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Abstract 

 
Unmanned micro-aerial vehicles (UAVs) flying 

autonomously in a coordinated formation are expected to 
be able to achieve missions that would be too expensive or 
even impossible to fulfil with conventional means. Among 
them typical examples are surveillance and mapping of 
areas that are either large or/and difficult to reach.  

This paper presents the Medium Access Control (MAC) 
communication protocol design work conducted within the 
sFly European project1 in response to the needs of 
communication between the members of a coordinated 
swarm of micro-helicopters. 

The main design goals are seamless neighbour 
discovery, reduction of power consumption and hardware 
size and weight as well as low end-to-end communication 
delay. 

The solution exposed in this paper involves an 
adaptation of WideMAC [11], a protocol originally 
developed for IEEE 802.15.4a ultra-wideband wireless 
sensor networks. Theoretical analysis and simulation 
results show that this protocol outperforms standard 
solutions such as IEEE 802.15.4 beacon-enabled 
regarding neighbour discovery and latency criteria while 
providing a similar energy conservation performance. 
 
1. Introduction 
 

Communication between flying robots has been studied 
in a number of papers. Our main contribution is in the 
power consumption reduction and, to a smaller extend, in 
size and weight diminution. For that, we borrow some of 
the concepts from the wireless sensor network field. 

We focus on the Medium Access Control (MAC) layer 
because time constrained communication are local and 
only imply mobiles that are in direct visibility from each 
other. In addition, this layer has a dominant role in 
fulfilling the requirements in terms of critical metrics such 
as packet arrival success rate, power consumption and 
latency. In large formations, the network layer (routing) is 
clearly involved. However, the sFly scenarios do not 

                                                           
1 The research leading to these results has received funding from the 
European Community's Seventh Framework Programme (FP7/2007-
2013) under grant agreement n° 231855 (sFly) 

foresee such large formations. This layer is hence not 
covered in the paper.  

Our objective is to support regular communications 
between the robots in a swarm. This objective has two 
facets, regular communication and also discovery of 
neighbourhood.  As exchanging traffic is the main source 
of power consumption, our objective is to combine 
neighbourhood discovery with regular information 
exchange in a single solution that does not generate more 
traffic than regular information exchange. 

This paper is organized as follows. Section 2 details the 
requirements in terms of information exchange. Then 
section 3 summarises the state of the art for MAC 
protocols in the areas that are relevant to the problem. 
Section 4 gives a list of the protocols that have been 
selected and gives a first, qualitative, comparison. It is 
followed by the simulations results of the various solutions 
in section 5. Then the choice of the proposed solution is 
discussed in section 6. Finally, the paper is concluded. 

 
2. Information exchange for formation flying 
 

Flying in formation relies on regular information 
exchange between the UAVs. For dependable operation, 
the choice was made to avoid relying on a special role 
such as “master UAV”. All UAVs are supposed equal at 
least with regard to communication. The usage 
assumptions of EU project sFly define the requirements 
for this study in terms of network size, traffic pattern and 
power consumption. 

Swarms are expected to be made of three to five micro-
helicopters. To allow some margin, the system is designed 
for 10 nodes. All the nodes join the swarm at the 
beginning of the mission prior to take-off. Connection 
establishment overhead must be null or very small. Once 
the swarm has been formed and the mission has started, no 
other flying robot can join anymore. However, due to 
battery exhaustion or any other unexpected incident, a 
swarm may accidentally loose a member before the end of 
the mission. All UAV’s that are flying in the same area 
belong to a single swarm. The traffic pattern is made of 
local broadcasts sent every TA seconds, with TA  [0.5, 
1.0]. The payload size of each packet is 36 bytes. The 
application supports a certain degree of irregularity in 
packet reception. 



The performance of the proposed MAC protocols will 
be assessed using the following metrics: application packet 
arrival success rate, power consumption and end-to-end 
latency.  

 
3. Previous work 
 

A swarm of micro flying vehicles forms a Mobile Ad-
Hoc Network (MANET): the network is self-organised, 
communications are peer-to-peer, there is no infrastructure 
and mobility is present. Hence, we focus on MAC 
protocols for MANET with special focus on robots 
communications, Vehicular Ad-Hoc Networks (VANET) 
and Wireless Sensor Networks (WSN). 

 
3.1. Robot communications 

 
Communications between robots has been the object of 

a number of papers for more than two decades.  In [12], 
the authors describe a protocol based on random access 
using a form of CSMA in which each node that transmits 
is forced to use a different packet length. If two of more 
node transmissions collide as carrier sense is used before 
sending that means they started nearly at the same time. 
When a node finishes transmitting a packet, it checks if the 
medium is still busy. If this is the case, a collision 
occurred. In such a case, the node waits for a random time 
before trying again. 

Arai and his co-authors [18] use a TDMA approach in 
which a central leader is selected which is in charge of 
creating and managing the TDMA rounds. The round start 
with a slot reserved to the leader in which the leader 
indicates the reservations. The following slots are used to 
indicate requests to send or leave. It is followed by a slot 
in which newly arrived nodes contend for inclusion.  The 
remaining slots are used to send node traffic. Despite its 
flexibility, this solution is limited in the number of nodes 
and highly sensitive to collisions caused by foreign traffic. 

A better solution is presented in [16]. The approach is 
still TDMA based in that there is a round in which each 
robot transmits in its slot. However, all nodes cooperate to 
establish the round and IEEE 802.11 is used as access 
protocol which means that in case of foreign traffic, the 
slot traffic is just shifted later. New nodes may be added 
up to a maximum. Insertion and removal of nodes is 
managed in a distributed manner. The main drawback of 
the approach is the absence of energy saving mechanisms. 

In [15], medium access is based on a token passing 
over a logical ring in which nodes transmit one after. The 
ring is started by a single master node which is in charge 
of managing insertion and deletion of nodes. This 
techniques suffers from the relatively high bit error rate of 
wireless communications which cause frequent token 
losses and the long dead times in case of token loss. 

SensorFlock [14] is closer to our approach. It is based 
on wireless sensor network technology and uses IEEE 
802.15.4 without beacons (CSMA/CA). The paper does 

not address energy conservation and is centered on 
measuring the relationship between received signal 
strength and distance. 

In summary, most of the inter-robot communication 
protocols address discovery and communication.  To our 
knowledge, none of protocol presented to date explicitly 
tackle energy conservation.  

 
3.2. VANETs 
 

Vehicular Ad-Hoc Networks are mainly used to 
improve the safety of road traffic. Such applications share 
common requirements with micro-flying robots: robust 
communications and rapid interaction for both connection 
establishment and data transmission. However, in 
VANETs, power is not restricted. 

Menouar et al. wrote a survey of existing MAC 
protocols for VANETs in [1]. Among others, reliable 
broadcasting of time sensitive Life-Safety messages in 
VANETs is proposed in [3], but its design is closely 
related to the intended road-safety application by 
prioritising the messages sent by the vehicle that is mostly 
in danger. This contradicts the assumption of periodic, 
equal importance communication between UAV’s. 
ADHOC MAC [4] was conceived for inter-vehicles 
communication within the European project 
CarTALK2000 [6]. A powerful feature of ADHOC MAC 
is its dynamic, distributed TDMA slot allocation 
mechanism based on an extension of the Reservation 
ALOHA (R-ALOHA [7]) named RR-ALOHA. 

TDMA protocols require the nodes need to be 
accurately synchronised. In VANETs, this is possible 
thanks to the presence of a GPS receiver, but this is not the 
case for the lightweight UAV’s considered. 

 
3.3. Wireless Sensor Networks 

 
This work is expected to benefit from the high energy-

efficiency, low footprint and connectionless capability of 
Wireless Sensor Networks (WSN).  

A survey of MAC protocols for Wireless Sensor 
Networks has been conducted by Demirkol et al. in [2] and 
in the EU WASP project. As in the previous section, 
TDMA-based protocols are ruled out because of the 
synchronisation problem. Among the CSMA based 
protocols, S-MAC [8] is designed so that the nodes 
belonging to a same cluster share a common, regular sleep-
listen schedule and contend for medium access during 
their active period. More efficient is WiseMAC [9], in 
which nodes regularly wake-up to sample the air interface 
for incoming data all with the same period, but at different 
instants. A sender appends a wake-up preamble in front of 
its data to make sure that its destination remains awake 
when it samples the medium. The first time, the wake-up 
preamble is long enough so that it covers a whole 
sampling period. Upon acknowledging the packet, the 
destination informs the source of its sampling instant so 



that the source uses a short preamble the next time it sends 
something. Compared to S-MAC, WiseMAC distributes 
the traffic of a neighbourhood uniformly over the sampling 
period and reduces overhearing thanks to the different 
sampling instants of the nodes. However, preamble length 
reduction is not possible in the case of broadcast traffic. 

Though they are not mentioned in the survey [2], the 
two MAC options of the IEEE 802.15.4 standard for 
Wireless Sensor Networks [10] are widely used in existing 
applications. The simple variant, named “non-beacon 
enabled” implements a classic CSMA/CA mechanism 
based on carrier-sensing with an exponential back-off 
algorithm. The beacon-enabled mode of IEEE 802.15.4 
forms clusters made of one coordinator and of several 
client nodes which are all one hop-away from their 
coordinator. The coordinator periodically sends a beacon 
on which the other nodes synchronise. They wake-up to 
receive the beacon and contend for network access right 
after it using a slotted CSMA/CA mechanism. The time 
interval between two beacons is divided into two parts: the 
active period which follows the beacon and the inactive 
period during which all the nodes sleep. 

WideMAC [11], a MAC protocol designed by 
Rousselot et al. for ultra-wideband sensor networks is 
more compatible with broadcast traffic. In WideMAC, the 
basic principle of WiseMAC is reversed: instead of 
listening to the medium at their sampling instant, the nodes 
transmit a beacon and shortly listen for incoming data right 
after the end of the beacon transmission. Candidates for 
unicast transmission wake-up, wait for the beacon of the 
intended destination, then contend for medium access. 
Once they have caught the destination’s beacon for the 
first time, they know its sampling schedule, thus they are 
able to save energy by waking-up only at a short time 
before the beacon is sent. Since Ultra-Wideband radio 
models do not support carrier sensing, the protocol 
manages channel access with ALOHA, which performs 
well in Ultra-Wideband thanks to the inherent robustness 
of such radios. This protocol looks promising because 
efficient broadcasting is made possible by appending the 
data to the beacons. However, the protocol needs to be 
adapted to the narrow-band radios used in the project. 
Particularly, CSMA should be used to prevent beacon 
collisions. 
 
4. Candidate protocols 
 

In this section, the choice of MAC protocols candidates 
for simulations and comparison is justified and their 
modifications related to the design goal are explained. 

As a convention, let TA represent the period between 
two application packets created by the same node. 

TDMA protocols are not considered in this study for 
two main reasons. First, they assume that some form of 
clock synchronisation exists between nodes. This can be 
provided by direct communication or by some external 
means such as GPS. GPS contradicts our power, weight 

and size requirements. Using local communications to 
synchronize is both complex and power consuming. The 
second reason for rejection is the extreme vulnerability of 
TDMA to interferences from other systems in the same 
band. 

Low-latency and broadcast compatibility requirements 
make CSMA/CA a natural candidate. Nodes listen all the 
time, making it highly suitable to broadcast traffic. 
Latency is kept to a minimum because a sender does not 
have to wait for a sampling instant or an active period and 
the rather light traffic that is expected should ensure that 
the senders do not spend a lot of time in back-off state. 
The nodes being active all the time, CSMA will give a 
higher bound of the power consumption and a lower 
bound of the average end-to-end delay. The CSMA 
flavour that is chosen is the Non-beacon enabled mode of 
IEEE 802.15.4, a widely used solution in WSNs. 

The interest in reducing power consumption directs 
toward protocols that allow the participants to the network 
to be partly inactive during the operation. By combining 
the advantages of CSMA and of a reduced duty-cycle, the 
beacon-enabled mode of IEEE 802.15.4 [10] naturally 
emerges as an interesting candidate. It departs from our 
wish to avoid having a special node but its popularity 
makes it a solution to consider. To obtain an efficient 
solution, we slightly modified the protocol. The node 
designated as the PAN coordinator appends the data to be 
broadcasted to its beacon. The beacon period is set to the 
application period TA. The other nodes contend for access 
and listen during the active period. We assume that all 
traffic from non-coordinator nodes is sent in broadcast.  
Whether direct communication (i.e. not via the 
coordinator) is allowed or not is ambiguous in the standard 
[10], but these modifications are necessary to support 
efficient broadcasting.  

Our third choice is WideMAC [11]. It has been initially 
developed as a MAC for Ultra Wide Band transmission 
such as IEEE 802.15.4a. It makes all nodes periodically 
(period TW) and asynchronously wake up, transmit a 
beacon message announcing their presence and listen for 
transmissions attempts during a contention window TCW. 
Figure 1 illustrates a single beacon transmission. It starts 
with a known and detectable synchronization preamble 
colored in grey and it is followed by a white colored data 
sequence which announces the node ID. A time-slotted 
contention window follows, during which the node stays 
in reception mode and allows it to receive messages. 

 

 
Figure 1. WideMAC beacon 

WideMAC [13] is also slightly modified for our 
purpose. First, the interval between two beacons sending 
Tw is set such that TA = k Tw with the integer k > 0. When 
the upper layer submits the periodic application packet for 



transmission, it is recorded by the MAC layer to be 
appended to each subsequently transmitted beacon. Every 
TA, each node wakes-up and listens for an entire Tw period 
so that it can receive all the beacons emitted in its range. A 
node may leave this state temporarily to transmit its own 
beacon.  

Carrier sensing is used prior to beacon transmission to 
prevent collisions. When the outcome of the CCA is a 
busy channel, the beacon is rescheduled with a delay 
chosen randomly in the interval [0, Td] with Td ≤ Tw. 

In an attempt to reduce the average end-to-end latency, 
the protocol learns the application schedule and moves its 
beacon sending instant so that it occurs right after 
receiving the periodic application packet from the upper 
layer. 

In the rest of this paper, the protocol names refer to 
their adapted versions. 
 
5. Performance assessment 
 

The protocols have been studied through simulations in 
MiXiM, a framework of the OMNeT++ network 
simulator.  

For all simulated protocols, the basic simulation setup 
comprised a playground field of 50 x 50 meters on which 
the nodes were uniformly distributed. Their relative 
positions did not change during an entire run like in a 
stabilised formation flight. During a simulation run, the 
application of every node generated 300 broadcast packets 
of size 36 bytes at a period of TA = 1 second. For each 
simulated value of a protocol parameter, networks of 3, 5 
and 10 nodes have been simulated. Each simulation point 
was run 20 times. 

The physical layer model was a ChipCon CC1100 [17] 
transceiver that operates at a carrier frequency of 898 
MHz. The maximum bitrate supported by the physical and 
MAC models is 250 kbps. 

Minimal and maximal backoff exponents of CSMA 
and IEEE 802.15.4 were set to the default values of 3 and 
5 respectively. The beacon interval (BI) of IEEE 802.15.4 
beacon-enabled was set to 1 s so that it is equal to TA. At 
250 kbps, this is obtained by choosing a beacon order 
(BO) of 6. The superframe size is controlled by the 
parameter SO (Superframe Order), a simulated protocol 
variable. Simulated values are 1, 2, 3, 4, 5 and 6 so that the 
corresponding Superframe Durations (SD) ranges between 
BI/32 and BI. 

WideMAC used a uniform backoff with Td = Tw/4, a 
value chosen arbitrarily (see section 4). Simulations have 
been run for different values of Tw chosen so that k = 32, 
16, 8, 4, 2 and 1. 

The above selection of variables for IEEE 802.15.4 
beacon-enabled and WideMAC allows their comparison at 
identical duty cycles Tw/TA and SD/BI. For simplicity, the 
notation Tw/TA is used for both protocols from this point. 
Additionally, in the tables and figures, IEEE 802.15.4 
beacon-enabled is shortened to 802.15.4.  

 
5.1. Success rate 
 

The success rate obtained for CSMA is 1.0 for all 
simulation points. The values for WideMAC and IEEE 
802.15.4 beacon-enabled versus the duty cycle Tw/TA is 
depicted in Figure 2 below.  

 
Figure 2. Application packet arrival success rate for 

WideMAC and IEEE 802.15.4 beacon-enabled. Number of 
packets per node: 300. Number of runs per point: 20. TA = 1s 

For both protocols, the duty cycle Tw/TA can be safely 
reduced to 1/8 before the arrival success rate starts to 
degrade because the medium becomes overloaded. For 
WideMAC, this corresponds to a value of 125 ms for Tw 
and to a superframe order SO = 3 for IEEE 802.15.4 
beacon-enabled. At his point, a success rate of nearly 
100% is reached including for networks of 10 nodes. This 
gives a safety margin regarding the requirement of 
supporting 5 nodes. 

The curves are coherent in the sense that for small 
values of Tw/TA, the performance decreases with the 
number of nodes. The adaptive exponential backoff 
mechanism of IEEE 802.15.4 beacon-enabled combined 
with the possibility to make several transmission attempts 
for the same packet is more aggressive than the uniform 
delay used in WideMAC. This increases the chances of 
IEEE 802.15.4 to “place” its packet on the channel at the 
expense of a longer delay, possibly higher than TA if the 
packet is sent within a next superframe. If WideMAC 
struggles to send its beacon for more than TA seconds, the 
currently waiting application packet is replaced by a 
subsequent one before the beacon is finally put on the line. 
The lack of retransmission is certainly a reason for the 
higher losses encountered by WideMAC. However, the 
WideMAC behaviour matches more closely the 
application needs. Indeed, due to the nature of the payload 
(swarm control algorithm update), a packet loses its 
validity as soon as the next packet, which contains newer 
information, is issued. Since the algorithm is tolerant to 
some update losses, timely delivery is preferred to the 
higher success rate. 

 



5.2. Power consumption 
 
Figure 3 gives the average node power consumption 

for the two protocols as a percentage of the consumption 
of the upper bound reference CSMA/CA: Prx  = 54.124 
mW. 

 
Figure 3. Average node power consumption (% of CSMA/CA) 

for WideMAC and IEEE 802.15.4 beacon-enabled. Number of 
packets per node: 300. Number of runs per point: 20. TA = 1s 

In IEEE 802.15.4 beacon-enabled, the number of 
transmissions is nearly independent from the duty cycle. It 
may decrease a little for small values of Tw/TA when 
packets start to be dropped, but this is imperceptible in the 
consumption simulation results because most of the active 
time of the nodes is spent in reception. In addition, the 
power consumption of the radio in receive and transmit 
differ only from 600 µW. Therefore, the power 
consumption of the protocol is roughly equivalent to Prx × 
(Tw/TA). 

WideMAC differ with IEEE 802.15.4 beacon-enabled 
in the number of transmissions because in the first 
protocol, the nodes listen asynchronously once every TA 
while they listen at the same period but simultaneously in 
the second one. This means that the nodes in WideMAC 
need to repeat their beacon every Tw to ensure that all their 
neighbours will catch it. The consequence is a higher 
number of transmissions, thus a higher power 
consumption. This is shown in Figure 3, in which 
WideMAC has clearly a lower energy efficiency. For high 
values of Tw, the higher number of transmissions incurred 
by WideMAC is not perceptible. When Tw/TA decreases, 
its cost becomes visible: the curve diverge from that of 
IEEE 802.15.4. Tw/TA = 1/8 is an energy efficiency and 
success rate optimum for WideMAC. At lower values, the 
cost of packet transmissions takes over that of listening 
and the success rate starts to degrade. In Figure 3, the 
curve for WideMAC with 10 nodes shows a consumption 
smaller than with 3 and 5 nodes for the smallest vales of 
Tw/TA. This is likely a consequence of a higher number of 
delayed and finally dropped beacons due to the higher load 
on the channel. 

 

5.3. Mean end-to-end latency 
 
As seen in Figure 4, the average end-to-end latency of 

application packets in CSMA/CA is small when the 
channel occupancy is low. Backoffs are minimal and the 
packets do not accumulate and wait in the transmit queue. 
For the beacon-enabled mode of IEEE 802.15.4, packet 
submitted to the MAC layer will wait until the coordinator 
sends its beacon. Then the contention access period is 
open and the extra delay is similar to that of CSMA/CA as 
long as the traffic load and the superframe duration are 
such that the back-off algorithm does not delay some 
packets to the next active period. In that case, most of the 
delay is due to the time spent waiting for the beacon. The 
beacon interval being equal to TA, the average waiting 
time should be around TA/2. A similar estimate is reached 
for WideMAC: if TW/TA is small, the delay mainly 
depends on the listening instant of the receiver, which will 
take place after an average of TA/2 seconds. If TW is close 
to TA, the destination is listening most of the time but the 
packets wait to be embedded in the next beacon for up to 
TA seconds as well. In WideMAC however, the delay at 
transmission is reduced using the following optimisation: 
synchronising the beacon with the application broadcast 
instant. Note that this optimization could be used in IEEE 
802.15.4 in which case the end-to-end latency would be 
close to the value obtained with CSMA/CA. 

 
Figure 4. Mean application packets end-to-end latency for 

WideMAC and IEEE 802.15.4 beacon-enabled. Number of 
packets per node: 300. Number of runs per point: 20. TA = 1s 

 
6. Discussion 
 

Whilst neighbour discovery is provided seamlessly by 
WideMAC (periodic beacon) and CSMA/CA (regular 
application traffic), IEEE 802.15.4 beacon-enabled nodes 
need to associate to a coordinator before being able to 
infer the neighbourhood from the application traffic. 
Moreover, even though the network can be formed before 
take-off, during the flight, the formation may change and 
some node may lose contact with the coordinator. If this 
happens, the node is separated from the network even if it 



is still in range of some of the nodes. To re-connect to the 
network, it will need to re-synchronise with the 
coordinator but it is unlikely that this operation can take 
place because the trajectories of the two devices may 
diverge due to the disconnection and subsequent 
degradation or loss of control of the device. If WideMAC 
is used, a node belongs to the network as long as it is 
visible from at least one other node. Temporary 
disconnections are less likely and can be fixed quickly and 
with a higher probability. 

Down to a duty cycle of 1/8, all the protocols are able 
to deliver the data with a high success rate given the traffic 
pattern and network size foreseen for the sFly project with 
a sufficient margin. IEEE 802.15.4 is slightly more 
energy-efficient but it is outperformed by WideMAC in 
latency performance. Applications could possibly 
synchronize their packet submission to beacon reception 
thus reducing the end-to-end delay.   

From the three protocols, WideMAC appears to be the 
most suitable to support the coordinated flight of micro-
helicopters. First of all, it supports neighbour discovery by 
sending periodic beacons. Second, its energy-efficiency is 
close to that of IEEE 802.15.4 beacon-enabled and, if the 
optimisation is used, it is more reactive than 802.15.4. 
Third, its beacon period TW is an interesting and simple 
design parameter: when UAVs size and weight reduction 
is important, a small value is chosen to optimise the 
protocol for energy-efficiency. Greater values can be 
selected when power consumption must be traded-off for 
lower latency or higher traffic or network size. 
 
7. Conclusion 
 

In this article, we presented an analysis of the 
possibilities of power consumption and hence size and 
weight reduction for the ad-hoc communication solution 
embedded on micro unmanned aerial vehicles dedicated to 
autonomous formation flying. Our main contribution is the 
adaptation of WideMAC [11], a MAC protocol originally 
developed for ultra-wideband networks. This solution 
ideally combines low power consumption, low latency, 
seamless neighbour discovery and connection. 

As a future work suggestion, we mention the 
optimisation of WideMAC for even better energy 
performance. A possible direction would be to allow the 
protocol to sleep between two beacons during a listening 
phase. There the challenge is to keep the node loosely 
synchronised with its neighbours despite the delays that 
some beacons may encounter due to positive clear channel 
assessments. 
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Abstract 

Wireless sensor network (WSN) applications such as 
patients’ health monitoring in hospitals, location-aware 
ambient intelligence, industrial monitoring /maintenance 
or homeland security require the support of mobile nodes 
or node groups. In many of these applications, the lack of 
network connectivity is not admissible or should at least be 
time bounded, i.e. mobile nodes cannot be disconnected 
from the rest of the WSN for an undefined period of time. 
In this context, we aim at reliable and real-time mobility 
support in WSNs, for which appropriate handoff and re-
routing decisions are mandatory. This paper1 drafts a 
mechanism and correspondent heuristics for taking 
reliable handoff decisions in WSNs. Fuzzy logic is used to 
incorporate the inherent imprecision and uncertainty of 
the physical quantities at stake.  
 
1. Introduction 

We aim at supporting reliable and real-time 
communications in Wireless Sensor Networks under 
nodes’ mobility. Reliable and real-time mobility support 
can be associated to patients’ health monitoring in a 
hospital, process/maintenance personnel in a factory floor, 
mobile robots or human surveillance in homeland security. 
This concerns both individual nodes and node groups (e.g. 
body sensor network) mobility – usually dubbed as 
“physical mobility”. 

The problem is that current WSN protocols do not 
permit to fulfil reliability and real-time requirements under 
physical mobility. Mobility support in WSNs is in its 
preliminary steps, since the majority of the current WSN 
applications assume nodes are static. In this line, most 
WSN protocols (e.g. ZigBee) just support joining/leaving 
of nodes, leading to unbounded network inaccessibility 
times, resulting in unacceptable message delays or losses. 

Additionally, radio interference, environmental 
characteristics and nodes mobility turn radio links 
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unpredictable, leading to message error/losses. This is 
more acute for low-cost low-power nodes operating in an 
increasingly crowded 2.4 GHz ISM (Industrial, Scientific, 
and Medical) band (e.g. WiFi, ZigBee, Bluetooth, cordless 
phones, microwave ovens or video transmitters).  

In this context, we have been addressing the design of 
an optimal handoff procedure, building upon an accurate 
estimation of the radio link quality between the mobile 
node (MN) and the surrounding access points (APs, 
defined as connectivity points to the rest of the WSN, e.g. 
routers or cluster-heads) and several other important 
parameters (e.g. traffic load or energy level at the APs). 
Handoff refers to the process where a mobile node 
disconnects from one AP and connects to another AP. 

The proposed handoff heuristic (Section 3) is based on 
Fuzzy Logic to combine all these “uncertain” metrics. 
Section 2 outlines some handoff models. We conclude the 
paper in Section 4.  
 
2. Related Works on Handoff Models 

The most widely used criteria for evaluating handoff in 
wireless networks are bit-error rate (BER) and received 
signal strength (RSS) as indicators for deciding whether to 
handoff to a new region. However, considering the RSS 
criterion individually can lead to inappropriate or 
unnecessary handoff decisions, particularly in WSN 
scenarios (harsh environmental conditions and strong 
resource constraints). For this reason, other parameters 
such as signal to interference-plus-noise ratio (SINR), 
distance, velocity, direction, transmit power and traffic 
load have also been considered.  

The remainder of this section summarizes some of the 
most relevant methodologies that have been adopted for 
designing handoff mechanisms.  

Basically, there are two major families of handoff 
decision. The most common models are the standard 
techniques, which are used in cellular, wireless mesh, 
WLAN, and 6LoWPAN networks [1,2,3,4]. These 
protocols build upon the mobile IPv6 mobility 
management mechanism. The handoff procedure in mobile 
IPv6 is initiated by predicting node mobility according to 



RSS information. The use of this technique in wireless 
sensor networks is not recommended, since nodes are 
usually deployed in a harsh environments and low cost 
radio transceivers and antennas are usually used, at least 
for large scale WSN scenarios, hence the received signal 
strength is not stable. Therefore, relying on only one 
(unreliable) metric may lead to a poor handoff decision. 

Some adaptive and heuristic models have been 
proposed to handle the handoff procedure considering 
several input parameters. The classification of these 
models is illustrated in figure 1. Before a detailed 
description of our approach, we briefly present the 
following five heuristic models that have been adopted for 
designing handoff mechanisms.    

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Classes of Heuristic Handoff Models 

Dynamic programming allows a systematic approach to 
optimization. However, it is usually model-dependent and 
handoff is viewed as a cost optimization problem [5]. RSS 
samples at the MN are modelled as stochastic processes. 
The reward is a function of several characteristics such as 
signal strength, channel fading, shadowing, etc.  

In [6], the handoff problem is formulated as a pattern 
recognition (PR) problem. This technique is based on the 
idea that the points that are close to each other in a 
mathematically defined feature space represent the same 
class of objects or variables. The PR method is an 
exhaustive method for finding the best possible handoff 
and is practical only for a canonical (Manhattan) topology 
but still involves huge computation when applied to 
generic network topologies.  

A prediction based handoff algorithm has been 
proposed to estimate the future values of handoff criteria, 
such as RSS. It also shows a trade-off between the number 
of handoffs and overall signal quality [7].   

Some handoff models are based on evolutionary 
algorithms such as genetic algorithms (GA) and particle 
swarm optimization (PSO) methods as their optimization 
technique is used to fine tune the decision parameters. The 
GA method is an efficient searching technique used for 
finding the exact or approximate optimization solutions. 

This method was used in [8] to minimize the sum of 
weighted distance costs whose complexity is NP-hard.  

The other evolutionary algorithm, PSO, is used for 
handoff decision. It is initialised with a group of random 
particles (solutions) and looks for an optimum by updating 
generations. The optimal solutions are called particles 
which fly through the problem space by following the 
current optimum particles. In [9], the authors presented a 
technique for predicting the signal strength value, which 
aids in providing efficient handoffs in wireless networks 
and PSO was used to fine tune the weighting function of 
the handoff decision. 

The use of artificial intelligence requires less 
computational time as compared to the aforementioned 
searching models, thus seem adequate for time-sensitive 
applications. Artificial neural networks are one example; 
they are made up of interconnecting artificial neurons that 
mimic the properties of biological neurons. These 
techniques used simplified simulation models (e.g. [10]). 

Another example of artificial networks used in handoff 
is fuzzy logic, which is a multi-valued logic that has been 
derived from fuzzy set theory to deal with reasoning that is 
approximate rather than precise. In [11], a handoff 
decision for heterogeneous networks is identified as a 
fuzzy multiple attribute decision making problem, and 
fuzzy logic is applied to deal with the imprecise 
information.  

The use of fuzzy logic is a suitable method for the 
decision process, because it describes a system intuitively 
using linguistic variables. In contrast, mathematical 
optimization approaches typically are not able to cope with 
diffuse sets, whereas neural networks are highly complex 
and may have problems with variations and non-
deterministic communication characteristics. Moreover, by 
considering the inherent constraints of wireless sensor 
networks like limited battery power and the imprecise 
characteristics of the radio link, the use of fuzzy logic rules 
seems to be the most efficient heuristic model [12]. 

 
3. Proposed Handoff Mechanism 

This Section presents the WSN models, a snapshot of 
the handoff procedure and an insight of the use of fuzzy 
logic in the handoff heuristics. Then, the two phases of the 
proposed handoff procedure are described.  
 
3.1. WSN Model  

Handoff decision can be made in a distributed (managed 
at the mobile nodes) or centralized (managed by a single 
node, e.g. the sink) way. The centralized approach may 
become less effective for large scale WSNs, as the 
communication burden between mobile nodes and the 
central node may lead to unacceptable message delays (for 
an effective real-time handoff), extra traffic load and 
energy consumption. For this reason, we opted for 
distributed handoff management – the mobile nodes take 
the responsibility of managing handoff, just interacting 
with the neighbor access points. Figure 2 illustrates our 
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generic WSN model in which nodes may be static (SN) or 
mobile (MN) and are somehow associated to access points 
(APs) that enable WSN nodes connectivity with the rest of 
the WSN. 
 
 
 
 
 

Figure 2. Network Model 
 

We assume different types of time or frequency 
scheduling between groups/clusters of APs and associated 
WSN nodes, as to avoid message collisions between 
adjacent groups/clusters. In this paper we only focus on 
the handoff heuristic, thus other specifics such as 
groups/clusters scheduling, (re)routing/(re)addressing and 
mobility patterns are not under scope of this work. When a 
mobile node (MN) is moving from the coverage area of an 
access point (APold) to the coverage area of another access 
point (APnew) with a certain speed, the mobile node may 
learn about the possibility of changing into another cell by 
a degradation of the signal quality in terms of received 
signal strength of APold, and so triggering the handoff 
mechanism. Depending on the WSN model under 
consideration using frequency division or time division 
multiple access between adjacent groups/clusters, probe 
requests should be sent in different frequency channels or 
in specific time slots in such a way to guarantee that a MN 
assesses all the neighboring APs. This handoff model is 
proposed for a generic network model and it does not 
focus on a specific model such as FDMA or TDMA. In 
case of having an FDMA-based model, each node 
transmits data on a locally unique frequency channel, and 
in TDMA-based model, nodes communicate using specific 
time slots. 

 
3.2. Overview of the Proposed Handoff Procedure 

As already referred, in most wireless network protocols 
handoff is based just on the RSS value. In the proposed 
approach, handoff is based on RSS level, velocity of 
mobile node, AP depth level (number of hops to sink 
node), and some other metrics such as traffic load, energy 
level and link quality value. Any link quality estimation 
mechanism can be utilized, but the F-LQE (Fuzzy Link 
Quality Estimator) [13] has been selected, because it has 
shown a better performance compared to other LQEs as it 
inherently combines several link quality metrics.  

The proposed handoff procedure is composed of two 
phases: 1) initial assessment of the need for handoff; 2) 
handoff.  

The first phase (described in Section 3.3) aims at 
deciding whether to do handoff or not, trying to avoid 
unnecessary handoffs. A MN sends periodic probe 
messages to its current AP, expecting some 
acknowledgement message (ACK). It then infers the need 
for handoff from the RSS average of the acknowledgement 
messages and from the speed of the MN, if available. If the 
decision is to handoff, the MN moves to the second phase 
of the handoff procedure. 

In the second phase, the quality of the radio link 
between the MN and the available neighbouring APs is 
assessed using the F-LQE link quality estimator [13]. 
Additionally, the handoff heuristic is enriched by taking 
into consideration other characteristics of the APs, such as 
their energy level, traffic load, and depth level. 

Figure 2 illustrates a mobile node (1) in two different 
times - t0 and tn. Our example is not concerned with two 
consecutive handoff procedures other than that it shows 
two distinct handoff decisions. The link quality is 
represented by a solid line (the thicker, the better). At time
t0, the mobile node detects six alternative SNs that can be 
chosen as its next AP. In this case, node 7 and node 2 have 
more chances to be selected as the next AP, since they 
have the highest link quality. There are more decision 
factors in the proposed handoff algorithm such as energy 
level and traffic load, as it will be discussed in the 
following sections. For instance, since node 7 is only one 
hop away from the sink node, it is more likely to be 
selected as the AP. Now consider time tn in which the 
mobile node detects four alternative APs. As it is shown in 
the figure, node 17 and node 22 have the highest link 
quality but their location may affect their chances of being 
selected as the next AP. In contrast node 13 with medium 
link quality which is closer to the sink has higher priority 
of being the next AP. These two examples show the 
importance of different input parameters in various 
situations. It can be concluded that there is a trade-off 
between different input parameters and a node with the 
strongest link quality or smaller number of hops to the sink 
is not always the best choice.    

 
3.3. On the Use of Fuzzy Logic 

Fuzzy Logic is an alternative methodology which can 
be used in the design of both linear and non-linear systems 
for embedded control. Fuzzy logic provides a rigorous 
algebra for dealing with uncertainty. It is expressed in a 
mathematical discipline invented to express human 
reasoning with mathematical notations. By this approach 
the two cases of true and false in conventional algebra are 
converted to more relaxed conditions, which can help to 
combine different objectives to achieve an optimal 
solution. This technique seems to be an efficient 
alternative for handoff decision making in wireless sensor 
networks.  
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A comprehensive theory of fuzzy logic can be found in 
[14]. The general concept of fuzzy logic is introduced 
next. By definition, let U be a collection of objects and be 
called the universe of discourse. A fuzzy set UF � is 
characterized by a membership function 

]1,0[:)( �UuF� where )(uF� represents the degree (or 
grade) of membership of Uu� in the fuzzy set F. 
Therefore, the variables that are used as input parameters 
are defined by a membership value. This mechanism is 
used in both phases of the proposed handoff procedure 
when using fuzzy logic.  

 
3.4. Handoff Mechanism (Phase One) 

We define some notations with reference to Figure 3, 
which shows a handoff from the current AP, referred as 
APold, to the future AP, referred as APnew.  

The thS level is the threshold value of the RSS to 
initiate the handoff process. Therefore, when the RSS level 
of APold, referred to as RSSold drops below thS , the handoff 
is triggered. The minS , indicates the minimum value of 
RSS required for successful communication between a 
MN and the APold with a certain probability (let us say 
95%). The maximum transmission range of each AP is 
denoted by a . Hence, as the figure illustrates, the handoff 
mechanism must be completed before the RSS of APold 
drops below minS , i.e., before the MN moves beyond the 
coverage area of APold.   

 
 

 
 
 
 
 
 
 
 
 

Figure 3. Analysis of Handoff in Phase One 

The first phase of the handoff procedure is illustrated in 
the algorithm of Figure 4. The connectivity between MN 
and the current AP is assessed by averaging the RSS value 
from probe acknowledgement messages.  

A MN sends periodic (Tprobe) probe requests which are 
to be acknowledged by the current AP.  Upon the 
reception of the probe acknowledgements, the MN 
computes the average of the last �  RSS values ( RSS ). 
Parameter �  should be set low enough to enable a quick 
assessment of the radio link (the higher� , the longer it 
takes) and high enough to attenuate (by averaging) too 
sudden fluctuations of the RSS. We use a short window to 
calculate the mean RSS (e.g. �  = 5). The computation of 
Tprobe, which is a function of the mobile node’s velocity 

and the radio coverage/overlapping of the APs, is left out 
of this paper.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4. Handoff Mechanism (Phase One) 

If there is no information on MN’s speed, the RSS is 
compared with thS . If the mean received signal strength 
has dropped below this threshold then the handoff should 
be performed, otherwise it continues sending probe 
requests. In case the MN knows its velocity, either 
predefined or estimated, a fuzzy logic set getting both RSS  
and velocity values is computed. If the result of this rule 
indicates to (try to) associate to another AP, then the MN 
should pass to the second phase of the algorithm.  

The basic configuration of the fuzzy logic system is 
shown in Figure 5 and consists of four principal elements: 
fuzzifier, fuzzy handoff rule, fuzzy interface engine 
(handoff decision making unit), and defuzzifier.  

The fuzzifier performs a mapping from the observed 
crisp input space, e.g. the measured RSS, to the 
membership of the fuzzy set, e.g. high RSS, where a fuzzy 
set is characterized by a membership function. The 
handoff fuzzy rule consists of a set of linguistic rules in the 
form of “IF a set of conditions are satisfied, THEN a set of 
sequences are inferred”. The fuzzy inference engine is a 
decision making logic which employs fuzzy rules from the 
handoff fuzzy rules unit to map the fuzzy sets in the input 
space. Finally, the defuzzifier performs a mapping from 
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the fuzzy sets to crisp points. The output of the defuzzifier is 
generally a crisp value, calculated by using fuzzy logic 
operators.  

 

Figure 5. Fuzzy Logic System Unit in Details 

Table 1. Fuzzy Rule  
Velocity RSS Handoff Eagerness 
Very low Very low Very high 
Very low Low High 
Very low Medium Medium 
Very low High Very low 
Very low Very high Very low 

low Very low Very high 
low Low High 
low Medium Medium 
low High Low 
low Very high Very low 

Medium Very low Very high 
Medium Low High 
Medium Medium Medium 
Medium High Low 
Medium Very high Very low 

High Very low Very high 
High Low Very high 
High Medium High 
High High High 
High Very high High 

Very high - Very high 
        
The input fuzzy variable of speed and RSS are assigned 

to one of the five fuzzy sets, “very low”, “low”, 
“medium”, “high” or “very high”, which are optionally 
classified into five levels. This grouping strategy gives 
more clues on the weakness and strength of input variables 
and helps generating more accurate output data. Table 1 
illustrates the eagerness of performing handoff depending 
on the velocity and RSS levels. For example, when the 
value of velocity is “very high” and the value of RSS is 
“very low”; this condition indicates that handoff should be 
encouraged immediately or the handoff eagerness is “very
high”. We define the handoff in cases of having “high” or 
“very high” eagerness in output. 

3.5. Handoff Mechanism (Phase Two) 
By getting handoff permission in the first phase, the 

MN moves to second phase of the handoff procedure. The 
handoff decision will be based on a more accurate 
estimation of the radio link quality (using F-LQE, rather 
than just RSS) between an MN and all AP in its vicinity, 

and on AP-specific parameters such as the traffic load, 
depth and energy level.  

Similarly to the first phase, as it is illustrated in Figure 6 
and explained previously, probe requests are periodically 
sent every Tprobe on available channels or time slots 
(according to FDMA or TDMA schemes). By receiving 
probe acknowledgements from neighbouring APs, the 
algorithm enters the decision making phase.  

The process of choosing the best AP between several 
alternatives can impact WSN performance. Hence, it is 
important to obtain reliable and accurate link quality 
estimation in a short time. Link quality estimators (LQEs) 
have been proved to provide a more accurate and stable 
information on link quality than just RSS [15]. We opted 
for F-LQE [13], since it has recently been shown to 
perform better than existing LQEs. It advocates combining 
several important link properties to get a holistic 
characterization of the link. It uses fuzzy logic to estimate 
the link quality. Therefore, by defining link properties in 
linguistic terms and performing the fuzzy logic rule, it 
results the degree of membership of the link in the fuzzy 
subset of good quality links.  

In this design, four link quality metrics of packet 
delivery, asymmetry, stability and channel quality are 
considered. The goodness or high quality of a link is 
characterized by the following rule: “IF the link has high 
packet delivery AND low asymmetry AND high stability 
AND high channel quality THEN it has high quality.” By 
use of and-like compensatory operator of [13], the 
following equation stands for link i with high quality: 

))(),(),(),(().1(
))(),(),(),(min(.)(
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iiiii
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��                (1) 

The membership function )(i� in equation (1) represents 
the membership to the fuzzy set of high quality links and 
the others like )(),(),( iii SFASLSPRR ��� and )(iASNR� indicate 
the membership functions in the fuzzy subsets of high 
packet delivery, low asymmetry, low stability, and high 
channel quality respectively. The parameter 	 is a constant 
value in range [0,1]. By considering )(.100)( iwLQ �� , the 
link score range changes to [0..100], where 100 denotes 
the best link quality and 0 shows the worst. Equation (2) 
shows the F-LQE value after performing EWMA filter for 
smoothing: 

LQFLQEwFLQE ).1(.),( ��� 
��                                        (2) 

Where � = 0.9 to provide a stable link estimate, and w is 
the estimation window, meaning that a node estimates link 
quality based on each w received packets. 

In order to choose the appropriate AP, we consider 
other criteria apart from link quality estimation. These 
criteria are energy level (EL), traffic load (TL), and depth 
level (DL). Each criterion is considered as a fuzzy variable 
and is supposed to be embedded in the payload of the 
probe acknowledgement messages. The following 
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equation shows the membership function of fuzzy handoff 
(FHO) for mobile node n : 
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Figure 6. Handoff Mechanism (Phase Two) 

The constant value of  should be defined/tuned 
according to future simulation/experimental results. 
Afterwards, an optional authentication phase is performed 
by sending an authentication request by MN and getting 
the response from the AP. Finally, the mobile node sends a 
reassociation request to the new AP. The handoff 
mechanism ends when the MN receives the association 
ACK message.  
 
4. Final Remarks 

This paper outlines a reliable handoff procedure for 
supporting mobility in WSNs. A two-phase procedure is 
proposed that performs handoff decision according to 
several important metrics, combining them using fuzzy 
logic. 

Next step is to implement, test and validate the 
proposed handoff mechanism via simulation and 

experimental models. This will enable to tune the different 
parameters of the handoff heuristics for an optimal 
handoff.  

We are planning to implement and integrate the 
proposed handoff mechanism in standard WSN protocols 
such as ZigBee and 6LoWPAN, to demonstrate its 
feasibility and efficiency.  
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Abstract 
 

The majority of event detection in real-time embedded 
sensor network systems is based on data fusion that uses 
noisy sensor data collected from complicated real-world 
environments. Current research has produced several 
excellent low-level mechanisms to collect sensor data and 
perform aggregation. However, solutions that enable 
these systems to provide real-time data processing using 
readings from heterogeneous sensors and subsequently 
detect complex events of interest in real-time fashion need 
further research. We are developing real-time event 
detection approaches which allow light-weight data fusion 
and do not require significant computing resources. 
Underlying the event detection framework is a collection 
of real-time monitoring and fusion mechanisms that are 
invoked upon the arrival of sensor data. The combination 
of these mechanisms and the framework has the potential 
to significantly improve the timeliness and reduce the 
resource requirements of embedded sensor networks. 
 
1. Introduction 
 

With the continued miniaturization and growing 
computation power of wireless sensors, the deployment of 
real-time embedded systems using such devices has 
significantly increased. These systems use sensors to 
monitor the physical world and provide appropriate 
reaction and control over it. The scale of such interactions 
is very wide, ranging from resource-constrained sensor 
devices to global-scale networked monitoring systems, and 
these systems have the potential to transform the way 
people interact with and control the physical world.  

Real-time embedded sensor network systems are used 
for variety of applications such as infrastructure 
monitoring, medical systems and smart healthcare 
facilities, surveillance applications, and environmental 
monitoring and control. Regardless of the specific 
application, these systems should be able to detect when 
particular events of interest occur. In embedded sensor 
networks, most events are not binary.  Instead, they are 
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based on sensor data fusion using noisy sensors deployed 
in complicated real-world environments. Several excellent 
low-level mechanisms and protocols to collect, transport, 
and perform data aggregation on the raw sensor data have 
been developed. However, systematic solutions that allow 
these sensor network systems to provide real-time data 
processing using data fusion from heterogeneous sensors 
and subsequently detect complex events are still lacking. 
Recent work [8] addresses confident event detection in 
sensor networks. The proposed detection mechanism is 
centralized and nodes are trained offline to recognize 
specific events. However, such training is often not 
feasible, e.g. when the detected events present danger 
(explosions, fires, collapsing of buildings), or cannot be 
easily reproduced (earthquakes, volcano eruptions). 

There are a number of requirements that an event 
detection service for embedded sensor networks must 
satisfy. It has to support event specification, real-time data 
fusion, and real-time stream data management. Since 
sensor devices typically have limited resources, this 
service should be light-weight. It must also provide high 
confidence event detection and minimize false alarms. All 
these features make building robust event services for 
embedded sensor network systems very challenging.  

The main contribution of our work is that it provides 
key building blocks for robust real-time data and event 
services to be used by event detection applications. We 
have designed novel approaches that allow light-weight 
data fusion for real-time event detection and do not 
require significant computing resources. We are 
developing an event detection framework built around a 
collection of event specification, transformation, real-time 
monitoring, and fusion mechanisms. We expect that this 
framework together with the underlying mechanisms will 
significantly improve the accuracy and timeliness of event 
detection, as well as help reduce the resource requirements 
of embedded sensor network applications.  

  
2. Complex event detection 

 
2.1 Event description 

 
Petri nets are well accepted as a model to describe 

systems with distributed, concurrent, asynchronous, and 



non-deterministic features [1]. A basic Petri net consists of 
places (circles), transitions (rectangles or bars), directed 
arcs, and tokens (dots inside places). Arcs represent 
changes between states and the way in which tokens are 
created or destroyed. Places represent the states in which 
the application can be, and transitions are used to model 
various kinds of actions. Each place can contain zero or 
more number of tokens. A transition of a Petri net can fire 
whenever there is a suitable token in each of the input 
places for that transition. When the transition fires, it 
consumes these tokens, and injects tokens in its output 
places. A marking of a Petri net represents the status of 
the Petri net, i.e. a specific distribution of the tokens. 

One of our objectives is to develop an effective 
specification language for event detection based on Petri 
nets. This language should address features specific to 
applications relying on the analysis of data from 
streaming networks (sensors, video cameras, etc). The 
foundation of our work is a coMpact Event Description 
and Analysis Language (MEDAL) [2]. As a formal 
method, MEDAL is based on Petri nets, which allows it to 
rigorously and unambiguously specify complex events. 
MEDAL attempts to address key aspects of event detection 
networks such as temporal control, spatial constraints, 
heterogeneity, and probability issues.  

The MEDAL description of a sensor network event 
system can be given as a 7-tuple structure: F = (P, T, A, λ, 
β, H, L), where P is the set of places, T is the set of 
transitions, A is the set of arcs, λ is a probability/weight 
function for the arcs, β is a temporal guard function, H is 
a threshold function for places, and L is a spatial guard 
function for transitions.  

Figure 1 shows the MEDAL model of a complex event 
detection application. The token at Temperature event 1 
represents the detection of temperature value v at time t by 
a sensor at location (x, y) with sensing range r. The event 
detected by this application, event E, is characterized by 
specific simple events in temperature (e.g., detection of 
high temperature at a specific location), pressure (e.g., 
detection of potentially dangerous levels of pressure), and 
friction (e.g., occurrence of high friction at the joint 
point). The occurrence of each of these simple events is 
represented by a token in the corresponding places. When 
all three tokens are present, transition T4 fires and the 
application reports the detection of the complex event E. 
Complex sensor network events often require processing 
of stream data. For those events, tokens can be generated 
using the query results from stream data processing, as 
discussed in Section 3.  

Complex events are a function of when and where they 
occur. We address the need of event detection applications 
for spatial and temporal semantics by incorporating 
spatial and temporal logic into MEDAL. 

 

 
Figure 1: MEDAL model of an event detection system 

 
2.1.1 Temporal logic: Temporal logic refers to the 

temporal guard function β. It helps specify the temporal 
concepts “when” and “how long” in MEDAL Petri nets. β 
guards the transitions to ensure they fire only during the 
specified temporal intervals. Introducing β in MEDAL has 
practical importance because some events can occur only 
during a particular temporal interval. For example, 
clustering to form a group can only happen if intensive 
communication occurs within a relatively short interval. 
In addition, β can help specify conditions such as “a 
transition will fire only if the input tokens have been 
generated within a predefined time interval”. In Figure 1, 
for example, if the generation times of the tokens entering 
transition T4 are more than 30 seconds apart from each 
other, it is more likely that the events were unrelated or 
they belong to different groups rather than indicating the 
occurrence of event E. In cases like this, the network 
should not report the occurrence of an event even if the 
necessary input tokens are present. 

 
2.1.2 Spatial logic The geographic semantics of the 

application are enforced by the spatial function L. As a 
guard function for a transition T, L ensures that the tokens 
carried by T’s incoming arcs satisfy the spatial locality 
conditions. If L(T) = R, the effective radius of the higher-
level event recognized by T should be equal to or smaller 
than R. In other words, there should be a circle of radius R 
encompassing all tokens’ locations in order to consider 
the readings to be caused by one particular event. In 
Figure 1, for example, if the tokens in the input places of 
transition T4 are generated at a distance larger that R 
from each other, it is likely that the events are not related. 
L could help detect such situations and thus decrease the 
number of false positives in event detection. 

 
2.2 Introducing probabilities 

 
Most previous work on event description in embedded 

sensor networks uses precise, also called “crisp”, values to 
specify the parameters that characterize an event. For 
example, we might want to know if the temperature drops 
below 5°C. However, sensor readings are not always 
precise. In addition, different sensors, even if located close 



to each other, often vary in the values they register. 
Consider an example scenario where we want the cooling 
to be turned on if the temperature goes above 5°C. Two 
sensors, A and B, measure the temperature in the room 
and the average of the values they report is used to 
determine if an action should be taken. At some point, 
sensor A reports 5.1°C and sensor B reports 4.8°C. The 
average, 4.95°C, is below the predefined threshold and the 
cooling remains off. However, if sensor B’s measurement 
is imprecise and therefore lower than the actual 
temperature, we have made the wrong decision. The 
situation becomes even more convoluted when more than 
two sensor measurements are involved. This makes 
determining the precise event thresholds an extremely 
hard task which has led us to believe that using crisp 
values might not be the best approach. Fuzzy logic, on the 
other hand, has a number of properties that make it 
suitable for describing events in sensor networks:  
 It can tolerate the unreliable and imprecise sensor 

readings;  
 It is much closer to our way of thinking than crisp 

logic. For example, we think of fire as an event described 
by high temperature and the presence smoke rather than 
an event characterized by temperature above 55°C and 
smoke obscuration level above 15%; 
 Compared to other classification algorithms based 

on probability theory, fuzzy logic is much more intuitive 
and easier to use. 

The structure of a general fuzzy logic system (FLS) is 
shown in Figure 2. First, the fuzzifier converts the crisp 
input variables x ε X, where X is the set of possible input 
variables, to fuzzy linguistic variables by applying the 
corresponding membership functions. Linguistic variables 
are “variables whose values are not numbers but words or 
sentences in a natural or artificial language” [3]. An input 
variable can be associated with one or more fuzzy sets 
depending on the calculated membership degrees. For 
example, a temperature value can be classified as both 
Cold and Lukewarm. Second, the fuzzified values are 
processed by if-then linguistic statements, called rules, 
derived from domain knowledge provided by experts. 
These rules are of the form: 
 

IF premise, THEN consequent 
 
where the premise is composed of fuzzy input variables 
connected by logical functions (e.g. AND, OR, NOT) and 
the consequent is a fuzzy output variable. The inference 
scheme maps input fuzzy sets to output fuzzy sets. Finally, 
the defuzzifier uses the output fuzzy sets to compute a 
crisp output. The crisp output value determines the control 
actions that need to be taken. 

As previously mentioned, sensor readings are 
generally believed to be unreliable and imprecise. 
Therefore, to increase our confidence in the presence of an 

event somewhere in the monitored area, we often need 
readings from multiple sensors and/or readings over some 
period of time. To address this, we instrument the event 
detection process with spatial and temporal semantics. We 
believe that including temporal and spatial linguistic 
variables in the rule-base can significantly improve the 
detection accuracy. It can also allow us to describe and 
detect more complex events. To the best of our knowledge, 
no previous work on applying fuzzy logic to event 
detection has considered the effects of temporal and 
spatial semantics on the accuracy of event detection. 
 

 
 

Figure 2: The structure of a fuzzy logic system 
 

2.2.1 Spatial semantics: It is important to understand 
how including spatial guards affects the accuracy of event 
detection. Spatial guard variables will allow us to express 
any spatial requirements the detection application might 
have. An example requirement could be: “if the readings 
of two sensor nodes indicate the presence of event X, we 
believe that this event has occurred only if the two sensor 
nodes are located close to each other”. A disadvantage of 
including spatial semantics is that sometimes events 
might not be detected if the spatial guard is too strict. 
However, we believe that using fuzzy logic will help us 
alleviate this problem. 
 
2.2.2 Temporal semantics: To further decrease the 
number of false alarms we also need to take into account 
the temporal properties of the monitored events. One 
approach is to include linguistic variables in the rule-base 
that can act as temporal guards. Adding temporal 
semantics is especially important for embedded sensor 
networks because of the nature of sensor communication. 
It is very possible for messages in a wireless sensor 
network to be delayed because of network congestions or 
bad routing. Consequently, a reliable event detection rule-
base should take into consideration the generation times of 
the participating sensor readings. 
 
2.2.3 Decreasing the rule-base: A disadvantage of using 
fuzzy logic is that storing the rule-base might require a 
significant amount of memory. The number of rules grows 
exponentially to the number of variables. With n variables 
each of which can take m values, the number of rules in 
the rule-base is mn. For example, if there are four 
linguistic variables each of which can be associated with 
one of five values, the rule-base will contain 625 rules. 



Adding spatial and temporal linguistic variables to the 
rule-base further increases the number of rules. Since 
sensor nodes have limited memory, storing a full rule-base 
on every node would be a waste of valuable resources. In 
addition, constantly traversing a large rule-base might 
considerably slow down the detection process. Further, the 
intensified computation caused by frequently going 
through a larger rule-base will also lead to increase in the 
power consumption. To address this issue, we have 
designed a set of rule-base reduction techniques to 
decrease the size of the rule-base. An important property 
of these techniques is that they do not negatively affect the 
accuracy and promptness of event detection.  
 

0

20

40

60

80

100

-100 -50 0
Time relative to fire ignition (min)

Fi
re

 c
on

fid
en

ce

crisp values fuzzy values

 
Figure 3: Fire simulation: burning mattress 

 
2.2.4. Experimental results: We have performed 
preliminary simulation experiments on real fire data 
publicly available on the National Institute of Standards 
and Technology (NIST) website [4]. The goal of these 
simulations was to evaluate how using fuzzy logic affects 
the accuracy of event detection. The experiments were run 
with both crisp and fuzzy values. The temperature and 
smoke obscuration thresholds we used in the crisp logic 
experiments are threshold values used in commercial 
smoke and heat detectors [5, 6].  

Figure 3 shows the results from one of the crisp-value 
experiments. The origin of the coordinate system 
represents the time of fire ignition. As we can see from the 
figure, using crisp values results in a very large number of 
false fire detections. In the period prior to fire ignition, 
there were 40 false fire detections which constitutes about 
1.3% of the readings. Such a considerable number or false 
positives significantly affects the efficiency and fidelity of 
an event detection system. Our results show that fuzzy 
logic is more suitable for event detection in sensor 
networks. However, we need to perform additional 
experiments to determine if there are applications for 
which this does not hold true. It is also important to 
compare the resource requirements of applications using 
fuzzy and crisp values. 

We used the same scenario to evaluate the efficiency of 
the rule-base reduction techniques. The rule-base initially 
had 81 rules. Applying two of our reduction techniques, 
which take advantage of the similarity between rules as 
well as the significance of different rules, helped decrease 
the size of the rule-base by more than 70% without 
compromising the event detection accuracy. 
 
2.3 Event transformation  
 

Transforming the formal model into code that can be 
executed on the sensor nodes is the next step an event 
service needs to perform. Since the process of recognizing 
the specified events is similar to a DNA transcript 
procedure, we call the event recognition code generated 
from the MEDAL model and stored on the sensor nodes, 
event-DNA. Each event-DNA is an encoded 
representation of a MEDAL model and just like a 
MEDAL model, the event-DNA might represent the 
description of simple or complex events. The sensor nodes 
have an event detection middleware stored in their 
memory which can read different event-DNAs and act 
accordingly.  

 
2.4 Event service framework  
 

 
Figure 4: Event service framework 

 
The overall event service architecture we are 

developing is shown in Figure 4. In the figure, the 
MEDAL IDE (Integrated Development Environment) is 
an offline package which resides on a PC and from which 
specified event semantics can be encoded and exported to 
a base node. The base node installs a deployment module 
that deploys all event-DNAs onto their corresponding 
motes. For example, if an event-DNA represents a mote-



level event, it will be deployed onto every mote, while if 
an event-DNA represents a group-level event, only a 
group leader will have a copy. For dynamic leader 
schemes, the deployment module needs to interact with 
the group module to determine what to deploy. Then 
inside each mote, the imported code generated from the 
event-DNA is stored in program memory. The detection 
module achieves its goal by calling other lower primitives 
in the program section such as reading sensor values, 
obtaining time, location information, and other data from 
other modules in the program section.  

The framework contains the following modules: 
 MEDAL environment, which includes both a 

specification module and an analysis module. It also 
encodes event specifications into event-DNAs and exports 
them to the base node. 

 The Base node contains encoded event-DNAs and 
has a deployment module in charge of transferring event-
DNAs to nodes in the field. The deployment module 
provides communication, in which the messages are 
event-DNAs. 

 At the Sensor node level, the event detection 
module resides in program memory. The event detection 
module uses a token vector to communicate with other 
nodes for collaborative detection of higher level events. 

Once the designers have the MEDAL model that 
describes their application, the next step is to write the 
code to be run on the nodes. A weakness of this step, 
however, is that manually translating the formal model 
into code might introduce bugs as well as lead to 
divergence of the code from the model. An advantage 
MEDAL has over other currently used event description 
approaches is that due to its formal structure and lack of 
ambiguity, it can be directly and automatically translated 
into code that can be executed on the sensor nodes. We 
have been developing a tool to automatically generate the 
event-DNA code based on the MEDAL model of the 
application. Currently, we are generating TinyOS code 
using the formal application model [7]. However, our 
approach is adaptable so that code in languages other than 
nesC can be generated as well. This approach will 
significantly reduce the effort of writing TinyOS code and 
improve the correctness of the code. 

 
3. Real-time stream data 
 
3.1 Overview 
 

For timely detection of complex events, real-time 
embedded sensor network systems have to operate on 
continuous unbounded data streams from multiple 
sources. The streaming data may come from different 
types of sensors which need to be integrated and fused 
with each other as well as with the data already stored in 
the system. Stream data takes the form of continuous, 

ordered, potentially infinite data streams, as opposed to 
finite, statically stored data sets.  In embedded sensor 
network applications, there exist significant volumes of 
dynamically changing data in the form of data streams, 
such as data associated with the current locations and 
movements, data in the form of simple events detected by 
other subsystems, and data from other sources reflecting 
the dynamic and volatile situations. Analysis of stream 
data poses great challenges to real-time data management, 
due to the unique features of data streams, such as huge 
(and possibly infinite) volume, unpredictable changing 
patterns, and flowing in-and-out in a dynamic order. Due 
to the high volume of data streams and the timing 
constraints of the applications, it is often assumed that it 
is not possible to store a stream in its entirety, nor is it 
feasible to query the whole stream history. Typically, the 
queries are executed on a window of data. A window on a 
data stream is a segment of the data stream that is 
considered for the current query. A lot of stream data 
resides at the primitive abstraction level in the form of 
raw sensor data. It is necessary to perform aggregation 
and generation of derived data from the raw data to find 
interesting patterns or outliers at appropriate levels of 
abstraction and with appropriate dimension combinations. 
 
3.2 Quality management  

 
To process real-time stream data in embedded sensor 

networks, the system should support long-running and 
persistent queries. When a query arrives in the system, it 
is registered and its instances are executed periodically. 
All queries are pre-registered in the system and converted 
to query plans (containing operators, queues, and 
synopses) before the system starts executing. Queues in a 
query plan model the incoming data streams and the 
intermediate results between the operators. A synopsis 
could be related to a specific operator and it stores state 
that may be needed for future evaluation of the system. 
For example, a join operator may be associated with a 
synopsis for each of its inputs to store some of the items. 
These items can be probed later by the operator as needed.  

Let us consider the following data streams and query 
associated with it. The query result can be used to detect 
unusually speeding trucks. 
 
Stream: Speed (int lane, float value, char[8] type); 
Relation: Lanes (int ID); 
Query: SELECT avg (Speed.value) FROM Speed [range 
1 minute], Lanes WHERE Speed.lane = Lanes.ID AND 
Speed.type = Truck; 
Period 10 seconds 
Deadline 5 seconds 
 

The query above operates on data streams generated by 
speed sensors and calculates the average speed of trucks in 



particular lanes in the last 1 minute. The query needs to 
be executed every 10 seconds and the deadline is 5 
seconds after the release time of every periodic query 
instance. The generated query plan is shown in Figure 5. 
This query plan consists of three query operators (range 
window operator, join operator, and aggregate operator) 
and two buffers (one for storing the range window output 
and the other for storing the output of the join operator).  

 

 
 

Figure 5: Query plan 
 

One of the main challenges for data stream 
management with real-time constraints, as in embedded 
sensor networks, is the unpredictability of the data streams 
themselves. It is possible that the system may get 
overloaded as the arrival rates and contents of the 
incoming data streams change. The system must be able to 
handle these workload fluctuations. Otherwise some of the 
queries may miss their deadline. This QoS management 
can be performed at two levels. The inter-query QoS 
management can allocate resources to different queries in 
the case of system overload so that they have similar 
quality in query results. The intra-query QoS management 
is then used to allocate available resources to different 
operators within the query plan so as to maximize the 
query quality. For inter-query QoS management, the 
system needs to estimate the query execution time 
corresponding to different input data sizes. For intra-query 
QoS management, the system needs to know the 
selectivity of different operators corresponding to the 
current data input and their estimated execution time. 
Since our main objective is to ensure the timeliness of 
query results, the query execution time estimation is the 
key to QoS management. In order to estimate the query 
execution time, we need three parameters for each query, 
namely, the input data stream volume, the operator 
selectivity, and the execution time per data tuple for each 
operator. In this work, we consider queries that are ready 
to be executed when performing the QoS management 
routine. Therefore, the input data volumes for these 

queries are known since the incoming data stream 
segments are already present in the system.  

It is beneficial to estimate the execution time of queries 
which do not have their complete input yet and use these 
estimations in the QoS management process, since the 
current ready-to-go queries may overlap with these future 
queries in their life span. This is a challenging problem as 
it involves designing effective algorithms to monitor and 
estimate the volume and contents of data streams. 
 
4. Summary 
 

This work provides the basis for developing robust 
real-time data and event services that allow sensor 
network applications to monitor, detect, and react to 
sophisticated events. We are designing an event service 
framework which combines several techniques that will 
help provide light-weight and timely event detection in 
embedded sensor networks. In addition, in order to 
improve the performance of these sensor systems, we are 
developing approaches to manage the QoS. We believe 
that combining the event service framework and the QoS 
management mechanisms will significantly improve the 
timeliness and reduce the resource requirements of event 
detection in embedded sensor network systems. 
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Abstract—Cooperating objects (COs) is a recently coined term
used to signify the convergence of classical embedded computer
systems, wireless sensor networks and robotics and control. We
present essential elements of a reference architecture forscalable
data processing for the CO paradigm.

I. I NTRODUCTION

As embedded computer systems increase in importance and
become networked, new concepts emerge to emphasize differ-
ent aspects of them. The concepts of pervasive and ubiquitous
computing emphasize seamless deployment in everyday things
and environments. The concept of wireless sensor networks
(WSNs) emphasizes sensing and networking aspects, whilst
the concept of cyber-physical systems (CPSs) emphasizes the
interaction between information processing (”Cyber”) andthe
physical world. The concept of cooperating objects (COs) [1]
has recently gained acceptance in signifying the convergence
of classical embedded computer systems, wireless sensor
networks and robotics and control, whilst emphasizing ad-
hoc, opportunistic cooperation between (often) autonomous
entities. Furthermore, it is currently seen by the European
Commission as the main research direction in networked
embedded computer systems.

Formally speaking, a cooperating object (CO) [2] is a single
entity or a collection of entities consisting of (i) sensors,
(ii) actuators, (iii) information processors or (iv) cooperating
objects. Since the definition of a CO is recursive (a CO may
be a collection of COs), this definition makes it possible to
form arbitrarily complex structures. The concept of a CO is
quite new however and therefore, no general theory for COs
is known and no model or architecture for data processing
concerning COs is known either.

It is possible to co-locate a single sensor, a single informa-
tion processor and a single actuator to a single computer node
and let the information processor perform processing based
on readings from the single sensor and let the actuator enact
commands computed by the single information processor. Har-
nessing the power of cooperating objects requires however that
information processors perform processing of sensor readings
originating from different computer nodes. Sometimes thisis
strictly necessary. For example, most methods for estimating
the most likely geographical location of a physical object

depend on sensor readings originating at different computer
nodes. In other cases, an information processor can obtain a
much better image of the physical world, using better resolu-
tion and greater coverage, if the information processor takes
as input sensor readings originating from different computer
nodes. Clearly, many COs need to perform data processing
based on sensor readings originating from different computer
nodes.

Since COs often interact with their physical environment by
giving commands to actuators (these commands are computed
based on sensor readings), it is essential that theresponse
time of data processing from sensing to actuation is small. A
straightforward approach to perform data processing in COs
is that each actuator has an associated information processor
and all sensors that provide sensor readings that are needed
for the data processing on this information processor send the
sensor readings to this information processor. This approach
is applicable in COs composed of a relatively small number
of sensors. But the trend [3], [4], [5] in COs is towards
a larger number of sensors because (as already stated) this
provides a better image of the physical world. Unfortunately,
performing data processing with the straightforward approach
leads to long response times because of the large amounts of
packets that must be sent from each sensor. This is particularly
problematic when all sensor nodes are in a single broadcast
domain because then at most one sensor can transmit at a time.
Clearly, better methods for data processing are needed; data
processing based on sensor readings originating from different
computer nodes should be performed in a scalable manner; that
is, the response time should grow slowly (or not at all) with
the number of sensor nodes/readings.

Many COs are comprised of sensor nodes belonging to
different organizations with no superior/subordinate relation-
ship between these organizations. Yet, the functioning of the
CO requires that data processing is performed based on these
sensor readings. And this brings an additional challenge to
data processing in COs. Therefore, a core problem in the
design of COs is to perform data processing based on sensor
readings originating from different computer nodes potentially
in different organizations and do so in a scalable manner; we
refer to this as theScalable Data Processing problem.



In this paper, we present essential elements of a reference
architecture for the Scalable Data Processing problem1. We
believe that developing this reference architecture is significant
because (i) COs with a large number of sensor nodes and
which operates across a large number of organizations will
be built in the future and (ii) there is (as far as we know) no
reference architecture available for the Scalable Data Process-
ing problem. Since COs and CPSs have many commonalities,
we also expect our future work on this reference architecture
to be useful also for CPSs.

The remainder of this document is organized as follows.
Section II presents a usage scenario to motivate the need
for query processing. Section III presents a system overview.
Section IV presents the architecture. Section V presents related
work. Finally, Section VI presents ongoing work.

II. A USAGE SCENARIO

In order to understand the scalable data processing problem,
let us consider a usage scenario.

Europe food safety legislation [6] specifies that when certain
foods are being transported, they must be kept within certain
temperature thresholds for the safe preservation of the food’s
quality. For example, it is necessary to be able to verify that
frozen foods must be kept frozen for the entire duration of
the journey. From a European health and safety perspective,
food that defrosts and is re-frozen is considered unsafe and
this event must be detected and reported. In order to accom-
plish this, many refrigerated vehicles, ”reefers”, now embed
wireless sensor networks in vehicles and in load containers.
Coupled with on board telematics units, this set up allows the
monitoring of these temperature thresholds during the entire
food transportation cycle.

A. Description

Typically, a fleet management company provides clients
(food companies in this scenario) with a fleet administration
tool which allows clients to make a range of queries against
vehicles transporting their load. Each vehicle, shown in Fig-
ure 1, may be connected to the fleet administration tool via a
3G internet connection, and each vehicle administers its own
wireless sensor network, which is monitoring the vehicle’s
load. For larger companies, they may have several hundreds
or even thousands (in the case of supermarket chains) WSN-
enabled vehicles transporting loads across Europe at any one
time. A simple geospatial query requesting the location of
all vehicles at a single point in time, would result in a very
large and costly query being disseminated to potentially all of
these vehicles. In this scenario, minimizing the financial cost
of these queries is very important to the fleet administrators,
and doing this in the presence of large scale systems is a
challenge.

1Due to space limitations, we do not present the entire architecture — only
the essential elements of it.

Fig. 1. A typical query in the fleet management scenario

B. Scenario Characteristics

This scenario has several characteristics that are noteworthy
with the scalable data processing problem. These include:

• Dynamic scale. The total number of sensors (gateways +
wireless sensors) within the entire query system includes
the amount of wireless sensor nodes on each individual
vehicle in addition to the mobile gateway on each vehicle.
Dynamic aspects of typical queries such as geospatial
queries, can result in a very large number of nodes having
to be queried.

• Mobility. Gateway nodes (on the vehicle) are mobile
as are the wireless sensor networks themselves, but not
with respect to the gateway node. The gateway node is
attached to a mobile telematics unit, (equivalent to a
embedded mobile phone), which can both process one
shot, continuous and event triggered queries. The mobile
telematics unit is equipped with a GPS, so accurate
location data is usually provided.

• Expensive communication costs. The cost of an individual
communication between the client and a vehicle is small
but not zero, as the communication is performed over a
3G internet connection. For example, continuous queries
that push data constantly upwards are cost prohibitive
and may only be executed once an hour, or even less
frequently. Effective management of queries should help
to depress the overall cost of the communication within
the system, which is an important characteristic of this
scenario.

C. Queries

A client sends his query from a non-self administered
website, a portal. Two typical queries would be as follows:

1) Query Q is ”Display the location of all of my vehicles”.
Without any prior information, an uninformed query
planner would have to disseminate this one shot query
to all telematics devices. They would respond with their
location.

2) Query Q2 is a continuous query. ”Raise an event when
the temperature within a vehicle is greater than -2 de-
grees.” In this query, periodic single shot queries are ex-



Fig. 2. An example of a CO that performs scalable data processing. There
are three users (not shown). One user asks a query to Portal 1;another user
asks a query to Portal 2 and a third user asks a query to Portal 3. The former
query requires execution of sensor reading originating inWSN1. The two
latter queries require execution based on sensor readings in the same WSN,
WSN2. The gray arrows show the flow of data when executing the queries.

pensive and inefficient. Events that are triggered locally
by the vehicle’s onboard sensors push the data/event
towards interested parties (the client).

III. SYSTEM OVERVIEW

In this section we will formalize our system model and
the basic terminology which will be used in the subsequent
sections.

Let {SN1, SN2, . . . , SNn} denote a set of individual sens-
ing devices with the ability to communicate in an adhoc
manner wirelessly. These sensing devices have the ability to
acquire physical attributes at discrete time instancest and then
propagate them using a multihop communication mechanism
to some gatewayGatewayi. A gateway has the purpose of
retrieving critical data from individual sensor nodes and has
a larger energy capacity. This setup is typically referred to as
a Wireless Sensor Network (WSN) which is normally owned
by a single organization. Usually, a WSN consists of a single
gateway but there are often cases where more than one gateway
exists to better support the operation of the WSN. For example,
in Figure 2,WSN1 consists of three gateways.

A user/application can specify a queryQ directly to a WSN
(i.e., through a gateway) or through a portal. In the former
case, the user must first identify the proper gateway and then
follow specific access routines and protocols to issueQ. On
the other hand, portals offer a transparent way of accessing
a WSN (or multiple WSNs) by providing a set of abstract
interfaces that allow the user to query one or more WSNs
easily in an identical manner. To accomplish this, portals
employ: (i) WSN registries that allow applications to discover
WSNs, and (ii) data transformation mechanisms that enable
communication to (i.e., query) and from (i.e., data) the WSN.

In this work, queries are represented in a declarative SQL-
like syntax. For instance, the following query declares that
each sensing device should recursively collect the node identi-
fier and the temperature from its children every 31 seconds and

communicate the results to the gateway.SELECT nodeid,
temp FROM sensors EPOCH DURATION 31 seconds

IV. A RCHITECTURE

The reference architecture describes the main components
that have to be provided to meet the requirements for scalable
data processing across heterogeneous sensor networks. As
an in-node architecture, the reference architecture omits the
description of specific interfaces and implementations, but
instead presents generic roles that should be met by software
components on each node, regardless of whether the node is a
sensor node, gateway or portal. Within these nodes, different
software and hardware constraints are enforced requiring the
reference architecture to be implemented to meet these con-
straints. Our scalable data processing architecture, shown in
Figure 3, presents six main components. Due to the brevity
of the paper, only those components that relate to the key
elements of scalable data processing are described, and as such
the descriptions of the API layer, and the system management
component are omitted.

A. Query Manager

The Query manager is responsible for the execution of
queries in our framework. Queries are posted to the query
manager via the Query API. There exists three different groups
of queries in our framework categorized according to the
layer at which they are going to be executed. These are the
(i) Portal, (ii) Gateway and (iii) Broadcast domain levels.Our
framework will support different instantiations of the same
components in order to cope with this diversity.

The Query Manager consists of the following components:

• Parser: Queries executed within a wireless sensor net-
work can be classified using a variety of metrics,
e.g. number of returned results, aggregation mecha-
nisms used, execution frequency, etc. The Parser com-
ponent is responsible for translating queries from a
predefined format to a data structure. In order to do
so, the Parser incorporates a grammar that checks the
query syntax and looks for specific tokens that exist
in the grammar. This process enables the parser to
determine the query semantics and build the appro-
priate data structure that will be used by other com-
ponents for the execution of the query. Our frame-
work supports three query types: (i) Selection Queries,
(ii) Storage/View Queries and (iii) Event based Queries.

• Planner: The Planner component handles the planning
of the queries. Specifically, it considers all possible query
plans for a queryQ, calculates a “cost” for each query
plan and then opts for the one with the lower cost.
Typically, “cost” is calculated with regards to response
time performance (I/O operations, memory usage, etc.).
However, in WSNs, “cost” is evaluated with different
metrics that take into account the peculiarities and limi-
tations of WSNs (e.g., limited battery).

• Query Optimizer: The Query Optimizer sub-component
considers all possible query plans and chooses the



Fig. 3. The Scalable Data Processing reference architecture

most cost-efficient, whilst the scheduling sub-component
schedules the execution of the query depending on the
query type.

• Knowledge Engine:The knowledge engine is responsi-
ble for advanced topics in the query execution process
like aggregation. Additionally, it utilizes a caching com-
ponent that enables query instantiations to cache results
locally in order to speed-up operations.

B. Publish/Subscribe

Unlike in traditional networks where the communicating
entities are interested in the actual sender and receiver ofdata,
data centric networks are less worried about this information
and more concerned with the data transmitted between those
entities. This means that in such networks the entities register
for a particular data type in which they are interested in
and not with particular nodes offering or looking for data.
This is also true for the majority of wireless sensor network
applications where the applications are interested in the data
gathered by the sensor nodes and not in the physical sensor
nodes themselves.

The Publish-Subscribe (Pub/Sub) paradigm is one such
approach in which entities associate or register themselves
to a type of data. It is an asynchronous messaging paradigm
which provides a decoupling between the sender and receivers
of data and provides one of the better abstractions for com-
munication in mobile networks or applications. The Pub/Sub
paradigm is based on the roles of publisher and subscriber,
either or both of which can be assumed by a network entity.
Entities which assumes the role of publishers publish data and
entities subscribed to that type of data receive it. The pub/sub
interaction can be either centralized or have some distributed
mechanism. In the centralized approach, all publishers notify
a central entity or a broker about the data which they would
like to publish and all subscribers make their subscriptionto

that central entity based on their requirements. The central
entity on having a condition where a subscription request can
be fulfilled by a publisher, forwards the data to the subscriber.
In a distributed approach, every node can assume a role of
a publisher or subscriber or both. In this case, the publish
and subscription requests are sent over the network and are
maintained by every node, which it can use knowledge of what
types of data are available in the network and whether it is
interested in it. Conversely, the type of data published locally
is also known and a list of subscribers to that data within the
network is also maintained.

Usually, publishing and subscription requests are addition-
ally filtered on topics and/or content. In the former, the
association is made on the topic e.g. if there is a temperature
data available for the building then pass this information to the
subscriber, whereas in the latter the approach, association is
based on the contents i.e. if the temperature in the buildingis
more than 25◦ C then pass this information to the subscriber.

In the proposed reference architecture, publish subscribe
mechanism can be used for both or either of the actual sensor
data and metadata regarding the sensor network. Examples
of actual sensor data include temperature, humidity, lightetc.
whereas metadata can include network performance parame-
ters such as number of subscriptions, position of sensor nodes,
number of active nodes etc. The choice of using publish
subscribe mechanism for a particular type of data depends
upon the usage scenario. Depending upon usage scenario, it is
also possible to use publish subscribe mechanism for regular
sensor data at one part of the network and for transferring
metadata for some other part of same network. An example
could be a usage scenario mentioned in Section II, where
publish subscribe mechanism can be used for transferring
metadata information between different containers and also for
transferring regular sensor data within a network in a single
container.



C. Communication

In order to achieve scalable data processing, it is clearly nec-
essary for nodes to communicate. The need for communication
is however a major source of energy consumption (because
transceivers are left on) and delay (because of contention for
the medium) and therefore it is crucial that the architecture
makes efficient use of the communication system.

Our use of the communication system is quite different from
that of many typical address centric networks. For example,
the pub/sub component receives a packet and its filtering
module may inspect it and decide whether the packet should
be forwarded. Execution of queries typically requires that
in-network processing is used; typically many packets are
received from child-nodes and a computation based on their
data payload is performed and the result is transmitted. And
query processing in a single broadcast domain may need the
communication system to simply perform contention for the
medium. For example MAX and MIN of sensor readings in a
single broadcast domain can be computed efficiently using a
prioritized medium access control protocol. Because of these
reasons, the communication component must expose details
rather than hiding them.

Our architecture follows these principles in the following
way. The communication abstraction layer exposes primitives
for other parts of the architecture to use in innovative waysin
order to achieve scalable data processing. And the component
”execution” provides address-centric services.

We note that the components Timeslot assignment and clus-
ter formation configure the communication system. These can
be used to optimize the execution of an ongoing continuous
query, for example, if nodeN1 and nodeN2 transmits packets
to nodeN3 andN3 aggregates this information and forwards
this aggregate toN4 then it is desirable (from the perspective
of attaining low latency) that the transmissions fromN1 and
N2 has a lower timeslot id than the transmission fromN3.
The timeslot assignment can also consolidate timeslots so
that one node has a long wakeup time instead of two short
wakeup times in a TDMA cycle. The functionality of these
components can also be used by the query optimizer to setup
the timeslot assignment and cluster formation when a new
query (especially for a continuous query) is setup.

D. Repositories

The Cross-Layer Repository (XLR) is the location for the
storage of meta data generated by local instantiations of
the reference architecture and also meta data generated by
remote instantiations. The purpose of maintaining this meta
data is that it may be used by several other components
within the architecture in order to achieve optimizations and
scalability that would otherwise not be possible. For example,
knowledge of the physical location of leaf instantiations of the
reference architecture may be used to optimally direct certain
spatial queries to some leaf nodes, and not others. It cannot
be assumed that this information is known a-priori or that
this information is even static. For example, node mobility
may influence the outcome of certain types of queries, and

being able to maintain certain types of meta-data at parent
instantiations of the reference architecture may make better
optimizations possible.

Query based meta-dataIn order to be able to plan and
execute queries dynamically, it is necessary to know and store
what types of queries can be executed at other instantiations of
the reference architecture. To achieve effective query planning,
it is also required that some additional information such asthe
cost of the query, be maintained, and that cost information may
be dependent on how the query is implemented at that node.
For example, a certain query might have one cost when the
overall query is executed in such a way as to ensure a very
timely response, but may have a different cost when the query
is executed in such a way to minimize the amount of messages
required to execute that query, i.e. optimize based on energy
consumption. The cross layer repository is responsible forthe
consistent storage of meta-data that captures this information.

One proposed solution is that the XLR maintains a tuple set
(Ni, Qi, Ci, Oi) capturing this information, whereNi is the
node where the query is to be executed at,Qi is that query,Ci

is the cost of that query given that it is optimized according
to Oi.

Sensor node meta-dataAdditional information pertaining
to the nodes themselves may also be maintained as meta-data.
This would include information such as routing tables and also
the physical topology of the network, for example the location
of nodes.

V. RELATED WORK

There is currently no reference architecture specifically fo-
cusing on scalable data processing. There are however related
architectures.

RM-ODP [7] is a Reference Model for Open Distributed
Processing. It shares our goal of addressing heterogeneityand
interaction between objects in different organizations. But it
does not address scalability in terms of data processing.

Ultra-Large Scale Systems (ULS) [8] is a study made by
Software Engineering Institute at Carnegie-Mellon University
for the US Department of Defense. The study discusses how
to design software systems comprising more than one billion
lines of code and where these software systems are highly
distributed and deployed across different organizations.The
report about ULS differs from our paper in that ULS pro-
vides a roadmap whereas we provide a reference architecture.
Also, ULS focuses on interoperability and negotiation between
different systems and suggests the use of mechanism design.
These issues are not in the scope of our paper.

Scalable Querying of Sensor Networks from Mobile Plat-
forms Using Tracking style Queries (SENSTRAC) proposed in
[9] is an approach with some similarities to the our proposed
architecture. SENSTRAC aims at querying sensors through
mobile nodes (mobile phones, PDAs) using publish subscribe
mechanisms. SENSTRAC assumes resource rich sensor nodes
integrated in to the infrastructure. Due to the mobility aspects
of applications, SENSTRAC instead of in-network aggregation
of query results, suggests transformation of queries into the



subscriptions to the topics published by the sensor nodes
to incorporate increasing number of querying nodes to meet
the scalability requirements. This aggregation at the subscrip-
tion level is proposed by a separate algorithm periodically
computing sensors of interest. SENSTRAC uses leased based
subscriptions in which subscription is valid for a limited time
period and does not require unsubscription procedure mainly
because of the mobility aspect. SENSTRAC has two types
of mapping, one from query to the topics and one from
topics to the sensor nodes. The sensor network architecture
proposed by SENSTRAC is a broker based architecture in
which subscriptions and publish offers are sent to the broker
nodes in a static grid-cell network structure. In addition to
intra-cell communications, the broker nodes are also used for
inter-cell communications to avoid redundancy of sensed data.

Scalability, in terms of the number of nodes within a
Cooperating Objects Network, has also been studied in the
context of the IPAC project [10]. IPAC aims at delivering a
middleware and a service creation environment for developing
embedded, collaborative and context-aware services in mobile
nodes equipped with sensing devices. IPAC relies on short
range communications for the ad hoc realization of dialogs
among collaborating nodes. The networking capabilities of
IPAC are based on rumour spreading techniques, a stateless
and resilient approach, and information dissemination among
embedded nodes. One of the key advantages of this scalable
ad-hoc network construction/communication mechanism is
the ability to integrate new mobile nodes and new sensing
elements in an efficient manner. However, in contrast to the
reference architecture proposed in this paper, scalability with
regards to multiple gateways has not been considered.

TAG [11] is a query processor for WSN. It allows the
execution of restricted SQL queries and it uses in-network
aggregation by creating an aggregation tree (called routing
tree in [11]) to improve scalability. Our architecture differs
from the one in TAG in that (i) our architecture may take
advantage of query processing in a broadcast domain using
the MAC to improve scalability, (ii) we consider queries that
may span multiple WSNs and (iii) our architecture considers
query optimization (for example by taking knowledge of the
network topology into account).

VI. ONGOING WORK

The next steps of our ongoing efforts are now to focus on the
development of a prototype implementation of the complete
architecture, i.e. the query manager, publish subscribe engine,
communication layer, system management layer, cross layer
repositories, etc. As part of the requirements specification
phase, different real world scenarios were identified and for
the first prototype, we will implement one of them. The first
challenge in this regard is the selection of an appropriate sim-
ulation platform which can provide the required functionalities
for implementing the proposed architectural components. The
simulation platforms that we have investigated so far do not
completely fulfill our requirements. Therefore, additional fea-
tures will be added to the existing platform(s) for developing

the prototype. For example, the prototype implementation will
have to be executable at the different levels of the network
namely the portal, gateway and broadcast domain levels. This
is not supported by any existing simulator. In parallel, we
will be refining the architecture with more low level details
on architectural components, interaction between the different
layers and addressing open issues identified in the design
phase such as data models for the cross layer repository and
syntax/semantics rules of query language(s). In addition to
the prototype, an evaluation methodology for the reference
architecture will be devised to validate that the proposed
architecture achieves its goals. The validation process will
ensure the conformance of the specified requirements with the
prototype.
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Speaking about wireless technologies it is important to first have a look on the different 
categories of available technologies in terms of their fields of application. Within these 
categories several standardized technologies and quite a range of proprietary systems are 
available. But not all of them qualify for every application in demand in the field of 
industrial automation. One has especially to differentiate between factory and process 
automation and the differing real-time requirements in these two worlds. 
 
The most real-time requirements come from the area of factory automation where often 
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standardized technologies. But in some typical use cases vendors need to deviate from 
standards and implement proprietary features to fulfil customer requirements. These use 
cases, their specific demands and the optimized technologies used to realize them will be 
discussed within this speech. 
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Abstract

Existing real-time methods enable wireless sensor net-
works (WSN) to achieve –in principle– different levels of
timeliness guarantees. However, the design and evaluation
processes of these methods are often grounded on naive
assumptions that constrain their usability in real-world
deployments.

In this paper, we analyze from a timeliness perspective
a number of implicit and explicit assumptions common in
existing methods and discuss their impact in real deploy-
ments. We base our arguments on gained experience from
simulations under realistic assumptions in WSN as well as
well-known research literature. Based on these arguments,
we provide a list of considerations to mitigate the effects
of misleading assumptions and achieve timeliness solutions
consistent with the particularities of WSN.

1. Introduction

The rapid expansion of wireless sensor networks (WSN)
[1] in an increasing number of application domains con-
tributes to a growing demand of network services with
thorough performance requirements. With the support of a
large theoretical and practical background, existing timeli-
ness solutions [2] aim at enabling WSN to operate with real-
time guarantees. However, the design and evaluation of these
methods are often based on naive assumptions that constrain
their applicability in real-world deployments.

The definition of ambitious goals –which cannot be sat-
isfied unless severe assumptions are granted– is one of the
major drawbacks of current real-time methods. This overes-
timation of capacity entails important simplifications during
the evaluation process. Among others, common practices
include the definition of misleading evaluative criteria and
the loss of generality due to ad-hoc test-beds. Hence, the
quality assessment from a timeliness perspective becomes
unclear because the methods are evaluated against unrealistic
models.

This work is partially financed by the European Commission under
the Framework 6 IST Project ”Wirelessly Accessible Sensor Populations
(WASP)”.

In this paper, we analyze –from a timeliness perspective–
three main aspects of existing real-time solutions for WSN.
First, we overview the different goals of existing real-time
methods to deem their suitability if applied to realistic WSN.
Secondly, we evaluate the impact of a number of implicit and
explicit assumptions taken in the design of these methods. In
most cases, these assumptions have a significant impact on
the real-time performance and constrain the applicabilityin
real-world deployments. Lastly, we examine different eval-
uation criteria and identify common misconceptions of the
evaluative process that can lead to misguided conclusions.

Based on this analysis, we infer a number elementary con-
siderations, which allow mitigating the impact of unrealistic
assumptions and facilitate meaningful evaluation tests that
increase the confidence of these methods.

The reminder of this paper is organized as follows:
section 2 overviews some of the most representative meth-
ods in the current state-of-the-art; the following sections
present a discussion about common misconceptions and
misleading assumptions about real-time objectives (section
3), networking protocols (section 4), and evaluation criteria
(section 5); based on this analysis, section 6 presents a series
of considerations with the aim of mitigating the inclusion
of these misconceptions in future developments; finally,
section 7 concludes the paper.

2. Overview of Real-Time in WSN

Applications of WSN can be divided into two main areas:
monitoring and tracking [3]. The former includes exam-
ples such as monitoring of health parameters in a medical
context, environmental control, and structural monitoring of
buildings. The latter, includes object tracking in multiple
contexts as well as intrusion surveillance of restricted ar-
eas. Both domains exhibit inherent demands for real-time
guarantees that existing methods try to satisfy at different
levels.

Real-time MAC protocols aim at bounded data link trans-
mission times, which are necessary to guarantee forwarding
delays in single hop scenarios. Common ways to achieve
this include traffic regulation mechanisms [4], scheduling



of message transmissions [5], as well as structured network
topologies [6], [7], and prioritized schemes [8].

Routing techniques pursue bounded end-to-end delays for
multi-hop scenarios in a broad number of possible ways
[9]. Examples include geographic packet forwarding [10],
multi-path routing [11], and prioritized queuing models [12].
Multi-layer approaches try to embed the functionalities of
different layers into a complete real-time framework with
delay guarantees [13].

The analysis of end-to-end latency [14], [15] aims at
providing a better understanding of timeliness capacitiesof
WSN. This information enables adaptive methods to adjust
their behavior to the current network conditions. In addition,
low latency [16], robustness [17] and specially low energy
consumption [18], [19], are properties inherently present
within the goals of most real-time solutions.

3. Misleading Real-Time Objectives

The solid background of real-time systems is in many
aspects a source of inspirations to provide real-time support
in new research areas. However, the inherent capacity of
satisfying real-time constraints may be significantly different
from one domain to another. Overseeing the fundamental
incompatibilities between both domains develop in some of
the most common misuses of real-time methods applied to
WSN, which may lead to unfeasible goals and unrealistic
scenarios.

Assumption 1. The goal of a real-time method is to provide
hard real-time guarantees for each transmitted message.

The notion of hard real-time systems [20], in which
each event is associated with a strict deadline, does not
match with the general architecture of WSN. Messages are
transmitted via hop-by-hop forwarding through unreliable
links; the end-to-end delivery ratio is typically low; and the
low-energy profile of most communication stacks increases
the probability of expiring the maximum retransmission
attempts without success. A consequence of these facts is
that any individual transmission is susceptible to fail.

Guaranteeing strict deadlines requires excessive resources
and complex algorithms for which WSN are not designed.
A more elaborated notion of timeliness and the definition of
adequate metrics to evaluate the quality of service (QoS),
accommodate to a larger extend with the inherent properties
of WSN. For example, in [21] the authors present a notion of
timeliness which based on the current real-time performance
of the network extracts the probability of messages being
transmitted within bounded intervals.

Efficient real-time methods should encourage the analysis
and exploitation of network trade-offs, adapting their time-
liness performance according to the suitability of expending
resources.

4. Common Protocols Assumptions

Existing protocols are not free of assumptions. In this
section we enumerate a number of misleading assumptions
in existing protocols and their implications in realistic sce-
narios.

Assumption 2. Availability of resources.
In a number of existing protocols, it is common practice

to base the methods on the assumption of specific hardware
resources. Although it is possible to conceive a plausible sce-
nario to justify these assumptions, they are not valid for the
general case. For example, GPS devices are mentioned by
[22], [19], and [11]; [8] assumes multiple radio transceivers;
and [23] and [24] provide solution based on unconstrained
nodes acting as access points.

Assumptions on such equipment imply the loss of gen-
erality and restrain the applicability of these methods to
particular cases. Mitigating the implications of such assump-
tions by alternative methods strengthens both the validityand
applicability of the method. However, the consequences of
such substitutions may introduce inaccuracies with respect
to the dedicated hardware that must be taken into account.

4.1. Data Link Level

Precise models of radio transceivers and the propagation
of waves through the air are inherently complex due to the
interaction of a considerably large number of physical laws.
However, their accuracy may determine the validity of real-
time models built on top of them. The trade-offs between
accuracy and simplicity are not straight forward, and lead
to different levels of precision. The following aspects have
a significant impact on the data link models.

Assumption 3. Radio links are symmetric and stable over
time. Transmission range follows a radial pattern equal to
the interference range.

This set of assumptions has been widely discussed and
refuted. Radio transmissions are neither symmetric nor sta-
ble over time as shown in [25], [26]. Both studies conclude
that the transmission range of omnidirectional antennas is
not regular for all directions and varies over time even
in static set-ups. In [27], the authors experiment with the
vertical placement of nodes and conclude that nodes placed
a distance above the ground achieve a significant larger
transmission and reception range.

From a timeliness perspective, the implications of un-
realistic radio models introduce a number of important
drawbacks. In the first place, in real-world scenarios the
delivery ratio drops due to radio anomalies [28]. Hence,
the necessary mechanisms to ensure successful transmission
within strict deadlines must be reenforced. Moreover, further
nodes are typically preferred by message forwarders, as they



offer a shorter hop distance till the sink. However, these
nodes may be located within the boundaries of the effective
transmission range, where links suffer from a high bit error
rate (BER). In [29], the authors explore the use of different
metrics other than thedistance-to-sinkin order to determine
the quality of paths. Their study reveals that the elaboration
of a path metric is not straightforward and may require the
combination of different indicators.

Broadcast messages, which are often used to build net-
work trees, also suffer from similar effects. For example, a
node closer to the sink will broadcast “HELLO” messages
to its neighboring nodes, which will then register the source
as the forwarding preference for their traffic. However,
some of these child nodes may not be able to send their
messages back, either due to the non-symmetric range of
the radio devices or because of temporal instability. In [30],
the authors explore further this effect and propose a simple
method to determine stable links based on the consecutive
reception of enumerated broadcast messages.

Assumption 4. A radio transceiver is either in transmitting
or receiving mode, or turned off.

The common assumption with respect to the radio
transceiver is that at any time, it is either turned off or in
one of two possible states: receiving (Rx) or transmitting
(Tx). However, the transition between these two modes
produces a third state in which the transceiver is neither
listening nor sending out any signal. This, in general, is
widely neglected in simulation models, despite accounting
for a large number of collisions. In real-world scenarios, it
introduces a large enough interval of time –192µs in a TI
CC2420 [31]– between sensing the channel and being able
to start transmitting. During this gap of time, other nodes
sensing the medium may also start transmitting, which may
lead to collisions if both nodes are within their interference
ranges.

From a timeliness perspective, the most relevant impact of
this effect is again a notable decrease of the effective delivery
ratio, which indirectly affects the performance figures of
real-time protocols validated against simplistic models.

Assumption 5. The received signal strength (RSSI) is pro-
portional to the distance between sender and receiver.

The relation between RSSI and the distance between the
communicating parts is not as straight forward as often
assumed. In [32], the authors analyze the signal strength
measured at increasing distances and conclude that although
the averagesignal strength shows a correlated trend with
respect to the distance, this cannot be extrapolated to individ-
ual measurements. This conclusion is shared in [33], which
additionally explores the correlation between signal strength
and packet loss. They found out that typically, high signal
strength produces low packet loss, although surprisingly,the
opposite statement does not necessarily hold.

4.2. MAC Protocols

Real-time MAC protocols try to guarantee bounded trans-
mission delays between neighbor hops. Their success depend
in great measure on carefully defining their operational
boundaries. Certain assumptions, as the following, may lead
to unsatisfactory results.

Assumption 6. If no other node in the network is trying to
access the medium, the medium is free.

The assumption of complete isolation with respect the the
wireless medium is not safe. Some existing methods (e.g.
[34], [35], [36]) and most TDMA scheduling policies (e.g.
[37], [38]) are designed under the assumption of having a
constant amount of network capacity at their disposal.

Nevertheless, communications may still suffer from ex-
ternal interferences and reduced connectivity due to weak
link. As a consequence, messages may result corrupted or
not transmitted, despite theoretical guarantee of conflict-free
communications provided by the protocol.

Protocol designers must take into account that RF commu-
nications are prone to uncontrollable interferences that may
enter in conflict with TDMA schedules as well contention-
free intervals. The assumption of a a completely isolated
environment could be a valid claim for testing purposes.
However, the calculation of real-time delay bounds based
on this principle is not accurate.

Assumption 7. WSN can be organized in fixed topologies
which remain stable for the entire network life-time.

The restriction to a particular network topology is com-
mon in some real-time protocols (e.g. [7]). In spite of
being a legitimate requisite for characteristic scenarios, the
implications of such assumptions are questionable in real
deployments. In fact, provided that factors such as the radio
anomalies discussed in assumption 3 are taken into account,
the relation between the physical placement of nodes and
their connectivity over time with neighbor nodes is not
constant.

4.3. Routing Protocols

Routing protocols are not exempt of misleading assump-
tions which cannot be always taken for granted.

Assumption 8. Location-awareness.
Equipping each sensor node with a GPS device is out of

budget for most WSN deployments. Realistic assumptions
should be made also with respect to the availability of
resources. Nevertheless, multiple location algorithms are
available and can be combined with real-time methods.
However, it is important to consider the unavoidable error
of these algorithms in finding the exact position of a node.
For example, the performance of routing protocols based on



geographic forwarding (e.g. [10]) may be directly affected
or seriously jeopardized if these errors occur.

Assumption 9. The maximum length of any routing path is
bounded. Hop distance is proportional to physical distance.

Assuming upper bounds on the number of hops necessary
to reach the sink from a given source node (e.g. [18]) is
a very practical but unrealistic restriction. The elaboration
of routing protocols that define the trajectory of messages
towards the sink following the “shortest path” may result in
low throughput. In [29], the authors analyze this effect and
provide a number of alternative metrics.

Establishing a realistic upper bound requires strong as-
sumptions on the network dynamics which are often out
of control. Nevertheless, the establishment of a bound for
the“longest possible path” introduces an implicit constrain
in the protocol scalability.

Assumption 10. Messages that cannot satisfy their dead-
lines are dropped.

This case may not be considered an assumption but rather
a common behavior of real-time routing protocols as a
consequence of aiming at strict deadlines (see assumption 1).
In most WSN scenarios with timeliness requirements, there
is an added value to thefreshnessof data. Following this
principle, old messages are often discarded at intermediate
hops if the algorithm estimates that their end-to-end deadline
cannot be fulfilled.

However, guaranteeing end-to-end delays is not effective
if the protocol itself contemplates the possibility of dropping
unsuccessful messages based on estimates. In some cases,
receiving old data may produce better results than receiving
no data at all. Alternative approaches may consider adaptive
methods with the ability of defining flexible deadlines.

5. Imprecise Evaluation Criteria

Choosing meaningful evaluation criteria has a great im-
pact on the performance figures and the quality of the eval-
uation procedure. In this section, we discuss some important
misconceptions affecting the generalization of evaluation
analysis in realistic scenarios.

5.1. Misleading Theoretical Proofs

Assumption 11. Everything can be turned into an analytical
expression.

With the use of properly validated models, meaningful
bounds for the network latency or other performance metrics
can be inferred. However, in many cases the necessary
level of abstraction introduces serious simplifications of
complex systems; for example: assumptions about traffic
pattern distributions, service times, or the minimum network
density.

Analysis of average-case scenariosprovide theoretical
bounds for the figures of interest. However, introducing
all possible factors that could interfere in theworst-case
scenariois practically unfeasible in analytical expressions.

Assumption 12. The distribution of average (service
time/transmission latency/queue size) is constant duringthe
entire network life-time.

This assumption is correlated with the previous and re-
flects the unfeasibility of analytical expressions to capture
the dynamic behavior of a WSN.

5.2. Simplistic Simulations Models

Assumption 13. “Our model reflects accurately the physical
properties of ...”.

Due to the complexities of physic laws and the prop-
agation of waves, a realistic radio model including all
possible anomalies is practicably unfeasible. Channel access,
environment, and interferences are as important to model
as the method being evaluated. Simplistic models may hide
design flaws or applicability limitations that appear in real-
world deployments.

Experiments such as [33], [28], and [39] show that the
deviation between simulation results and real test-beds are
not negligible. However, the additional level of complexity
involving a real test-bed is not always affordable.

Nevertheless, an appropriate validation process can lead to
sufficient levels of accuracy for the most significant figures.
For example, in [40], the authors profile the necessary steps
to achieve accurate evaluations of timeliness protocols with
properly tuned simulations.

6. Considerations

Designing and implementing timeliness methods for WSN
without relying on misleading assumptions is a challenge
that still needs further attention. The definition of appropriate
objectives and a careful validation of models are crucial to
achieve high quality methods.

The following list of considerations summarize the main
problems of existing methods, and may help overcome a
number of popular misconceptions constraining the quality
of timeliness solutions:

• Hard real-time solutions require strict deterministic
models that are not compatible with WSN. Adaptive
methods and a proper definition of QoS trade-offs may
reduce the number of necessary restrictive assumptions.

• Realistic radio models are difficult to achieve, yet
crucial in the evaluation of timeliness models. The
careful validation of data link models plays a significant
role in the elaboration of satisfactory methods.

• RF communications in WSN are typically exposed to
many sources of interferences. MAC protocols have to



be robust enough to deal with unstable channels and
weak links.

• Effective routing protocols should be able to support
timeliness without requiring restrictive resources. Scal-
ability and adaptiveness are also important figures to
evaluate.

• Validation criteria must be consistent with the scenarios
for which the evaluated methods are designed. Simplis-
tic models may lead to optimistic figures that do not
match the real performance.

7. Conclusion

In this paper, we enumerated a number of misleading
assumptions that are found in many existing real-time meth-
ods for wireless sensor networks. Our analysis is conducted
from a timeliness perspective with the goal of identifying the
source of common misconceptions with a negative impact
on the real-time performance.

Based on existing literature and gained experience of
simulations under realistic assumptions, we presented ar-
gumentation against misleading evaluation and validation
criteria leading to imprecise conclusions.

We completed our analysis with a series of considerations
that may help mitigate the effects of misleading assump-
tions.
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Abstract

The increasing complexity of real-time systems has mo-
tivated the application of component-based software engi-
neering principles during the last few years. Temporal en-
capsulation is key to smoothing the integration stage of soft-
ware components in complex distributed hard real-time sys-
tems. This paper presents a network scheduling server al-
gorithm to guarantee and at the same time limit the net-
work bandwidth assigned to streams of messages with dif-
ferent real-time requirements in a fixed priority network.
The algorithm is based on a recently corrected version of
the POSIX sporadic server whose rules, originally intended
for scheduling tasks, have been adapted and optimized for
the special case of fixed-priority networks. The algorithm
is able to provide bounded response times that can be ana-
lyzed with off-the-shelf real-time analysis tools and can be
used for both synchronous and asynchronous messages. The
proposed approach has been implemented and evaluated on
real hardware, using the CAN bus. The performance evalu-
ation results show that bandwidth isolation can be achieved
with rather low overhead both on the processor and the net-
work resources.

1. Introduction
The complexity of developing large real-time applica-

tions can be handled by independently developing compo-
nents that are later integrated into a physical platform. The
success of the integration depends on the ability of the plat-
form to provide the required resource usage guarantees to
every component while protecting each component from
timing faults in the others. Some compositional frameworks
[5] have an integrated view of the different resources in-
volved in a distributed application. In particular, for net-
work resources, application components are able to specify
their bandwidth requirements, so that the implementation
can make the corresponding guarantees or reservations.

In real-time distributed systems, the communication
paradigm (event- or time-triggered [10, 23]) plays an im-
portant role in the composability, flexibility and responsive-
ness of the system. In the time-triggered paradigm, mes-
sages are sent at predefined time windows according to a
global schedule. This approach is well-suited for periodic
activities that require very low jitter. Furthermore, it en-
ables composability regarding to the temporal behavior be-
cause the access to the bus is predefined and decoupled from

Figure 1: Bandwidth reservations

the actual network load. The major drawbacks of this ap-
proach are the lack of flexibility in the design process, the
need of global synchronization between the nodes and its
poor support for aperiodic messages. In the event-triggered
paradigm, messages are sent as a response to the occurrence
of an event. This approach is generally more flexible and
better suited to support asynchronous traffic together with
critical activities that require very short response times. The
major disadvantages of this approach are the increased mes-
sage jitter and the lack of temporal isolation.

Since both paradigms have strong and weak points, sev-
eral protocols that combine support for both event- and
time-triggered traffic have been proposed. In some proto-
cols (e.g., FlexRay [3] or FTT-CAN [15]), temporal iso-
lation between both types of traffic is enforced by imple-
menting a cyclic sequence that alternates between them.
However, the arbitration of the event-triggered phase of
these protocols, implemented with different approaches
such as fixed priorities (FTT-CAN) or TDMA with min-
islots (FlexRay), has the same drawbacks that were men-
tioned before, high jitter and lack of temporal isolation. For
instance, in case of a software babbling idiot failure [13], a
misbehaving task may affect the bandwidth preallocated to
other tasks that are working correctly by transmitting exces-
sive messages at a higher priority.

This paper presents a network scheduling algorithm that
follows the event-triggered paradigm and is able to satisfy
the requirements for the integration of independently de-
veloped components. The algorithm is based on a recently
corrected version [25] of the POSIX sporadic server whose
rules, originally intended for scheduling tasks, have been
adapted and optimized for the special case of fixed-priority
networks. The algorithm is able to control the jitter caused
by aperiodic messages, provide bounded response times



that can be analyzed with off-the-shelf real-time analysis
tools and it can be used for both synchronous and asyn-
chronous messages. It enables the creation of bandwidth
reservations, which can be thought as unidirectional virtual
links between two nodes providing a guaranteed service, as
shown Fig. 1.

The paper is organized as follows. After an introduction
to server-based scheduling for networks in Sec. 2, Sec. 3
proposes an algorithm for an optimized version of the spo-
radic server policy for fixed-priority networks. Sec. 4 gives
details about the implementation of the algorithm on real
hardware, whose overhead is evaluated in Sec. 5. Sec. 6
compares the proposal with previous work and Sec. 7 closes
the paper with conclusions.

2. Server-based scheduling in networks
Server-based scheduling techniques have been used for a

long time to limit the processor time assigned to a particular
computation or set of computations while also guaranteeing
some minimum level of service. Servers such as the peri-
odic server [14], the sporadic server [24], or the constant
bandwidth server [9] are a few examples.

The concept of server is also applicable to the outgoing
direction of a network stack to limit the bandwidth used by
message streams. However, scheduling in the networks is
somehow different than in the processors. When a server is
used to schedule a network the concept of execution time
must be mapped into transmission time. In most networks,
messages are fragmented in units called packets which are
usually non preemptible. Therefore, an easy way to spec-
ify budgets in a network server is to measure them in terms
of number of packets. The maximum packet size is usually
limited by the network, but a smaller limit can also be im-
posed by the implementation as necessary, for instance as
an application-defined parameter. Of course, if the message
stream mixes very short messages with longer messages that
fit into the maximum packet size, the bandwidth available to
the message stream may be suboptimal, since each message
consumes one unit of budget regardless of its size. How-
ever, it is easy to design a solution to this problem by creat-
ing several sporadic servers with different maximum packet
sizes, and submitting the messages to the appropriate server
based on their size. The non-preemptability of the network
packets has bounded delay effects that can be easily mod-
eled through a blocking time term. Other more complex
analysis models can also be used to better estimate response
times [12].

2.1. Sporadic server
The sporadic server is a bandwidth preserving schedul-

ing algorithm designed for processing aperiodic events in
hard real-time systems [24, 18]. It allocates a specific band-
width for processing aperiodic requests at a given priority
level (the normal priority). This bandwidth is provided by
allocating a certain execution time capacity for each inter-
val of time called the replenishment period. The scheduling
algorithm is defined through a set of rules for consuming
this execution capacity when the sporadic server runs, and

Figure 2: Communication elements

for later replenishing this capacity. When the capacity is
consumed, the sporadic server may still do useful work at a
background priority level, to make full use of the resource.

When the sporadic server was standardized in the addi-
tional real-time extensions [6] of the POSIX standard for
portable operating system interfaces (later included in the
unified version of the standard [7]), it was defined with a set
of consumption and replenishment rules, intended to allow
for a feasible implementation in the context of a real-time
operating system (RTOS). Unfortunately, except for some
specific cases, the new rules had the same problem of the
original sporadic server definition that could cause preemp-
tions to occur too early [18]. Recently, in [25], a new set of
rules has been proposed in order to fix the original POSIX
sporadic server problem while maintaining its main value,
the simplicity of its implementation.

In the next section, the sporadic server proposed in [25]
is adapted and optimized for the case of fixed priority net-
works. To simplify the implementation, the presented ap-
proach takes advantage of the discrete nature of the network
packets and considers that the capacity chunks used in the
sporadic server are always of size one. This allows to create
a capacity queue of fixed size, equal to the number of pack-
ets represented in the budget of the sporadic server. Each
packet in the capacity queue is annotated with its replen-
ishment time. This simplifies the budget arithmetics and
eliminates the need to introduce optimizations to limit the
fragmentation of the capacity.

3. Network Sporadic Server algorithm
The proposed network sporadic server policy is based

primarily on two parameters: the replenishment period and
the initial transmission capacity. The replenishment period
is called repl period and is measured as an absolute time.
The initial transmission capacity is called the init budget
and is an integer number of network packets of bounded
size. As shown in Fig. 2, the network sporadic server policy
is used to schedule a stream of messages that are sent from
a specific sender node in the system, through the network.
The destination node of these messages is any node that is
reachable in a single hop. Messages to be sent are submitted
by the application and stored in a transmission queue until
they are sent. Messages in this queue fit into one packet,
but a fragmentation layer is provided outside the sporadic
server implementation if larger messages are required.

Fig. 3 shows the architecture of the network sporadic
servers. For each sporadic server the system maintains in
the sender node a capacity queue, with transmission capac-
ity chunks. The size of the queue is equal to init budget.
Each chunk represents a transmission capacity of one



Figure 3: Network Sporadic Server

packet, and contains a replenishment time, which is an ab-
solute time after which the capacity may be consumed. Ini-
tially, all the chunks in the queue have a replenishment time
equal to the time at which the queue is initialized. In addi-
tion, the system keeps one value associated with each spo-
radic server: an absolute time called the activation time. Fi-
nally, the system has a conceptual replenishment timer as-
sociated with each sporadic server.

The priority assigned to messages sent though a sporadic
server is determined in the following manner: if the replen-
ishment time of the head of the capacity queue is equal to
or earlier than the current time, the server is considered
to have execution capacity available, so it is assigned the
priority specified by normal priority, and its replenishment
timer is disarmed; otherwise, the assigned priority shall be
low priority, and the replenishment timer is armed to expire
at the replenishment time of the head of the capacity queue.
The modification of the capacity queue and, consequently
of the assigned priority, is done as follows:

1. Each time the server is made ready at the nor-
mal priority level, either because a new message ar-
rived at the transmission queue while it was empty
(path (a) in Fig. 3) or because the replenishment timer
expired and the transmission queue is not empty (path
(b)), the time at which this operation is done is stored
in the activation time

2. When a message is sent at the normal priority level a
replenishment operation is performed (path (c)), as de-
scribed in 3. Then, if the replenishment time of the
new head of the capacity queue is larger than the cur-
rent time, the server is assigned the low priority and
the replenishment timer is armed to expire at the re-
plenishment time of the head of the capacity queue.

3. Each time a replenishment operation is performed the
head of the capacity queue is removed from the queue
and reinserted at the tail with a replenishment time
equal to the maximum of the activation time and its
current replenishment time, plus repl period (see path
(c) in Fig. 3).

Figure 4: Scheduling sequence using the network sporadic server

4. When the replenishment timer expires the server is as-
signed the normal priority level.

3.1. Example
The following example illustrates the presented network

sporadic server algorithm. Consider a system with three
periodic message streams with parameters shown in Table
1, with deadline-monotonic priority ordering. Suppose that
m2 is a network sporadic server to transmit aperiodic mes-
sages. The sporadic server is given a initial transmission
capacity of C2 = 20 packets, and a replenishment period
T2 = 50 time units. For simplicity, the transmission time of
one packet is supposed to take one time unit.

Table 1: Periodic message streams

Message Ci Ti Di

m1 10 200 20
m2 20 50 50
m3 50 200 100

Fig. 4 shows a transmission sequence scheduled under
the network sporadic server policy defined in this paper. It
also shows the evolution of the replenished time value in the
head and tail of the capacity queue, the activation time vari-
able associated to the server, the number of packets in the
transmission queue, the current priority of the server, nor-
mal (N) or low (L) and the status of the replenishment timer
which can be armed (1) or disarmed (0). The example is
similar to the one used in [25] to illustrate the correction of
the premature replenishments defect in the original POSIX
sporadic server.

4. Implementation
The network sporadic server policy defined in Sec. 3 has

been implemented on real hardware. As a relevant exam-
ple of fixed priority networks, the Controller Area Network
(CAN) [2] was chosen. CAN has been used extensively in
the automotive industry to connect Electronic Control Units
(ECUs) using a shared bus. CAN features non-preemptive
frame transmission and priority-based arbitration through



Figure 5: Implementation layers

a bit dominance protocol which enables bounded latencies
that can be analyzed through real-time schedulability the-
ory. Popularity of CAN has reached other sectors such as
industrial control applications or medical equipment.

Fig. 5 shows the main elements of the implementation.
The architecture was implemented on MaRTE OS [11], a
hard real-time operating system that follows the Minimal
Real-Time POSIX.13 subset and provides an easy-to-use
and controlled environment to develope multi-thread real-
time applications. The core of MaRTE OS is written in Ada
language, and it supports mixed-language applications in
Ada, C and C++. In this study, MaRTE OS was extended
with a driver that supports the NXP SJA1000 chipset [8], a
stand-alone controller for CAN commonly used within au-
tomotive and general industrial environments. The driver
provides a POSIX character interface (i.e., open, read,
write, etc.). In addition, several hooks can be installed
inside the driver through the ioctl system call.

The implementation of the network sporadic server exe-
cutes on top of the MaRTE OS interface. The main sources
of overhead introduced by the network sporadic servers,
compared to using the native CAN protocol, are the follow-
ing:

• The replenishment operations (see path (c) in Fig. 3)
which are executed every time a CAN frame is sent.
A hook is installed in the CAN bus driver, through the
ioctl system call, in order to be notified about the
transmission of a CAN frame.

• A replenishment thread, which waits for expirations of
the replenishment timers, modifies the priority of the
server and updates the activation time.

In addition, as shown in Fig. 5, a previously presented
high-level protocol for CAN (CAN-RT-TOP [19]) was
adapted to send messages through the developed network
sporadic server. Details about the adaptation of the proto-
col and its source code, distributed under the GNU/GPL v2
license, can be obtained at [4].

5. Evaluation
This section presents evaluation results of the network

sporadic server presented in this paper. The evaluation en-
vironment consisted of nodes equipped with AMD Duron
800 Mhz processors, 256 MB RAM memory and Adlink
PCI-7841 CAN bus cards [1], which are based on the
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NXP SJA1000 controller. The CAN bus was configured to
1Mbps and CAN 2.0B mode. MaRTE OS version 1.8 was
built, using the AdaCore GNAT/GPL 2007 (gcc 4.1.3) com-
piler, with default options which disable assertions, inlines
code and perform some optimizations for targets with Local
APIC.

5.1. Message round-trip latency measures
In order to measure the influence of the network sporadic

server on the end-to-end latency of the message streams,
two nodes were connected through the CAN bus and pro-
grammed to send query-reply messages continuously un-
der two scenarios: using fixed priorities and using the pro-
posed network sporadic server. Each measure, defined as
a round-trip measure, was taken from the instant when the
message was sent and the moment when the reply was re-
ceived. Measures were repeated for 100 times for different
message sizes.

Table 2: Maximum round-trip measured values

Bytes Fixed Priorities Sporadic Server
8 0.375 ms 0.379 ms
32 1.355 ms 1.372 ms
64 2.643 ms 2.673 ms
512 20.78 ms 21 ms
1488 60.37 ms 61.03 ms

Fig. 6 shows the comparison of the measured values
when using 8-bytes messages, which fit in the maximum
size of a CAN frame and therefore do not require fragmen-
tation. Table 2 shows the comparison of the maximum mea-
sured values for several message sizes. The overhead intro-
duced by the network sporadic server is rather small com-
pared to the transmission times.

5.2. Overhead in the CPU
Table 3 shows execution-time measures of the main

sources of processor overhead caused by the sporadic server
policy. The first row represents the overhead associated to a
replenishment operation. The second row represents the ex-
ecution time of the body of the replenishment thread which
is executed on every replenishment timer expiration.

In order to better evaluate the influence that the mea-
sured values, shown in Table 3, represent on the total CPU
overhead, simulations of the network sporadic server exe-



Figure 7: Simulation procedure for the estimation of the CPU
overhead under different configurations

Table 3: Sporadic servers measured CPU execution time (in µs)

Measure Min Avg Max
Repl. Program 0.78 0.81 2.34
Repl. Thread 2.69 2.88 3.52

cution have been performed under different configurations.
Fig. 7 depicts the procedure followed during the simula-
tions. First, 1000 random aperiodic events (packets arriv-
ing to the transmission queue) are generated according to
an exponential distribution. Then, packets are sent using
the presented sporadic server policy. Each time a replen-
ishment operation or a timer expiration occurs, the corre-
sponding CPU overhead is accounted (maximum measured
overhead values, 2.34µs and 3.52µs, were used). When all
packets are sent, the total overhead time is divided by the
total time to get the overhead as a percentage. The sporadic
server was configured with an utilization equal to the mean
of the packet inter-arrival instants. It has the highest prior-
ity in the network (to evaluate its performance in isolation)
and it never transmits at low priority (i.e., because there are
always lower priority messages being transmitted). For sim-
plicity, each packet is supposed to occupy the bus for a con-
stant time of 1 ms. Simulations were repeated for different
inter-arrival rates and different server budget/period config-
urations.

Table 4 contains the overhead results for several inter-
arrival rates (defined by 1/λ) of aperiodic events. The over-
head is rather small and can be decreased even more by con-
figuring the sporadic server appropriately. Fig. 8 separates
the overhead caused by replenishment operations from the
timer expirations. Replenishment operations cause a con-
stant overhead since they appear each time a packet is sent.
On the other hand, timer expirations overhead can be re-
duced considerably by increasing the capacity of the server.
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Table 4: Simulated sporadic server CPU overhead (in %) with pa-
rameters Budget = n packets and Period = n · 1

λ

1/λ n = 2 n = 4 n = 6 n = 8 n = 10

20ms 0.0286 0.0284 0.0275 0.0269 0.0266
50ms 0.0114 0.0112 0.0111 0.0110 0.0109
250ms 0.0023 0.0023 0.0022 0.0022 0.0022
1000ms 0.0005 0.0005 0.0005 0.0005 0.0005

6. Related work
The leaky bucket concept used in network traffic shaping

[17, 16] is similar to the concept of server-based schedul-
ing. The leaky bucket algorithm is useful to control that the
traffic is sent to the network at a constant rate. However,
it does not handle efficiently the available bandwidth since
the leak rate is a fixed parameter and, there may be instances
when the network is unused while there are packets pend-
ing to be sent. The benefits of the network sporadic server
when compared to the leaky bucket are a higher capacity,
a shorter response time and minimal interference on lower
priority tasks, because the available execution capacity is
usable without delay at the specified priority level, and be-
cause the effects on lower priority tasks are no worse than
those of an equivalent periodic task with an execution time
equal to the execution capacity, and period equal to the re-
plenishment period.

In [21], server-based mechanisms based on dynamic pri-
orities (EDF) were proposed for scheduling the CAN bus
[2]. The algorithms proposed in that work are based on a
master-slave architecture where nodes are synchronized to
a trigger message sent periodically by the master. Although
the use of dynamic priorities may allow optimal resource
utilization, the overhead generated by the necessary syn-
chronization messages and the scheduling algorithm must
be taken into account. The benefits of the network sporadic
server when compared to that work, are the ability to pro-
vide faster response times while minimizing the overhead
and the fact that it does not require a complicated imple-
mentation.

In addition, the network sporadic server can be inte-
grated with previously presented protocols that organize the
bus time as a sequence of time- and event-triggered win-
dows. Fig. 9 depicts an FTT-CAN [15] cycle, divided into
synchronous and asynchronous windows. The use of net-



Figure 9: Network sporadic server integrated with FTT-CAN

work sporadic servers in the asynchronous window makes
it possible to provide bandwidth isolation between aperi-
odic message streams. For instance, if a software babbling
idiot failure [13] occurs, the messages transmitted by the
misbehaving task would be shaped by the server and would
not affect the deadlines of other message streams with lower
priority.

7. Conclusions
The sporadic server is a very interesting scheduling pol-

icy for handling resource reservations, which are key to
smoothing the integration stage of software components in
complex distributed hard real-time systems. This paper de-
scribed how to adapt a recently corrected version of the
POSIX sporadic server, originally intended for scheduling
tasks, to the case of fixed-priority networks. The algorithm
was optimized to take into account the discrete nature of
the network packets. An implementation on the CAN bus
was also described together with its evaluation. The mea-
sured performance shows that bandwidth isolation can be
achieved at rather low overhead both on the processor and
the network resources. The algorithm can be applied to
other networks where message streams compete for the me-
dia access through fixed priorities. For example, a porting
exists to provide reservations on the RTEP protocol [20].
The work presented in this paper has been used in [22, 5] to
implement contract-based network bandwidth reservations
in the context of a flexible scheduling framework.
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[11] M. Aldea and M. González Harbour. MaRTE OS: An Ada
Kernel for Real-Time Embedded Applications. In Pro-
ceedings of the International Conference on Reliable Soft-
ware Technologies, Ada-Europe-2001, Leuven, Belgium,
May 2001. Lecture Notes in Computer Science. http:
//marte.unican.es.

[12] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-
case response time analysis of real-time tasks under fixed-
priority scheduling with deferred preemption revisited. In
ECRTS ’07: Proceedings of the 19th Euromicro Conference
on Real-Time Systems, pages 269–279, Washington, DC,
USA, 2007. IEEE Computer Society.

[13] I. Broster and A. Burns. The Babbling Idiot in Event-
triggered Real-time Systems. In Proceedings of the Work-
In-Progress Session, 22nd IEEE Real-Time Systems Sympo-
sium, pages 25–28, 2001.

[14] G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic Publishers, 2002.

[15] J. Ferreira, P. Pedreiras, L. Almeida, and J. A. Fonseca. The
FTT-CAN Protocol for Flexibility in Safety-Critical Sys-
tems. IEEE Micro, 22:46–55, 2002.

[16] E. Hernández and J. Vila. A new approach to optimize
bandwidth reservation for real-time video transmission with
deterministic guarantees. Real-Time Imaging, 9(1):11–26,
2003.

[17] C. F. John Evans. Deploying IP and MPLS QoS for Multi-
service Networks: Theory and Practice. Morgan Kaufmann
Publishers, 2007.

[18] J. Liu. Real-Time Systems. Prentice Hall, 2000.
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Abstract—The enforcement of time-triggered communications 
over Controller Area Network (CAN) has recently become a 
topic of great interest, as it is thought to increase the 
predictability and overall reliability of a network. A potential 
drawback with existing time-triggered CAN implementations 
lies in the enforcement of single-shot message transmissions; 
single bit-errors directly lead to message omissions, and 
duplicated message instances will often be required for critical 
message streams. To address this problem, this paper proposes 
a simple technique to act as an extension to existing time-
triggered transmission schemes, in which an effective ‘window’ 
is defined for each message. A bounded amount of re-
transmission is allowed for each message within its defined 
window, providing increased reliability in the presence of 
errors. Message instances will either be delivered on-time or 
omitted, with the probability of omission lower than some pre-
specified failure rate. The paper proposes an efficient 
algorithm for calculating optimal message window sizes, to 
ensure that statistical guarantees of timely delivery in the 
presence of errors are provided. The paper is concluded with a 
short discussion of implementation considerations, followed a 
simulation study which provides initial supportive evidence for 
the proposed technique. 

Keywords-Controller Area Network; Time-triggered; 
Bounded re-transmission; Fault-tolerance. 

I.  INTRODUCTION 
The Controller Area Network (CAN) protocol was 

originally intended to allow event-triggered communications 
between unsynchronized nodes in automotive applications 
[1][2]. Recently, time-triggered communication over CAN 
has generated a large amount of interest - this is thought to 
increase the predictability and overall reliability of the 
network, along with several other benefits (see, for example, 
[2][3][4]). A potential drawback with most existing time-
triggered CAN implementations lies in the enforcement of 
single-shot message transmissions. Although this effectively 
bounds worst-case message transmission times, single bit-
errors may directly lead to critical message omissions [3][5]. 
This can be contrasted with the behavior of a regular CAN 
network, in which unbounded re-transmission attempts are 
allowed. This native approach effectively ensures delivery 
of critical messages, at the expense of unbounded message 
transmission times and hence predictability [3][5]. This can 
be considered as two extremes of behavior, neither of which 

is acceptable for most networked real-time applications. To 
address this problem, this paper proposes a simple technique 
to act as an extension to existing time-triggered transmission 
schemes, which effectively provides a bandwidth-efficient 
compromise between the two extremes. In the proposed 
scheme, an effective transmission window is defined for 
each message, within which a bounded amount of re-
transmission is allowed following bit or burst errors. The 
window sizes (as opposed to the underlying frame sizes) can 
then be used to create the frame schedule, using any existing 
frame packing algorithm. The remainder of this paper is 
structured as follows. Section II reviews previous work in 
the area. Building from this, Section III describes the 
proposed windowed transmission technique, and describes 
an algorithm to efficiently calculate the optimal size of a 
window for a given message. Section IV briefly describes 
some implementation issues, whilst Section V describes a 
case-study with promising initial results. The paper is 
concluded in Section VI. 

II. PREVIOUS WORK 

A. Time-Triggered CAN Communications 
A number of hardware and software-based protocol 

extensions and modifications have been proposed to enable 
time-triggered communications on CAN; comprehensive 
reviews are provided by Short & Pont [3] and Rodriguez-
Navas et al. [6]. The described techniques tend to rely on the 
use of a global clock which, in turn, supports a Time 
Division Multiple Access (TDMA) message schedule. Key 
to achieving clock synchronization is the reliable broadcast 
of time reference messages from a ‘time master’ node. 
These reference messages are then generally used with a 
hardware- or software-based distributed clock 
synchronization algorithm. 

Several software-only synchronization algorithms have 
been described. When using such techniques, clock 
synchronization at an accuracy level of 100 μs is typical; 
however techniques giving accuracies up to 1 μs are known. 
An example of the latter category is the family of ‘shared-
clock’ algorithms which – at the expense of a small local 
CPU overhead - provide time-triggered communications 
without the need for additional hardware, or complicated 
software clock synchronization algorithms [3][7][8]. 



 

From a hardware perspective, the Time-Triggered CAN 
(TT-CAN) protocol uses a global clock synchronization 
method to provide time-triggered operation of CAN at the 
hardware level [9]. Again, the protocol provides a maximum 
accuracy of +/- 1 μs, and supports a static TDMA schedule 
which can provide ‘empty’ slots that allow normal message 
arbitration for dynamic messages. A full implementation of 
TT-CAN normally requires dedicated hardware and, at the 
present time, such hardware has not been widely adopted.  

The general goal of all these protocols – whether 
hardware or software based - is the creation of a collision 
free (and hence arbitration free) bus access schedule, such 
as that depicted in Fig. 1 [3]. Due to the finite clock error ε 
which always exists between any two clocks in the 
distributed system, a small inter-slot spacing P ≥ 2ε must be 
employed. In the general case, designing a message 
schedule to meet a given set of period requirements is 
strongly NP-Hard, but in practice many fast algorithms 
(both optimal and heuristic) are known to generate feasible 
TDMA schedules (see e.g. [10][11]). It is not uncommon to 
achieve bus utilizations in excess of 90% using such 
techniques [3]. 

 

 
Figure 1.  Typical TDMA structure with inter-slot spacing p. 

B. Fault-Tolerant CAN Communications 
When messages are required to be sent over multiple 

redundant CAN channels to improve reliability, replica 
determinism and the notion of global time become of great 
importance [3][6][9]. Replica determinism can be enforced - 
in part - by the use of single-shot transmissions or upper 
bounding the latest time that a message may commence 
transmission. If replica determinism can be enforced, then 
multiple redundant and fault-tolerant CAN networks may be 
operated in parallel to increase the reliability of the physical 
layer [3]. 

When messages are subject to interference such as 
electromagnetic disturbances, this tends to manifest itself as 
random bit errors on the network. In response to any 
detected errors, under the CAN protocol an error frame is 
generated - which may have a length of up to 31 bits [12] – 
followed by a re-transmission attempt. In a real-time system 
this re-transmission can be very problematic due to 
deadlines being missed in a ‘domino-style’ effect; see, for 
example, [5] for further details. Experimental studies would 
seem to place the Bit Error Rate (BER) for CAN in the 
region of 10-10 in ‘benign’ environments, increasing to 10-6 
in ‘aggressive’ environments [13]. In some extreme cases, 
BERs as high as 10-3 have been reported for vehicles 
operating in ‘hostile’ environments, for example when in 

close proximity to large electromagnetic radiation sources 
such as  radio transmission stations [14]. In more aggressive 
environments, it has also been reported that around 90% of 
these errors occur in short correlated bursts, with durations 
typically between 5 to 20 bit times [5][13][14]. Although 
the paper is principally concerned with uncorrelated error 
arrivals, some initial considerations of these correlated burst 
errors are also given. 

With these points in mind, in a real-time application 
some form of timeout or upper bound is required to limit the 
worst-case transmission time of a given frame. In many hard 
real-time systems, it is arguably better not to receive an 
instance of a periodic message at all, than to receive the 
instance late [3][5]. Unfortunately, such timeouts are not 
provided as a standard CAN feature; at the expense of local 
CPU overheads, several techniques have been described to 
enforce this behavior. Previous works such as [3] and [6] 
have suggested that only single-shot transmissions be 
attempted in the TDMA round, and it is in fact an enforced 
requirement in TT-CAN networks [9]. For critical message 
streams, duplication of message instances is the principal 
means to achieve the desired reliability. For a message 
requiring c bits to be transmitted in an environment with a 
BER of β, if r message duplicates are sent then the 
probability of failure reduces with r as follows [3]:  

 

( )( )rcβλ −−= 11  
(1) 

 
However, as will subsequently be shown, in many cases 

sending full message duplicates provides a bandwidth-
inefficient solution to this problem. Since bandwidth is 
relatively scarce in CAN networks, this can be a major 
issue. Another interesting scheme – similar to the current 
work - is the ‘Timely CAN’ scheme proposed in [5]. The 
authors propose a reliable technique to upper-bound the 
latest time that a particular message can be scheduled for re-
transmission in native CAN networks under an optimal 
priority assignment, in order to prevent domino-effect 
deadline misses. From an estimate of message worst-case 
response times,1 message transmission times are subtracted 
to obtain the required ‘timeout’ parameters. In the worst-
case, single bit errors can still lead to omissions; however if 
‘slack’ is placed in the timeout, then a limited amount of re-
transmission can be achieved. The amount of slack to 
employ can be determined by adding an error model to the 
response time calculations, where error arrivals are treated 
as sporadic events, see e.g. [12][15]. In the next Section, an 
efficient and generic solution applicable to TDMA-operated 
CAN networks will be proposed. 

                                                           
1 It should be noted that the original analysis provided in [5] contains an 
error due to ‘push-through’ blocking; see [12] for further details. 



 

III. PROPOSED WINDOWED TRANSMISSION SCHEME 
The proposed windowed transmission scheme is 

relatively simple. We make the assumption that a CAN 
message set is made up of n message streams, each stream f 
being described by the following four parameters: 

 
( )iiiii dcpf λ,,,=  

(2) 
 
Where pi is the message period, ci is the message (worst-

case) transmission time, di is the message relative deadline 
and λi is the target failure rate of the message stream, 
specified as a probability of unsuccessful transmission per 
unit time. Note that λi may be derived from a higher-level 
safety analysis, e.g. a Safety Integrity Level (SIL). 

A. Basic Concept 
The proposed technique intends to provide the following 

multi-criteria real-time/reliability guarantee: if a message is 
delivered, it is delivered on time; if a message is not 
delivered (omitted), the failure rate for omission is ≤ λi. The 
scheme is best illustrated by way of example. Suppose we 
have a critical message ‘X’ that requires two duplicate 
copies to be sent every TDMA cycle. Fig. 2 (top) shows 
such a situation, where for clarity the duplicated copy is 
assigned a slot immediately following the original. Suppose 
that a bit-error occurs in both of these slots, as shown in Fig. 
2 (middle) – this will lead to both messages effectively 
being dropped, and can potentially result in wasted 
bandwidth as only single-shot transmission is allowed. 
However, now consider the situation depicted in Fig 2 
(bottom). Both slots are merged in a single window of 
length m, where m is specified in network bit times; 
(re)transmission of message X is only allowed from the start 
of the slot, up to the point labeled ‘Upper Bound X’, i.e. m-c 
bit times after transmission has first been requested.  

As can be seen in the Figure, this has a positive effect on 
the reliability of the message delivery; even when numerous 
bit-errors occur, the probability of successful message 
delivery can be maximized. As the slots have effectively 
been merged, only a single inter-slot spacing is required. In 
fact, in most cases the required window size can be reduced 
by a significant amount over sending duplicated single-shot 
copies; much better use can be made of the available 
bandwidth. As the window size is fixed, all the desired 
properties of a time-triggered communication system are 
retained. Given a set of slot sizes mi for each of the 
messages, the TDMA schedule may be created using 
appropriate techniques and packing algorithms. However, 
this raises an important question; namely, for a given 
message length and bit error probability, how large does the 
transmission window m have to be to ensure the message 
will be delivered with the required probability? This 
question will be addressed in the following two Sections, 
beginning with computation of optimal window sizes. 

 
Figure 2.  Basic concept of a windowed transmission. 

B. Computing The Optimal Window Sizes 
This Section will first consider how the probability of a 

successful transmission can be computed for increasing 
values of m. We consider the transmission of successive bits 
on a CAN network in a noisy environment to effectively be 
a Bernoulli process, with the probability of success given by 
(1- β), and the probability of failure given by β, where β is 
the BER and d = 1. The following Theorem establishes that 
the probability of successfully transmitting a message in a 
window of size j can be formulated as a one-dimensional 
Bernoulli sequence problem. 

 
Theorem 1: If the probability of a bit error is β, then the 
probability pj that at least b bits have been consecutively 
transmitted without error in a sequence of j bits (with j > b) 
can be calculated recursively as follows: 

 
( ) b
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(3) 

 
Proof: by induction on j.  

 
Base case(s): for j ≤ b. When the number of bits 

transmitted is less than b, achieving a consecutive stream of 
b bits (with or without error) is impossible, thus p0 = p1 = p2 
… = pj-1 = 0. For the case j = b, it is a well known statistical 
property that pb = (1-β)b. 

 
Inductive step: for all j>b. We have that pj must be equal 

to the summed probabilities of a successful outcome in any 
one of the previous j-1 trials (∑ term), plus the additional 
probability that a successful sequence has just been received 
with the jth bit completing the run of b successes (Δ term).  
Given the recursive solution, taking the summation of pj-1 at 



 

every step gives the required ∑ term, since at step j pj = (∑j 
+ Δj) = (∑j-1 + Δj-1 + Δj) = (∑j-2 + Δj-2 + Δj-1 + Δj) … = (∑i<j 
pi + Δj). Considering the Δ term, as shown in Fig. 3 we have 
for this additional term that the following series of events 
must occur: 

 
(1) At step j, the last b bits have been received without 

error; i.e. bits j-b+1 though j inclusively have been 
successes, with combined probability (1-β)b. 

 
(2) The bit received at step j-b must have been received in 

error to start the sequence (else we have had b+1 or 
more consecutive successes), with probability β. 

 
(3) Prior to this - at step j-b-1 - no successful run of b 

consecutive bits had been received, which by definition 
of pj is given by the probability (1-pj-b-1). 

 

 
Figure 3.  Conditions required for a successful outcome at the jth step. 

Thus the Δ term consists of the combined probability of 
these events occurring, i.e: Δj = (1-pj-b-1).β.(1-β)b. Thus we 
have that pj = (∑j + Δj) = pj-1 + (1-pj-b-1).β.(1-β)b, and the 
Theorem is proved. �  

From this result, a simple algorithm may be derived to 
determine the optimal window size for a particular message. 
This is the subject of the next Section. 

C. Optimal Window Sizing Algorithm 
A relatively simple algorithm to determine the 

smallest value of m (window size) such that a message 
requiring b bits can be transmitted with a failure 
probability ≤ λ , in an environment having a BER of β. 
Such an algorithm is given in Fig. 4. According to the 
result of Theorem 1, it is clear that the loop between lines 
08 and 11 will not terminate until the first value of m such 
that (1.0 - pm) ≤ λ has been found, or m exceeds the 
message relative deadline d which is supplied as an input 
parameter and expressed in network bits. 

D. Algorithm Analysis 
Given that pj is a monotone increasing function of j 

(due to the ∑ term combined with the Δ term, which is 
always > 0 for input values λ∈(0, 1) and β∈(0, 1)), the 
algorithm is guaranteed to converge. However, for small 
λ and large β, convergence may take some time; given the 
real-valued representation of these parameters, it is very 

difficult to provide a (worst-case) run-time bound on the 
time complexity of the algorithm, when the input is 
expressed in bits. In a real-time application, however, it 
can be observed that the message can never meet its 
deadline (with probability less than λ) if its window size 
exceeds the message deadline. As such, the additional 
termination condition applied at line 08 (m < d) bounds m 
such that the algorithm terminates when m = d, where d is 
the relative deadline of the message, expressed in bit 
times. Note that an appropriate error message can be 
generated at this point. As with response time analysis, 
this effectively bounds the time complexity to be pseudo-
polynomial in the task parameters. For n message 
streams, optimal window sizes may therefore be 
computed with complexity O(ndmax).  

 
01 Proc Optimal_Window(b, λ, β, d) 
02 { 
03 FOR i:= 0 TO b-1 DO: 
04  pi = 0; 
05 END FOR 
06 pb := (1-β)b; 
07 m := b; 
08 WHILE ((1.0 - pm) > λ) AND (m < d) DO: 
09  m := m+1; 
10  pm := pm-1 + ((1-pm-b-1).β.(1-β)b);  
11 END WHILE 
12 RETURN(m); 
13 } 

Figure 4.  Algorithm 1: computing the optimal window size m.  

In terms of the required memory storage space, it can 
be noted that only the last (b+1) values are required to be 
stored for the recursion. Therefore an array of size b+1 
can be used to limit the required memory storage of the 
algorithm; this array may be indexed m mod(b+1) to 
effectively overwrite old calculations. Since b is upper-
bounded by the very nature of the CAN protocol – a 
message can only carry up to 8 bytes - the memory 
storage requirements have complexity O(1). 

E. Illustrative Examples 
Example 1: Suppose we have a message with b = 5 bits 

required to be transmitted, with a failure probability λ = 0.1, 
in an environment having a BER of β = 0.2. Running the 
algorithm described above on this example yields the values 
as tabulated for pm in Table I, terminating when the target 
failure rate is achieved with m = 19 and the probability of 
success p19 = 0.91. By contrast, if we must allocate only 
duplicate copies of the 5-bit message, then according to 
equation (1), 6 copies (= 30 bits) would be required; the 
windowed approach leads to a saving of 36.7% in terms of 
the number of bits requiring transmission. 

Example 2: Suppose we have a critical CAN message 
using 11-bit identifiers, requiring 8 bytes of data. Thus b = 
166 bits are required to be transmitted (135 bits in the main 
message plus 31 bits for a worst-case error frame [12]), with 
a period p = 100 ms. The safety integrity level of the system 



 

TABLE I.  COMPUTING THE OPTIMAL WINDOW SIZE FOR EXAMPLE 1 

m pm M pm m pm m pm 

0 0.00 5 0.33 10 0.66 15 0.83 

1 0.00 6 0.39 11 0.70 16 0.86 

2 0.00 7 0.46 12 0.74 17 0.88 

3 0.00 8 0.52 13 0.78 18 0.89 

4 0.00 9 0.59 14 0.81 19 0.91 

 
specifies a target failure rate of λ = 1.0 x 10-9 failures/hour, 
in an environment with a BER of β = 2.6 x 10-7. Since 
36000 messages are to be sent every hour, the probability 
that a single instance of this critical message is not delivered 
should be ≤ 2.78 x 10-14. Running the algorithm described 
above on this example reveals that the target failure rate will 
be achieved with m = 489, and the probability of failure 
with this size window is p489 = 1.34 x 10-14. By contrast, if 
we must allocate only duplicate copies of the 166-bit 
message, then according to equation (1), 4 copies (= 664 
bits) would require transmission. In this case the windowed 
approach leads to a saving of 26.4% in terms of the number 
of bits requiring transmission.  

F. Bursty Links 
The analysis given in the Sections above considers only 

the case of uncorrelated error behaviors. In order to begin to 
consider the effects of burst errors, a basic approach would 
be to consider β to be the burst error rate, with each burst 
having duration of exactly u bits. In this case, bursts can be 
considered by adapting the delta term as follows: Δj = (1-pj-

b-u).β.(1-β)b, with the error in j-bth bit is considered to be the 
last in a sequence of u consecutive errors (taking the 
convention that pj = 0 for j ≤ 0). With D = 1, the bit and 
burst error analysis become identical. Employment of more 
detailed error models (e.g. based on Markov chains [16]) 
which are known to accurately model burst behaviors, are 
considered an area of future work. The next Section 
describes some practical issues related to the 
implementation of the proposed transmission scheme. 

IV. IMPLEMENTATION ISSUES 

A. Software Based Solutions 
Although some modern CAN controllers now have 

direct hardware support for single-shot message 
transmissions, this will not directly extend to the current 
scheme. In order to implement message timeouts, one 
possible solution would be as follows. As has been argued 
in [3], in time-triggered systems (under fault-free 
conditions), when a message is scheduled for transmission 
by the host CPU the bus should already be in the idle state. 
To enforce a timeout on message i, the host can simply set a 
(high-priority) timer interrupt to occur mi time units into the 
future, just prior to setting the transmit request (TXRQ) flag 
in the CAN controller. When this interrupt subsequently 

occurs, the host immediately resets the TXRQ flag in the 
controller. The main advantage of this solution is that it is 
relatively simple. However it has several drawbacks; any 
jitter and latency affecting the servicing of the ISR – 
coupled with clock drift between the host timer and the 
CAN bus oscillator - may skew the actual (real) time the 
transmission is cancelled. It also requires the use of a timer 
with at least as good a precision as a CAN network bit time, 
may also place a relatively large load on the CPU if there 
are numerous messages to transmit. 

B. Hardware Based Solutions 
Modifications to the CAN protocol at the silicon level 

have traditionally been impractical. However the advent of 
programmable logic devices such as FPGA’s and the 
maturation of hardware description languages such as 
VHDL have changed this situation somewhat. In particular, 
the authors of the current paper have previously developed a 
fully CAN-conformant soft-core protocol controller [17]. 
The advantage of such an ‘open’ hardware solution is that 
various extensions to (or modifications of) the CAN 
protocol can be implemented and investigated with relative 
ease (e.g. [18]). In the context of the current work, we have 
proposed and implemented the following small but powerful 
modification to CAN. 

In addition to allowing each CAN object in the 
controller to be operated in ‘standard’ or ‘single-shot’ mode, 
a third mode of operation – ‘window’ mode - was 
introduced. In this mode, a 32-bit hardware counter C 
(which, when active, is incremented by 1 with every bit time 
on the bus) and two 32-bit match registers (CLB and CUB) 
were added to each CAN object. In addition, the host CPU 
sees an ‘effective’ TXRQ bit, but this is in fact a dummy, 
used only for interface purposes; a ‘hidden’ register TXRQ# 
is employed to control the real transmission logic. When a 
message transmission is initiated by the host (setting 
TXRQ), the counter C is reset to 0; setting of the TXRQ# 
bit of the CAN object is delayed until C = CLB. Also, when 
C = CUB, both the TXRQ and TXRQ# bits are 
automatically re-set in hardware. Since C is incremented at 
the same rate as the bit-time, this provides for a 
programmable ‘allowed transmission window’ for a given 
CAN object which does not require the need for further 
CPU intervention.  Additionally, the impact of jitter and 
latency on the host CPU is minimized, as the timer is 
referenced to the local oscillator. The only potential 
drawback of this solution is that it requires a very small 
increase in hardware complexity. However, since this 
modification not only allows the effective implementation 
of the proposed windowed transmission, but would also 
allow the implementation of alternate (similar) protocols 
such as the Timely CAN [5] and shared-clock [8] protocols, 
this very simple hardware change could easily be 
incorporated into future generations of CAN controllers. 



 

V. SIMULATION STUDY 
In order to begin to investigate the proposed technique, a 

small simulation study was carried out. This study was 
carried out to assess the potential bandwidth savings that 
may be achieved by employing the windowed technique as 
the message parameters are varied. Three experiments were 
carried out. In each experiment, 100,000 message streams 
were generated with parameters randomly selected (using a 
uniform distribution) from the following intervals: pi∈[1, 
1000] ms, DLCi∈[0, 8] bytes, λi∈[10-9, 10-5] failures/hour. 
Standard and extended identifiers were randomly employed; 
a 31-bit worst-case error frame was also added to the length 
of each message. The generated target failure rates cover all 
four SILs as specified in IEC 61508, and individual message 
failure rates were derived from the target λ’s based on their 
periods. Three different classes of BER were employed; 
Benign/Normal with β∈[10-9, 10-7], Normal/Aggressive with 
β∈[10-7, 10-5] and Aggressive/Hostile with β∈[10-5, 10-3]. In 
each case the percentage reduction in the number of bits 
requiring transmission was calculated when employing 
windowed transmission and message duplicate transmission. 
The average and maximum recorded values for each 
environment are as shown in Table II. Also shown is the 
average and maximum recorded window sizes m, which also 
gives an indication of the quick convergence of the slot 
sizing algorithm, even for low failure rates and high BER’s. 

TABLE II.  REDUCTIONS IN BITS REQUIRED FOR TRANSMISSION 

Percent Reduction Window Size 

Environment Average Maximum Average Maximum 

Benign / Normal 2.7 33.3 280 571 

Normal / Aggressive 12.0 33.2 410 797 

Aggressive / Hostile 29.1 39.1 810 1883 
 
From this Table, it can be seen that the average 

effectiveness of the proposed technique depends upon the 
target environment; the worse the expected BER, the higher 
the average reduction in required bandwidth. For hostile 
environments, an average 29% reduction can be achieved; 
given the scarcity of available bandwidth with CAN, this is a 
potentially large saving. In normal and benign environments, 
the average reductions drop to 12% and 2.7% respectively; 
however, the best case reductions remain at around 33%. In 
each case, the worst-case reductions were 0%, i.e. the 
technique performed no worse than sending full duplicates. 

VI. CONCLUSIONS AND FURTHER WORK 
This paper has considered a simple windowed 

transmission technique for use with CAN. An algorithm to 
calculate the smallest slot sizes such that messages can be 
sent with a pre-specified success probability has been 
presented. In comparison to sending full message duplicates, 
simulation studies indicate that the technique can – in some 
cases - significantly reduce the required bandwidth, whilst 
maintaining reliability and timeliness. Future work will 

extend the proposed methodology into a practical network 
realization; some promising initial results from such a 
practical implementation are described in [19]. 

REFERENCES 
[1] R. Bosch, “CAN Specification 2.0”, Postfach, Stuttgart, Germany: 

Robert Bosch GmbH, 1991. 
[2] H. Kopetz, “A Comparison of CAN and TTP”, Annual Reviews in 

Control, Vol. 24, pp. 177–188, 2000. 
[3] M. Short and M.J. Pont, “Fault-Tolerant Time-Triggered 

Communication Using CAN”, IEEE Transactions on Industrial 
Informatics, Vol. 3, No. 2, 2007. 

[4] M. Short, M.J. Pont and J. Fang, “Assessment of performance and 
dependability in embedded control systems: methodology and case 
study”, Control Engineering Practice, Vol. 16, pp. 1293–1307, 2008. 

[5] I. Broster and A. Burns, “Timely use of the CAN protocol in critical 
hard real-time systems with faults”, In Proceedings of the 13th 
Euromicro Conference on Real-time Systems (ECRTS), Delft, The 
Netherlands, June 2001. 

[6] G. Rodriguez-Navas, S. Roca, and J. Proenza, “Orthogonal, fault-
tolerant and high-precision clock synchronization for the Controller 
Area Network”, IEEE Transactions on Industrial Informatics, Vol. 4, 
No. 2, pp. 92–101, May 2008. 

[7] M.J. Pont. Patterns for time-triggered embedded systems. Addison-
Wesley, 2001. 

[8] D. Ayavoo, M.J. Pont, M. Short, and S. Parker, “Two novel shared-
clock scheduling algorithms for use with CAN-based distributed 
systems”, Microprocessors and Microsystems, Vol. 31, No. 5, pp. 
326-334, 2007. 

[9] G. Leen and D. Heffernan, “TTCAN: a new time-triggered controller 
area network”, Microprocessors and Microsystems, Vol. 26, No. 2, 
pp. 77-94, 2002. 

[10] R. Saket and N. Navet, “Frame Packing Algorithms for Automotive 
Applications”, Journal of Embedded Computing, Vol. 2, No. 1, pp 
93-102, 2006. 

[11] Z. Hanzálek, P. Burget and P. Šůcha, “Profinet IO IRT Message 
Scheduling”, In: Proceedings of the 21st Euromicro Conference on 
Real-Time Systems, Dublin. July, 2009, pp. 57-65. 

[12] I. Davies, A. Burns, R. Brill, and J. Lukkien, “Controller Area 
Network (CAN) schedulability analysis: refuted, revisited and 
revised”, Real-Time Systems, Vol. 35, No. 3, pp. 239–272, 2007. 

[13] J. Ferreira, A. Oliveira, P. Fonseca and J.A. Fonseca, “An Experiment 
to Assess Bit Error Rate in CAN”, In Proceedings of the 3rd 
International  Workshop on Real-Time Networks, June 2004. 

[14] B. Gaujal and N. Navet, “Fault Confinement Mechanisms on CAN: 
Analysis and Improvements”, IEEE Transactions on Vehicular 
Technology, Vol. 54, No. 3, pp. 1103-1113, 2005. 

[15] S. Punnekkat, H. Hansson and C. Norstrom, “Response time analysis 
under errors for CAN”, In: Proceedings of the 6th Real-Time 
Technology and Applications Symposium, IEEE Computer Society 
Press, pp 258–265, 2000. 

[16] E.N. Gilbert, “Capacity of a Burst-Noise Channel”, Bell Systems 
Technical Journal, Vol. 39, pp. 1253–1265, 1960. 

[17] I. Sheikh, and M. Short, “A low-cost and flexible approach to CAN 
conformance testing”. In: Proceedings of the 6th International 
Conference on Informatics in Control, Robotics and Automation 
(ICINCO 2009), Milan, Italy, pp. 97-104, July 2009. 

[18] I. Sheikh, M. Short and M. Hanif, “Improving Information 
Throughput and Transmission Predictability in Controller Area 
Networks”, To appear in: Proceedings of the IEEE International 
Symposium on Industrial Electronics, Bari, Italy, July 2010. 

[19] I. Sheikh, M. Short and A. Imran, “Fault Injection Analysis of a 
Windowed Transmission Scheme for Controller Area Networks”, 
Paper Submitted to the 49th Allerton Conference, May 2010. 



Schedulability Analysis for Multi-level Hierarchical Server Composition in
Ethernet Switches

Rui Santos, Paulo Pedreiras,
IEETA / University of Aveiro

Aveiro, Portugal
{rsantos,pbrp}@ua.pt

Moris Behnam, Thomas Nolte
MRTC / Mälardalen University
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Abstract

The FTT-enabled (Flexible Time-Triggered) Ethernet
Switch provides flow-based dynamic scheduling that allows
to handle bursty traffic in a bandwidth efficient way. For
that, this switch uses adaptive resource-reservation, associ-
ating servers to flows or groups of flows. This way, flows
have a guaranteed, but bounded, access to the communi-
cation resources. These servers can take up a composi-
tional multi-level hierarchy and they can be adapted on-line
to make a better use of the available bandwidth. To as-
sure a continued real-time behavior, the FTT-enabled Eth-
ernet Switch integrates an admission control mechanism,
which screens all adaptation and/or reconfiguration re-
quests. Whenever such requests may compromise the flow
timeliness or exceed the available memory, they are re-
jected. This paper focuses on the flow timeliness verifica-
tion, only, providing a response-time based schedulability
analysis that permits assessing the schedulability of a hier-
archical composition of servers and flows. 1

1 Introduction

Many current embedded applications are complex enti-
ties structured in components and usually assuming a hier-
archical composition. However, these applications can suf-
fer limitations in accessing resources due to lack of frame-
works that provide adequate resource access control in such
complex systems. For example, in the network domain, in-
tegrating different applications with different communica-
tion requirements under real-time constraints can generate
problems of resource allocation (bandwidth) and temporal

1This work was partially supported by the iLAND project, call 2008-
1 of the EU ARTEMIS JU Programme, by the European Community
through the ICT NoE 214373 ArtistDesign and by the Portuguese Govern-
ment through the FCT project HaRTES - PTDC/EEA-ACR/73307/2006
and Ph.D. grant - SFRH/BD/32814/2006.

isolation between streams or across applications. One re-
cent paradigm that favors the development of frameworks
to support hierarchical structures is component-based de-
sign in which applications are built by composing diverse
components developed separately. The benefits range from
reduction of design complexity to more efficient resource
sharing, satisfying individual service requirements of each
component and enforcing mutual temporal isolation.

Architectures based on servers that act as containers in
the temporal domain have been recognized as an effective
means to enable such kind of resource sharing [1] and they
can be the basis for resource partioning and virtualization,
supporting the separation between the applications and the
hardware platform on which they will execute. Following
this trend, the FTT-enabled (Flexible Time-Triggered) Eth-
ernet Switch [2] provides a framework to carry out hierar-
chical composition of servers that divides the network re-
source in an efficient way and allows an easy and natural
mapping of the applications onto the network. Moreover,
the use of servers for flow management allows handling
heterogeneous kinds of traffic with arbitrary arrival patterns
and with temporal isolation.

This paper presents an extension of previous work in
this framework, particularly that reported in [3], which de-
fined an adaptation and reconfiguration protocol that al-
lowed adding, removing and modifying servers and the as-
sociated asynchronous flows. An on-line admission control
using a light utilization-based schedulability analysis en-
forced continued timeliness even during changes. The traf-
fic scheduling followed the blocking-free non-preemptive
model, which applies when the traffic is scheduled in cy-
cles, within partitions, and before the start of the respective
partition (or window), adhering strictly to the partition dura-
tion. This implies one aspect, there is an extra delay since an
arriving packet might have to wait up to one cycle to be con-
sidered by the scheduler for possible transmission. An al-
ternative that improves the latency of the switch is to enable
the scheduling during the partition, executing it whenever a
packet arrives. In this case, the previous analysis does not



hold and the blocking caused by the transmission of non-
preemptive packets of lower priority servers must be taken
into account. Therefore, this paper presents a schedulability
analysis based on response time for a multi-level hierarchi-
cal server composition that handles the asynchronous flows
within the FTT framework and considers the blocking re-
ferred above.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of schedulability analysis for hi-
erarchical scheduling frameworks. Section 3 introduces the
basics of the FTT-enabled Ethernet Switch and describes its
integration with the server-based traffic scheduling. Sec-
tion 4 presents the schedulability analysis and an algorithm
for determining the response time. Finally, Section 5 con-
cludes the paper and addresses future work.

2 Related work

The use of servers in networking is common, being the
leaky bucket the most well-known. The leaky-bucket is,
in fact, part of a general servers category called traffic
shapers [4], which have the purpose of limiting the amount
of traffic that a node can submit to the network within a
given time window, bounding the node burstiness. These
servers use techniques similar to those used by CPU servers,
based on capacity that is eventually replenished.

Particularly regarding Real-Time Ethernet (RTE) proto-
cols, some very limited forms of server-based traffic han-
dling can also be found. Some protocols enforce periodic
communication cycles with reserved windows for different
traffic classes (e.g. PROFINET-IRT [5] and Ethernet Pow-
erlink [6]). This is a trivial composition of several PS that
results in an inefficient use of the network bandwidth. Other
protocols, such as [4], implement traffic shapers in the end
nodes that behave similarly to a DS. However, due to in-
frastructural limitations, none of these protocols supports
arbitrary server policies nor their hierarchical composition
and dynamic adaptation or creation/removal.

Another related area, despite typically considering pre-
emptive task scheduling, is that of general hierarchical
scheduling frameworks (HFS). Deng and Liu [7] began
proposing two levels HFS for open systems, where sub-
systems may be developed and validated independently.
Kuo and Li [8] introduce for such two levels a schedula-
bility analysis based on Fixed Priority Scheduling (FPS)
with a global scheduler. Shin and Lee [9] present a generic
scheduling interface model in order to construct hierarchi-
cal scheduling frameworks. Almeida and Pedreiras [10]
present a response time analysis for the periodic server
model and address the problem of designing a server to ful-
fill the application constraints. Arvind et al. [11] generalize
the periodic resource model for compositional analysis of
hierarchical scheduling frameworks.

Finally, another related area is that of synchronization
protocols in HFS. For example, SIRAP [12] addresses CPU
resource sharing among several subsystems that execute
within servers and it proposes inserting idle-time (iit) when-
ever the remaining capacity is not enough to execute an ac-
cess to a shared resource. However, only two level HFS are
addressed, while in this paper we seek explicitly the support
to multi-level HFS.

3 FTT-enabled Ethernet Switch

The FTT-enabled Ethernet Switch was created in the
scope of FTT paradigm [13]. The FTT paradigm is a mas-
ter multi-slave communication protocol, where a Master
node coordinates the transmissions of other nodes (Slaves)
by means of the periodic transmission of a Trigger Mes-
sage (TM) that contains the schedule for a fixed-duration
time slot, designated Elementary Cycle (EC) (Figure 1).
The communication is organized in an infinite succession
of such Elementary Cycles (ECs).

The FTT framework defines three traffic classes: 1) pe-
riodic real-time messages triggered by the master (referred
to as synchronous since their transmission is synchronized
with the master traffic scheduler); 2) aperiodic or sporadic
real-time traffic, autonomously triggered by the nodes; and
3) non real-time traffic (classes 2 and 3 are referred to as
asynchronous). The EC is organized in two windows, syn-
chronous and asynchronous, which convey the correspond-
ing traffic classes.

Figure 1: Elementary Cycles

At the begining of each EC the switch broadcasts the
TM to all slave nodes, identifying which messages should
be transmitted. Synchronous messages are always polled
by the TM. In the particular case of the FTT-Enabled Eth-
ernet Switch, no polling for the asynchronous traffic is nec-
essary since the switch is aware of the EC structure (Fig-
ure 2) and has a complete control of the message forward-
ing procedure. Therefore, the asynchronous messages may
be sent by the respective sources at arbitrary instants since
the switch is able to queue them in dedicated memory pools
and transmit them to the respective destinations only during
the asynchronous windows. Appropriate scheduling mech-
anisms, e.g. servers, may be used to schedule the queued
asynchronous messages.

The autonomous confinement of messages by the FTT-
enabled Ethernet Switch is one of the distinctive features



of this protocol with respect to its predecessors, namely the
FTT-SE protocol. This latter protocol relies on Commercial
Of-The-Shelf (COTS) Ethernet switches and thus all nodes
have to comply with the protocol, i.e., have to integrate a
specific device driver, to ensure that the message transmis-
sions occur only at adequate time instants. This is an impor-
tant limitation since legacy nodes cannot be part of the net-
work. Additionally, the management of the asynchronous
traffic is less efficient since this type of traffic has also to
be scheduled by the master node and an explicit signaling
mechanism by nodes informing the master about the ready
asynchronous traffic is required. Finally, the tight control of
the message forwarding combined with the awareness of the
message requirements also allows the switch to detect fail-
ures in the time domain, such as nodes that transmit asyn-
chronous messages at higher rates than the ones declares or
that send synchronous messages that where not scheduled
by the Master node, preventing its transmission.

Summing up, the FTT-enabled Ethernet Switch provides
the following features:

1. online admission control, dynamic QoS management
and arbitrary traffic scheduling policies;

2. high system integrity with unauthorized real-time mes-
sages being eliminated at the switch input ports;

3. asynchronous traffic autonomously triggered by the
nodes, with arbitrary arrival patterns;

4. high configurability: fully synchronous mode, ad-
justable mixed synchronous/asynchronous mode and
fully asynchronous mode;

5. a standard node can take advantage of the real-time ser-
vices simply negotiating with the switch the creation
of a server, i.e., a virtual channel (the negotiation can
even be done by a third party node);

6. a standard node can readily transmit non-real-time traf-
fic using a background server thus not interfering with
the real-time traffic.

Figure 2: FTT-enabled Ethernet Switch.

3.1 FTT EC structure as composition of servers

As mentioned above, in the FTT-enabled Ethernet
Switch the traffic is divided in synchronous and asyn-
chronous classes, associated with disjoint windows that fill
in the usable part of the EC. These windows appear once
in each EC (Figure 3) and have a bounded size (LSW and
LAW , respectively). Note that LSW correspond to an up-
per bound (the synchronous traffic may use up to LSW
in each EC) while LAW refers to a lower bound (asyn-
chronous traffic can use at least LAW in each EC), since
the asynchronous window reclaims the bandwidth not used
by the synchronous one. Using a server terminology, the
synchronous window is associated with a server character-
ized by a period TSW = TEC and a (maximum) capacity
CSW = LSW , while the asynchronous window is associ-
ated with a server with a (minimum guaranteed) capacity of
CAW = LAW and a period TAW = TEC . Note that LEC,
LSW and LAW are FTT configuration parameters that can
be tuned to suit the global application needs.

Figure 3: Server Hierarchy.

3.2 Hierarchical Server Composition in the scope
of the FTT-enabled Ethernet Switch

In recent work [14] [13], it was proposed to integrate
hierarchical server composition on the FTT framework to
manage the asynchronous traffic. As illustrated in Figure 3,
asynchronous message streams (or streams, for short) are
handled by servers. On its hand servers may also depend
on other servers. Each server should have enough resources
to handle its childs, should they be streams or other servers.
Servers and streams are abstracted by components. At each
level a component Γyx is identified by both index y and x.
The index y identifies the level in the hierarchy and the in-
dex x identifies the component inside that level. This way,



y = 1, .., NL and x = 1, .., NCy , where NL is the max-
imum number of levels in the hierarchy and NCy is the
maximum number of components in the level y.

The underlying FTT framework puts some important
constraints on the server operation that affect the system
schedulability, namely: 1) Ethernet does not permit packet
preemption thus preemption is not allowed. Consequently,
packets of high priority components may be blocked by on-
going transmissions of lower priority ones. 2) Overruns are
not allowed by design, since the capacity is strictly enforced
(the switch does not initiate a message transmission that
does not fit in the remaining capacity). The combination
of 1) and 2) results in a potential appearance of idle time
at the end of each server instance, whenever the remain-
ing capacity is not enough to transmit the following queued
packet. Despite negative from the schedulability point of
view, this modus operandi enforces a strict temporal isola-
tion between all components all the way through the top of
the hierarchy. Thus, ECs are completely regular and the TM
does not suffer any interference from packets managed by
server components inside the asynchronous window.

4 Schedulability analysis

Assuring a continued real-time behavior requires the ex-
ecution of an admission control procedure every time the
message set is changed. In the basis of this admission con-
trol procedure there is a schedulabilty test. In [3] it is pre-
sented an on-line admission control using a light utilization-
based schedulability analysis. However, that analysis is
based on the blocking-free non-preemptive model, which re-
quires that the traffic has to be scheduled in cyclic fashion,
within partitions, and before the start of the respective par-
tition (or window). This paper removes such dependency,
supporting an unrestricted activation model, i.e. streams en-
ter the scheduling process immediately after being received
by the switch. Although more complex, this operation mode
reduces the stream forwarding latency, which is an impor-
tant merit factor in many application scenarios.

4.1 Traffic and resource model

The asynchronous streams are at the end of the hierarchy
( Figure 3) and they are characterized in (1) through the spo-
radic real-time model, whereCyx

is the maximum transmis-
sion time and Tmityx

represents the respective minimum
interarrival time. Mmaxyx

and Mminyx
is the transmis-

sion time of the largest and smallest packet, respectively,
transmitted by this stream. Pyx identifies the parent server,
i.e, the server to which the stream is connected to and RTyx

its computed response time.

ASyx
= (Cyx

, Tmityx
,Mmaxyx

,Mminyx
, Pyx

, RTyx
) (1)

On the other hand, inside the asynchronous window the
servers (components) assume a hierarchical composition
with multi-level, forming several branches. The individual
server Srvyx (2) is characterized by its capacity Cyx , its re-
plenishment period Tyx

, and a few figures extracted from
the set of children components, either servers or streams,
namely the maximum and minimum packet transmission
times Mmaxyx

and Mminyx
respectively. Moreover, the

Srvyx is characterized by a parent server Pyx and its com-
puted response time RTyx . Note that despite the similarity
between the characterization of servers and streams, there
is a fundamental difference since the stream implies actual
transmission time that uses the capacity of the respective
server.

Srvyx = (Cyx , Tyx ,Mmaxyx ,Mminyx , Pyx , RTyx) (2)

4.2 Schedulability algorithm

As referred before, the servers capacities are strictly
enforced and overruns, e.g., caused by a non-preemptive
packet transmission that extends beyond the exhaustion of
the respective server capacity, are not allowed. This is
avoided by inserting idle-time (iit), called self-blocking in
the scope of SIRAP [12], whenever the remaining server
capacity is not enough for the transmission of a full packet.
This way, the remaining capacity is wasted and the pend-
ing transmission is delayed for successive server instances
when enough capacity is available (Figure 4). Therefore,
the maximum inserted idle-time (iit) that a server compo-
nent Γyx

can suffer is equal to the maximum packet trans-
mission time managed by this server (Mmaxyx ). On the
other hand, Mmaxyx also allows knowing which is the
maximum blocking caused by the respective component
Γyx

to the higher priority components in the same branch
and in the same level. Moreover, the Mminyx

is used to
know the maximum memory required in each branch, but
this subject is out of the scope in this paper. This way, be-
fore performing any change to the message set it is nec-
essary to assess its impact in the parameters Mmax and
Mmin along the hierarchy. Therefore, the schedulabil-
ity algorithm presented in this section is executed in two
phases.

4.2.1 Schedulability algorithm - first phase

The first phase of the algorithm simulates the requested
change in the hierarchy and by going from the bottom to
the top aims to find the Mmax and Mmin packet trans-
mission time in each branch. This means, for instance, at
the end of this phase, the component that manages the asyn-
chronous window Γ11 will have the maximum (Mmax) and



Figure 4: Inserting idle-time (iit) to enforce servers capaci-
ties

the minimum (Mmin) packet transmission time among all
the asynchronous streams transmitted in that window.

Example. As an example, consider the compo-
nents shown in Figure 3. Assume that the streams
have the following Mmax and Mmin, respec-
tively: Γ33(120000, 8000), Γ34(121000, 8000),
Γ41(117000, 8000), Γ42(118000, 8000),
Γ43(119000, 8000). Given such scenario, after the
first phase of the schedulability algorithm, the servers
(components) in the hierarchy inherit the maximum
Mmax and the minimum Mmin of their children thus
resulting in Γ31(118000, 8000), Γ32(119000, 8000),
Γ21(119000, 8000), Γ22(121000, 8000), and finally
Γ11(121000, 8000).

4.2.2 Schedulability algorithm - second phase

The second phase consists in verifying, from the top to the
bottom of the hierarchy, the schedulability of each compo-
nent and consequently the schedulability of the whole sys-
tem. For this purpose, a local schedulability analysis under
FPS, presented in [9], is used:

∀Γyx∃t : 0 < t ≤ Tyx , rbfyx(t) ≤ sbfPyx
(t), (3)

y = 2..NL and x = 1..NCy,

where, rbfyx
(t) denotes the request bound function of the

component Γyx
that, for each instant t, quantifies the max-

imum load submitted to the parent component Pyx
by the

component itself together with interference of its high pri-
ority components and also together with blocking of low
priority components. On the other hand, sbfPyx

(t) is the
supply bound function associated to the parent component
of Γyx

that computes the minimum bandwidth supply pro-
vided to its children, in each instant t. Consequently, the
worst case response time of a component Γyx is given by
the first intersection between the rbfyx and sbfyx , and it is
described as follows:

RTyx
= shortest t∗ : rbfyx

(t∗) = sbfPyx
(t∗) (4)

After a suitable schedulability analysis, the requested

change is introduced in the hierarchical structure and the
simulated configuration performed in the first phase takes
effect. On the other hand, if the schedulability analysis fails
the old configuration remains unchanged.

Supply bound function. In order to define the sbfyx(t),
we use the Explicit Deadline Periodic (EDP) resource
model [11] that generalizes the periodic resource model for
compositional analysis of hierarchical scheduling frame-
works. An EDP resource model is given by Ω = (Π,Θ,∆),
where Θ is the units of the resource within ∆ time units
(deadline) and with period Π of repetition. This way,
mapping to our framework, a component is defined as
Γyx

= (Πyx
,Θyx

,∆yx
) = (Tyx

, Cyx
, RTPyx

), where
the RTPyx

is the response time of the parent component.
However, for the first component in the hierarchy (Γ11),
the asynchronous window, we consider the ∆ equal to
the capacity of the window (C11 ), resulting that Γ11 =
(Π11 ,Θ11 ,∆11) = (T11 , C11 , C11). Therefore, according
to the EDP model, and assuming the same notation, the
sbfyx

(t) is defined as follows:

sbfΓyx
(t) =

 bΘyx + max{0, t− a− bΠyx},
t ≥ ∆yx −Θyx

0, otherwise
(5)

where a = (Πyx
+ ∆yx

− 2Θyx
) and b = b(t − (∆yx

−
Θyx

))/Πyx
c. Moreover, Πyx

= Tyx
, Θyx

= Cyx
, ∆yx

=
Cyx when y = 1 or ∆yx = RTPyx

when y > 1.
Request bound function. The rbfyx(t) of a component

Γyx
is given by the following equation, similarly to the anal-

ysis of SIRAP [12]:

rbfyx
(t) = Cyx

+ ISPyx
(t) + IHyx

(t) + ILyx
, (6)

ISPyx
(t) =

⌈
t+MmaxPyx

TPyx

⌉
×MmaxPyx

, (7)

IHyx
(t) =

∑
Γyj
∈hp(yx)

⌈
t

Tyj

⌉
× Cyj

(8)

ILyx
= max

Γyj
∈lp(yx)

Mmaxyj
, (9)

where ISPyx
(t) is the maximum inserted idle-time (self-

blocking) from the parent component and it is modeled
by a virtual component of high priority with a period
TPyx

, a capacity equal to XmaxPyx
and a phase equal to

XmaxPyx
. IHyx

(t) is the interference from the compo-
nents with higher priority in the same level and in the same
branch, ILyx is the blocking from components with lower
priority.

Despite the similarities with the analysis in [12], this new
approach introduces the impact of our multi-level hierarchi-



cal framework in which the impact of the inserted idle-time
in the child components is accounted for in IS(t).

4.3 Computing the response time

The response time of each component Γyx
(with y > 1)

can be obtained solving iteratively equation (4), and making
use of the inverse of the supply bound function as follows:

RTyx
= earliest t∗ : t∗ = sbfinv

Pyx
(rbfyx

(t∗)) (10)

A simpler but less tight upper bound for the response
time of each component can be obtained considering a lin-
ear lower bound to the supply bound function, also pro-
posed in [9]. This linear lower bound is depicted in Fig-
ure 5 and results in sbf lbyx

= (t−(Πyx
−∆yx

−2Θyx
))α.

Therefore the response time upper bound (RT upyx
) can be

obtained replacing sbfyx
in (10) by sbf lbyx

.

Figure 5: Response time

5 Conclusions

Component-based design is a powerful design paradigm
to address the growing complexity of embedded applica-
tions. Moreover, server-based scheduling is an effective
means to deploy component-based applications, particu-
larly when organized in a hierarchical framework. In this
paper, we addressed the case of multi-level hierarchical
server-based scheduling within Ethernet switches using a
specific switch, namely the FTT-enabled Ethernet Switch.
We have developed a schedulability analysis that allows ver-
ifying whether a given composition of servers is schedula-
ble. This analysis applies to cases in which servers might
experience blocking caused by on-going packet transmis-
sions associated to lower priority servers, and it comple-
ments the work in [3] that applies when such blocking is
eliminated using the blocking-free non-preemptive model.
This latter approach, however, presents a longer switching
latency, which might not be desirable. A full comparisons
and analysis of these two approaches will be carried out in
future work.
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