase in
latencies (cca. 0.5µs) with a 40 ms period in Figure 7. This
was caused by updating the text screen in the VGA video RAM
of the integrated graphics adapter. If the VGA is configured in
NOVA, the screen of the foreground application gets copied
to the VGA memory 25 times per second. A similar increase
of latencies can also be seen in Fig. 4. If the external graphics
adapter and/or fully graphical mode was used, the latencies
could be much worse [25].

B. Hardware NIC TX latency

In this experiment, we measured the time needed by the
NIC to start the transmission of a frame. More precisely, we
measured the time between the moment when the NIC got the
information about a new frame to send (setting the NIC TX
descriptor register to point to the ready packet descriptor) and
the timestamp captured by the NIC while the frame was being
transmitted. During the transmission the NIC autonomously
fetches the frame payload from the RAM (via PCIe).

The results presented in this section are valid for 166 byte
long frames. When we increased the frame length to 1 KiB,
the latency increased by 1.5µs in both the GFX and IO slots.

Figures 8 and 9 show the latency profiles of the TX
latencies under different loads in the GFX and IO slots,
respectively. The latencies were calculated as a difference
between the TX timestamp and the value read from the NIC
clock register just before setting the NIC TX descriptor register

Figure 7. NIC clock readout latency in disk + serial load scenario (NIC was
in the IO slot)

(tTX − tclk2 in Fig. 6). The latencies for the GFX slot and IO
slot ranged from 5µs to 14µs and from 8.5µs to 19.5µs,
respectively.

The distribution of latencies in time is shown in Figure 10.
In the depicted experiment, the periods of no load and disk
load scenarios were interleaved with a period approximately
equal to 60 seconds. It can be seen that the distribution of the
increased latencies in time is uniform.

The precision of our measurement method is influenced
by the following factors: The end of the measured interval
is captured with very high precision (hardware timestamp),
but the start of the interval (NIC clock readout) suffers from
an error in the range of several microseconds as shown in
Section IV-A. If we wanted to decrease the error, we would
need another clock synchronised with an NIC clock having a
negligible readout time.

It is interesting to see that even a sole CPU load on
unrelated CPUs caused big increases in latencies. The reason
is that the CPU load makes the Linux scheduler to be invoked
frequently. This resulted in about 1500 timer interrupts per
second per VM. As NOVA uses HPET timers as a backend
for all virtual timers, the communication between the CPU and
HPET, located in the chipset, has an influence on the PCIe bus
and, therefore, also on the NIC latencies.

The worst latencies were achieved for the disk + serial load
although the sole disk load exhibits a low average latency. As
mentioned above, this is caused by polling in the serial port
driver. In summary, the jitter of the PCIe latency is similar for
both slots and is approximately 10µs.

V. CONCLUSION

With hardware support for IEEE 1588, it is possible
to synchronize NIC clocks with sub-microsecond precision.
However, if one wants to schedule the Ethernet traffic in the
software, as many popular real-time Ethernet software stacks
do, the achieved frame transmission precision is much worse.
It is believed that the main cause of the transmission jitter is the

10
0

10
1

10
2

10
3

10
4

10
5

10
6

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u
m
b
e
r

o
f

m
e
a
s
u
r
e
m
e
n
t
s

Latency (microseconds)

Disk load + Serial
Combined load

Disk load
CPU load
No load

Figure 8. Latency profiles of the frame transmission on an Intel 82576 GbE controller for different PCIe and system loads (an NIC plugged into the GFX
PCIe slot)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u
m
b
e
r

o
f

m
e
a
s
u
r
e
m
e
n
t
s

Latency (microseconds)

Disk load + Serial
Combined load

Disk load
CPU load
No load

Figure 9. Latency profiles of the frame transmission on an Intel 82576 GbE controller for different PCIe and system loads (an NIC plugged into the IO PCIe
slot)

Figure 10. No load and disk load scenarios. Latencies calculated as tTX −
tclk2.

scheduler of the operating system. In this paper, we identified
another often neglected source of the transmission jitter, which
is the PCI Express bus. We measured its contribution to the
overall transmission jitter and found it to be around 10µs. This
value is in the same order of magnitude as the scheduling jitter
of modern real-time operating systems.

As for our future work, we will look at improving the
PCI Express induced jitter by using PCI Express QoS features
such as isochronous virtual channels mentioned in [21]. We
could not use them in this work, because our NIC does not
support them. We plan to use the NetFPGA [26] platform to
experiment with those.

ACKNOWLEDGMENT

The authors would like to thank Zoltan Fodor from Intel
for providing the network cards for experiments.

The research leading to these results received funding from
the ARTEMIS Joint Undertaking under the grant agreement
no 295354 and from the Grant Agency of the Czech Republic
under the Project GACR P103/12/1994.

REFERENCES

[1] M. Felser, “Real time ethernet: standardization and
implementations”, in Industrial Electronics (ISIE), 2010
IEEE International Symposium on, 2010, pp. 3766–
3771. DOI: 10.1109/ISIE.2010.5637988.

[2] J. Kiszka, B. Wagner, Y. Zhang, and J. Broenink, “RTnet
– a flexible hard real-time networking framework”, in
Emerging Technologies and Factory Automation, 2005.
ETFA 2005. 10th IEEE Conference on, (Catania, Italy),
Sep. 12–22, 2005. DOI: 10.1109/ETFA.2005.1612559.

[3] P. Grillinger, A. Ademaj, K. Steinhammer, and H.
Kopetz, “Software implementation of a time-triggered
ethernet controller”, in Factory Communication Systems,
2006 IEEE International Workshop on, IEEE, pp. 145–
150. DOI: 10.1109/WFCS.2006.1704143.

[4] I. Khazali, M. Boulais, and P. Cole, “AFDX soft-
ware network stack implementation—practical lessons
learned”, in Digital Avionics Systems Conference, 2009.
DASC’09. IEEE/AIAA 28th, IEEE, 2009, 1–B. DOI: 10.
1109/DASC.2009.5347574.

[5] J. Baumgartner and S. Schoenegger, “POWERLINK and
real-time Linux: A perfect match for highest perfor-
mance in real applications”, in Twelfth Real-Time Linux
Workshop, Nairobi, Kenya, 2010.

[6] J. Loeser and H. Haertig, “Low-latency hard real-time
communication over switched Ethernet”, in Real-Time
Systems, 2004. ECRTS 2004. Proceedings. 16th Euromi-
cro Conference on, 2004, pp. 13–22. DOI: 10 . 1109 /
EMRTS.2004.1310992.

[7] A. Ademaj and H. Kopetz, “Time-triggered ethernet
and IEEE 1588 clock synchronization”, in Precision
Clock Synchronization for Measurement, Control and
Communication, 2007. ISPCS 2007. IEEE International
Symposium on, IEEE, 2007, pp. 41–43. DOI: 10.1109/
ISPCS.2007.4383771.

[8] H. Kopetz, A. Ademaj, P. Grillinger, and K. Stein-
hammer, “The time-triggered ethernet (TTE) design”,
in Object-Oriented Real-Time Distributed Computing,
2005. ISORC 2005. Eighth IEEE International Sympo-
sium on, IEEE, 2005, pp. 22–33. DOI: 10.1109/ISORC.
2005.56.

[9] J. C. Eidson, Measurement, Control, and Commu-
nication Using IEEE 1588, 1st. Springer Publish-
ing Company, Incorporated, 2010, ISBN: 184996565X,
9781849965651.

[10] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet io irt
message scheduling with temporal constraints”, Indus-
trial Informatics, IEEE Transactions on, vol. 6, no. 3,
pp. 369–380, 2010, ISSN: 1551-3203. DOI: 10.1109/TII.
2010.2052819.

[11] FlexRay Consortium et al., “Flexray communications
system”, Protocol Specification Version, vol. 2, 2005.

[12] L. Chanjuan, N. McGuire, and Z. Qingguo, “A new real-
time network protocol-node order protocol”, in Proceed-
ings of eleventh real-time Linux workshop, Open-Source
Automation Development Labs, 2009, pp. 105 –109.

[13] C. Watkins and R. Walter, “Transitioning from federated
avionics architectures to Integrated Modular Avionics”,
in Digital Avionics Systems Conference, 2007. DASC

’07. IEEE/AIAA 26th, 2007, DOI: 10.1109/DASC.2007.
4391842.

[14] AUTOSAR, Specification of operating system, R4.0 rev
3, Nov. 2011. [Online]. Available: http://www.autosar.
org/download/R4.0/AUTOSAR SWS OS.pdf.

[15] C. Baumann, T. Bormer, H. Blasum, and S. Tverdy-
shev, “Proving memory separation in a microkernel by
code level verification”, in Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops
(ISORCW), 2011 14th IEEE International Symposium
on, 2011, pp. 25–32. DOI: 10.1109/ISORCW.2011.14.

[16] C. Emde. (Oct. 2010). Long-term monitoring of ap-
parent latency in preempt rt Linux real-time systems,
OSADL, [Online]. Available: https : / /www.osadl .org/
fileadmin/dam/articles/Long- term-latency-monitoring.
pdf (visited on 04/2013).

[17] U. Steinberg and B. Kauer, “NOVA: a microhypervisor-
based secure virtualization architecture”, in Proceedings
of the 5th European conference on Computer systems,
ser. EuroSys ’10, Paris, France: ACM, 2010, pp. 209–
222, ISBN: 978-1-60558-577-2. DOI: 10.1145/1755913.
1755935.

[18] J. Kiszka. (Apr. 3, 2013). RTnet, [Online]. Available:
http://www.rtnet.org/.

[19] F. Bartols, T. Steinbach, F. Korf, and T. C. Schmidt,
“Performance analysis of time-triggered ether-
networks using off-the-shelf-components”, in
Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2011
14th IEEE International Symposium on, IEEE, 2011,
pp. 49–56. DOI: 10.1109/ISORCW.2011.16.

[20] G. Cena, M. Cereia, I. Bertolotti, S. Scanzio, A. Valen-
zano, and C. Zunino, “A software implementation of
IEEE 1588 on RTAI/RTnet platforms”, in Emerging
Technologies and Factory Automation (ETFA), 2010
IEEE Conference on, 2010, pp. 1–8. DOI: 10 . 1109 /
ETFA.2010.5640955.

[21] PCI Special Interest Group, PCI Express Base Specifi-
cation, Revision 2.1. PCI-SIG, 2009.

[22] Intel, Intel R© 7 series / C216 chipset family platform
controller hub (PCH) datasheet, 326776-003, Jun. 2012.
[Online]. Available: http://www.intel.com/content/dam/
www / public / us / en / documents / datasheets / 7 - series -
chipset-pch-datasheet.pdf (visited on 04/2013).

[23] K. Yogendhar, V. Thyagarajan, and S. Swaminathan.
(May 21, 2007). Realizing the performance potential
of a PCI-Express IP, [Online]. Available: http://www.
design - reuse . com / articles / 15900 / realizing - the -
performance-potential-of-a-pci-express-ip.html.

[24] Freescale Semiconductor, MPC5200 (L25R) errata,
Rev. 5, ATA interrupt is not affected by FIFO errors,
Dec. 2011, ch. 2.1. [Online]. Available: http : / /www.
freescale . com / files / 32bit / doc / errata / MPC5200E . pdf
(visited on 04/2013).

[25] M. Cereia, I. Bertolotti, and S. Scanzio, “Performance
of a real-time ethercat master under linux”, Indus-
trial Informatics, IEEE Transactions on, vol. 7, no. 4,
pp. 679–687, 2011, ISSN: 1551-3203. DOI: 10.1109/TII.
2011.2166777.

[26] NetFPGA. (2013). NetFPGA, [Online]. Available: http:
//netfpga.org/ (visited on 04/2013).

http://dx.doi.org/10.1109/ISIE.2010.5637988
http://dx.doi.org/10.1109/ETFA.2005.1612559
http://dx.doi.org/10.1109/WFCS.2006.1704143
http://dx.doi.org/10.1109/DASC.2009.5347574
http://dx.doi.org/10.1109/DASC.2009.5347574
http://dx.doi.org/10.1109/EMRTS.2004.1310992
http://dx.doi.org/10.1109/EMRTS.2004.1310992
http://dx.doi.org/10.1109/ISPCS.2007.4383771
http://dx.doi.org/10.1109/ISPCS.2007.4383771
http://dx.doi.org/10.1109/ISORC.2005.56
http://dx.doi.org/10.1109/ISORC.2005.56
http://dx.doi.org/10.1109/TII.2010.2052819
http://dx.doi.org/10.1109/TII.2010.2052819
http://dx.doi.org/10.1109/DASC.2007.4391842
http://dx.doi.org/10.1109/DASC.2007.4391842
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf
http://dx.doi.org/10.1109/ISORCW.2011.14
https://www.osadl.org/fileadmin/dam/articles/Long-term-latency-monitoring.pdf
https://www.osadl.org/fileadmin/dam/articles/Long-term-latency-monitoring.pdf
https://www.osadl.org/fileadmin/dam/articles/Long-term-latency-monitoring.pdf
http://dx.doi.org/10.1145/1755913.1755935
http://dx.doi.org/10.1145/1755913.1755935
http://www.rtnet.org/
http://dx.doi.org/10.1109/ISORCW.2011.16
http://dx.doi.org/10.1109/ETFA.2010.5640955
http://dx.doi.org/10.1109/ETFA.2010.5640955
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/7-series-chipset-pch-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/7-series-chipset-pch-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/7-series-chipset-pch-datasheet.pdf
http://www.design-reuse.com/articles/15900/realizing-the-performance-potential-of-a-pci-express-ip.html
http://www.design-reuse.com/articles/15900/realizing-the-performance-potential-of-a-pci-express-ip.html
http://www.design-reuse.com/articles/15900/realizing-the-performance-potential-of-a-pci-express-ip.html
http://www.freescale.com/files/32bit/doc/errata/MPC5200E.pdf
http://www.freescale.com/files/32bit/doc/errata/MPC5200E.pdf
http://dx.doi.org/10.1109/TII.2011.2166777
http://dx.doi.org/10.1109/TII.2011.2166777
http://netfpga.org/
http://netfpga.org/

Probabilistic timing analysis of a simple network
switch: some preliminary investigations

Michael Short and Muneeb Dawood
Electronics & Control Group / Technology Futures Institute,

Teesside University,
Middlesbrough, UK.

{m.short, m.dawood}@tees.ac.uk

Abstract—In this paper the timing properties of a single switch
LAN are analyzed. The analysis is based upon previous work to
analyze the synchronous busy period of a message set assuming
FIFO buffering is employed. However in this paper the real-time
traffic (periodic and sporadic) is also subject to random interference
from other frames, and a probabilistic stance is taken. Some
interesting observations are made based upon our initial
investigations, and preliminary algorithms are proposed to estimate
the worst case queuing delays at source nodes and switch output
ports assuming some knowledge of the (mean) interference levels are
known. The work was principally motivated by the need for easy-to-
apply probabilistic timing analysis in some building and home
automation implementations, which are described in the paper; it
may also be applicable to certain industrial contexts. Future work
will consider more complex and less restrictive scenarios including
multiple switch hierarchical networks.

Keywords—Stochastic timing analysis; Network switch; Home
and building automation; Smart grids; Traffic models.

I. INTRODUCTION
Recent trends have seen an increase in the use of packet-

switching technologies for the implementation of simple
distributed (and possibly embedded) networks for sensing and
control applications [1][2]. Providing guarantees of timely
delivery in packet-switched networks is a complicated
problem, as the worst-case delays incurred across multiple
hops in the network must be derived. Of course it is possible to
employ packet scheduling techniques, e.g., Earliest Deadline
First (EDF) [3]. This can simplify the overall analysis problem,
and by having appropriate admission controls a flexible yet
predictable network may be implemented.

On the other hand, in some applications (e.g. home and
building automation), the use of specific packet scheduling
algorithms may not be practical since many standard packet-
switching network components and technologies only support
simple First Come First Served (FCFS) scheduling. Previous
work has examined the timing properties of networks
scheduled using FCFS under the assumption that traffic is
implemented as a number of periodic streams [1][2]. For
reasons discussed in [2], it can become very complex when
applying techniques such as network calculus when traffic is
periodic and FCFS is employed. In this paper, we wish to
analyze the timing properties of simple packet switched LANs
(using techniques similar to those of [2]) in which the real-time

traffic is periodic/sporadic but also experiences random
interference from other frames. Since the interference is
random, probabilistic timing guarantees are appropriate; in this
article we report some initial investigations and findings. The
remainder of the paper is structured as follows. In Section II,
our motivation is discussed. Section III presents our
assumptions on the network topology and traffic models, and
Section IV discusses our preliminary work on probabilistic
calculation of queuing delays and buffer sizes. Section V
discusses areas for future improvements.

II. MOTIVIATION: ICT ARCHITECTURES FOR ENERGY
POSITIVE NEIGHBORHOODS

Loosely speaking, an Energy Positive Neighborhood (EPN)
is one in which more energy is produced with renewable
energy sources than is consumed at the same area (on the
average) over a large enough period of time. To achieve the
goal of an EPN, there are many socio-economic and technical
issues to be dealt with, and the authors are currently involved
in the EU-funded IDEAS1 project to investigate solutions to
some of these problems. In this paper, we are interested in the
non-functional (timing) requirements that an information and
communication technology (ICT) based decision support
system for residents, businesses and energy providers in an
EPN is likely to possess. In this respect, a key technological
concept required to enable an EPN is the ‘smart grid’: a
distribution network that not only allows for the physical
transfer of energy (usually electricity but not necessarily so),
but also supports ICT interfaces that enable information
exchange related to energy supply/demand availability and
pricing. The main components and network infrastructure that
we envisage will be required for an EPN is as shown in Fig. 1.

At the heart of the infrastructure is the EPN service
provider – this is a not-for-profit organizational and regulatory
body that plays a similar role to the Independent System
Operator (ISO) in traditional electricity generation and
distribution markets [4]. However, the EPN service provider
also extends the duties of the ISO (principally safety and
availability of the network and management of Energy Trading
(ET) activities) into several key areas to help achieve the main
goal of the EPN.

1 http://www.ideasproject.eu/

Fig. 1. Envisioned overview of the network infrastructure for an EPN.

These key areas include the maximization of renewable
energy resources through both reactive and predictive
optimization of the energy transfer within the distribution
network (e.g. generator settings), Supply and Demand
Prediction (SDP) and Demand Side Management (DSM). The
EPN service provider may have to communicate with multiple
Energy Companies (ECs), equipment for energy generation and
distribution, residential homes and small businesses, and also
wider Internet services such as weather forecasting and
interactions with national energy markets. With respect to the
criticality and timing constraints for traffic within the
envisioned EPN infrastructure, three required classes of service
can be identified:

1) Hard Real-Time: This class of traffic relates mainly to
the management of critical energy generation and distribution
infrastructure; although the traffic volume may be fairly low,
high levels of predictability and reliability are required. The
level of criticality is high because potentially dangerous
overload (underload) conditions in network segments may
occur, and predictability is needed to react to undersupply or
over demand situations by transiently decreasing (increasing)
generation or storage capacity [4][5]. In emergency situations,
activation of switch gear can be used to physically disconnect
equipment from the distribution grid.

2) Soft Real-Time: This class of traffic relates mainly to
DSM, SDP and ET; the traffic volume may be relatively high
during periods of peak energy demand or availability, and
predictability is desired but not mandatory (decision support
messages for customers relating to a peak demand ending at
13:00 are not useful if delivered at 13:05) [5]. Although DSM
and ET can effectively help to manage undersupply or over
demand situations, it is not always effective and cannot be
relied upon as the only solution.

3) Near/Non-Real-Time: This class of traffic relates mainly
to the acquisition of data (e.g. from smart electricity meters) to
support billing and customer energy visualization activities.
The main issues here are not related to timing, but are
principally related to the large data volume and security (e.g.

see the work of [6]). As such they are not considered further in
this paper.

For implementing the critical hard real-time infrastructure
communications, IEC 61850 [7] is currently the most widely
used international standard for automation of power generation
and distribution equipment (generators of all kinds, sub-
stations, switchgear and energy storage). The goal of the
standard is to define specifications such that intelligent
electronic devices (IED’s) from different vendors are
interoperable and can communicate directly with each other
without using a gateway. IEC 61850 communications are based
on switched Ethernet, bringing obvious benefits such as low
costs and high throughput levels. An obvious limitation of
standard Ethernet is that it does not provide the required timing
guarantees in more general situations, and the standard is
principally designed for implementation on simple (isolated)
LANs within single installations to achieve the required
predictability. Although there are some extensions to support
intra-station and station-control center communication, this is
mainly aimed at non-critical applications such as remote
monitoring. To bridge between multiple stations and extend the
overall automation network into the wider EPN, the IEEE
802.1 Audio Video Bridging Standard (AVB) [8] and Time-
Triggered Ethernet (TTE) protocols [9] are currently under
investigation to provide the required timing and bandwidth
guarantees within an EPN as part of the IDEAS project.

However in this paper, we are not especially concerned
with these aspects of the EPN and our work in this area will be
reported in future. With reference to Fig. 1, we are interested in
the non-critical, soft real-time elements of the infrastructure;
specifically, the timing behavior of the network segments that
are used to extend the EPN functionality into residential and
office/small business LANs. The functionalities to be extended
are principally DSM and generation regulation services
through non-critical automation. In most situations it will not
be practical (or even feasible) to employ specialized
networking equipment across all hops in these situations – in
all likelihood, the principal use for these LANs and
interconnects will be to implement regular Internet connectivity
in houses and offices, and in most cases even primitive traffic
shaping techniques may not be possible. A typical
representation of the infrastructure within a domestic residency
within the EPN is shown in Fig. 2. Via a series of
routers/switches, EPN messages are transferred between the
EPN backbone and each residence. The LANs are implemented
by a simple switch or router that directs EPN traffic either to or
from an automation interface, an energy measurement interface
or HMI devices. In some cases, the automation interface may
have a KNX or other low-level fieldbus for device connection
(as is shown in the figure); alternatively, automation devices
may connect directly to the central switch and form part of the
LAN. As these automation and measurement interfaces are
required only at the lowest levels of the infrastructure (and may
already be present in new builds), extensive changes to existing
network infrastructure are not required. As such, we will
assume that the network switches/routers will be simple FIFO-
based devices employing store-and-forward operation.

Fig. 2. Envisioned network infrastructure for residential dwellings.

We now give a specific motivational example as to exactly
why we believe these elements of the EPN require probabilistic
real-time analysis. Recall that one of the roles of the EPN
service provider is to balance energy supply and demand and
regulate the power flows within the EPN and the net power
flow across the EPN boundary. If there is an imbalance in the
net flow at some specific time, in the sense that the power into
the EPN (say 75 MW) is larger than the pre-contracted amount
(say 70 MW), then one of two actions can happen. The first is
that the area ISO will activate regulation power on behalf of the
EPN to restore the imbalance; this is a very costly process [4].
The second is that the generators within the EPN up (or down)
regulate their outputs to eliminate the imbalance internally. The
latter is clearly the preferable option if the costs are lower;
however, the costs to up (or down) regulate large power plant
at short notice are still excessive. On the other hand, the costs
to regulate a distributed renewable resource (solar panel, wind
turbine) are negligible if the environmental conditions are
suitable, but the change in power output is low per resource
(e.g. 10 KW).

Therefore the cost-minimizing action is normally to send
dispatch instructions to a large amount of these distributed
resources, the sum of whose outputs can impact the net power
flows. These dispatch instructions will typically be transmitted
once every 10/15 minutes and need to be delivered with low
latency to be effective. As regular Internet and other traffic
coexist with these dispatch instructions (and switch buffers are
of finite size), no 100% guarantees of latency or successful
delivery can be obtained. However, it is desired that around
99.9% of these dispatch instructions be successfully delivered
on time; for a 1 MW requested change in net power output, a
delivered change of 0.999 MW within about 60 seconds is
more than sufficient. As such, we would like to obtain worst-
case transmission and switch buffer size bounds that are 99.9%
accurate given some knowledge of the random traffic
characteristics of the LAN or LAN segments under analysis. In
this preliminary work we will first make quite a lot of
simplifying assumptions and restrict and then attempt to make
some initial progress towards a means to obtain such estimates.

III. NETWORK AND TRAFFIC MODEL

A. Single-Switch Network Section
The first restriction that we will make is that the residential

LAN infrastructure consists of a number of stations connected
via a single network switch or router, as shown in Fig. 3. We
assume that if a router is present, it only carries out very simple
low-level routing and so may be effectively treated as a
standard FIFO-buffered switch. We will also assume that the
switch is homogenous, i.e. that the incoming/outgoing bit rates
of each port are identical. Although this is a very simple
network to consider, it provides a representative starting point.
Such a network may occur in a small-scale home or building
automation installation as discussed in the previous Section, or
alternately may be applicable to small-scale industrial
applications where process automation and control traffic may
co-exists with other (higher-level) traffic that is best described
by random attributes. We assume that time is discrete and
occurs in integer multiples of a global clock which has a
resolution equal of δ (typically this would be the homogenous
network bit-time). For simplicity, we assume henceforth that δ
= 1. We assume that the network segment to be analyzed
consists of Ns stations connected to the single switch, which
has Np active ports such that Ns ≤ Np. We assume that the
system to be implemented is described as a number Nc of
virtual channels, with each channel mapping a logical path
between a source and destination station through the switch.

Fig. 3. Example of a single switch network such as is under consideration.

Using similar terminology as in [1] and [2], in Fig. 4 the
total end-to-end delay for any virtual channel i (denoted as
Te2edelay,i) is comprised of several sub-sources of delay as shown
in Fig. 4:

Fig. 4. Sources of delay in the single-switch network.

The components making up the Te2edelay,i delay are as
follows: Tsdelay,i represents the worst-case delay at the source
node, and is principally due to queuing whilst awaiting access
to the NIC. Tnode represents the worst case latency for a frame
in the head of the queue to leave the source node (e.g. due to
non-preemption). Tprop represents the propagation delay over
the physical link (we assume that connection cables are of

identical length; an assumption which is easily lifted if
required). Ti represents the worst-case delay at the switch, and
is principally due to buffering whilst awaiting access to the
output port. Finally, Tswitch is the worst case latency for a frame
in the head of the queue to leave a switch/port. In this paper, as
in [1] and [2], we are principally concerned with determining
the source node delay Tsdelay,i and the switch delay Ti. In the
analysis that follows, we are more closely follow that
developed in [2] as the work of [1] – whilst being simpler in its
formulation than – makes some pessimistic assumptions (e.g.
that all stations may simultaneously transmit to any other
station) and restricts key parameters (e.g. that periods are all
greater than the worst-case transmission delay). For the
remainder of the discussion, we assume that time (which is
represented by t) is continuous, real-valued and non-negative.
Next, we outline the deterministic and random traffic models
that are employed in this preliminary study.

B. Periodic/sporadic traffic
For periodic/sporadic channels, let each channel τi ∈ Γ be

represented by the 4-tuple:

()iiiii CTDS ,,,=τ (1)

In which Si is the (integer) source station identifier and Di is

the (integer) destination station identifier. For simplicity,
assume that station identifiers are identical to the port numbers
(i.e. station 1 is connected to port 1, station 2 is connected to
port 2, and so on). Ti ∈ ℵ+ represents the period/minimum
inter-arrival time of the channel and Ci ∈ ℵ+ is the worst-case
transmission time of any message frame generated by the
channel (each invocation of the channel is called a message
frame or simply frame). Let the kth frame generated by channel
i be denoted as τi,k. Successive frames generated by sporadic
channels are always separated by at least Ti units of time;
successive frames generated by periodic channels are always
separated by exactly Ti time units. Since it is known that the
worst-case manifestation of a sporadic message stream is the
pattern in which the minimum inter-arrival times are always
adhered to (and the stream effectively becomes periodic)
[3][4], periodic/sporadic streams will henceforth be referred to
as simply periodic for ease of exposition. For periodic streams,
the worst-case cumulative workload generated by stream i
(denoted as wi) in the interval [0, t) can be calculated using [2]:

i
i

i C
T
ttw ⋅⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢
= 1)((2)

C. Random traffic
Many types of network traffic are essentially random in

nature; it is well known that in that some circumstances frame
inter-arrival times are well-modeled as exponential or
geometric distributions [10][11]. Let us assume that each
source station sends and receives random traffic, however this
random traffic does not have a specific destination (in the case
of traffic generated by a node) or a specific source (for traffic
received by a node). In addition, we assume that the payload
length is unknown, and make the assumption that any random
frames processes by node i will always have length ≤ Ĉi ∈ ℵ+

(typically, Ĉi will be set to the worst-case payload length
allowed by the protocol for all nodes). The final assumption
that we make is that the system is not closed, in the sense that
random traffic in the network is just sent and received by the
stations connected to the switch; an external gateway may be
present, hence the total mean traffic sent and received by all
nodes is not necessarily equal. Let the inter-arrival times of the
random traffic generated by node i be geometrically distributed
with a mean തܶ௜ା ∈ ℜ+, and the inter-arrival times of traffic
received by node i also be geometrically distributed with mean തܶ௜ି ∈ ℜ+. Then for each station i, the parameters of the random
traffic can be described by the 3-tuple θi ∈ Π:

()iiii CTT ˆ,, −+=θ (3)

Given a set of stations, virtual channels and a probability R

∈[0.5, 1), we are interested in obtaining tight probabilistic
bounds on the worst-case transmission delay that each channel
may experience. Also, we are interested in determining the
required source and switch buffer sizes such that probability
that these timing or buffer bounds become violated is
guaranteed to be ≤ (1-R). In order to determine this information
efficiently, we require a means to upper bound the expected
number of packet arrivals for a random traffic stream in some
interval of time. Since time is discrete and the distribution of
arrival times assumed to be geometric, the probability of a
packet arrival at each individual time step (p) is equal to 1/ തܶ,
where തܶ is the mean inter-arrival. If the number of packet
arrivals occurring in t consecutive time-steps is given by the
variable X, then X follows a Binomial distribution with
parameters t and p. To obtain the upper bound with confidence
probability R, we therefore seek to evaluate the Rth quantile of
X; since obtaining the exact quantile requires a (non-trivial)
iterative search over the Binomal distribution function [10], we
shall instead use the following upper tail quantile inequality
that was recently proven:

Theorem 1: Let η(t, p, R) represent the Rth quantile of a

Binomially distributed random variable comprising t identical
and independent Bernoulli variables, each having and
individual probability of success p∈(0, 1). Then defining the
quantity C(R) = ඥ−2	ln	(1 − ܴ) for R∈[0.5, 1) an easily
computable and asymptotically tight upper bound on η(t, p, R)
is given by:

() ⎥
⎥

⎤
⎢
⎢

⎡
+−+≤

6
)(1)(),,(

2RCptpRCtpRptη (4)

Proof: Short & Proenza 2013 (see [11], Corollary 1).

When carrying out a timing analysis, expression (4) will

normally have to be evaluated many times for different values
of t. Since we assume that both p =1/ തܶ and R are known (as
mentioned, we typically take R = 0.999), to simplify the
repeated computation of (4) for a particular link an easy
simplification is to first calculate the two quantities C1 = ඥ−2 ln(1 − ܴ) (1 − and C2 = -ln(1-R)/3. A bound on the (݌
outgoing workload generated by random traffic originating in

station j in the interval [0, t) (denoted as wj
+) for a confidence

probability R is then obtained as:

j
jj

j CC
T

tC
T

ttw ˆ)(21 ⋅
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++= ++

+ (5)

This is a simple closed-form expression which is easily

computed for any of the input parameters in constant time; note
that the probability that the actual workload exceeds that
computed by (5) in the specified interval is formally guaranteed
to be ≤ (1-R) [11]. The worst-case incoming workload for
station j (denoted as wj

-) can be obtained from (5) with
appropriate replacement of തܶ௝ା with തܶ௝ି and appropriate
adjustment of C1. Expression (5) seems simple enough to allow
an adaption of the ‘busy period’ analysis methods developed
by Fan et al. in [2] to be adapted to the case of stochastic
traffic; however there are several points that require attention
prior to developing a suitable analysis.

IV. BUSY PERIOD ANALYSIS

A. Analysis of periodic streams
For purely periodic streams, several key results were

established in [2]; in the context of the current work, the two
main points that were proven were as follows. When
determining the delays due to FIFO buffering of frames at the
source stations, the synchronous arrival case (all periodic
streams arrive simultaneously at t = 0) is the worst possible.
The worst case queuing delay (which occurs at t = 0) is finite
and is given by:

∑
=
Γ∈

=

iS

ji

j

j

CDS
τ

(6)

if and only if the utilization of the outgoing channel from
station i is not overloaded, i.e. has a utilization bounded as
follows:

∑
=
Γ∈

≤

iS
j

j

j

j
T
C

τ
1

(7)

Where the summation limits of (6) and (7) are such that every
valid channel in the set Γ which a source station identifier of j
are included in the summation. Secondly, when determining
the delay due to FIFO buffering of incoming frames at the
output port i of a single switch, the synchronous arrival case
(again in which all periodic streams arrive simultaneously at t =
0 in each of the source nodes) is the worst possible. The worst
case queuing delay in this situation is found during the length
of the initial busy period, which can be obtained as the smallest
(positive) solution of the following equation (which is iterated
from t = 0):

ttwtWP

iD

ji

j

j

== ∑
=
Γ∈τ

)()(
(8)

and has finite length if and only if the utilization of the
incoming channel from station i is not overloaded, i.e. has a
utilization bounded as follows:

∑
=
Γ∈

≤

iD
j

j

j

j
T
C

τ
1

(9)

Clearly, for the network model presented in the previous
Section, if there is no random traffic then these techniques
would suffice to determine the worst-case delays. When
random traffic is included in the analysis, however, it is not
immediately obvious the extent to which these results are still
relevant. In the next two Sections, the focus will be upon delay
analysis in the source and switch output ports.

B. Source node queuing delay
Firstly, we have observed that worst-case queuing delay in

a source node no longer occurs at t = 0 due to the non-periodic
nature of the workload function (5); this is highlighted by the
following simple example. In Fig. 5, we compare the source
node FIFO queue size Q(t) of a single periodic channel with {T
= 10, C = 5} with a channel experiencing only random traffic
with { തܶା = 10, Ĉ = 5}. A confidence probability R = 0.999 was
used in the latter; the constants C1 and C2 required for (5) were
computed as 3.526 and 2.303 respectively. The plot shows the
comparison between t = 0 and t = 170, the point in time in
which the queue size for the random traffic drops to zero
indicating the end of the busy period. Clearly in the latter case
the queue size is first increasing from Q(0) = 15 and first peaks
at the maximum value of Q(28) = 32, before starting to
decrease (non-monotonically) at t = 33. This indicates that it is
likely to also need to employ busy period analysis in the source
nodes when random traffic is present, unlike in the purely
periodic case.

Fig. 5. Comparison of FIFO delay in a source node.

For the workload arrival function (5), it was shown in [11]
that the workload is non-decreasing in t and eventually
approaches (but does not exactly converge upon) the mean
workload tĈ/ തܶା. This implies that the worst-case queuing
delay can be obtained by examining the synchronous busy
period for periodic tasks under the assumption that the random
traffic also starts to arrive at t = 0. However, we first need to
consider under what conditions the resulting busy period will

have a finite length; a necessary condition is clearly that the
utilization of the channel (including the mean utilization Ĉ/ തܶା
of the random traffic) does not exceed unity. Unfortunately this
condition is not sufficient, as choosing an example in which
there is no periodic traffic and any Ĉ = തܶା > 0 with R > 0.5 can
easily be verified using (5). Observing that the source traffic
can be modeled by the summation of two queues (Geo/D/1 and
D/D/1 in Kendall’s notation [12]), it is known that such a link
has a finite busy period if and only if the link utilization is
strictly less than one [12]. This result also holds despite the
observation that the inequality (5) is not exact due to Theorem
2 in [11], which has shown that the relative overestimation
error in expression (4) vanishes for large values of t.

However, when the total link utilization is close to unity the
length of the synchronous busy period becomes too large to
analyze in a reasonable time and is sensitive to the choice of R.
Indeed this seems to be much worse that in the purely periodic
case, in which the busy period is always limited by the least
common multiple (lcm) of the channel periods even for high
utilizations. By limiting the effective allowable channel
utilization to be less than some upper limit UM ≈ 0.99 results in
tractable behavior for reliability levels in our range of interest.
Therefore, in order to determine the worst-case latency the
following general procedure can be used. Defining the total
outgoing cumulative workload for station i at time t as Wi

+(t):

)()()(twtwtW i

iS

ji

j

j

+

=
Γ∈

+ +
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

= ∑
τ

 (10)

Then if the busy period has length L the outgoing queue
size Qi

+(t) for t ≤ L is easily computed as Wi
+(t) – t. To find the

worst case delay, one finds the extrema of the function Wi
+(t) –

t subject to 0 ≤ t ≤ L. As it is assumed that time is discrete, then
a simple iterative scheme may be used to solve the problem in
a straightforward fashion with time complexity O(Ns L) and
space O(Ns). Pseudo-code for such an algorithm is shown in
Fig. 6.

01 INPUT(i, R, Γ, Π, δt, Ns);
02 t:=0;
03 Q:=0;

04 IF
Max

i

i

iS
j

j U
T
C

T
C

j
j

>+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

=
Γ∈

∑
ˆ

τ

RETURN(∞);

05 DO:

06 W:=)()(twtw i

iS

j

j

j

+

=
Γ∈

+∑
τ

;

07 Q:=MAX{Q,(W-t));
08 t:=t+1;
09 WHILE((W-t)>0);
10 RETURN(Q);

Fig. 6. Algorithm to determine the maximum queuing delay for a single
source station.

The operation of the algorithm may be briefly described as
follows. Lines 2 and 3 initialize the variables Q and t,
representing the worst-case queue size and time respectively.
Line 4 checks the channel utilization and returns signaling an
error if it is overloaded. There then follows a loop between
lines 5 and 9, which terminates only when the cumulative
workload Wi

+(t) (represented by the variable W) is ≤ to t,
indicating the presence of idle time and hence the end of the
busy period. The workload W is updated on line 6 according to
expression (17); the worst case queuing found so far is then
updated on line 7, and time advanced by the factor δ (= 1) on
line 8. The worst-case queuing population is then returned on
line 10.

Example 1: Suppose we have the following traffic

characteristics in a source node: two periodic/sporadic streams
{T = 20, C = 3} and {T = 30, C = 5} combined with a random
outgoing stream { തܶା = 10, Ĉ = 5}. Application of the
algorithm described above (assuming R = 0.999 giving C1 =
3.526 and C2 = 2.303) yields a worst case delay estimate of 69,
which occurs at t = 240 assuming the start of the busy period at
t = 0. The end of the busy period in this case occurs at t = 1131.

Note that these measures of delay not only represent the

latency incurred by a frame when exiting the source node, they
also imply a bound on the buffer size required by the node to
implement the queue [2]. If the random traffic characteristics
have been correctly modeled, then the probability of either of
these bounds being violated is guaranteed to be ≤ (1-R) due to
Theorem 1.

C. Switch output port queuing delay
Turning attention now to a switch output port, the analysis

may progress upon the following lines. Given our assumptions
upon the network topology (Fig. 3), we may observe that the
traffic leaving the switch via a given output port is essentially
the input traffic destined for the corresponding station. Since
Fan et al. [2] have shown that for periodic streams the
synchronous arrival case in each of the source nodes is the
worst-possible (note that this considers only the traffic to be
delivered to this specific output port; other port traffic is
omitted from the analysis), and we have that the interference
from random traffic is maximized over smaller intervals, let us
again define the total incoming cumulative workload for station
i at time t as Wi

-(t):

)()()(twtwtW i

iD

ji

j

j

−

=
Γ∈

− +
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

= ∑
τ

 (11)

The analysis to obtain the worst-case delay may then
proceed along similar lines as that developed for the traffic
leaving a source node, with the following caveat; the rate at
which work from the input ports of the switch can be
transferred to any single output port is limited by the physical
design of the switch [2]. In the case of periodic and random
traffic streams operating with a discrete clock having resolution
δ, this restriction can be (pessimistically) captured as follows:

Observation 1: In the case where a station does not transmit
frames directly to itself (i.e. no direct loop-back), then the
worst-case workload that can be transferred to the output queue
of any switch port with every clock tick δ is (Np-1)δ.

Proof: Assume that during an interval of time having length
δ each active port of the switch is busy processing incoming
traffic. Consider any output port j. Since there is no loop-back,
assuming the worst-case then at most (Np-1) ports can have
incoming traffic destined to be transferred to port j. In the
worst-case all input ports will be busy processing incoming
traffic for port j simultaneously, hence the maximum workload
transferred to queue j is (Np-1)δ.

Again observing that the switch output traffic can be

represented by the summation of multiple queues (one Geo/D/1
queue and one D/D/1 queue for each channel with this
destination port), the busy period will be finite if and only if the
output port link utilization is strictly less than one [12]. The
same effective allowable channel utilization limit of UM ≈ 0.99
results in tractable behavior for reliability levels in our range of
interest. Taking these factors into consideration leads to the
simple iterative scheme for delay estimation shown in Fig. 7,
again requiring time O(Ns L) and space O(Ns). The operation of
the algorithm is almost identical to that of Fig. 6, with the main
exception that the rate at which the workload W is updated on
line 6 is rate-limited to (Np-1) per iteration (since we assume δ
= 1). Note that this rate-limit does not affect the length of the
busy period if Np > 1, since the same total workload is
eventually delivered out of the port, but has the effect of
modulating (and potentially reducing) the peaks of the queue
size.

01 INPUT(i, R, Γ, Π, δt, Ns, Np);
02 t:=0;
03 Q:=0;

04 IF
Max

i

i

iD
j

j U
T
C

T
C

j

j

>+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

=
Γ∈

∑
ˆ

τ

RETURN(∞);

05 DO:

06 W:=W+MIN((Np-1),(W-)()(twtw i

iD

j

j

j

−

=
Γ∈

+∑
τ

));

07 Q:=MAX{Q,(W-t));
08 t:=t+1;
09 WHILE((W-t)>0);
10 RETURN(Q);

Fig. 7. Algorithm to determine the maximum queuing delay at a switch
output port.

This latter point related to the effect of Np is illustrated by
Fig. 8 below, in which the queuing delay for the same random
traffic model { തܶି = 10, Ĉ = 5} with R = 0.999 employed to
create Fig. 5 is displayed for values of Np equal to 2, 3 and 6.
For Np = 2, the queue size is never greater than 1 as the rate of
delivery into the buffer is the same as the rate of exit. For Np =
3, the rate of delivery into the buffer is twice the rate of exit
leading to a steady increase and a peak of Q(29) = 30. As can

be seen, for Np = 6 the worst-case queue delay of Q(28) = 32 is
still achieved, and the overall evolution of the queuing delay
begins to approach that shown in Fig. 5. For Np > 10, the
evolution becomes identical as the worst-case rate of delivery
into the buffer is no longer affected by the limit.

Fig. 8. FIFO delay in a switch output port with random traffic for various
values of Np.

Example 2: Suppose we have the following traffic
characteristics in a switch with 4 ports (Np = 4): three
periodic/sporadic streams {T = 30, C = 2}, {T = 50, C = 5} and
{T = 100, C = 10} combined with a random incoming stream
{ തܶି = 20, Ĉ = 10}. Application of the algorithm described
above (assuming R = 0.999 giving C1 = 3.623 and C2 = 2.303)
yields a worst case delay estimate of 114, which occurs at t =
312 assuming the start of the busy period at t = 0. The end of
the busy period in this case occurs at t = 1468.

Note again that these measures of delay not only represent
the latency incurred by a frame when transiting through a
switch, but they also imply a bound on the buffer size required
at the switch output port [2]. If the random traffic
characteristics have been correctly modeled, then the
probability of either of these bounds being violated is again
guaranteed to be ≤ (1-R) due to Theorem 1.

V. AREAS FOR FURTHER WORK
There are many areas in which the preliminary work

presented in this paper could be improved. Firstly, the
algorithms of the previous Section would benefit greatly from
being event-triggered as opposed to simply driven by an
increasing time variable. The only difficulty in achieving this
relates to obtaining accurate estimates of the next arrival of
work for the workload function (5); however an expression to
predict the next arrival time of an event should be relatively
easy to obtain. It is also clear that some pessimism could
potentially be removed from the estimation of the port output
delay by maintaining a separate FIFO for the incoming
workload originating in each source node in Fig 7. Also, to
enable more realistic structures of network to be analyzed, it is
required to be able to analyze switches in which part (or all) of
the incoming traffic originates from other switches and with
non-homogenous link transmission rates. One further
improvement that is also required is the need to model
situations in which the probability of a packet arrival at each
time-step is time-varying (e.g. to cater for bursty arrivals of

packets). For this latter point, we note that the work in [11]
may be adapted to suit this purpose, but we leave this to future
work. Finally, we acknowledge that queuing theory (see e.g.
[12]) provides an alternate means to obtain probabilistic
bounds on the transient sizes of the queues considered in this
paper; we also plan to compare our current work against such
techniques.

ACKNOWLEDGMENT
The IDEAS Collaborative Project (Grant Agreement No.

600071) is co-funded by the European Commission,
Information Society and Media Directorate General, under the
Seventh Framework Programme (FP7), Cooperation theme
three, “Information and Communication Technologies”. The
authors wish to acknowledge the commission for their support,
the efforts of the partners, and the contributions of all those
involved in IDEAS. The authors also wish to express thanks to
the anonymous reviewers whose comments helped to improve
the paper.

REFERENCES
[1] K.C. Lee, S. Lee & M.H. Lee, “Worst case communication delay of real-

time industrial switched Ethernet with multiple levels,” IEEE
Transactions on Industrial Electronics, Vol. 53, No. 5, pp. 1669-1676,
2006.

[2] X. Fan, M. Jonsson, J. Jonsson, “Guaranteed real-time communication
in packet switched networks with FCFS queuing,” Computer Networks,
Vol. 53, pp. 400–417, 2009.

[3] Q. Zhang & K.G. Shin, “On the ability of establishing real-time channels
in point-to-point packet-switched networks,” IEEE Transactions on
Communications, Vol. 42, Nos. 2/3/4, pp. 1096-1105, 1994.

[4] C. Harris. Electricity Markets: Pricing, Structures, and Economics. John
Wiley & Sons, 2005.

[5] P. Vytelingum, S.D. Ramchurn, T.D. Voice, A. Rogers & N.R. Jennings,
“Trading agents for the smart electricity grid,” In: The Ninth
International Conference on Autonomous Agents and Multiagent
Systems, Toronto, Canada, pp. 897-904, May 2010.

[6] T. Mikkola, E. Bunn, P. Hurri, G. Jacucci, M. Lehtonen, M., Fitta, S.
Biza, “Near real time energy monitoring for end users: Requirements
and sample applications”, In: Proc. of the 2011 IEEE International
Conference on Smart Grid Communications, pp. 451 – 456, 17-20 Oct.
2011.

[7] International Electrotechnical Comission (IEC). IEC 61850:
Communication Networks and Systems in Substations. International
Electrotechnical Comission, Geneva, 2002.

[8] IEEE 802.1 AVB Task Group. IEEE 802.1 Audio/Video Bridging.
[Online]. Available: http://www.ieee802.org/1/pages/avbridges.html.

[9] TTA-Group. TTEthernet-Specification. 2008. [Online]. Available:
http://www.ttagroup.org/ttethernet/specification.htm.

[10] N.L. Johnson, A.W. Kemp and S. Kotz. Univariate Discrete
Distributions: Third Edition. Wiley-Interscience, 2005.

[11] M. Short & J. Proenza, “Towards efficient probabilistic scheduling
guarantees for real-time systems subject to random errors and random
bursts of errors,” In: Proc. 25th Euromico Conference On Real-Time
Systems (ECRTS 2013), Paris, France, July 2013.

[12] L. Kleinrock. Queueing Systems. Vol I: Theory. Wiley Interscience,
1975.

On the Gap Between Mathematical Modeling and Measurement Analysis for
Performance Evaluation of the 802.15.4 MAC Protocol

François Despaux
LORIA, University of Lorraine

Nancy, France
Email: francois.despaux@loria.fr

Ye-Qiong Song
LORIA, University of Lorraine

Nancy, France
Email: song@loria.fr

Abdelkader Lahmadi
LORIA, University of Lorraine

Nancy, France
Email: abdelkader.lahmadi@loria.fr

Abstract—IEEE 802.15.4 MAC protocol is the basis of many
wireless sensor networks. Several studies have focused on
analyzing the MAC layer by means of mathematical models
such as Markov chain in order to be able to estimate the
protocol performance parameters. Normally, simulation is used
in order to validate the accuracy of the model. Unfortunately,
real life is not always as easy as we would expect and extra
considerations must be taken into account when considering
real scenarios. In this paper our objective is to determine
the existing gap between theoretical models and measurement
analysis in real scenarios. We compare results obtained by an
a priori accurate mathematical framework modeling the slotted
IEEE 802.15.4 MAC protocol with experimental results ob-
tained in Telosb motes and an implementation of the protocol
over TinyOS. Comparision was made in terms of average delay.
We also present some implementation considerations that needs
to be taken into account when designing theoretical models for
evaluating the delay in WSN.

Keywords-TinyOS; Slotted CSMA/CA; Delay Evaluation

I. INTRODUCTION

IEEE 802.15.4 protocol stack [1] is the basis of many
wireless sensor networks (WSN) and has been proposed for
low data rate and low power applications. Understanding
the behavior and performance limitation of the protocol is
challenging. In this way, a lot of research has been done to
evaluate its performance through different methods, includ-
ing theoretical modeling and simulation analysis. Bianchi’s
model [2] for the standard IEEE 802.11 under saturated
traffic and ideal channel conditions have been extended for
modeling the IEEE 802.15.4 MAC protocol. In [5], Park
et al. proposes a Markov chain based on [2] for modeling
the slotted version of the CSMA/CA mechanism and they
give performance results in terms of service time delay
and delay for successful packet sent. Misic et al. in [4]
proposes a Markov chain approach for modeling the beacon
enabled IEEE 802.15.4 MAC protocol considering M/G/1/K
queue modeling and superframe with both active/only and
active/inactive periods. Expressions for the access delay,
probability distribution of the packet service time as well
as probability distribution of the queue length are presented.
Based on simulation results, both [5] and [4] frameworks
seems to be suitable for estimating the delay in slotted

CSMA/CA. However, none of the approaches consider the
implication of implementing the protocol in real motes such
as Telosb and how the underlying Operating System (OS),
real hardware interaction and realistic conditions affects the
delay estimation. In this paper we present an experimental
evaluation of the Slotted CSMA/CA MAC protocol by
considering realistic conditions using Telosb motes and
an implementation of the protocol over TinyOS and we
compare our results with the ones obtained in [4]. We present
results in terms of average delay showing the gap between
theoretical and empirical approaches and we give some
implementation considerations that needs to be taken into
account when designing theoretical models for evaluating
the delay in WSN in order to have a more accurate model to
work with. This paper is organized as follows. In Section II
we present an overview of the IEEE 802.15.4 MAC protocol
and the Markov chain model presented in [4]. A MAC
layer implementation in TinyOS is presented in Section III.
Experiments and Results are presented in Section IV and V
respectively. A discussion regarding the results is given in
Section VI and we conclude our work in Section VII.

II. IEEE 802.15.4 STANDARD & MARKOV CHAIN
MODEL

A. Overview of IEEE 802.15.4 Standard

Misic The main idea of the MAC sub-layer in the IEEE
802.15.4 protocol is to provide an interface between the PHY
layer and the higher layer protocols of LR-WPANs. Like the
IEEE 802.11 protocol, the standard make use of CSMA/CA
as the channel access protocol and it also brings support
for contention-free and contention-based periods. Two op-
erational modes are supported, beacon enabled and Non
beacon-enabled modes. In the former beacons are period-
ically generated by the coordinator to synchronize attached
devices. A beacon frame is part of a superframe which also
embeds all data frames exchanged between the nodes and
the PAN coordinator. In Non beacon-enabled devices can
simply send their data by using unslotted CSMA/CA and
there is no notion of superframe. In our work, we focus in
the beacon enabled mode which use a slotted version of
the CSMA/CA and exponential backoff. Both CSMA/CA

mechanism are based on backoff periods where one backoff
period is equal to aUnitBackoffPeriod= 20 symbols (sym),
1 sym = 4 bits and the backoff period boundaries must be
aligned with the superframe slot boundaries. Four variables
are considered in the CSMA/CA mechanism:
NB: represents the number of times the CSMA/CA algo-
rithm will enter in backoff while attempting the access to
the current channel. It is initialized to zero before each
new transmission attempt. If NB exceeds the limit of mac-
MaxCSMABackoffs, the algorithm terminates with channel
access failure status and failure is reported to higher protocol
layers which can then decide whether to abort the packet in
question or re-attempt to transmit it as a new packet.
RT: if a node fails to receive ACK due to collision or ac-
knowledgement timeout the variable is increased by one up
to macMaxFrameRetries and the packet is retransmitted. If
RT is greater than macMaxFrameRetries packet is discarded
due to the retry limit. This value is initialized to zero.
CW: representing the number of times the CSMA/CA will
check the channel availability before starting transmission.
The value by default is 2 and is reset to 2 each time the
channel is busy and finally,
BE: represents the backoff exponent. Each time the channel
is found busy BE is incremented by 1 until it reach the max-
imum possible value aMaxBE which is a constant defined.
The slotted CSMA/CA algorithm proceeds as follows.

• 1 - Initialization: In this step, NB, CW, RT and BE
are initialized. BE value is determined based on the
macBattLifExt parameter. If its value is equal to true
then BE is initialized as BE = min(2,macMinBE),
otherwise, it is initialized as BE = macMinBE
where macMinBE specifies the minimum of backoff
exponent which is set to 3 by default. After the ini-
tialization, the algorithm locates the boundary of the
next backoff period and goes to step 2.

• 2 - Random waiting delay for collision avoidance: In
this point the algorithm waits a random backoff in order
to avoid collisions. The random backoff period is taken
from the range of [0, 2BE−1]. After the backoff period,
it goes to step 3.

• 3 - Clear Channel Assessment: In this step the al-
gorithm check the availability of the channel. If the
channel is found idle the algorithm goes the idle
channel step, otherwise it moves to the Busy channel
step. The CCA must be started at the boundary of a
backoff period after the expiration of the waiting delay
timer.

• 4 - Busy channel: In this step, the CCA found the
channel busy. Then, BE and NB parameters are in-
cremented by 1 and CW is reseted to the initial
value. The BE parameter must not exceed the value
of aMaxBE parameter whose value by default is 5.
If NB exceeds the parameter macMaxCSMABackoffs

then the algorithms finish by throwing a channel access
failure status. Otherwise, if NB is lower or equal
to macMaxCSMABackoffs algorithm jumps to step 2
(Random waiting delay for collision avoidance step).

• 5 - Idle channel: In this step, the channel was found
idle. Then, CW parameter is decremented by 1. In case
CW reaches zero then the MAC Protocol may start
successfully its transmission. Otherwise, the algorithm
returns to step 3. The transmission is started if and
only if the remaining number of backoff periods in
the current superframe is sufficient to handle both the
frame and the subsequent acknowledgement transmis-
sions. Otherwise, transmission is deferred until the next
superframe. In case of a collision or acknowledgement
timeout the algorithm goes to step 6. If packet is trans-
mitted but a collision occurs, the algorithm continues
in step 6.

• 6 - Collision Ocurred: In this step RT is incremented
by one. If RT is lower than macMaxFrameRetries then
variables CW, NB and BE are initialized as in step 1
and algorithm jumps to step 2 (Random waiting delay
for collision avoidance step). Otherwise, the packet is
discarded due to the retry limit.

B. Markov Chain Approach

Authors in [4] present a Markov chain approach for
modeling the behavior of the slotted IEEE 802.15.4 MAC
protocol. In this approach, the packet queue in the device
buffer is modeled as a M/G/1/K queueing system. Based
on the protocol specification previously presented, authors
model the system as a stochastic process
P={n(t), c(t), b(t), d(t)} where n(t) represents the value
of the backoff time counter at time t, c(t) represents the
value of NB at time t, b(t) represents the value of CW
at time t and d(t) represents the current value of the
delay line counter (started if packet is deferred) at time t.
Then, a discret-time Markov chain depicting this process is
defined. Based on this Markov chain model, authors were
able to find the probability distribution of the packet service
time, probability distribution of the queue length and both
probability distribution and average delay from the moment
a packet arrives to the queue until the moment the node
receives the corresponding packet acknowledgement. Our
purpose is to compare this theoretical average delay with
the empirical one. For details in the implementation refer to
chapter 3 in [4].

III. MAC LAYER IMPLEMENTATION IN TINYOS

The objective of this section is to present an overview of
the TKN154 MAC implementation over TinyOS in order to
understand the main components of this module and also to
determine how delay is affected by the interaction of each
component.

A. TKN154 Module

TKN154 [3] is a platform independent IEEE 802.15.4-
2006 MAC implementation for the 2.1 release of the
TinyOS execution environment meeting the main tasks of the
802.15.4 MAC protocol such as PAN association and dis-
association, slotted and unslotted versions of protocol, bea-
con transmission and synchronization, among others. Main
components and interfaces used to exchange MAC frames
between components are shown in Figure 1 and defined
in [3]. TKN154 MAC can be divided into three sublayers.
The lowest level, the RadioControlP component, manages
the access to the radio. Components on the second level
represent different parts of a superframe. For instance, Bea-
conTransmitP/BeaconSynchronizeP responsibles for trans-
mission/reception of a beacon frame, DispatchSlottedCsmaP
component manages frame transmission and reception dur-
ing the CAP. The components on the top level implement
the remaining MAC data and management services such as
PAN association or requesting data from a coordinator. A
component of this level typically provides MAC primitives
to the next higher layer. For instance, DataP provides MCPS-
DATA.request primitive to the next higher layer to send a
frame to a peer device. Data frame will be assembled and
enqueued in the send queue DispatchQueueP. DispatchSlot-
tedCsmaP will eventually dequeue the frame and manage
its transmission. Transmission status will be propagated
to higher layer by means of MCPS-DATA.confirm event
where an appropriate status code will signal whether the
transmission was successful or not.
A set of interfaces towards the Radio Driver are also imple-
mented. These interfaces push many time-critical operation
from the MAC to the radio driver which are not negligible
affecting the packet transmission delay.

Figure 1: The TKN15.4 architecture: components are repre-
sented by rounded boxes, interfaces by connection lines.

B. Delay Analysis within TKN154 Implementation

As we mentioned before and based on simulation results,
[4] framework approach seems to be accurate for estimating
the delay within the slotted IEEE 802.15.4 MAC protocol.
However, implementation considerations were not taking
into account and as we will see next, these cannot be omitted
if we want to have a suitable mathematical framework to
estimates the delay within the protocol. In this subsection we
analyse the TKN154 components interaction showing how
delay is affected due to implementation issues. In TinyOS
there are two threads of execution: tasks and hardware event
handlers. Tasks are functions whose execution is deferred.
Once scheduled, they run to completion and do not preempt
one another. Hardware event handlers are executed in re-
sponse to a hardware interrupt and also runs to completion,
but may preempt the execution of a task or other hardware
event handler. In this way, the completion of a particular
task or event handler may be delayed due to a hardware
interrupt affecting the delay of the whole protocol. Some
other issues associated to the Operating System behavior
may have effects on the protocol performance. For example,
the TinyOS interface to the SPI bus introduces a large
processing overhead that reduces the achievable SPI bus
transfer rates [6].

1) Extra-delays estimation: In order to estimate extra-
delays in the implementation of the MAC protocol over
TinyOS we have analysed the execution stack from the
moment a packet is generated until the moment the packet
is acknowledged (or eventually lost if the number of re-
tries exceeds the predefined threshold). Figure 2 shows a
sequence diagram with the most relevant operations within
the protocol. The first non-negligible delay presented in the
execution is related to the SPI resource request in step 6.
This delay together with the CC2420 switch to Rxmode
shown in step 7 gives an extra delay of t1 = 5ms. Then
a random backoff period and two clear channel assessment
(CCA) follows the execution of the protocol. However,
both CCA and the random backoff period were taken into
account in [4]. Next, a fix delay (step 11) of t2 = 2.8ms
between the end of the second CCA and the invocation of
the transmissionStarted function was found. Transmission
is then delayed t3 = 2.8ms due to SFD Capture operation
(step 13). Finally the packet is sent with a transmission
delay shown in step 14. We have also found an extra-
delay (step 15) t4 = 3ms in the coordinator side before
sending the acknowledged packet back to the source (step
16). This analysis gives us un idea of the extra-delay due
to the protocol implementation that should be taking into
account when estimating the MAC protocol delay in TinyOS.
Finally, we have also found a random delay t5 due to
deferred packets. Normally, when the remaining time within
the CAP period of the current superframe does not suffice
to complete the transmission the packet is deferred and

will be transmitted at the begining of the next superframe.
However, in TinyOS we have seen that in some cases the
deferred packet transmission does not start at the begining
of the next superframe. Instead, it skips the immediate
superframe deferring the transmission to the next one. That
means that in this case, packet transmission will be delayed
twait = tcurr + tsup where tcurr is the remaining time
within the CAP period of the current superframe and tsup
is the duration of the superframe (in our case a 100%
duty cycle is consider so optional inactive period is not
taking into account). Considering that in our experimental
scenarios, MAC attributes SO and BO were set to five then
tsup = 30720 symbols meaning that delay in those packets
skiping the immediate superframe would be at least 30720
symbols = 0.5 seconds (1 symbol = 16µs).

Figure 2: TKN154 Delay Analysis.

IV. EXPERIMENTS

In this section we present the experiments we have done
in order to compare the theoretical results obtained by [4]
with real scenarios using an implementation of the slotted
IEEE 802.15.4 MAC protocol over TinyOS and Telosb
motes. We first start by specifying the main parameters and
then we present a set of scenarios we have used in the
experimentation.

A. Parameters & Scenarios

In order to compare both theoretical and experimental
results we have set the same MAC protocol parameters
which are shown in Table I. As we can see both BO and
SO are set to 5 so no inactive period is considered and then
Duty Cycle is 100%. We consider six scenarios which varies
in the number of nodes and arrival rate of packet to nodes.
The idea is to make a comparition of both approaches in
terms of the average delay, that is to say, the average delay

Parameter Value
Max Frame Retries 3
Max CSMA Backoff 4
Max Backoff Exponent 5
Min Backoff Exponent 3
Battery Life Extension False
Beacon Order 5
Superframe Order 5

Table I: MAC parameters.

from the moment a generated packet is put in the queue
until the reception of the acknowledged for that packet. We
consider a star topology where coordinator is situated at
the center and devices are located around the coordinator.
Distance between devices and coordinator is the same for
all scenarios and was set to one meter. The transmission
power for each node was set to 0dBm. We know from [7]
that, for this transmission power and considering a distance
of one meter, the packet reception rate is almost 1 since the
transitional region (a region characterized by unreliable and
asymetric links with high variance in reception rate) starts
at a distance of almost 10 meters. Simulation parameters are
summarized in Table II. Packet payload is fixed as 34 bytes
for all scenarios. As in [4], packet arrivals to each device
follow a Poisson process with mean arrival rate of λ and
each node accepts new packets through a buffer with finite
size of L = 2 packets. All scenarios use the same buffer
size. Channel bitrate is 250kbps.

Scenario Nodes Traffic Load λ (packets/s)
Scenario 1 2 1
Scenario 2 4 1
Scenario 3 6 1
Scenario 4 2 10
Scenario 5 4 10
Scenario 6 6 10

Table II: Scenario Parameters

V. RESULTS

We present now the experimentation results. Our objective
is to compare the theoretical and empirical average delay.
Misic framework was implemented in Matlab while we use
TKN154 implementation of the slotted IEEE 802.15.4 over
TinyOS and telosb motes. For each scenario, a total of fifteen
measurements were done in telosb motes and then the aver-
age delay was found and compared with the average delay
obtained by the [4] framework. Table III shows theoretical
and empirical average delay for each scenario. Figures 3 and
4 summarize the results of each scenario. Points in graphics
represent the empirical measures (a total of fifteen instances
of measurement for each scenario). Each empirical measure
(point in graphics) is the result of the analysis of all the
packets that were generated during the current instance of
measurement. We took the average of these delays in order

to determine the empirical measure of delay for the current
instance and we plot the corresponding point. This procedure
is repeated fifteen times for each scenario. Blue-dashed line
represents the empirical average delay (average of fifteen
points) for each scenario, while the green line shows the
average delay obtained by [4] mathematical framework.

Scenario Theoretical Av. Delay (sec) Empirical Av. Delay (sec)
Scenario 1 0.00356 0.028
Scenario 2 0.0036 0.030
Scenario 3 0.0036 0.031
Scenario 4 0.0038 0.040
Scenario 5 0.0043 0.042
Scenario 6 0.005 0.044

Table III: Theoretical VS Empirical Delay.

VI. DISCUSSION

As we can see from Figure 3, 4 and Table III it is
evident that there is an important gap between empirical and
theoretical results. We see from results that when the number
of nodes increases the delay also increases. This is normal
since as the number of nodes grows, the number of times
the channel is found busy also increments. This behavior is
expected as well for the number of collisions. We also see
that delay when considering a mean arrival rate of λ = 10 is
greater than the one found for scenarios having λ = 1. This
is due to the fact that for scenarios having mean arrival rate
of λ = 10, the queue is expected to be busy during a non
negligible time. That means that delay for those packets in
the queue will increase since it would have to wait until the
acknowledgement from the previous sent packet arrives. An
important issue we found is regarding the first scenario. In
this case we have two nodes and mean arrival rate λ = 1
so we do not expect to have too much collisions, channel
is expected to be idle most of the time and in theory, the
queue should be in idle state most of the time. However,
the gap between theoretical and empirical delays is almost
24ms. How can we explain this behavior ?. By analysing the
TinyOS traces during the experiment we found that a number
of deferred packets skips the immediate superframe delaying
the transmission to the next one. For these cases, the node’s
queue would not be necessary idle most of the time as in
theory we would expect for this low-traffic scenario. This
happens because deferred packets would have an extra-delay
and then packets arriving would find the node busy and they
will have to wait until the deferred packet is acknowledged.
Then, contrarily to the expected behavior, the queue won’t
be idle most of the time and this fact will impact in the
average packet delay. [4] Markov chain model is a very good
approach for modeling the IEEE 802.15.4 MAC protocol
considering and covering the main aspects of the proto-
col behavior (packet collisions, packet deferring, random
backoffs, etc). Simulation results shown in [4] validate the
mathematical approach. However, as we discussed in section

(a) Scenario 1.

(b) Scenario 2.

(c) Scenario 3.

Figure 3: Traffic Load λ = 1 packets per seconds.

(a) Scenario 4.

(b) Scenario 5.

(c) Scenario 6.

Figure 4: Traffic Load λ = 10 packets per second.

II.B, non negligible delays arise when consider a realistic
scenario with real motes due to operations of the underlying
operating system. From the practical point of view, omitting
the operating system features and behavior would leads to
a useless model for analysing the protocol performance, in
this case, the delay. A question that emerges immediately:
is it possible to reduce the gap between theoretical and
empirical results?. The first thing that we can do in order
to reduce the gap is to focus our attention in the protocol
implementation. In our analysis in section II.B, we detected
an anomaly in the TKN154 implementation concerning the
deferred packets. As we saw, some deferred packets skip
the incoming superframe delaying the transmission until the
reception of the next one (which amounts 0.5 seconds for
the set of parameters defined here). So an important point to
do is to detect anomalies in the implementation that could
introduce extra-delays in the protocol and fix them. However,
as shown in Figure 2, even considering an implementation
exempt from anomalies and errors, delays are present due
to function calls, hardware operations such as resources
request, radio switch to reception/transmission mode, etc.
Considering a free-error implementation, one approach then
to reduce the gap is to quantify the existing delays in the
implementation as done in section II.B and add them to the
theoretical model in such a way that extra-delays are also
considered when computing the average delay, for instance
by changing (3.36) formule in [4].

VII. CONCLUSION

In this paper we have presented an analysis of the average
delay in slotted IEEE 802.15.4 protocol in real scenarios
considering the TKN154 implementation over TinyOS. Our
objective was to determine the gap between a Markov chain
approach for estimating the average delay presented in [4]
and a real implementation in TinyOS. By analysing the
execution of the protocol in real nodes we were able to
determine constant and random delays inherent to the operat-
ing system operation such as hardware event handlers threw
due to hardware interrupts whose execution can preempt a
particular task and thus delaying its completion. Also we
have noticed that some deferred packets skips the immediate
superframe delaying the transmission to the next one. Even
though we consider that [4] model is a good approach
for estimating the average delay we conclude that it is
incomplete since it does not consider the main aspects of
real scenarios with an underlying operating system and real
motes. One way to reduce this gap is to detect anomalies in
the implementation side as the one we found in section II.B
and fix them to have a free-error protocol implementation.
Then, by considering this free-error implementation the next
step should be to quantify the delays due to function calls,
hardware operations, etc. and add them to the theoretical
framework in order to have a realistic way for estimating
packets delay within the protocol.

VIII. ACKNOWLEDGEMENTS

This work was partially supported by the ANR Quasi-
modo project under n◦ ANR 2010 INTB 0206 01.

REFERENCES

[1] IEEE Standard for Information Technology - Telecommunica-
tions and information exchange between systems - Local and
metropolitan area networks - specific requirement Part 15.4:
Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANs). Technical report, 2007.

[2] G. Bianchi. Performance analysis of the ieee 802.11 distributed
coordination function. IEEE J.Sel. A. Commun., 18(3):535–
547, September 2006.

[3] Jan-Hinrich Hauer. Tkn15.4: An ieee 802.15.4 mac im-
plementation for tinyos 2. TKN Technical Report Series
TKN-08-003, Telecommunication Networks Group, Technical
University Berlin, March 2009.

[4] Jelena Misic and Vojislav Misic. Wireless Personal Area
Networks: Performance, Interconnection, and Security with
IEEE 802.15.4. Wiley Publishing, 2008.

[5] P. Park, P. Di Marco, C. Fischione, and K. H. Johansson.
Delay analysis of slotted IEEE 802.15. 4 with a finite retry
limit and unsaturated traffic. In IEEE Global Communications
Conference, page 18, 2009.

[6] Petcharat Suriyachai, Utz Roedig, and Andrew Scott. Imple-
mentation of a MAC protocol for QoS support in wireless sen-
sor networks. In Pervasive Computing and Communications,
2009. PerCom 2009. IEEE International Conference on, page
16, 2009.

[7] M. Zuniga and B. Krishnamachari. Analyzing the transitional
region in low power wireless links. In Sensor and Ad Hoc
Communications and Networks, 2004. IEEE SECON 2004.
2004 First Annual IEEE Communications Society Conference
on, page 517 526, 2004.

Session 3

Calculation of Worst Case Backlog for
AFDX Buffers with Two Priority Levels

using Trajectory Approach
Naga Rajesh Garikiparthi, Rodrigo Coelho, Gerhard Fohler

Technische Universität Kaiserslautern, Germany
{rajesh,coelho,fohler}@eit.uni-kl.de

Abstract—AFDX (Avionics Full Duplex Switched Ethernet) is
a network standard chosen to replace point to point connections
in avionics systems. AFDX guarantees bandwidth reservation by
means of virtual links, which can, according to the standard
(ARINC 664 Part-7) be classified with two priority levels: high
and low. AFDX switches must have buffers at their output ports
and in order to not incur in data loss, buffer overflow must
be avoided. AFDX standard determines the minimum amount
of buffer dedicated to an output port, however it is up to the
designer to select the actual buffer size and how to allocate it for
the two priority levels of virtual links.

Previous works make use of trajectory approach (TA) to
analyze AFDX networks and compute the worst case backlog
of output buffers for single priority flows. A method to compute
the worst case backlog for two priorities buffers is the issue
addressed in this paper.
We make use of the TA to determine the frames competing for
the output port. Further, we analyze the worst case scheduling
scenario of frames competing for output ports and show how the
arrival of frames in the input links impacts the computation of
the backlog for two priority level buffers.

I. INTRODUCTION

AFDX is the network chosen to interconnect the nodes in
avionics systems [1]. AFDX offers a high network bandwidth
(typically 100Mbps) and allows for bandwidth isolation among
the network traffic by defining the concept of virtual links
(V L). Virtual links additionally define the logical path from
one source end-system (ES) to one or more destination ES.
The physical route of each V L is statically defined at design
time and therefore the switches traversed by each V L is known
before run-time.
AFDX networks make use of store and forward switches. In
order to cope with contention for the switches’ output ports,
each output port offers FIFO buffers.

Besides bandwidth isolation, AFDX further allows for the
classification of V Ls into two priority levels: high and low.
Switches have to send all high priority frames before the
low priority ones. Considering the non-preemptive property
of frame scheduling, the switch cannot abort the transmission
of a low priority frame in favor of a high priority one.

The AFDX standard [2] (ARINC 664 Part-7) specifies the
minimum number of frames that must be buffered on the
switches output ports. The actual output port buffer size for
each priority level is, however, left as a design decision and
is used in the configuration phase of the network ([2] section

4.7.3.2). Thus, in order to avoid buffer overflow in the output
ports and consequently packet loss, the designer must compute
the upper bound backlog for both high and low priority buffers.

In our work we present a method to compute the worst
case backlog for each priority output port buffer. We make
use of the TA [3] to compute the number of frames competing
for the same output port. We then analyze the frame arrival
scenarios (frame scheduling) and identify those that lead to the
worst case backlog for each priority level. We present distinct
scenarios in increasing order of complexity to facilitate the
analysis. Finally, we show how to compute an upper bound
for the backlog for the general case.
Previous works address the computation of the maximum
backlog for AFDX switches using TA considering single
priority V Ls. In this paper we consider two priorities V Ls
and present the computation of maximum backlog for the two
priority buffers.

This paper proceeds as follows: we present the related work
in section II; section III contains a short summary of basic TA
concepts required in this paper; in sections IV and V we show
how to compute the worst case backlog for the low and high
priority buffers, respectively; and in section VI we present our
conclusion and future work.

II. RELATED WORK

A number of works address the analysis of AFDX networks
in distinct aspects. Early studies on the computation of an up-
per bound for the end-to-end (e2e) delay of packets transmitted
on AFDX networks applied network calculus (NC). Despite
the simple graph analysis used in NC, both the combination
of flows into arrival curves and computation of the combined
service curves is not trivial [4] and leads to pessimistic results
[5]. [4] makes use of NC to compute the upper bounds for e2e
delay in AFDX networks for non-preemptive priority flows. [6]
and [7] respectively present how to compute the probabilistic
bounds on e2e delays and backlogs, based on stochastic NC.

A series of more recent works apply the trajectory approach
for the computation of AFDX e2e delays and backlogs. In
contrast to NC, which considers each V L as a flow, the TA
analyzes the V L traffic at a finer granularity, accounting for the
individual frames of the V Ls. Therefore, TA leads to tighter
bounds than NC for most investigated cases [5].
In [8] and [9] the authors make use of TA to compute the e2e

Fig. 1: Competing frames sharing two input links

Fig. 2: Considering competing frames only from l1

delay for FIFO output buffers with single priority and distinct
static priority flows respectively. [5] computes the worst case
backlog for FIFO output buffers with single priority flows. [5]
further extends the previously mentioned works and presents
an analysis of the pessimism intrinsic to TA.
Our paper tackles the issue of analyzing the worst case backlog
for AFDX networks with two priority flows, based on TA.

III. WORST CASE BACKLOG COMPUTATION FOR SINGLE
PRIORITY FLOWS USING TRAJECTORY APPROACH

This section describes the main idea behind the computation
of worst case backlog using TA as presented in [5]. The
concepts presented in this section will be used in section IV.

For flows with single priority, an AFDX switch provides a
single FIFO buffer. In order to determine the upper bound for
the backlog in the buffer, we need to compute the maximum
backlog encountered by a frame sharing the buffer. Therefore,
we need to establish the worst case arrival sequence of frames
competing for an output port.

Figure 1 presents the arrival of frames from two input links
of an AFDX switch. The leftmost frame is the first arriving
one and the rightmost frames are those that arrive at last.
The scenario depicted in Figure 1 represents the worst case
scenario of frames competing with fm arriving at the switch
from two input links l1 and l2, without any idle times, in
decreasing order of sizes. The first frames are received at
different times, while the last frames are received at the same
time θ. According to TA, fm has to be the last frame to be
received in the sequence. To proceed with the computation
of the worst case backlog faced by fm, the earliest starting
sequence among the two links is determined. The sequence
whose first frame is received earlier, is the earliest starting
sequence. This is achieved by comparing lengths of both
sequences without their first frames.

In our example of Figure 1, the earliest starting sequence
is the sequence on link l1. Suppose, it is the only sequence
present as seen in Figure 2, from Lemma 1 of [5], the backlog
at the reception of fm is the size of the largest frame on l1,
s(f1,l1). The maximum backlog is less if idle times are present
between frame arrivals on l1. Therefore, to produce the worst
case, idle times are avoided on the input links.

When frames arrive on a single input link in decreasing
order of sizes without idle times, the quantity of data entering

the switch is equal to the quantity of data leaving the switch.
Hence, at the reception of each frame, starting from f2,l1 on l1,
a residual backlog belonging to the previously received frame
is always present in the buffer. Consequently, no idle times
are created on the output link as seen in Figure 2.

Now consider the sequence on l2. The arrival of frames from
l2 increases the quantity of incoming data between the first and
last frame of l1. However, an increase in the quantity of data
being forwarded by the switch is inhibited by the absence of
idle times on the output link. Therefore, the backlog bl at the
reception of fm is increased by the frames on l2 i.e. f1,l2 ,
f2,l2 and f3,l2 and is given by the the following equation:

bl = s(f1,l1) +

3∑
i=1

s(fi,l2) (1)

If nlj represents the number of frames on link lj , above
equation can be written as:

bl =

2∑
j=1

nlj∑
i=1

s(fi,lj) − max
j=1,2

nlj∑
i=2

s(fi,lj). (2)

Hence, in the worst case, frames arrive continuously in de-
creasing order of sizes. The above scenario is presented in
detail in Lemma 2 and Lemma 3 of [5].

The above example can be generalized from two to arbi-
trarily many input links. The worst case backlog faced by fm
when competing frames share N input links is the sum of the
largest frame from the earliest starting sequence and all frames
from the other sequences. Accordingly, the backlog at time θ
is:

bl =

N∑
j=1

nlj∑
i=1

s(fi,lj) − max
1≤j≤N

nlj∑
i=2

s(fi,lj). (3)

IV. WORST CASE BACKLOG COMPUTATION IN LOW
PRIORITY BUFFER USING TRAJECTORY APPROACH

As we consider static priority queuing with two priority
levels, two buffers with high and low priority are present at
the output port of an AFDX switch. We determine guaranteed
backlog bounds in these two buffers using the TA. Accord-
ingly, the following points have to be addressed to compute
the backlog encountered by a frame fm:
• Identify flows that compete with fm for an output port

of a switch.
• Compute the number of frames of each competing flow

which lead to the worst case backlog encountered by fm
at the output port.

• Determine the scheduling of these competing frames
which lead to the worst case backlog for fm at the output
port.

A. Notations

• p – priority of a flow and a buffer, where p ∈ {H,L}
and H, L represent high and low priority respectively.

• ωH – total number of competing high priority flows.
• FlowsH – set of all high priority flows that compete for

an output port of the switch.

• v – index of a high priority flow and frame, v ∈ {1..ωH}.
• τHv – a competing high priority flow of index v,
FlowsH = {τHv ∀v ∈ {1..ωH}}.

• ωL – total number of competing low priority flows.
• FlowsL – set of all low priority flows that compete for

an output port of the switch.
• u – index of a low priority flow and frame, u ∈ {1..ωL}.
• τLu – a competing low priority flow of index u, FlowsL =
{τLu ∀u ∈ {1..ωL}}.

• fpk – frame of flow τpk ∈ {FlowsH , F lowsL}, where
k ∈ {v, u}.

• fpk,lj – frame of flow τpk ∈ {FlowsH , F lowsL} on link
lj , where 1 ≤ j ≤ N , N is the total number of input links.

• nplj – number of frames of priority p on link lj .
• s(fpk) – size of frame fpk .
• fm – frame under study, {fm ∈ τpi | i ∈ {v, u}}.
• τpk,lj – flow τpi on link lj .
• ηhi,v,t – number of frames of a high priority flow τHv at

switch h that impact fm ∈ τpi generated at time t at its
source end system.

• κhi,u,t – number of frames of a low priority flow τLu at
switch h that impact fm ∈ τpi generated at time t at its
source end system.

• BufferH – buffer for high priority frames.
• BufferL – buffer for low priority frames.
• blLmax – worst case backlog faced by a low priority frame.
• blHmax – worst case backlog faced by a high priority frame.

B. Identification of the Competing Flows

Our method considers two priorities, therefore a flow be-
longs to either high (H) or low (L) priority. To compute
the worst case backlog in BufferL, we consider a frame
fm ∈ τLi . Then, we determine FlowsH and FlowsL, which
compete with fm at the desired output port, with the help of
the network description which defines the routing of flows.

C. Computation of Number of Frames of Each Competing
Flow

We use TA to calculate the upper bound for the number of
frames of each flow in FlowsH and FlowsL competing with
fm in its busy period (busy period as defined in [10]).

According to TA, if any frame with low priority arrives after
fm, it cannot contribute to the backlog of fm [5]. However, in
contrast, if a frame with high priority arrives after fm, it may
contribute to the backlog of fm. The number of high and low
priority frames determines the length of the busy period and
therefore contributes to the worst case backlog faced by fm.

Consider that at time t, fm is generated at its source node.
The number of frames of a competing low priority flow, κhi,u,t,
and the number of frames of a competing high priority flow,
ηhi,v,t, that impact the backlog encountered by fm can be
derived from equations (5) and (6) presented in [9].

D. Worst Case Scheduling of Competing Frames

In order to compute the maximum backlog faced by fm,
we need to establish a worst case arrival sequence of the

competing frames in the busy period of fm. According to TA,
fm has to be the last frame to be received in that sequence.
We consider the following three cases to determine the worst
case arrival sequence and compute the worst case backlog
encountered by fm:
• Section IV-D1 explains the simple case of frames com-

peting with fm arriving from the same input link as fm.
• Section IV-D2 explains the case of frames competing with
fm arriving from two input links.

• Section IV-D3 explains the general case of frames com-
peting with fm arriving from arbitrary number of input
links.

For the sake of simplicity and without loss of generality, we
assume that one unit of time is the time required for the
transmission and reception of one unit of data.

1) Case 1: Competing Flows Sharing Single Input Link:
The top of Figure 3 shows the worst case arrival sequence
of frames competing with fm sharing the same input link as
fm. The low priority frames in the sequence are preceded by
the high priority frames. The following Lemma 1 computes
maximum backlog faced by fm in BufferL.

LEMMA 1: Given the frames fp1 , f
p
2 , ...f

p
k competing with

fm for an output port of a switch, grouped in high priority
followed by low priority fH1 , f

H
2 , ...f

H
ω′ , fL1 , f

L
2 ...f

L
ω , fm with

no idle times on the input link, the maximum backlog faced
by fm is blLmax. Introducing idle times in the input link never
leads to a backlog larger than blLmax. Consequently, the worst
case backlog faced by fm is given by:

blLmax =


max

1≤v≤ωH

1≤u≤ωL

(
s(fHv), s(fLu)

)
if blHmax <

ω∑
u=1

s(fLu)

ω∑
u=1

s(fLu) otherwise

(4)

The following properties are considered to prove the lemma.
1) The backlog encountered by fm does not increase when

an idle time is present on the input link.
2) A grouped order of arrival of frames with high priority

followed by low priority before fm, leads to worst case
backlog at the reception of fm.

We define grouped arrival order of frames the sequence of
frames in which all frames arrive back-to-back in two groups,
and each group contains only frames of same priority.

PROPERTY 1: Given a sequence of frames fp1 , f
p
2 , ...f

p
k ar-

riving in any order on a single input link and sharing an
output port of a switch, the maximum backlog faced by fm,
is obtained when there is no idle time during the reception of
the input sequence.

Proof: As proved in Property 1 of Lemma 1 in [5], if z
units of idle time is present on the input link and the output
port is accessible for any buffer, a maximum of z units of data
can be forwarded from the output port within this idle time.
Therefore, the backlog does not increase in either buffer as

Fig. 3: Grouped arrival order of frames

Fig. 4: Random arrival order of frames

there are no incoming frames during the idle times. Hence,
we conclude that the presence of idle times on the input link
never increases the worst case backlog for fm.

PROPERTY 2: Given a sequence of frames fp1 , f
p
2 , ...f

p
k arriv-

ing in grouped order with all high priority frames followed by
low priority frames, on a single input link without idle times,
the backlog encountered at the reception of the last frame fm
is always maximum.

Proof: Considering that both input and output links have
the same bandwidth, as in AFDX networks, the backlog in
BufferL only increases during the time when the following
condition holds: 1) low priority frames arrive from the input
link and 2) no low priority frame leaves from the output
link. Therefore, to exploit the worst case scenario for the
computation of blLmax, we analyze the moments in time when
low priority frames arrive from the input link.
[5] proved that idle times in the input links do not lead to
worst case scenarios, therefore for 1), we analyze the cases
when all low priority frames arrive with no idle time.
2) occurs if no complete frame is available in BufferL.
An incomplete frame in BufferL, i.e. a low priority frame
arriving from the input link, will increase the backlog in
BufferL by at most the size of the largest low priority frame.
[5] proved that max

1≤u≤ωL
(s(fLu)) is the maximum backlog for

single priority flows in a single input link, independent of the
arrival order of frames. Thus the worst case scenario does
not restrict the sequence of arrival within the group of low
priority frames. 2) may also occur if a high priority frame is
being transmitted. Then, the worst case scenario occurs when
BufferH has the largest backlog, i.e. blHmax. In this case,
the backlog in BufferL will increase as long as low priority
frames arrive from the input link and blHmax units of data is
being transmitted. The worst case scenario that leads to this
condition occurs when all low priority frames arrive after all
high priority frames.

The next examples depict two scenarios to highlight the
worst case presented in the previous paragraph. Consider an
example of a sequence of 6 frames with different sizes arriving
without idle times as depicted in Figures 3 and 4. The graphs
represent the backlogs in BufferH and BufferL during the

storing and forwarding of the given sequence according to their
priorities. Our aim is to compute the worst case backlog faced
by fm - fL3 in this example. Consider Figure 4, where fm is
preceded by a non-grouped arrival of frames on the input link.
At t=10, fH1 is completely stored and fL1 starts to buffer until
t=13. From t=10 to t=13, the backlog in BufferH decreases,
because the output port is accessible to forward data and there
are no incoming high priority frames. Traversing the graphs
along the sequence for both the buffers, we observe that the
backlog in BufferL is 4 at the reception of fL3 at t=35.

Now consider Figure 3, where frames are grouped and the
high priority group arrives first. The maximum backlog in
BufferH is 10 which is same as the scenario in Figure 4.
The low priority frames arriving after fH3 are accumulated
in BufferL from t=22 until the output port is free at t=32.
We observe that the backlog in BufferL at the reception
of fL3 is 10. In the grouped order of arrival, independent of
how frames are ordered within the groups, except for fL3 , the
backlog encountered by fL3 is always 10. We can see that when
BufferH contains at least one completely stored frame, it
delays the forwarding of low priority frames from BufferL.
In the worst case, BufferL stores blHmax units of data. In
a non-grouped arrival order, all low priority frames might be
forwarded before the reception of fL3 , as shown in Figure 4.

For a grouped order of arrival with high priority followed by
low priority frames, it is certain that in BufferL maximum
accumulation of low priority data occurs. Therefore, maximum
backlog at the reception of fm is attained in a grouped order
of arrival of frames.

When all high priority frames arrive consecutively, the
maximum backlog in BufferH at the reception of the last
high priority frame is:

blHmax = max
1≤v≤ωH

(
s(fHv)

)
. (5)

For example in Figure 3, blHmax = 10. At t=22 BufferL starts
to accumulate the low priority data until BufferH is empty
at t=32. The amount of data accumulated blLacc in BufferL,
is defined as:
blLacc: Backlog accumulated from the point in time when

the first bit of the first low priority frame gets buffered in
BufferL to a point in time when BufferH is empty.

We achieve the following cases to calculate blLacc:

• Case A: If blHmax <
ω∑
u=1

s(fLu), as seen in Figure 3

between t=22 and t=32,

blLacc = blHmax = max
1≤v≤ωH

(s(fHv)). (6)

• Case B: If blHmax ≥
ω∑
u=1

s(fLu).

blLacc =

ω∑
u=1

s(fLu). (7)

Accordingly, for the above two cases, the maximum
backlog in BufferL is:

blLmax = blLacc. (8)

Fig. 5: Scheduling of frames on two input links when ∆ > 0
and intbl

L
l2

> s(fL1,l2) .

• Case C: However, if the size of the incoming low priority
frame is greater than blHmax, the maximum backlog in
BufferL is the low priority frame with maximum size.

blLmax = max
1≤u≤ωL

(s(fLu)) (9)

2) Case 2: Competing Flows Sharing Two Input Links:
Figure 5 depicts the worst case arrival sequence to compute
the maximum backlog at the reception of fm in BufferL,
when competing frames share two input links. The frame under
study, fm, shares the first input link l1. The sequence on each
link is grouped into high priority followed by low priority
frames, as in Case 1. Further, frames within grouped sequences
are arranged in decreasing order of sizes. The following points
describe Figure 5 and will be used in Lemma 2:
• Last frames on l1 and l2 are received at the same time θ.
• α is the point in time when the last bit of the last high

priority frame is received by the switch.
• β is the point in time when BufferH is empty.
• Φ: Sum of sizes of all low priority frames in the shortest

low priority sequence between α and θ.
• ∆: Data arriving on a single input link between β and
θ. For negative values, |∆| represents the backlog in
BufferH at t=θ.

• blLα : Backlog in BufferL at α.
LEMMA 2: Given two continuous sequences of frames on
two input links l1 and l2, each grouped into high priority
followed by low priority frames and all frames within the
grouped sequence arranged in decreasing order of sizes,
s(fH1,lj) > s(fH2,lj) > ... > s(fHnH

lj
,lj

), s(fL1,lj) > s(fL2,lj) >

... > s(fLnL
lj
,lj

), fm where j = {1,2}. If the last frames of both

sequences on l1 and l2 are received at the same time θ, the
backlog at time θ is:

blLmax =



2∑
j=1

nL
lj∑

u=1
s(fLu,lj)− min

j=1,2

nL
lj∑

u=1
(s(fLu,lj) + blHmax

if intblLl1 > s(fL1,l1) and ∆ > 0

2∑
j=1

nL
lj∑

u=1
(s(fLu,lj))

if intblLl1 > s(fL1,l1) and ∆ ≤ 0

2∑
j=1

nL
lj∑

u=1
s(fLu,lj)− max

j=1,2

nL
lj∑

u=2
s(fLu,lj)

if intblLl1 < s(fL1,l1)
(10)

Proof: As in case 1, in the worst case, all low priority
frames arrive consecutively (in case 2, simultaneously from
the two input links) when the backlog in BufferH is the
maximum. In this scenario, no frame leaves BufferL while
the largest possible number of low priority frames enters
BufferL. From section III we know that blHmax occurs when
all high priority frames arrive in decreasing order of sizes.
To ensure this worst case condition, we construct the scenario
in which all high priority frames arrive in decreasing order of
sizes before all low priority frames. Next we will present how
to compute blHmax using the example presented in Figure 5.

First, we determine the earliest starting high priority se-
quence. In the scenario of Figure 5, l1 is this sequence. If
l1 were to be the only sequence, the maximum backlog in
BufferH is s(fH1,l1) as shown in Case 1.

Let us consider now that the high priority frames arrive also
from l2. Assuming that the high priority sequences on l1 and
l2 end at the same time and due to the non-preemptiveness:

blHmax =

2∑
j=1

nH
lj∑

v=1

s(fHv,lj) − max
j=1,2

nH
lj∑

v=2

s(fHv,lj) + max
1≤u≤ωL

(
s(fLu)

)
.

(11)
The above bound may be pessimistic because the high priority
sequences on both the links do not end at the same time.
Further, when BufferH reaches blHmax, BufferL achieves
a backlog of blLα as shown in Figure 5. To calculate blLα , the
point in time α has to be determined. Due to the grouped order
of arrival, the shortest low priority sequence on l2 determines
α. Hence,

Φ =

nL
l2∑

u=1

(s(fLu,l2)). (12)

Consequently the backlog in BufferL at α is:

blLα =

nL
l1∑

u=1

(s(fLu,l1))− Φ. (13)

From point α to β, BufferH imposes a delay of blHmax units
of time on the low priority frames in BufferL. We compute
blLacc, the backlog accumulated in BufferL at β:

blLacc = blLα + (2× blHmax). (14)

The factor 2 in the above equation accounts for blHmax amount
of data from both the links.

To compute the worst case backlog in BufferL, as seen in
section III, all low priority frames on each link have to arrive
in decreasing order of sizes. Next, we have to determine the
earliest starting low priority sequence. In our scenario, it is
the low priority sequence on l1.

At β, fL1,l1 is forwarded from BufferL as l1 is the earliest
starting sequence for low priority frames. Hence, the maximum
backlog in BufferL is computed by adding ∆ to blLacc:

blLmax = blLacc + ∆ (15)

where, ∆ = Φ− blHmax.

Fig. 6: Worst case arrival scenario to compute maximum
backlog in Low Priority Buffer

(15) is expanded as follows:

blLmax =

2∑
j=1

nL
lj∑

u=1

s(fLu,lj)− min
j=1,2

nL
lj∑

u=1

(s(fLu,lj) + blHmax. (16)

The above equation is derived when ∆ > 0 for the scenario
in Figure 5. Consider another case where BufferH is empty
after θ, i.e. ∆ ≤ 0. Then, BufferL stores all low priority
frames. Thus, when β > θ:

blLacc = blLα + (2× Φ) =

2∑
j=1

nL
lj∑

u=1

(s(fLu,lj)). (17)

Consequently,

blLmax =

2∑
j=1

nL
lj∑

u=1

(s(fLu,lj)). (18)

(16) and (18) are derived if fL1,l1 is completely stored at time β.
In case, fL1,l1 is not completely stored it cannot be forwarded
from BufferL. Therefore, we need to check if the backlog
contributed by the earliest starting sequence of low priority
at β contains a completely stored frame. Let intbl

L
l1

be the
backlog contributed to blLacc by the earliest starting sequence
of low priority l1:

intbl
L
l1 = blLα + blHmax (19)

If s(fL1,l1) >int bl
L
l1

and ∆ > 0, then:

blLmax =

2∑
j=1

nL
lj∑

u=1

s(fLu,lj)− max
j=1,2

nL
lj∑

u=2

s(fLu,lj). (20)

3) Case 3: Competing Flows Sharing Multiple Input Links:
This case generalizes Lemma 2 from two to multiple input
links. Figure 6 shows the worst case arrival sequence when
competing flows share N input links. The following lemma
gives the maximum backlog at time θ in BufferL.
LEMMA 3: Consider N continuous sequences of frames on N
input links each grouped into high priority followed by low pri-
ority and all frames ordered in decreasing size in their respec-
tive group s(fH1,lj) > s(fH2,lj) > ... > s(fHnH

lj
,lj

), s(fL1,lj) >

s(fL2,lj) > ... > s(fLnL
lj
,lj

), fm where 1 ≤ j ≤ N . If the last

frames on all links arrive at the same time θ, the backlog at
time θ is:

blLmax =



N∑
j=1

nL
lj∑

u=1
s(fLu,lj)− min

1≤j≤N

nL
lj∑

u=1
(s(fLu,lj) + blHmax

if intblLlr > s(fL1,lr) and ∆ > 0

N∑
j=1

nL
lj∑

u=1
s(fLu,lj)

if intblLlr > s(fL1,lr) and ∆ ≤ 0

N∑
j=1

nL
lj∑

u=1
s(fLu,lj)− max

1≤j≤N

nL
lj∑

u=2
s(fLu,lj)

if intblLlr < s(fL1,lr)
(21)

Proof: The procedure followed is similar to the proof of
Lemma 2.

To compute the worst case backlog in BufferH , assume
that all high priority sequences end at the same time. blHmax
is given by:

blHmax =

N∑
j=1

nH
lj∑

v=1

s(fHv,lj)− max
1≤j≤N

nH
lj∑

v=2

s(fHv,lj)+ max
1≤u≤ωL

(
s(fLu)

)
(22)

The backlog in BufferL at α when BufferH reaches blHmax
is given by:

blLα =

N∑
j=1

 nL
lj∑

u=1

s(fLu,lj)− Φ

 (23)

where,

Φ = min
1≤j≤N

 nL
lj∑

u=1

(s(fLu,lj))

 . (24)

The accumulated backlog in BufferL at β due to the delay
imposed by BufferH is:

blLacc = blLα + (N × blHmax). (25)

If β > θ, i.e. ∆ ≤ 0, then all low priority frames are
accumulated:

blLacc = blLα + (N × Φ) =

N∑
j=1

nL
lj∑

u=1

(s(fLu,lj)). (26)

At β, we need to check if the backlog contributed by the
earliest starting sequence of low priority includes a completely
stored frame. Let the earliest starting starting sequence be lr.
Then intbl

L
lr

, the backlog contributed by lr until time β is
given by:

intbl
L
lr = blLα,lr + blHmax, where blLα,lr =

nL
lr∑

u=1

(s(fLu,lr))− Φ.

(27)

The worst case backlog in BufferL at θ when intbl
L
lr

includes
s(fL1,lr) is:

blLmax = blLacc + (N − 1)×∆. (28)

(28) is expanded as:

blLmax =

N∑
j=1

nL
lj∑

u=1

s(fLu,lj)− min
1≤j≤N

nL
lj∑

u=1

(s(fLu,lj)+blHmax. (29)

If ∆ ≤ 0, then all low priority frames are included in blLacc.
Therefore,

blLmax =

N∑
j=1

nL
lj∑

u=1

s(fLu,lj). (30)

If s(fL1,lr) >int bl
L
lr

and ∆ > 0, then

blLmax =

N∑
j=1

nL
lj∑

u=1

s(fLu,lj)− max
1≤j≤N

nL
lj∑

u=2

s(fLu,lj). (31)

E. Worst Case Backlog Computation

To compute the worst case backlog encountered by fm, we
have to include the number of frames of each competing high
and low priority flow that are present in the busy period of
fm, as presented in IV-C.

PROPERTY 3: For a frame fm of a low priority flow τLi ,
generated at time t at its source node. Let τHv,lj and τLu,lj be
the high and low priority flows from link lj competing with
fm. The worst case backlog encountered by fm at the output
port of switch h with N input links is:

blLmaxi,t
≤



N∑
j=1

∑
fL
u ∈τL

u,lj

(
κhi,u,t × s(fLu)

)
− min

1≤j≤N

 ∑
fL
u ∈τL

u,lj

(
κhi,u,t × s(fLu)

)+ blHmaxi,t

if intblLlr > s(fL1,lr) and ∆ > 0

N∑
j=1

∑
fL
u ∈τL

u,lj

(
κhi,u,t × s(fLu)

)
if intblLlr > s(fL1,lr) and ∆ ≤ 0

N∑
j=1

∑
fL
u ∈τL

u,lj

(
κhi,u,t × s(fLu)

)
− Ξhi,t

if intblLlr < s(fL1,lr)
(32)

with:

Ξhi,t = max
1≤j≤N

 ∑
fLu ∈τLu,lj

(
κhi,u,t × s(fLu)

)
− max
fLu ∈τLu,lj

s(fLu)


(33)

Fig. 7: Worst case arrival scenario to compute maximum
backlog in High Priority Buffer

and

blHmaxi,t ≤
N∑
j=1

∑
fHv ∈τHv,lj

(
ηhi,v,t × s(fHv)

)
− Λhi,t (34)

with

Λhi,t = max
1≤j≤N

 ∑
fHv ∈τHv,lj

(
ηhi,v,t × s(fHv)

)
− max
fHv ∈τHv,lj

s(fHv)


(35)

Proof: The above equations for blLmaxi,t
complements

(21). The term
N∑
j=1

∑
fL
u ∈τL

u,lj

(
κhi,u,t × s(fLu)

)
computes the sum

of all low priority frames to be transmitted from all links at

the switch and corresponds to the term
N∑
j=1

nL
lj∑

u=1
s(fLu,lj).

Ξhi,t determines the longest low priority sequence among the
input links at switch h without including the largest frame and

corresponds to the term max
1≤j≤N

nL
lj∑

u=2
s(fLu,lj).

Further, blHmaxi,t
which corresponds to the term blHmax, rep-

resents data to be buffered due to the delay imposed by
BufferH on BufferL.
Similarly, the terms in blHmaxi,t

correspond to the terms in (22).
For each low priority flow that shares BufferL, the worst

case backlog for one of its frames has to be computed. The
maximum value among these individual low priority flow
worst case backlogs results in the worst case backlog in
BufferL.

V. WORST CASE BACKLOG COMPUTATION IN A HIGH
PRIORITY BUFFER USING TRAJECTORY APPROACH

The frame under study fm belongs to a high priority flow i.e.
fm ∈ τHi . Figure 7 represents the worst case arrival scenario to
compute maximum backlog faced by fm. All the high priority
frames arrive continuously in decreasing order of sizes, with
the last frames ending at the same time θ. The order of arrival
of low priority frames is neglected. Lemma 4 gives the worst
case backlog in BufferH .

LEMMA 4: Consider N continuous sequences of frames ar-
riving from N input links, each grouped into low priority
frames followed by high priority frames, and only the high
priority frames ordered in decreasing order of sizes s(fH1,lj) >

s(fH2,lj) > ... > s(fH
nH
lj
,lj

), fm. If the last frames on all the

links arrive at the same time θ, the backlog at time θ is:

blHmax =



N∑
j=1

nH
lj∑

v=1

s(fHv,lj) − max
1≤j≤N

nH
lj∑

v=2

s(fHv,lj) + max
1≤u≤ωL

(
s(fLu)

)
if intblHly > s(fH1,ly) and ∆ > 0

N∑
j=1

nH
lj∑

v=1

(s(fHv,lj))

if intblHly > s(fH1,ly) and ∆ ≤ 0

N∑
j=1

nH
lj∑

v=1

s(fHv,lj) − max
1≤j≤N

nH
lj∑

v=2

s(fHv,lj)

if intblHly < s(fH1,ly)
(36)

with ∆ = Φ − max
1≤u≤ωL

(
s(fLu)

)
Φ = min

1≤j≤N

(∑nH
lj

v=1(s(fHv,lj))

)
intbl

H
ly = blHα,ly + max

1≤u≤ωL

(
s(fLu)

)
blLα,ly =

∑nL
ly

v=1(s(fHv,ly)) − Φ

(37)

Proof: In the worst case, due to non-preemption, a high
priority frame is delayed by the largest low priority frame.
Therefore, BufferL imposes a delay of only max

1≤u≤ωL
(s(fLu))

and not blLmax on BufferH . As we are not concerned with
the maximum backlog possible in BufferL, the order of
arrangement of the low priority frames is neglected. Thus,
the worst case sequence to compute maximum backlog for a
high priority frame occurs, when all the high priority frames
arrive continuously in decreasing order of sizes.

Therefore, the backlog contributed due to contention among
only high priority frames is, sum of the largest high priority
frame from the earliest starting sequence and all the other
high priority frames from other sequences. Further data to
be added due to the delay imposed by BufferL is given
by max

1≤u≤ωL
(s(fLu)). If ly is the earliest starting high priority

sequence, we obtain the equations presented in the Lemma 4
to compute blHmax.

The worst case backlog is computed by including the
number of frames of each competing high priority flow, ηhi,v,t
from section IV-C, in (36),

blHmaxi,t ≤



N∑
j=1

∑
fHv ∈τHv,lj

(
ηhi,v,t × s(fHv)

)
− Λhi,t + max

1≤u≤ωL
(s(fLu))

if intblHly > s(fH1,ly) and ∆ > 0

N∑
j=1

∑
fHv ∈τHv,lj

(
ηhi,v,t × s(fHv)

)
if intblHly > s(fH1,ly) and ∆ ≤ 0

N∑
j=1

∑
fHv ∈τHv,lj

(
ηhi,v,t × s(fHv)

)
− Λhi,t

if intblHly < s(fH1,ly)
(38)

with

Λhi,t = max
1≤j≤N

 ∑
fHv ∈τHv,lj

(
ηhi,v,t × s(fHv)

)
− max
fHv ∈τHv,lj

s(fHv)


(39)

VI. CONCLUSION

AFDX is a network widely used in distributed avionics
systems. The AFDX standard describes the characteristics of
the switches and states that “data contention at the output
ports is resolved by buffering”. The standard further defines
the minimum size for the output buffer. However, in order to
avoid buffer overflow, and consequently data loss, the actual
total size for each priority level buffer (high and low) is left
as a design decision [2].
Previous works presented methods to compute upper bound
backlog for AFDX switches considering single priority V Ls.
In this paper we presented a method to compute an upper
bound for the backlog of both low and high priority buffers.
We showed how to identify and compute the frames competing
for a buffer output port and further presented the arrival
sequence of frames (scheduling of frames) that lead to the
worst case backlog for both priority levels.

Future work includes a detailed comparison on the results
achieved by our paper with those achieved using network
calculus. Additionally, we will investigate the impact of off-
line scheduled messages into the computation of the buffer
backlog and extend the analysis from two to arbitrarily many
priority flows.

REFERENCES

[1] R. Alena, J. Ossenfort, K. Laws, A. Goforth, and F. Figueroa, “Com-
munications for integrated modular avionics,” in IEEE Aerospace Con-
ference, 2007, pp. 1–18.

[2] “ARINC specification 664 P7-1. Aircraft Data Network Part-7 Avionics
Full-Duplex Switched Ethernet Network,” September 2009.

[3] S. Martin and P. Minet, “Schedulability analysis of flows scheduled with
fifo: application to the expedited forwarding class,” in IPDPS, 2006.

[4] M. Boyer and C. Fraboul, “Tightening end to end delay upper bound
for AFDX network calculus with rate latency fifo servers using network
calculus,” in WFCS, 2008, pp. 11–20.

[5] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Worst-case backlog eval-
uation of avionics switched ethernet networks with the trajectory ap-
proach,” in ECRTS, July 2012, pp. 78 –87.

[6] F. Ridouard, J.-L. Scharbarg, and C. Fraboul, “Probabilistic upper
bounds for heterogeneous flows using a static priority queueing on an
AFDX network,” in ETFA, September 2008, pp. 1220 –1227.

[7] ——, “Stochastic network calculus for buffer overflow evaluation in an
avionics switched ethernet,” in Junior Researcher Workshop on Real-
Time Computing, March 2007, pp. 55–58.

[8] H. Bauer, J. Scharbarg, and C. Fraboul, “Applying and optimizing trajec-
tory approach for performance evaluation of AFDX avionics network,”
in ETFA, 2009, pp. 1–8.

[9] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Applying trajectory approach
with static priority queueing for improving the use of available AFDX
resources,” Real-Time Systems, vol. 48, no. 1, pp. 101–133, January
2012.

[10] S. Martin and P. Minet, “Worst case end-to-end response times of flows
scheduled with FP/FIFO,” in ICN/ICONS/MCL, April 2006, p. 54.

MTU Assignment in a Master-Slave Switched
Ethernet Network

Mohammad Ashjaei, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

{mohammad.ashjaei, moris.behnam, thomas.nolte}@mdh.se

Luis Almeida
IT / DEEC, University of Porto, Portugal

lda@fe.up.pt

Abstract—In this paper, we investigate the problem of selecting
the Maximal Transmission Unit (MTU) size that maximizes the
schedulability of real-time messages. We focus on a bandwidth-
efficient master-slave switched Ethernet protocol, namely the
FTT-SE protocol. We propose an algorithm to find the MTU
for each message in order to maximize the schedulability of the
messages. Moreover, we evaluate our proposed algorithm and
we show that setting the MTU for messages using the algorithm
increases the schedulability of messages compared with assigning
the MTU to the maximum value that the protocol can support.

I. INTRODUCTION

Nowadays, there is an increasing demand towards using
high performance network solutions for real-time Networked
Embedded Systems (NES) due to the growth of the num-
ber of nodes in such systems, their increased amount of
functionalities and the high amount of information being
transmitted between the nodes. Ethernet has been proposed as
an interesting technology for such systems as it provides high
throughput, low cost, wide availability and general maturity.
To overcome the limitation of Ethernet with respect to real-
time guarantees, it has been complemented with suitable
transmission control mechanisms, being the base for several
real-time communication protocols currently used in NES,
such as PROFINET, Ethernet POWERLINK, TTEthernet and
FTT-SE. To keep the high performance of the Ethernet based
protocols, the network should be configured properly and one
of the configuration parameters that has a significant effect
on the performance of the protocols is the selection of the
maximum packet size of messages [1].

In the area of Ethernet protocols, a packet is defined to
hold up to 1500 data bytes which is relatively high compared
with other communication technologies. As a configuration
parameter, the maximum data size that a packet can hold
in Ethernet is called the Maximal Transmission Unit (MTU),
which has a big impact on the performance of the network and
the bandwidth utilization. For instance, the MTU size affects
the minimum slot time in TTEthernet [2], while in cyclic
base protocols, such as the FTT-SE protocol [3], it affects the
size of the idle time, which is considered to prevent overruns
between cycles. In this paper, we mainly focus on the FTT-SE
protocol which is based on a master-slave switched Ethernet
technology.

Considering industrial real-time applications, the amount of
data to be transmitted can vary from small to very large,
for instance, the flow size might be rather large for au-
tomation applications based on video streams or machine

vision. Therefore, the data of such applications should be
fragmented to several packets to be transmitted sequentially.
However, selecting the best MTU that guarantees the real-time
requirements for all messages is challenging. On one hand,
a larger MTU will reduce the number of packets needed to
transmit messages which in turn reduces the total transmission
time of messages due to a lower amount of overhead associated
with Ethernet packets. On the other hand, the large MTU
increases the idle time used in every cycle to prevent overruns
which in turn decreases the efficiency of the protocol. This
contradicting effect has been discussed in [1] for the FTT-
SE protocol and two algorithms (optimal and simplified) have
been proposed to find the optimum MTU for all messages. The
algorithms are based on the utilization bound schedulability
test and they only consider the effect of messages that share
the same destination node, while the impact of other messages
that might delay the transmission of messages has not been
included in the analysis.

In this paper, we generalize the solution presented in [1] by
including the effect of all messages that can delay the trans-
mission of messages. In addition, we propose an algorithm
based on the response-time schedulability analysis to find a
proper MTU for each message to increase the schedulability
of systems. We show that the proposed algorithm increases the
schedulability compared with the case when the MTU is set
(configured) to the maximum Ethernet packet in the network.

The rest of the paper is structured in the following way.
Section II presents related work. Section III outlines the basics
of the FTT-SE protocol. Section IV presents the system model
and Section V sketches the schedulability analysis. Moreover,
Section VI proposes the heuristic algorithm, while Section VII
shows the evaluation of the algorithm. Finally, Section VIII
concludes the paper and presents the future work.

II. RELATED WORK

The problem of fragmenting messages into smaller packets
transmitted over large heterogeneous networks has been dis-
cussed in [4]. In such networks, some routes can carry limited
packet size and large messages should be fragmented leading
to a higher protocol overhead and a lower throughput. For
such a problem, optimal routing techniques are developed to
avoid message fragmentation as much as possible.

In the context of wireless networks, having several small
packets degrade the throughput of the network due to the
protocol overhead inherent to the transmission of each packet.

On the other hand, using a large packet size may also affect the
efficiency due to retransmission of faulty packets. Therefore,
optimal solutions have been proposed in [5] and [6] in the
area of wireless networks. Moreover, in [7] an algorithm
to dynamically adjust the packet size in multi-level security
wireless networks is proposed in which the goal is to mini-
mize the overhead in each packet. The same goal as finding
the optimized packet length for wireless sensor networks is
presented in [8], where the criterion for optimization is energy
efficiency rather than the bandwidth efficiency.

However, the above proposed solutions are not applicable
in this paper as the source of the problem and the goals are
different where we focus mostly on real time guarantees.

The work presented in [9] proposed an algorithm to select
optimal preemption points in order to increase the schedula-
bility of real-time tasks. The criteria to select the optimum
preemption points is based on decreasing the overhead of
task preemption and the blocking from lower priority tasks
on the higher priority tasks. Adding preemption points inside
the execution of tasks can be modeled as fragmenting the
tasks into a set of subtasks which is similar to fragment
messages into a set of packets. Nevertheless, the proposed
algorithm is not suitable for our case as it tries to optimize the
non-preemptive regions (between two preemption points) of
lower priority tasks that block the execution of higher priority
tasks. While in our case selecting the MTU of higher priority
message can contribute to their transmission time and also the
idle time included on every scheduling cycle for each message
affecting the schedulability of all messages.

The work presented in [1] is the most related work, where
two algorithms were proposed to find one optimum MTU for
all messages in the scope of the FTT-SE protocol. However,
the presented algorithms are based on the utilization bound
schedulability and do not consider all messages that can delay
the considered messages. In this paper, we use a tighter
schedulability test based on response time analysis and we
consider all messages that can interfere with the messages
under consideration. In addition and to improve the efficiency,
we assign an individual MTU for each message unlike the
previous work where only one MTU is assigned for all
messages. Note that the algorithms presented in [1] can only
give optimal results for very simple cases assuming that all
messages are forwarded to the same destination. Otherwise, a
very high computational complexity algorithm is required to
find the optimal solution. In this paper, we propose a heuristic
algorithm based on the response time analysis to find MTUs
for all messages that keep the system schedulable, i.e., all
messages meet their deadlines.

III. THE FTT-SE BASICS

The FTT-SE protocol [3] is an Ethernet real-time com-
munication protocol that uses a master-slave technique to
coordinate all traffic in the network. This protocol supports
both synchronous and asynchronous traffic. The former is
time-triggered and activated by the scheduler according to its

period, whereas the latter traffic is issued by applications in
the nodes.

The master node organizes the traffic in fixed time slots
called Elementary Cycles (EC) and broadcasts a specific
message, which is called the Trigger Message (TM), at the
beginning of the EC. The scheduling of messages is carried
out on-line according to some suitable scheduling policy, and
the scheduled messages are encoded into the TM. The network
nodes receive the TM, decode it and initiate the transmission
of messages.

As depicted in Figure 1, the data communication in each EC
is divided into two specific windows to handle synchronous
and asynchronous traffic, which is called the synchronous
window and asynchronous window respectively. Once the
nodes in the system receive the TM, the time they need to
decode it and initiate the transmissions is called turn around
time (TRD).

The asynchronous messages make use of a signaling mech-
anism that allows the master to become aware of them and
consider them in its internal traffic scheduling [10]. The
signaling mechanism is based on so-called signaling messages
(SIG) sent by the nodes to the master node, informing it of
the status of the nodes queues. Whenever an asynchronous
message becomes active in one node, this node informs the
master in the next SIG message that it sends to schedule
the asynchronous messages in the upcoming ECs, e.g., the
messages A and B in Figure 1.

Time
Master TM

Synchronous Window TRD Asynchronous Window

Slave1
TM

A

A

Slave2
TM

B

B

switch In

Switch Out

Idle Time Idle Time

Schedule the ready messages for the next EC by the master

Elementary Cycle

switch In

Switch Out

switch In

Switch Out

Fig. 1. The FTT-SE Elementary Cycle

The FTT-SE protocol automatically fragments large mes-
sages into several packets that are scheduled sequentially by
the master node.

IV. SYSTEM MODEL

In this paper, we consider the real-time periodic model
to describe both synchronous and asynchronous messages as
presented in the following set:

Γ = {mi(Ci,Di,Ti,Si,Dsi,MTUi,nPi), i = 1..N} (1)

In this set, Ci is the total transmission time of the message
including all physical layer overheads such as inter-frame gap,
Di and Ti are the relative deadline and period of messages
respectively, which are presented as integer number of ECs.
Moreover, Si is the source node and Dsi is the destination node
of the message (we assume unicast streams in this paper).

Also, MTUi is the maximum packet size among the packets
that compose mi and nPi is the number of packets. We model
both, synchronous and asynchronous messages, with the same
set in which Ti presents the minimum inter-arrival time for
asynchronous messages. In this paper we assume that Γ is
sorted by the descending priority of the messages. Finally,
the fixed priority scheduling algorithm is used to schedule
messages and the priorities of messages are assigned according
to the Rate-Monotonic (RM) algorithm.

The switches are assumed to be Commercial Off-The-Shelf
(COTS) and cut-through switching and ready messages in
switches are scheduled using the First In First Out (FIFO)
approach. We also consider the switch relaying latency (∆) in
the schedulability analysis.

According to the FTT-SE protocol, all messages which are
scheduled to be transmitted in one EC should be received by
the end of the EC. In order to prevent any overrun of the
traffic, a message that cannot be fully transmitted within the
transmission window is suspended for the next EC, e.g., m1
in Figure 2.

Time

Synchronous Window Synchronous Window

m5 m4 m7 m1 m3 m1

ECk ECk+1

Idle time

Fig. 2. The Idle Time Presentation

This property introduces an idle time in each transmission
window that should be taken into account in the schedulability
analysis.

V. SCHEDULABILITY ANALYSIS

In the FTT-SE protocol, the system is schedulable when
all messages meet their deadlines. The schedulability is
investigated by computing the response time (RT) for all
messages. The system is guaranteed to be schedulable if
∀mi : RT (mi) ≤ Di. In addition, the FTT-SE scheduling is
based on reserving a bandwidth every EC for each type
of messages, both synchronous and asynchronous, which is
similar to the periodic resource model presented in [11].
Therefore, in order to calculate the response time analysis,
we perform the analysis based on a request bound function
(rbf) and a supply bound function (sbf).

The rb fi(t) represents the maximum load generated by mi
and all higher priority messages that can delay mi within
the time interval [0, t]. Therefore, the rb fi(t) is calculated by
summing the total transmission time of the message itself, the
interfering messages and the remote load interference denoted
by Wi(t) which will be discussed later in this section. The
rb fi(t) computation is presented in (2), where hp(mi) is the
set of messages with priority higher than that of mi.

rb fi(t) =Ci +∆+ ∑
∀m j∈hp(mi) ∧

(S j=Si∨Ds j=Dsi)

d t
Tj
eC j +Wi(t)

(2)

Besides the interference of the messages that share links
with the message under analysis mi (i.e., ∀m j ∈ hp(mi) ∧
(S j = Si ∨Ds j = Dsi)), the message mi may still be delayed
indirectly through other messages. To show this effect let us
consider the example illustrated in Figure 3.

In Figure 3, m1 is transmitted from Node A to Node B, m4
is sent from Node A to Node C and m3 is transmitted from
Node B to Node C and m2 is sent from Node B to Node A.
In this example we focus on m4 and we assume that it is the
lowest priority among the other messages. In this scenario, m1
is delaying m4 which cause delay in m3 reception. If m1 was
not scheduled for this EC, it would be possible for m3 to be
transmitted in the EC. Therefore, m1 delays m3 even though
they do not share links. We can call this effect remote load
delay. Since m4 has the lowest priority, the scheduler in the
master node will suspend the transmission of m4 to the later
EC.

Synchronous Window

m1 m4

ECk

Node A

Node B

Node C

m2 m3

m4 m3

switch In

switch In

switch In

switch out

switch out

switch out

m1

m2

Fig. 3. The Remote Load Interference

To consider this delay in the analysis, all higher priority
messages that share source node with the interfering messages
are considered as higher priority interfering messages in the
response time analysis as shown in (3).

Wi(t) = ∑
∀mk∈hp(m j) ∧ Sk=S j
∧ ∀m j∈hp(mi)

d t
Tk
eCk

(3)

The sbf(t) is the minimum effective communication capacity
that the network supplies within the time interval [0, t]. Note
that in each EC, a particular bandwidth is provided for trans-
mitting each type of message which is imposed by LSW − I,
where LSW is the length of the synchronous window and I is
the idle time in that window. The idle time is upper bounded by
the maximum packet size among the higher priority messages
and the message under analysis. Thus, for the message mi the
supply bound function sb fi(t) is computed in (4).

sb fi(t) = (LSW−Ii
EC)× t

Ii = max
∀m j∈hp(mi)

(MTUi,MTU j) (4)

The response time of mi is computed based on (5).

t∗ = min(t > 0) : sb fi(t)≥ rb fi(t) (5)

In order to determine t∗, the inequality should be checked
in all instants that rb fi(t) changes due to interference of other
messages up to Di. Therefore, a set of check points is given
by (6).

CPrb fi = [∪cpma ,∀ma∈hp(mi)]∪Di

where,cpma = Ta,2Ta, ...,nTa,n = bDi
Ta
c (6)

Finally, we compute the response time in number of ECs
which is given by (7).

RT (mi) = d
t∗

EC
e (7)

The analyses explained above are suitable for the syn-
chronous messages and the asynchronous messages. However,
for asynchronous messages additional 2 EC delay should be
added to the RT. The reason for this is that the request for
asynchronous messages may have to wait 1 EC before the
node signals it in the next SIG and the master then executes
the scheduling one EC before the respective dispatching.

VI. MTU ASSIGNMENT ALGORITHM

The maximum and minimum possible packet transmission
times are limited to MTUmax and MTUmin which are de-
fined according to the protocol specification. In this sec-
tion we present an algorithm to find the MTUi within
[MTUmin,MTUmax] such that the system becomes schedulable.

According to the schedulability analysis presented in Sec-
tion V, the selection of MTUi affects the response time
analysis as it influences the bandwidth utilization in sb fi(t)
through the idle time. Increasing MTUi might increase Ii in
(4) for message mi and the other lower priority messages that
share the same destination node. As a result, increasing Ii will
decrease the sb fi(t) and hence decreasing the schedulability
of the message. Moreover, increasing MTUi will require less
packets to transmit the data which in turn will decrease the
total transmission time of the message and it will decrease
rb fi(t) and as a result it will increase the schedulability of
the system. Considering these two contradicting effects in
the schedulability analysis, we may conclude that there is a
tradeoff between decreasing the effect of idle time and the
protocol overhead when changing the MTUs of messages.

Looking at (4, 2), we can conclude that selecting the MTU
for a message not only affects the response time of that
message itself but it affects the schedulability of the lower
priority messages through the higher priority interference and
remote load interference delay. In order to find the optimum
solution a combination of all possible MTU ranges for all
messages should be checked which requires an algorithm with
an exponential computational complexity. Thus, in this section
we present a heuristic algorithm to find the MTUi.

In order to present the effect of MTUi in the request
bound function, the total transmission time of the message

is formulated based on the MTUi. The total message trans-
mission time Ci includes the actual data transmission time C∗i
and the protocol overhead O. The protocol overhead O is a
constant value which is added to each packet separately and
includes Ethernet overhead, the FTT-SE protocol overhead and
the inter-frame gap between the packets. Therefore, the total
message transmission time equals to C∗i +nPi×O. Note that,
we consider the actual transmission time of a message equally
split among its packets. This helps avoiding residual short
packets and leads to increase the schedulability as described
before. Thus, the MTUi is evaluated in (8).

MTUi = d
C∗i
nPi
e (8)

The number of packets for each message can be expressed
as in (9).

nPi = d
C∗i

MTUi
e (9)

We can reformulate the total message transmission time
Ci to be a function of MTUi by considering nPi from (9).
Moreover, we can approximate the equation by removing the
ceiling in the equation which is presented in (10).

Ci =C∗i +(
C∗i

MTUi
+1)×O (10)

We expand the inequality (5) by substituting the sb fi(t) from
(4) and the rb fi(t) from (2). Also, the transmission time Ci in
rb fi(t) can be replaced with (10). Due to the max function in
the sb fi(t), we need to evaluate the inequality in two different
conditions.

In the first condition, we assume that the MTUi is greater or
equal to the maximum MTU of all higher priority messages
than that of mi. Therefore, a quadratic equation is derived as
a function of MTUi as it is presented in (11).

t
EC MTU2

i +(C∗i +M(t))×MTUi +(C∗i ×O)≤ 0 (11)

M(t) = O+∆− LSW×t
EC + ∑

∀m j∈hp(mi) ∧
(S j=Si∨Ds j=Dsi)

d t
Tj
eC j

+ ∑
∀mk∈hp(m j) ∧ Sk=S j
∧∀m j∈hp(mi)

d t
Tk
eCk

(12)

Note that, the quadratic equation (11) has two solutions
which shows a range of solutions that satisfies the inequality.
Moreover, the coefficient of MTU2

i is always positive as t
and EC are always positive integers. Therefore, the parabola
opens upwards in this case, i.e., the quadratic has a minimum
value. As a result, given MTUi[lo] and MTUi[hi] as lower
value and higher value of the solutions respectively, that make
the left side of the equation equal to zero, all the values within
the range [MTUi[lo],MTUi[hi]] guarantee the schedulability of
that message.

If the primitive condition is not satisfied, i.e., MTUi is less
than the maximum MTU of all higher priority messages, we
need to evaluate MTUi using (13) and (14).

MTUi ≤
−C∗i ×O
C∗i +L(t) (13)

L(t) = M(t)+ t
EC × max

∀m j∈hp(mi)
(MTU j) (14)

If the evaluated MTUi from (13) satisfies the assumed
condition, i.e., ∀m j ∈ hp(mi) : MTUi < max(MTU j), then the
solution is accepted, otherwise there is no solution to make
the message schedulable.

Algorithm 1 shows an algorithm to find the MTU for all
messages in order to make the system schedulable. As we
have seen above, selecting MTU for a message always affects
itself and the lower priority messages. Therefore, the algorithm
starts from the highest priority message and it continues to the
lowest priority messages. Algorithm 1 starts with calculating
the MTU range for m1 based on (11). As m1 is assumed to
be the highest priority message in the set, the set of MTUs
(MTUhp) from messages with priority higher than m1 is set to
zero. Moreover, for all messages the MTUi is calculated when
t is assigned to the deadline of the message, i.e., t = Di.

Algorithm 1 MTU Assignment Algorithm
1: //Find the range of MTU1 according to (11)
2: t = D1,MTUhp = 0
3: sched =−1
4: MTU1[hi, lo] = MTUcalc(t,MTUhp)
5: MTU1[hi, lo] =CheckRange(MTU1[hi, lo])
6: //Change MTU to nP according to (9)
7: nP[min,max] = translate(MTU1[hi, lo])
8: for i = nP[min]→ nP[max] do
9: for m j = m2→ mN do

10: t = D j,MTU j = 0
11: //Find the range of MTU j according to (11), (13)
12: MTU j[hi, lo] = MTUcalc(t,MTUhp[hi])
13: MTU j[hi, lo] =CheckRange(MTU j[hi, lo])
14: //If there is a solution, set the flag
15: if MTU j[hi]> 0 then
16: sched = 1
17: update(MTUhp)
18: else
19: sched =−1
20: break
21: end if
22: end for
23: //If there is a solution, no need to check other nP
24: if sched == 1 then
25: break
26: end if
27: end for
28: return MTU j,sched

The [MTU1] range is evaluated and the algorithm checks
the range with the maximum possible protocol range of MTU ,

i.e., the range should be within [MTUmin,MTUmax] (lines 4 and
the following). Afterwards, we need to find the value within
the evaluated MTU range such that all other lower priority
messages are schedulable. Therefore, the algorithm iterates
for all possible number of packets (only for m1) from the
evaluated range of the MTU1 according to (9) (line 7) starting
from the highest down to the lowest value of MTU. Given
the value of MTU1 the algorithm checks the schedulability of
other messages starting from message m2 the second highest
priority to evaluate its MTU and then continue with the other
messages.

In the message iteration, the algorithm calculates the range
of the MTU j for each message according to (11, 13) con-
sidering the highest evaluated MTU values of higher priority
which is denoted by MTUhp[hi] (lines 12 and the following).
This value is already computed for m1 and will be calculated
for other messages in the loop, then it is updated to be
used later in the calculations of MTU for the other lower
priority messages(line 17). For instance, in the iteration of
m3, the MTUhp[hi] includes both MTU2[hi] and MTU1 which
are calculated in the previous iterations. The loop continues
for other messages unless the solution is not found with the
evaluated values of the MTUhp.

Whenever the algorithm does not find a range for at least
one of the messages, it breaks the inner loop and it continues
for the next number of packets in the outer loop (lines 18
and the following). Otherwise if the range is evaluated for all
messages, the algorithm stops the outer iteration and returns
the MTU j for all messages (lines 24). When computing MTU j
the algorithm considers the highest evaluated values of the
MTUs (MTUhp[hi]) of the higher priority messages m2, ..m j−1.
The reason for this is that the higher value of MTU requires
lower number of packets which may lead to better response
times of messages.

The complexity of the algorithm is O(N× nP) where nP
is a function of MTU which is between [MTUmin,MTUmax].
Note that the presented algorithm is not an optimal algorithm
and it is sufficient but not necessary meaning that if it does
not find a solution for a system it does not mean than there is
no solution for that system.

VII. EVALUATION

In this section, we evaluate the improvements that can be
achieved by the presented algorithm in terms of increasing the
schedulability of messages and we compare the results of the
algorithm with the results of using the maximum protocol’s
MTU (MTUmax) for all messages. The evaluation is carried
out using four different simulation studies. In each study,
the algorithm is applied on a number of randomly generated
message sets given the following parameters as input to the
message sets generation program. The range of the message
period is defined [T min

i ,T max
i], the number of messages is

denoted by N and the transmission time of the messages is
selected within [Cmin

i ,Cmax
i].

For each study, 100000 message sets are randomly gener-
ated given the range of the above mentioned input parameters.

In all studies the following assumptions are made: the network
capacity is set to 100Mbps, number of slave nodes in the
network is 5, the elementary cycle duration is EC = 1.5ms,
the protocol overhead is 44 bytes including Ethernet overhead
and the FTT-SE overhead, and the Ethernet inter-frame gap
is 96bits which makes O = 3.96µs, and the switch latency
is considered ∆ = 5µs. Finally, the minimum and maximum
packet size is [100,1500] bytes. Moreover, in all studies only
synchronous messages are considered and for each study 20
different synchronous window durations LSW are selected
from; LSW = [100,1000]µs in steps of 50µs, where the 100000
sets are tested for every value of LSW .

The different settings in each study are:
• Study 1 is specified to have N = 10, [T min

i ,T max
i] = [2×

EC,50×EC] and [Cmin
i ,Cmax

i] = [150,200]µs.
• Study 2 is done with the same parameters as Study 1,

except the number of messages which is N = 30.
• Study 3 is specified having similar parameters in Study 1,

except that the message transmission times are increased
within [Cmin

i ,Cmax
i] = [200,500]µs.

• Study 4 is performed having the same range for transmis-
sion time of the messages in Study 3, but changing the
range of the periods within [T min

i ,T max
i] = [5×EC,80×

EC] and N = 30.
In all studies we count the number of scheduled sets out

of the 100000 randomly generated and using the MTU values
evaluated from the proposed algorithm and the same study is
repeated assuming the MTUmax for all messages.

0

10

20

30

40

50

60

70

80

90

100

Sc
h

ed
u

la
b

ili
ty

 P
er

ce
n

ta
ge

 (
%

)

Synchronous Transmission Window Size (µs)

Algorithm 1

MTU_max

Fig. 4. The Result of Study 1

Figure 4 shows the percentage of schedulable systems in
Study 1 as a function of LSW . It is clear from the figure
that the results of using the proposed algorithm increase the
schedulability of sets significantly compared with the case of
assigning the maximum MTU. To guarantee the schedulability
of all sets we need LSW ≥ 500µs for the case of maximum
MTU while using the MTU from the proposed algorithm
reduces the required length to LSW ≥ 400µs.

In the second study, we changed the number of messages
to 30 in each set to investigate the effect of the number of

messages on the results. The results of Study 2 are depicted in
Figure 5. The result illustrates that using the maximum MTU
for the messages cannot reach to 100% meaning that the dedi-
cated synchronous window is not enough. However, assigning
MTUs according to the proposed algorithm, makes all sets
schedulable even with LSW ≥ 850µs. Note that increasing the
number of messages in general requires more bandwidth to
be dedicated to the messages to guarantee their schedulability
since it increases the number of interfering messages for lower
priority messages which is clear when comparing the results
of Study 1 and Study 2.

0

10

20

30

40

50

60

70

80

90

100

Sc
h

ed
u

la
b

ili
ty

 P
er

ce
n

ta
ge

 (
%

)

Synchronous Transmission Window Size (µs)

Algorithm 1

MTU_max

Fig. 5. The Result of Study 2

The results of Study 3 are presented in Figure 6 and it
shows that increasing the transmission time of the messages
highly affects the schedulability of the sets, yet setting the
MTUs based on the presented algorithm makes 100% of the
generated sets schedulable by using a synchronous window
duration larger than 750µs.

0

10

20

30

40

50

60

70

80

90

100

Sc
h

ed
u

la
b

ili
ty

 P
er

ce
n

ta
ge

 (
%

)

Synchronous Transmission Window Size (µs)

Algorithm 1

MTU_max

Fig. 6. The Result of Study 3

In the last study, we increase both the number of messages
and the period of the generated messages. Figure 7 shows
the result of Study 4. As explained previously, increasing the

number of messages affects the percentage of schedulable
sets. Also increasing the difference between the minimum
and maximum periods of messages have the same negative
effect on the schedulability since the shorter period messages
may activate several times while scheduling the lower priority
larger periods which increases the interference from higher
priority messages. Applying the algorithm on the message
sets makes 100% of the message sets schedulable when the
dedicated synchronous window is more than 550µs, whereas
using MTUmax requires the synchronous window more than
750µs.

0

10

20

30

40

50

60

70

80

90

100

Sc
h

ed
u

la
b

ili
ty

 P
er

ce
n

ta
ge

 (
%

)

Synchronous Transmission Window Size (µs)

Algorithm

MTU_max

Fig. 7. The Result of Study 5

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a heuristic algorithm to find a
MTU for each message in order to increase the schedulability
of the messages in the FTT-SE protocol. We evaluated the
proposed algorithm using 4 different studies and we showed
that assigning the MTU of the messages according to the
proposed algorithm increases the percentage of schedulable
sets compared with using the protocol maximum MTU for
all messages. However, this algorithm does not evaluate the
optimum MTU for the messages as the complexity is high.
The future work aims at finding the MTU in the multi-hop
FTT-SE protocol.

ACKNOWLEDGMENTS

This work is supported by the Swedish Foundation for
Strategic Research, via Mälardalen Real-time Research Cen-
ter (MRTC) at Mälardalen University. Also, it is partially
supported by FEDER through the COMPETE program, and
by the Portuguese Government through FCT grant Serv-CPS
PTDC/EEA-AUT/122362/2010.

REFERENCES

[1] M. Behnam, R. Marau, and P. Pedreiras, “Analysis and optimization
of the mtu in real-time communications over switched ethernet,” in
16th IEEE International Conference on Emerging Technologies Factory
Automation (ETFA’11), sept. 2011.

[2] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-
triggered ethernet (tte) design,” in 8th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, may 2005.

[3] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over cots ethernet switches,” in 6th IEEE International Workshop
on Factory Communication Systems (WFCS’06), June 2006.

[4] C. A. Kent and J. C. Mogul, “Fragmentation considered harmful,”
SIGCOMM Comput. Commun. Rev., Jan. 1987.

[5] J. Chen, L. Gong, Y. Yang, and P. Zeng, “Average performance of packet
network,” in 6th International Conference on ITS Telecommunications
Proceedings, 2006.

[6] C. K. Kodikara, S. Worrall, and A. Kondoz, “Optimal settings of max-
imum transfer unit (mtu) for efficient wireless video communications,”
IEE Proceedings of Communications, 2005.

[7] M. Younis, O. Farrag, and W. D’Amico, “Packet size optimization for
increased throughput in multi-level security wireless networks,” in IEEE
Military Communications Conference (MILCOM’09), 2009.

[8] Y. Sankarasubramaniam, I. Akyildiz, and S. McLaughlin, “Energy
efficiency based packet size optimization in wireless sensor networks,”
in Proceedings of the First IEEE International Workshop on Sensor
Network Protocols and Applications, 2003.

[9] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and
M. Caccamo, “Preemption points placement for sporadic task sets,” in
22nd Euromicro Conference on Real-Time Systems (ECRTS’10), 2010.

[10] R. Marau, P. Pedreiras, and L. Almeida, “Asynchronous traffic signaling
over master-slave switched ethernet protocols,” in 6th International
Workshop on Real Time Networks (RTN’07), July 2007.

[11] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in 24th IEEE International Real-Time Systems Symposium
(RTSS’03), 2003.

Implementing Virtual Channels in Ethernet using
Hierarchical Sporadic Servers

Zahid Iqbal, Luis Almeida
Instituto de Telecomunicações

University of Porto, Faculty of Engineering
Porto, Portugal

{dee11021,lda}@fe.up.pt

Moris Behnam
Mälardalen Real-Time Research Center

Mälardalen University
Västerås, Sweden

{moris.behnam}@mdh.se

Abstract—Composability is an important property to
build complex applications. One important technique
to achieve composability, particularly in the time do-
main, is multi-level hierarchical server-based design.
However, composability must not only be supported
among components sharing computing resources but
also in their interactions. In this paper we implement
hierarchical server-based traffic scheduling within the
Flexible Time-Triggered Switched Ethernet (FTT-SE)
protocol. The novelty in this work is the use of hier-
archical sporadic servers in such setting. We report an
efficient usage of the network bandwidth, short reponse
times and the temporal isolation across servers.

I. Introduction and Related Work
Limited forms of multilevel server-based scheduling,

typically with two levels, have existed in the network
domain for many years, to provide virtual channels and
bound the impact of burstiness of certain types of traffic.
Traffic shapers are one form of servers as they limit the
amount of traffic that a node can submit to the network
in a given time window. The shaper has one scheduling
discipline associated to its arrival queue, typically FCFS,
and another scheduling discipline manages its output at a
global level. The leaky bucket is a common traffic server
found frequently in networks that belongs to the category
of shapers [1]. Network servers use techniques similar to
CPU servers, based on capacity that is consumed and then
eventually replenished. Different server policies exist that
differ in the way the replenishment is done. For example,
Polling Server, Periodic Server and the Deferrable Server
offer periodic replenishments. However, network servers
unlike CPU servers often lack clear or fixed dynamic
priority management schemes due to a wide variety of
Medium Access Control (MAC) protocols, e.g., mix of
round-robin and first-come first-served scheduling, and
multiple priority levels.

Considering Real-Time Ethernet (RTE) protocols, we
can find some limited forms of reservations for specific traf-
fic types. One class of RTE includes time-triggered frame-
works that allow reserving fixed windows or slots for the
transmission of different kinds of traffic, typically aperiodic
traffic. Industrial examples of this kind include TTEther-
net [2], Ethernet PowerLink [3] and PROFINET [4]. Such

slots or windows are in fact polling or periodic servers on
which the channel bandwidth is available on a periodic
basis. The bandwidth allocated to these servers is exclu-
sive, which means that if no traffic of the respective type
is pending, the bandwidth cannot be used by other types
of traffic and is, thus, wasted. Moreover, these servers use
fixed slots within rigid cyclic frameworks, which impose
a compromise between bandwidth and response time,
i.e., low response times can only be achieved with high
bandwidth requirements. Finally, these protocols do not
allow either arbitrary server policies with hierarchical
composition to support complex applications or the servers
dynamic management.

Another class of RTE protocols follows the event-
triggered paradigm without global synchronization [1], im-
plementing traffic shapers at the end nodes. Probably the
most flexible and widely available such approach is Lin-
uxTC [5], which already supports arbitrary server policies
and their hierarchical composition. However, the dynamic
management of the servers requires a global management
entity that is not covered by LinuxTC and this framework
intrinsically allows capacity overruns corresponding to
both the on-going packet transmissions and interference
from the operating system in implementing certain servers
policies, particularly aperiodic ones such as the Sporadic
Server [6], degrading temporal isolation.

Finally, other RTE frameworks have explored including
hierarchical aperiodic servers within the network switches.
The work in [7] integrates a full hierarchical scheduling
framework while that in [8] integrates two levels, for
time and event-triggered traffic, respectively. These frame-
works, however, require specific switches being, thus, less
general solutions.

In this paper we follow the time-triggered approach
using FTT-SE [9] which combines the flexibility of on-
line traffic scheduling with the time-triggered model. A
proof-of-concept implementation of servers within FTT-
SE was carried out in [10], called Server-SE. However, it
considered rather limited servers, particularly concerning
their hierarchical composition. A full hierarchical server
scheduling framework within FTT-SE was reported in [11]
but using polling servers, which suffer from the referred

coupling between bandwidth and response time.
In this paper we report the successful implementation

of hierarchical server-based traffic scheduling in FTT-SE
using sporadic servers, which decouple response times from
the allocated bandwidth. Our specific contributions are:

• adaptation of the hierarchical server-based architec-
ture to use the sporadic server model.

• reference implementation of sporadic servers in FTT-
SE

• experimental verification of low response time and
temporal isolation between contending applications.

The paper is organized as follows: the next section
presents some background on FTT-SE and sporadic
servers. Section III describes the implementation aspects
of the hierarchical server-based scheduling in FTT-SE us-
ing sporadic servers. Section IV presents the experimental
evaluation from our implementation showing its practical
feasibility. Finally in Section V we conclude the paper and
present some future work directions.

II. Background
This section briefly describes the real-time Ethernet

protocol FTT-SE [9] as well as the operation of a typical
sporadic server.

A. FTT-SE Brief Overview
FTT-SE [9] is a master/slave protocol for real-time

communication on Ethernet that exploits the advantages
brought by micro-segmentation on typical star-topologies,
namely parallel forwarding paths and absence of collisions.
The communication is organized in fixed duration slots
called Elementary Cycles (ECs). The EC duration is a
design-time parameter, tunable to best suit the application
dynamics. Typical values range from 1 ms to tens of ms.
Each EC starts with a Trigger Message (TM), issued by
the master, which contains the schedule for that interval.
The remaining nodes in the system receive the TM, decode
it and transmit the messages indicated therein. Each EC
is further divided in two windows, for synchronous and
asynchronous traffic classes, respectively (Figure 1). The
share reserved for the synchronous traffic is also a design-
time fixed parameter. Typically, the master first schedules
the synchronous traffic up to the synchronous window and
only then schedules asynchronous one, using the remaining
time in the EC. Windows overruns are not allowed by
schedule construction.

TM Sync window

TM+tr

ECk

time

Async window TM

ECk+1

Fig. 1: The FTT-SE EC structure.

When scheduling, the master uses a special transmission
time accountancy per link to make sure that the traffic

indicated in each TM can be fully transmitted within the
respective EC (see [12] for details). This feature makes sure
that all switch queues are empty by the end of each EC and
the traffic pattern at an EC scale follows the scheduling
performed by the master.

For the asynchronous traffic, FTT-SE provides a sig-
nalling mechanism that aggregates transmission requests
in each node during each EC and conveys them to the
master in a specific minimum sized packet (see [13] for
details). Once the asynchronous requests arrive at the
master, from all nodes in parallel, they can be scheduled
with any desired policy. The extra latency implied by this
signalling mechanism ranges from 1 to 2 ECs.

In this work we will assume no synchronous traffic and
we will use an hierarchical scheduling framework to sched-
ule the asynchronous messages. Nevertheless, synchronous
traffic can still be added without invalidating the work
herein presented, simply by adding a synchronous window
in each EC and reducing correspondingly the bandwidth
available for the hierarchical scheduling framework.

B. Sporadic Server

A sporadic server can be represented with the model
(Cserver, Tmit) where Cserver is the budget and Tmit is the
minimum-inter-transmission time of the server. Consider
a request for message m1 that arrives at time tarrival−m1 .
The server sets a replenishment instant for itself that is
Tmit after the message arrival time i.e., the next server
replenishment shall take place at tarrival−m1 +Tmit. Let us
say that message requests k time units from the sporadic
server. The server budget is decremented to Cserver − k
units. At time tarrival−m1 +Tmit, k time units are returned
to the current server capacity. If a request for message m2
arrives soon after, at time tarrival−m2 needing j units from
the sporadic server, its capacity will be decremented to
(Cserver − k)− j units, and the next server replenishment
will take place at tarrival−m2 + Tmit for the consumed
j units (Figure 2). Thus, a sporadic server enforces a
bandwidth equal to Cserver/Tmit and its worst-case impact
on the rest of the system equals that of a periodic task with
similar parameters.

III. Implementing Hierarchical Servers

We implement hierarchical sporadic servers as part of
the FTT-SE scheduling algorithm. For implementation
purposes, we need a mechansim that can manage the
activations and capacity of servers in accordance with the
particular server policy. For example, a polling server [14]
must be activated and its capacity replenished periodically
whereas a sporadic server follows a sporadic consump-
tion/replenishment model; it has its successive activations
at least mit time units apart and replenishment follows
a more complicated model [15]. Next we describe, the
important components of our implementation.

1 2 3 4 5 6 7 8 9 10 11 12 13

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Time Units

Se
rv

er
 C

ap
ac

ity
 U

ni
ts

0.2
t1

0.4
t2

0.8
t3

T_mit

T_mit T_mit

first replenishment

at t1+T_mit i.e. 1+4 = 5

with 0.2 units

second replenishment

at t2+T_mit i.e. 3+4 = 7

with 0.4 units

third replenishment

at t3+T_mit i.e. 9+4 = 13

with 0.8 units

Fig. 2: The sporadic server with C = 1.4 time units and
Tmit = 4 time units.

A. Hierarchical Scheduling Framework
With the Hierarchial Server-based Scheduling (HSS)

framework, a set of servers is connected in a tree-like
structure as shown in Figure 3. A server has an associated
scheduler, a set of children servers and/or streams and an
interface that specifies its resource requirements i.e. period
and budget. A server can provide its budget to its child
servers and/or streams. The streams are connected to the
leaf servers of the hierarchy and represent the actual ap-
plication load that will consume the network bandwidth.
With sporadic servers, a message activation at the leaf
server will trigger the scheduling process that begins at
the root of the respective hierarchy; the root server selects
one of its ready children servers. A parent server checks
two conditions to select one of its child servers. For the first
condition, it checks the remaining capacity and state of the
server. A server that is in ACTIVE state and has non-zero
remaining capacity is eligible (see section III-E). Following
this, the child server with minimum period is chosen i.e
we use RM scheduling policy. Other algorithms can be
used such as such as Earliest Deadline First (EDF) or
Fixed Priority Scheduling (FPS) [16]. Then the scheduled
child server will select another child server and the same
procedure will be repeated down the tree until the leaf
server is reached which will finally schedule a message
for transmission. The amount of bandwidth given to the
scheduled stream is the minimum among the remaining
capacities of all parent servers along the path from leaf to
the root and the consumed bandwidth by the stream is
discounted from the remaining capacity of all the servers
along this path. If the remaining capacity of a server is
exhausted, the server becomes suspended until its capacity
is replenished.

1) Architectural Overview of Servers Integration in
FTT-SE: The system consists of n nodes connected to
a single switch with m full-duplex ports. The port input
on the switch that receives streams from the connected

station is called uplink and the port output that sends
data to the station is called downlink. It is important to
define the concept Independent Server Hierarchy (ISH).
ISH manages all the streams that originate in the same
source and are forwarded to the same destination. The
master station prepares ISHs for a source station depend-
ing on the number of its destinations i.e. one ISH for
each destination. Hence, there can be upto n × (n − 1)
ISHs in a system with n nodes. Figure 3 shows how the
communcation of each station is managed with ISHs.

s s

s

ss

s s

s

ss

mkmjmi

mm

ml

Station 1

s

ss

s

mo

mn

s

ss

mp

s s

mq mr

Station n

U1 Un

D_1 D_2 D_n

Fig. 3: Hierarchical Server Based Scheduling Architecture

B. Servers Repository
The servers repository is a database of existing servers

in the system. For any server in the system, there is a
corresponding entity in the repository that maintains a
view of that server static and dynamic attributes. Static
attributes include period, budget, id, level in the hierarchy
and communication ends, whereas dynamic information
includes its current capacity, finish status, state and over-
run flag.

C. Servers and Streams Model
We use an HSS architecture to manage asynchronous

traffic only. Consider N asynchronous streams (ASx),
modeled using sporadic real-time model (1), where Cx is
the message transmission time of a stream ASx instance,
Tmitx represents the respective minimum interarrival time
andDx the deadline. A large message stream may generate
several packets, which have a size between Mminx and
Mmaxx. Px identifies the parent server, i.e, the server to
which the stream is connected to and RTx is its computed
response time.

ASx = (Cx, Tmitx,Mmaxx,Mminx, Px, RTx, Dx) (1)

A server Srvx is characterized in (2) by its capacity
Cx, replenishment period Tx, deadline Dx and a few data
extracted from the set of children components, either
servers or streams, namely the maximum and minimum

packet transmission times (Mmaxx and Mminx, respec-
tively). Moreover, the server Srvx is associated with a
parent server Px and a corresponding computed upper
bound response time RTx. Despite the similarity between
the characterization of servers and streams, there is a
fundamental difference; streams would use the actual
transmission time on the network, whereas servers merely
characterize a reservation of the network resource.

Srvx = (Cx, Tx,Mmaxx,Mminx, Px, RTx, Dx) (2)

In the remainder of the paper we will refer to both
streams and servers as components, in an integrated way.

D. Replenishment Management
An important component of the scheduling model is

the management of servers replenishment that is done as
follows.

We associate two queues to a server, a message queue
and a replenishment queue. The message queue holds the
application messages that must be handled by the server
whereas the replenishment queue holds records for future
replenishments of the server capacity. An entry in the
replenishment queue is a pair of the type (C, trep), where
C is the capacity of the associated request, and trep is the
replenishment instant. trep is computed as: trep = t + Tx

where t is the EC in which the request arrives and Tx is
the server Srvx replenishment period. With this model in
place, the scheduling algorithm for hierarchical sporadic
servers works as follows.

At ECi, we probe the replenishment queue for all
servers. For each entry (C, trep) such that trep == ECi

and we replenish the server with C units. At this instant,
we update the state as ACTIVE for every server in the
respective ISH that has non-zero capacity, and invoke the
server-based scheduling from ISH root. This execution
can schedule those messages that may have been left un-
scheduled in the previous runs on account of insufficient
capacities either at the leaf server or an intermediate/root
server level. With the replenished capacity it may be
possible to schedule such messages.

E. Processing Message Arrivals
The FTT master uses a global queue

(ART_S_QUEUE) to handle the ready asynchronous
traffic and build the EC-schedules. Asynchronous
messages that are not associated to servers go directly to
the global queue when they become ready. In this case,
FTT-SE uses a simple protection mechanism that enforces
a sporadic arrival behavior [13]. When an asynchronous
message associated to a server arrives, the respective ISH
is processed to see if there is enough capacity. If so, the
message is placed in the global queue. Else, the message
is kept in the server ready message queue until enough
capacity is replenished. The arrival of message stream

activates the leaf server as well as the servers along the
path from that leaf up to the root. The scheduling is then
invoked from the root server. So the servers along the
path become ready when there is a message activation at
the leaf server.

Processing an ISH involves verifying all servers in the
path from that leaf (note that all servers receiving mes-
sages are leafs) up to the root. The capacity requested by
a message is discounted from the remaining capacities of
all the servers along the path upto the root. Thus, servers
act as a preliminary filter for the associated asynchronous
traffic. An entry is set in the replenishment queue of all the
servers along the path indicating the future replenishment
instant and the capacity to be added.

F. Handling Message Packets
An important part of the sporadic server implementa-

tion deals with the transfer of message between server
ready queues and (ART_S_QUEUE) global queue. Note
that FTT-SE fragments large messages into small packets,
which are individually scheduled and thus our servers
also handle messages as bundles of packets that are then
processed individually.

The following is the structure that represents a message
item in the ready queues where packets_no represents the
total number of packets in the message.

typedef struct ready_queue_idx{
void ∗message_DB_pointer ;
void ∗ rp ;
unsigned int packets_no ;
unsigned int to_be_served ;
struct ready_queue_idx ∗ l i n k ;

}READY_QUEUE_IDX;

We say a packet needs scheduling when it is already
inside the global queue. We say a packet needs to be
served when it is still inside the server queue. The two
fields namely packets_no, and to_be_served are used
to denote the number of packets which are in one of
the two states. Upon initialzation, to_be_served is the
same as packets_no . But, when a packet can fit in the
server capacities, we only update to_be_served and not
the packets_no. When no more packets fit the server
capacities, those that did (were served) are copied to the
global ART_S_QUEUE.

Hence, a message maybe partially present in both the
server queue and the ART_S_QUEUE at the same time.
This happens when a message is partially served and is
partially scheduled.

IV. Evaluation
Our experimental setup consists of one switch, a master

station and three slave stations A, B, and C.
Beyond showing the feasibility of the hierarchical spo-

radic servers framework, we also aim at showing the
superiority of these servers with respect to the polling

servers used in [11] concerning their response times. Note
that with sporadic servers messages can be immediately
served whereas with a polling server a message may have
to wait until the next period to receive capacity. Moreover,
we also aim at verifying the temporal isolation capabilities
of the sporadic servers. In our experiments, applications
generate asynchronous traffic that is managed through
sporadic servers only.

Station A contains two applications. These applications
have distinct components and data to send to the other
two stations. The applications are managed in the master
node through an ISH where one ISH represents one appli-
cation. Station B has two applications; one sending traffic
to station A and the other to station C. Station C has only
one application that generates data for station A. Figure 4
shows the experimental setup and ISHs that are prepared
in the master station to manage the traffic generated by
these applications. D_X refers to the consumer of traffic
generated by the respective application; for example, in
station A, D_B means that ISH will forward message
{m21,m2,m3} to station B. The total number of messages
in the system is 12 and 23 servers are used to manage
these message transmissions. The parameters of servers
and messages are given in Table I and Table II respectively.

We set the duration of EC = 10ms, and maximum
packet transmission time is Mmaxx = 88µs. The length
of asynchronous window is approximately ASW = 50% of
the EC.

For faster reponse, we set server parameters empirically
following simple rules e.g., capacity of the parent servers
is more than the sum of their child servers. Capacity of
each server is multiple of 88µs i.e., the packet transmission
time. Normally, the capacity of each server is enough to
schedule an instance of each of its children. This leads to
short response times with periodic message activations.
However, in the case of overload, the server capacities
may not be enough for scheduling all jobs of a particular
message stream. In this case, such messages remain in
their queues until capacities become available. The server
design problem, however, is orthogonal to the current work
and it can be solved with techniques available in the
literature [17].

A. Experiments
In our experiments, we measure the response time of

the message set when messages are activated periodically
i.e. every mit. We consider reponse time the duration
in number of ECs measured between the EC in which
a message request signal is received in the master node
and the EC in which the message is dispatcehd by the
master node. Also, we verify that temporal isolation is
achieved among message streams that share the network
bandwidth. In particular, we consider three cases a) tem-
poral isolation between messages that belong to the same
ISH b) temporal isolation between messages that belong
to different applications but share the same source node

and c) temporal isolation between message streams that
belong to different ISHs but share the destination.

We show here the results of case "b" above and take
station B that has two ISHs UB_DC : {m11,m12,m13}
and UB_DA : {m14,m15}. We make m11 and m13 bursty
and verify that {m14,m15} sharing the same source node
are unaffected (Figure 5). m13, for example, has longer
response times despite being in a separate branch of the
hierarchy. The reason is that its server s22 has a period of
16 EC while the server s22 at the same level has a period
of 8 EC. With RM policy s21 is favored over s22. Also, s21
has a bursty stream connected to its child server s23. This
configuration has the effect of consuming most of the root
server budget and resulting in longer response times for
m13. However, the periodic message m12 in the same ISH
is unaffected. In particular, all the messages with periodic
arrivals have short response time between 1 and 2 EC.
This is one order of magnitude improvement with respect
to the the polling server (experiments shown in [11]).

V. Conclusions and Future Work
In this paper, we have shown that multilevel hierarchial

server-based architecture with different server policies can
be implemented within a master-slave real-time Ethernet
protocol as FTT-SE. We made an implementation of
hierarchical sporadic servers to be used within the schedul-
ing model of FTT-SE. Our results show that temporal
isolation is achieved between message streams that are
sharing the network bandwidth. Furthermore, we report
shorter response times than with the polling server policy.
As future work we plan to demonstrate the effectiveness
of this approach in a complex real case study. Moreover,
we plan to analyse the scalability of this framework as the
number of messages/servers increases.

Acknowledgement
This work was partially supported by the Por-

tuguese Government through FCT grant PTDC/EEI-
TEL/3006/2012 - CodeStream.

References
[1] J. Löser and H. Härtig, “Low-Latency Hard Real-Time Commu-

nication over Switched Ethernet,” in Proc. of the 16th EUROMI-
CRO Conference on Real-Time Systems (ECRTS’04). IEEE
Computer Society, Jul. 2004, pp. 13–22.

[2] TTTech, “TTEthernet,” http://www.tttech.com/technologies/
ttethernet/, November 2008.

[3] “Ethernet Powerlink protocol,” http://www.
ethernet-powerlink.org, 2008.

[4] “Real-time PROFINET IRT,” http://www.profibus.com.
[5] M. A. Brown, “Linux Traffic Control,” http://tldp.org/

HOWTO/Traffic-Control-HOWTO/index.html.
[6] M. J. Stanovich, T. P. Baker, and A.-I. A. Wang, “Experience

with sporadic server scheduling in linux: Theory vs. practice,”
in Real-Time Linux Workshop, vol. 2011, 2011.

[7] R. Santos, A. Vieria, R. Marau, P. Pedreiras, A. Oliveira,
L. Almeida, and T. Nolte, “Implementing server-based com-
munication within ethernet switches,” in Proceedings of the
2nd Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (CRTS’09) in conjunction with
the 30th IEEE International Real-Time Systems Symposium
(RTSS’09), December 2009.

Master

Station A Station B

Station C

Switch

(a) The experimental setup

1

23

456

7

89

10

20

2122

2423

25

2726

28

D_B D_C D_C D_A

Station A Station B

m21m2m3

m4

m5 m11 m12

m13

m14

m15

34

36 35

37

D_A

Station C

m19
m20

SWITCH

(b) Independent Server Hierarchies (ISHs)

Fig. 4: The experimental setup showing the arrangement of ISHs at the uplinks of slave stations

0 20 40 60
0

1000

2000
M11 inter−activation time

Time (EC)

nu
m

be
r

of
 m

es
sa

ge
s

0 20 40 60
0

1000

2000
M11 response time

Time (EC)

0 20 40 60
0

1000

2000
M12 inter−activation time

Time (EC)

nu
m

be
r

of
 m

es
sa

ge
s

1 2 3 4 5 6 7 8 9 1011
0

1000

2000
M12 response time

Time (EC)

0 20 40 60
0

2000

4000
M13 inter−activation time

Time (EC)

nu
m

be
r

of
 m

es
sa

ge
s

0 20 40 60
0

2000

4000
M13 response time

Time (EC)

(a) m11, m12 and m13

0 20 40 60
0

500

1000

1500
M14 inter−activation time

Time (EC)
1 2 3 4 5 6 7 8 9 1011

0

500

1000

1500
M14 response time

Time (EC)

0 20 40 60
0

500

1000

1500

2000
M15 inter−activation time

Time (EC)
1 2 3 4 5 6 7 8 9 1011

0

500

1000

1500

2000
M15 response time

Time (EC)

(b) m14 and m15

Fig. 5: Bursty activations in m11 and m13 do not impact the response time of other messages in the source station i.e.
station B

[8] G. Carvajal, M. Figueroa, R. Trausmuth, and S. Fischmeister,
“Atacama: An open fpga-based platform for mixed-criticality
communication in multi-segmented ethernet networks,” in
Proc. of the 21st IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April
2013.

[9] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time
communication over COTS Ethernet switches,” in Proc. of 6th
Int. Workshop on Factory Communication Systems (WFCS’06).
Torino, Italy: IEEE, 27 Jun. 2006, pp. 295–302.

[10] R. Marau, N. Figueiredo, R. Santos, P. Pedreiras, L. Almeida,
and T. Nolte, “Server-based Real-Time Communications on
Switched Ethernet,” in 1st Workshop on Compositional Theory
and Technology for Real-Time Embedded Systems (CRTS’08-
RTSS’08), Nov. 2008.

[11] Z. Iqbal, L. Almeida, R. Marau, M. Behnam, and T. Nolte,
“Implementing hierarchical scheduling on cots ethernet switches
using a master/slave approach,” in SIES’12, 2012, pp. 76–84.

[12] R. Marau, L. Almeida, K. Lakshmanan, and R. Rajkumar,
“Utilization-based Schedulability Analysis for Switched Ether-
net aiming Dynamic QoS Management,” in The 15th IEEE
Conf. on Emerging Technologies and Factory Automation
(ETFA’10), Sep. 2010.

[13] R. Marau, P. Pedreiras, and L. Almeida, “Signaling asyn-
chronous traffic over a Master-Slave Switched Ethernet proto-
col,” in Proc. on the 6th Int. Workshop on Real Time Networks
(RTN’07), Pisa, Italy, 2 Jul. 2007.

[14] J. Strosnider, J. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-
time environments,” Computers, IEEE Transactions on, vol. 44,
no. 1, pp. 73 –91, jan 1995.

[15] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling
for hard-real-time systems,” Real-Time Systems, vol. 1, no. 1,
pp. 27–60, 1989. [Online]. Available: http://dx.doi.org/10.1007/
BF02341920

[16] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in Real-Time Systems Symposium, 2003.
RTSS 2003. 24th IEEE. IEEE, 2003, pp. 2–13.

[17] L. Almeida and P. Pedreiras, “Scheduling within temporal parti-
tions: response-time analysis and server design,” in Proceedings
of the 4th ACM international conference on Embedded software.
ACM, 2004, pp. 95–103.

Station ISH Id(x) Cx(µs) Tx (EC)

Station A

UA-DB

1 1998 4
2 1470 8
3 440 10
4 440 16
5 778 17
6 352 20

UA-DC

7 1682 6
8 528 15
9 902 12
10 714 23

Station B

UB-DC

20 2024 4
21 1936 8
22 880 16
23 792 16
24 704 18

UB-DA

25 1410 5
26 880 10
27 704 16
28 704 22

Station C UC-DA

34 1848 6
35 880 12
36 704 13
37 704 24

TABLE I: Server parameters for stations

ISH Id(i) Ci (µs) Ti (EC)

UA-DC

m21 528 50
m2 440 40
m3 176 45

UA-DD
m4 352 35
m5 528 47

UC-DD

m11 616 40
m12 440 37
m13 440 35

UC-DA
m14 440 45
m15 528 33

UD-DA
m19 528 28
m20 440 50

TABLE II: Message parameters

	Introduction
	Related work
	Architecture
	Today's PC architecture
	Intel 82576 Gigabit Ethernet Controller
	Software architecture
	Testbed setup

	Evaluation
	Latency of NIC clock register readout
	Hardware NIC TX latency

	Conclusion

