
Boosting Job-Level Migration by Static Analysis

Workshop on Operating Systems Platforms for Embedded Real-Time Applications
July 09, 2019

Tobias Klaus, Peter Ulbrich, Phillip Ra�eck, Benjamin Frank,
Lisa Wernet, Maxim Ritter von Onciul, Wolfgang Schröder-Preikschat

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

SCHR603/9-2
SCHR603/13-1
SCHR603/14-2
CRC/TRR 89 Project C1

EU EFRE funds
0704/883 25

Multi-Core Scheduling

tCore 1:
τ1 τ3

tCore 2:
τ2

T

T

0

0

20

20

40

40

60

60

80

80

100

100

Multi-Core Systems

• Static allocation of tasks to cores

→ Poor utilization and schedulability

Solution: Full Migration

?

• Dynamic (re)allocation of tasks
• Good utilization and schedulability
→ Impractical in real-time systems

Static Allocation Again?

• Split tasks to appropriate size

Boosting job-level migration by static analysis 1

Multi-Core Scheduling

tCore 1:
τ1 τ3

tCore 2:
τ2

T

T

0

0

20

20

40

40

60

60

80

80

100

100

Multi-Core Systems

• Static allocation of tasks to cores
→ Poor utilization and schedulability

Solution: Full Migration

?

• Dynamic (re)allocation of tasks
• Good utilization and schedulability
→ Impractical in real-time systems

Static Allocation Again?

• Split tasks to appropriate size

Boosting job-level migration by static analysis 1

Multi-Core Scheduling

tCore 1:
τ1 τ3

tCore 2:
τ2

T

T

0

0

20

20

40

40

60

60

80

80

100

100

Multi-Core Systems

• Static allocation of tasks to cores
→ Poor utilization and schedulability

Solution: Full Migration

?

• Dynamic (re)allocation of tasks
• Good utilization and schedulability

→ Impractical in real-time systems

Static Allocation Again?

• Split tasks to appropriate size

Boosting job-level migration by static analysis 1

Multi-Core Scheduling

tCore 1:
τ1τ3a

tCore 2:
τ2 τ3b

T

T

0

0

20

20

40

40

60

60

80

80

100

100

Multi-Core Systems

• Static allocation of tasks to cores
→ Poor utilization and schedulability

Solution: Full Migration?

• Dynamic (re)allocation of tasks
• Good utilization and schedulability

→ Impractical in real-time systems

Static Allocation Again?

• Split tasks to appropriate size

Boosting job-level migration by static analysis 1

Multi-Core Scheduling

tCore 1:
τ1τ3a

tCore 2:
τ2 τ3b

T

T

0

0

20

20

40

40

60

60

80

80

100

100

Multi-Core Systems

• Static allocation of tasks to cores
→ Poor utilization and schedulability

Solution: Full Migration?

• Dynamic (re)allocation of tasks
• Good utilization and schedulability
→ Impractical in real-time systems

Static Allocation Again?

• Split tasks to appropriate size

Boosting job-level migration by static analysis 1

Multi-Core Scheduling

tCore 1:
τ1τ3a

tCore 2:
τ2 τ3b

T

T

0

0

20

20

40

40

60

60

80

80

100

100

Multi-Core Systems

• Static allocation of tasks to cores
→ Poor utilization and schedulability

Solution: Full Migration?

• Dynamic (re)allocation of tasks
• Good utilization and schedulability
→ Impractical in real-time systems

Static Allocation Again?

• Split tasks to appropriate size

Boosting job-level migration by static analysis 1

Splitting the Execution Size versus Costs

 = 0;int32_t x
uint16_t y = foo();

 (= 0; < 5; ++) {for uint8_t i i i
 += * bar[];x y i
}

 = * 4711; int64_t z x
 (= 0; < 5; ++) {for uint8_t j j j

 += baz[];z j
}
return ;z

1

2

3

4

5

6

7

8

9

10

Find Appropriate Split Points

• Static analysis
• Consider WCET
• Minimize migration cost

Boosting job-level migration by static analysis 2

Splitting the Execution Size versus Costs

 = 0;int32_t x
uint16_t y = foo();

 (= 0; < 5; ++) {for uint8_t i i i
 += * bar[];x y i
}

 = * 4711; int64_t z x
 (= 0; < 5; ++) {for uint8_t j j j

 += baz[];z j
}
return ;z

1

2

3

4

5

6

7

8

9

10

x yi z j
Lifespan:

Find Appropriate Split Points
• Static analysis

• Consider WCET
• Minimize migration cost

Boosting job-level migration by static analysis 2

Splitting the Execution Size versus Costs

 = 0;int32_t x
uint16_t y = foo();

 (= 0; < 5; ++) {for uint8_t i i i
 += * bar[];x y i
}

 = * 4711; int64_t z x
 (= 0; < 5; ++) {for uint8_t j j j

 += baz[];z j
}
return ;z

1

2

3

4

5

6

7

8

9

10

x yi z j
Lifespan:

Find Appropriate Split Points
• Static analysis
• Consider WCET

• Minimize migration cost

Boosting job-level migration by static analysis 2

Splitting the Execution Size versus Costs

 = 0;int32_t x
uint16_t y = foo();

 (= 0; < 5; ++) {for uint8_t i i i
 += * bar[];x y i
}

 = * 4711; int64_t z x
 (= 0; < 5; ++) {for uint8_t j j j

 += baz[];z j
}
return ;z

1

2

3

4

5

6

7

8

9

10

x yi z j
Lifespan:

Find Appropriate Split Points
• Static analysis
• Consider WCET
• Minimize migration cost

Boosting job-level migration by static analysis 2

Migration

Challenges
• Split tasks to target WCET

• Reduce migration cost

Approach
→ Job-Level Migration
→ Static Analysis
→ Optimization within two dimensions

Boosting job-level migration by static analysis 3

Migration

Challenges
• Split tasks to target WCET
• Reduce migration cost

Approach
→ Job-Level Migration
→ Static Analysis
→ Optimization within two dimensions

Boosting job-level migration by static analysis 3

Migration

Challenges
• Split tasks to target WCET
• Reduce migration cost

Approach
→ Job-Level Migration
→ Static Analysis
→ Optimization within two dimensions

Boosting job-level migration by static analysis 3

Overview

Randomly sized
scheduling units Static analysis Split point graph

Sequential

Uniformly sized
scheduling units Branches

Optimization
within WCET and
migration cost

Loops

Boosting job-level migration by static analysis 4

Overview

Randomly sized
scheduling units Static analysis Split point graph

Sequential

Uniformly sized
scheduling units Branches

Optimization
within WCET and
migration cost

Loops

Boosting job-level migration by static analysis 5

Static analysis

BB1

BB3 BB4

BB5

BB6

BB7

E1

w1 w2
w3
w4

Basic Procedure

1. Create control-�ow graph
2. WCET analysis
3. Lifespan analysis

 Split-point candidates

Boosting job-level migration by static analysis 6

Static analysis

BB1

BB3 BB4

BB5

BB6

BB7

E1

w1 w2
w3
w4

Basic Procedure

1. Create control-�ow graph
2. WCET analysis
3. Lifespan analysis

 Split-point candidates

Boosting job-level migration by static analysis 6

Split-Point Graphs

Randomly sized
scheduling units Static analysis Split-point graph

Sequential

Uniformly sized
scheduling units Branches

Optimization
within WCET and
migration cost

Loops

Boosting job-level migration by static analysis 7

General Concept: Split-Point Graphs

Control-Flow Graph

BB1

BB3 BB4

BB5

BB6

BB7

E1

w1 w2
w3
w4

Intermediate Graph

E1

Split-Point Graph

w1

w2

w3

w4

w5

Boosting Job-Level Migration
• Static analysis of tasks w.r.t. WCET and resident-set size
• Split-point graphs capture split-point candidates
• Horizontal cuts: �nding split points with low migration cost

Boosting job-level migration by static analysis 8

General Concept: Split-Point Graphs

Control-Flow Graph

BB1

BB3 BB4

BB5

BB6

BB7

E1

w1 w2
w3
w4

Intermediate Graph

E1

Split-Point Graph

w1

w2

w3

w4

w5

Boosting Job-Level Migration
• Static analysis of tasks w.r.t. WCET and resident-set size
• Split-point graphs capture split-point candidates
• Horizontal cuts: �nding split points with low migration cost

Boosting job-level migration by static analysis 8

General Concept: Split-Point Graphs

Control-Flow Graph

BB1

BB3 BB4

BB5

BB6

BB7

E1

w1 w2
w3
w4

Intermediate Graph

E1

Split-Point Graph

w1

w2

w3

w4

w5

Boosting Job-Level Migration
• Static analysis of tasks w.r.t. WCET and resident-set size
• Split-point graphs capture split-point candidates
• Horizontal cuts: �nding split points with low migration cost

Boosting job-level migration by static analysis 8

General Concept: Split-Point Graphs

Control-Flow Graph

BB1

BB3 BB4

BB5

BB6

BB7

E1

w1 w2
w3
w4

Intermediate Graph

E1

Split-Point Graph

w1

w2

w3

w4

w5

Boosting Job-Level Migration
• Static analysis of tasks w.r.t. WCET and resident-set size
• Split-point graphs capture split-point candidates
• Horizontal cuts: �nding split points with low migration cost

Boosting job-level migration by static analysis 8

Overview

Randomly sized
scheduling units Static analysis Split point graph

Sequential

Uniformly sized
scheduling units Branches

Optimization
within WCET and
migration cost

Loops

Boosting job-level migration by static analysis 9

Splitting Loops Let the body untouched!

Original Loop
1 LOOP_Bound(x:10);
2 for(int i = 0; i < x; ++i)
3 { }

• Splitting the loop body?
• # of iterations dominates WCET

→ Split by number of iterations!

Loop after Splitting
1 int i = 0, C = 5;
2 for(; i < x && C; ++i)
3 { --C; }
4
5 C = 5;
6 for(; i < x && C; ++i)
7 { --C; }

General Approach

• Compute number of iterations to �t target WCET
• Derive upper bound for the number of cuts
• Duplicate body and adjust loop condition

Boosting job-level migration by static analysis 10

Splitting Loops Let the body untouched!

Original Loop
1 LOOP_Bound(x:10);
2 for(int i = 0; i < x; ++i)
3 { }

• Splitting the loop body?
• # of iterations dominates WCET
→ Split by number of iterations!

Loop after Splitting
1 int i = 0, C = 5;
2 for(; i < x && C; ++i)
3 { --C; }
4
5 C = 5;
6 for(; i < x && C; ++i)
7 { --C; }

General Approach

• Compute number of iterations to �t target WCET
• Derive upper bound for the number of cuts
• Duplicate body and adjust loop condition

Boosting job-level migration by static analysis 10

Splitting Loops Let the body untouched!

Original Loop
1 LOOP_Bound(x:10);
2 for(int i = 0; i < x; ++i)
3 { }

• Splitting the loop body?
• # of iterations dominates WCET
→ Split by number of iterations!

Loop after Splitting
1 int i = 0, C = 5;
2 for(; i < x && C; ++i)
3 { --C; }
4
5 C = 5;
6 for(; i < x && C; ++i)
7 { --C; }

General Approach

• Compute number of iterations to �t target WCET
• Derive upper bound for the number of cuts
• Duplicate body and adjust loop condition

Boosting job-level migration by static analysis 10

Splitting Branches The problem with conditional load . . .

Scheduling Unit (SU)

true false

exit

205 C = 160TRUE

cond

C = 205FALSE

cond

exit

true false

true false

SUA

200

150

SUB

C = 200FALSE

SPLIT

C = 10TRUE

C = 150TRUE C = 5FALSE

350

Additional Pessimism Caused by Naive Splitting

• Local optimization may lead to unbalanced cuts in branches
• Condition is unknown at compile time
→ Overapproximation in timing analysis

Boosting job-level migration by static analysis 11

Splitting Branches

46"

##� 41-*5

0SJHJOBM�JG�UIFO�FMTF 4VCEJWJEFE�JG�UIFO�FMTF

##� ##�

##�

46"

##�

##�B ##�B

46#

##�C ##�C

##�

Global vs. Local Optimization
• Find suitable points locally
• Global alignment between branches
→ Minimize size di�erences

General Approach
• Add jump
• Additional logic

Boosting job-level migration by static analysis 12

Splitting Branches

46"

##� 41-*5

0SJHJOBM�JG�UIFO�FMTF 4VCEJWJEFE�JG�UIFO�FMTF

##� ##�

##�

46"

##�

##�B ##�B

46#

##�C ##�C

##�

##�

##�

Global vs. Local Optimization
• Find suitable points locally
• Global alignment between branches
→ Minimize size di�erences

General Approach
• Add jump
• Additional logic

Boosting job-level migration by static analysis 12

Overheads per Cut How much is the fun?

Sequential Code
i+seq = 1

Branches
i+if = nbranch ∗ 2 Marking the active branch

+ 1 Terminating the �rst scheduling unit
+ 3 Proceeding with the correct branch

Loops
i+loop = (5 + 1) Counter for planned iterations

+ 2 Exiting the scheduling unit and resetting the iteration counter
+ 3 Executing the following part of the loop

i+ # additional instructions

nbranch # branches, a�ected by a horizontal cut

Low overall overhead
• Only few additional instructions for all
di�erent program constructs

⇒ Minor e�ects on overall execution time

Boosting job-level migration by static analysis 13

Overheads per Cut How much is the fun?

Sequential Code
i+seq = 1

Branches
i+if = nbranch ∗ 2 Marking the active branch

+ 1 Terminating the �rst scheduling unit
+ 3 Proceeding with the correct branch

Loops
i+loop = (5 + 1) Counter for planned iterations

+ 2 Exiting the scheduling unit and resetting the iteration counter
+ 3 Executing the following part of the loop

i+ # additional instructions
nbranch # branches, a�ected by a horizontal cut

Low overall overhead
• Only few additional instructions for all
di�erent program constructs

⇒ Minor e�ects on overall execution time

Boosting job-level migration by static analysis 13

Overheads per Cut How much is the fun?

Sequential Code
i+seq = 1

Branches
i+if = nbranch ∗ 2 Marking the active branch

+ 1 Terminating the �rst scheduling unit
+ 3 Proceeding with the correct branch

Loops
i+loop = (5 + 1) Counter for planned iterations

+ 2 Exiting the scheduling unit and resetting the iteration counter
+ 3 Executing the following part of the loop

i+ # additional instructions
nbranch # branches, a�ected by a horizontal cut

Low overall overhead
• Only few additional instructions for all
di�erent program constructs

⇒ Minor e�ects on overall execution time

Boosting job-level migration by static analysis 13

Overheads per Cut How much is the fun?

Sequential Code
i+seq = 1

Branches
i+if = nbranch ∗ 2 Marking the active branch

+ 1 Terminating the �rst scheduling unit
+ 3 Proceeding with the correct branch

Loops
i+loop = (5 + 1) Counter for planned iterations

+ 2 Exiting the scheduling unit and resetting the iteration counter
+ 3 Executing the following part of the loop

i+ # additional instructions
nbranch # branches, a�ected by a horizontal cut

Low overall overhead
• Only few additional instructions for all
di�erent program constructs

⇒ Minor e�ects on overall execution time

Boosting job-level migration by static analysis 13

Schedulability

3.5
0.0

3.6 3.7 3.8 3.9 4.0
utilization

s
c
h
e
d
u
la
b
il
it
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 original system
split system

E�ects on the schedulability of
systems with high utilization

Experimental Setup
• System with four processor cores
• 12000 synthetic benchmark
systems

Goal
• Feasible allocation and schedule
for each task set

⇒ 70 percent more schedulable task
sets for the highest utilization

Boosting job-level migration by static analysis 14

Schedulability

3.5
0.0

3.6 3.7 3.8 3.9 4.0
utilization

s
c
h
e
d
u
la
b
il
it
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 original system
split system

E�ects on the schedulability of
systems with high utilization

Experimental Setup
• System with four processor cores
• 12000 synthetic benchmark
systems

Goal
• Feasible allocation and schedule
for each task set

⇒ 70 percent more schedulable task
sets for the highest utilization

Boosting job-level migration by static analysis 14

Migration Costs

Finding split points with low migration cost

Experimental Setup
• Real-world benchmarks taken from the TACLeBench suite
• Creation of OSEK systems: one benchmark task and two load tasks

• Generate systems which are unschedulable on two cores without migration
• Only cut benchmark tasks

• Recording of the resident-set size (in LLVM-IR types)
• Worst-case migration cost observed in all possible split-point candidates
• Migration cost of the split point chosen by our approach

Boosting job-level migration by static analysis 15

Migration Costs

Benchmark Worst-case Resident-set

Size [bits]

Split-point Resident-set

Size [bits]

Cost improvement [bits]

binarysearch 225 224 1
bitonic 65 64 1
complex_update 480 288 192
countnegative 2176 1568 608
�lterbank 60 736 60 704 32
iir 432 400 32
insertsort 544 128 416
minver 17 568 16 800 768
petrinet 5057 5056 1

⇒ Lower worst-case migration overhead
⇒ Tighter results from timing analysis

Boosting job-level migration by static analysis 16

Migration Costs

Benchmark Worst-case Resident-set

Size [bits]

Split-point Resident-set

Size [bits]

Cost improvement [bits]

binarysearch 225 224 1
bitonic 65 64 1
complex_update 480 288 192
countnegative 2176 1568 608
�lterbank 60 736 60 704 32
iir 432 400 32
insertsort 544 128 416
minver 17 568 16 800 768
petrinet 5057 5056 1

⇒ Lower worst-case migration overhead
⇒ Tighter results from timing analysis

Boosting job-level migration by static analysis 16

Conclusion and Outlook

Conclusion

• Compile time
• Bene�cial size of scheduling units

⇒ Systems with high utilization become schedulable

• Runtime
• Migration at bene�cial points
• Only if necessary

⇒ Reducing overapproximation in the WCET analysis

Current Work and Outlook

• More accurate WCET estimation
• Adapt an OS to support migration threshold
• Consider the OS and system calls within the analysis

Boosting job-level migration by static analysis 17

Conclusion and Outlook

Conclusion

• Compile time
• Bene�cial size of scheduling units

⇒ Systems with high utilization become schedulable

• Runtime
• Migration at bene�cial points
• Only if necessary

⇒ Reducing overapproximation in the WCET analysis

Current Work and Outlook

• More accurate WCET estimation
• Adapt an OS to support migration threshold
• Consider the OS and system calls within the analysis

Boosting job-level migration by static analysis 17

Conclusion and Outlook

Conclusion

• Compile time
• Bene�cial size of scheduling units

⇒ Systems with high utilization become schedulable

• Runtime
• Migration at bene�cial points
• Only if necessary

⇒ Reducing overapproximation in the WCET analysis

Current Work and Outlook

• More accurate WCET estimation
• Adapt an OS to support migration threshold
• Consider the OS and system calls within the analysis

Boosting job-level migration by static analysis 17

	Motivation
	Approach
	Evaluation
	Conclusion

