
1/42

Elektrobit

Time-domain determinism using modern SoCs
OSPERT 2019

David Haworth

1 / 42



2/42

Introduction Elektrobit

Introduction

What is “time-domain determinism”?

What causes non-deterministic behavior?

Overview of the AUTOSAR operating system

2 / 42



3/42

Introduction Elektrobit

What is “time-domain determinism”?

A deterministic program always produces the same output from the same input

Deterministic means that what the system does is predictable

In real-time systems, time is also important
... not only what output is produced, but when it is produced

Variations in the timing are called “jitter”

Hence determinism in the time domain (deadlines) as well as the data domain

Compare with spatial interference versus temporal interference (ISO26262)

3 / 42



4/42

Introduction Elektrobit

Causes of jitter

Hardware

Cache

MMU behavior - table walks

Bus contention
... in multi-core systems or systems with DMA

Software

Configuration of time triggering mechanisms; interference

Execution path variations, leading to execution time variations

Exclusive areas (critical sections); synchronization primitives

Cache thrashing

4 / 42



5/42

Introduction Elektrobit

What can we do?

Hardware

Cache locking when available; see [Borghorst & Spinczyk]
... but this doesn’t address MMU behavior

Avoid bus contention - use tightly-coupled memory

Software

There’s plenty of scope for avoiding jitter due to software
... but first some background

5 / 42



6/42

Introduction Elektrobit

A very brief introduction to the AUTOSAR OS module

Characteristics

Static configuration - no dynamic loading of code

Real-time priority scheduling of tasks

Entire system (including OS) in same address space

Configured elements

Executable elements: tasks and ISRs
... tasks activated on demand or by means of time-triggering
... ISRs activated by hardware request (interrupt)

Time-triggering elements: counters, alarms, schedule tables
... schedule tables and alarms are attached to (driven by) counters
... schedule tables and alarms can activate tasks

6 / 42



7/42

Introduction Elektrobit

AUTOSAR schedule tables

A schedule table

... has a duration from start to end (black dots)

... can be “repeating” (at the end, the ST starts again from the beginning)

... has expiry points at configured times between the start and end

... expiry points can wake up one or more tasks

... expiry points need not be regularly spaced, subject to counter resolution

7 / 42



8/42

Comparison of performance variation on current hardware Elektrobit

Comparison of performance variation on current hardware

Features of OS used in the comparison

Features of the hardware used in the comparison

Comparison of performance between cache-clean and cache-preloaded

8 / 42



9/42

Comparison of performance variation on current hardware Elektrobit

EB tresos Safety OS

Features

Compatible with a subset of the AUTOSAR OS module

Microkernel-based design

Memory protection for all code (including itself)

Reprograms (part of) memory protection hardware on context switch
... on hardware with MMU: flushes TLB (by ASID)
... does not flush cache

Performance

Performance is quantifiable
... microkernel code shas no compile-time configuration dependencies
... API execution paths depend only on system state

9 / 42



10/42

Comparison of performance variation on current hardware Elektrobit

Hardware used in the comparison

The following four types of microcontroller/SoC are compared

Infineon TriCore Aurix processor (blue)
... typical embedded processor; RAM not cached, just code and read-only data

ARM Cortex R - TI AR1642 (green)
... no cache, MPU programmed in software

ARMv7 Cortex R - part of Renesas RCAR V3M (black)
... fully cached; MPU programmed in software

ARMv8 Cortex A - part of Renesas RCAR V3M (red)
... fully cached; TLB loaded by hardware after page-table switch and invalidation

10 / 42



11/42

Comparison of performance variation on current hardware Elektrobit

API execution time

ActivateTask() - without context switch

The ActivateTask() API places a task in the ready state
... the task runs when it becomes the most eligible

In this case the task has a lower priority so no context switch takes place

11 / 42



12/42

Comparison of performance variation on current hardware Elektrobit

API execution time

ActivateTask() - with context switch

The ActivateTask() API places a task in the ready state
... the task runs when it becomes the most eligible

In this case the task has a higher priority so a context switch takes place

12 / 42



13/42

Comparison of performance variation on current hardware Elektrobit

Performance summary

Assumptions

The cache (and TLB) is in a known state after cleaning (flush/invalidate)

The cache state depends on the execution sequence

Observations from repeating the performance tests

From a known state (clean cache), runtime is slow and predictable

From a known state (filled cache), runtime is fast and predictable

13 / 42



14/42

Comparison of performance variation on current hardware Elektrobit

Performance summary

Conclusion

From an unknown cache state runtime is somewhere between clean and filled limits

If the execution sequence is predictable, timing will be fairly predictable

If the execution sequence is unpredictable, timing will be unpredictable

Unpredictability of the software causes jitter in itself

Unpredictability of the software amplifies hardware unpredictability
... on modern SoCs, hardware jitter might be more than software jitter

It is therefore essential to control how the software behaves.

This control is a fundamental feature of the system design
... it cannot simply be added later in the project

14 / 42



15/42

Case study Elektrobit

A study of a real project

Description of system; what problems were experienced

Causes and solutions; quick fix

A deeper look into the system design

15 / 42



16/42

Case study Elektrobit

Data from a real project

Description

A fairly typical automotive application:

A microcontroller based on ARM Cortex R4; single core, with cache

Time-triggered scheduling using multiple schedule tables to activate the tasks

Longest schedule table: 100 ms

The main reported problem in the application was overall CPU load, not jitter
... maybe jitter wasn’t important
... or perhaps just secondary to the CPU load problem

The size of the RAM footprint was also a problem

16 / 42



17/42

Case study Elektrobit

Data from a real project

Causes of the problems

Excessive interrupt load for the schedule tables

The cache didn’t perform as well as expected (h/w vendor’s finding)

The application ensured data consistency by making copies of data
... which contributed to the worse-than-expected cache performance

Synchronization APIs (mutual exclusion and interrupt locks) used to ensure
consistency while copying
... which contributed to the overall CPU load

17 / 42



18/42

Case study Elektrobit

Data from a real project

Solutions

Excessive interrupt load and interference between the schedule tables was eliminated
first by combining the multiple schedule tables into a single schedule table.

Interrupt load reduced still further by “chaining” the tasks rather than activating all
at the EPs
... this reduced the OS overhead and jitter at the EPs

The chaining allowed sets of tasks to be assigned the same priority
... tasks with equal priorities can share the same stack region
... reduces the RAM footprint and improves cache performance slightly

A couple of minor optimizations implemented in the microkernel

18 / 42



19/42

Case study Elektrobit

Data from a real project

End of EB’s involvement

This was a real project with real timescales

The measures described above were sufficient to allow the application to perform
acceptably
... so no further improvements were made. EB’s involvement ended.

However, the system was not well designed
... let’s look at what we could do better ...

19 / 42



20/42

Case study Elektrobit

Analysis of task execution versus time

20 / 42



21/42

Case study Elektrobit

Analysis of task execution versus time

Observations

All tasks are activated by expiry points and execute by priority thereafter

Expiry points configured at regular intervals

OS overhead depends on number of activations at each expiry point
... the start time of the first task varies by expiry point
(partially solved by task chaining, as mentioned earlier)

Execution extends past 1000 us, next expiry point interrupts executing task
... leads to preemption; time of preemption is unpredictable
... leads to necessity for mutual exclusion (e.g. interrupt locks)
... causes more variation in the start time of the first task

This project also has device ISRs (not shown) that can occur at any time

21 / 42



22/42

Case study Elektrobit

Analysis of task execution versus time

Summary

All this variability means that it is impossible to predict the execution sequence
... and therefore the cache state
... which leads to even more variability in the timing

How could we improve the predictability?

Let’s take a journey back in time, to the late 1970s and early 1980s ...

22 / 42



23/42

A journey back in time Elektrobit

Comparison of the real automotive project with a historical project

Description of the historical project

Comparison with the modern project; similarities and differences

Suggested improvements to the design of the modern project

23 / 42



24/42

A journey back in time Elektrobit

Here’s a photo of an aeroplane ...

Photo c©Mike Freer, licensed under GNU Free Documentation License v1.2

24 / 42



25/42

A journey back in time Elektrobit

Jaguar ACT flight control computer

Hardware characteristics

Quadruplex system: four identical FCC boxes, most sensors and actuators quadruplex

16-bit processor based on Am2900 bit-slice ICs

No cache, processor behaves fairly predictably, except ...

Input and output exclusively by DMA
... no interrupts to transfer data to peripherals

Execution time varies with the amount of DMA activity
... difficult to predict execution times and start times of functions exactly

25 / 42



26/42

A journey back in time Elektrobit

Jaguar ACT flight control computer

System design

System timing by means of a “master reset” (essentially an NMI) every 2.5 ms
... signals start of a “frame”
... complete processing cycle of 32 frames = 80 ms

Minimal “operating system”:
... housekeeping, synchronization, fault reporting from previous frame
... run application “tasks” that are scheduled for the current frame
... on completion, wait for next reset; failure to reach this deadline is a serious fault

Predefined DMA activity also starts with the reset:
... inputs, outputs and inter-FCC communication depends on frame number
... input data will be used in used subsequent frames
... in a few exceptions, at the end of the input frame
... output data has been computed in earlier frames

26 / 42



27/42

A journey back in time Elektrobit

Jaguar ACT flight control computer

Software design

32 frame functions - one called each interval

Each frame function calls a sequence of “link” functions

Each link function performs a sequence of computations

Distributed of link functions among frames depends on frequency/phase requirements
... e.g. a 10 ms link function would be called every fourth frame

Distribution of link functions within a frame depends on data flow
... also considering arrival time of inputs that are used in the same frame

27 / 42



28/42

A journey back in time Elektrobit

Jaguar ACT flight control computer

DMA-centric scheduling

DMA schedule is predefined; not controlled by software running on the CPU

DMA schedule places requirements on software schedule

This way of using DMA means I/O timing behavior depends only on “master reset”

Input data is always available when it is needed by the software

Output data is always ready for transfer by DMA
... unless an earlier frame misses its completion deadline

Jitter is eliminated

28 / 42



29/42

A journey back in time Elektrobit

Jaguar ACT flight control computer

Execution time

Theoretical worst-case execution time computed for each frame
... used an average instruction time that took worst-case DMA activity into account
... design rule: no more than 2.2 ms including housekeeping overhead

In practice, computed WCET was shorter than 2 ms for most frames

Measured real execution time for each frame
... in simulator: somewhat less than computed
... in real system: even less than in the simulator

Modern tooling could probably compute worst-case execution time more accurately

The average instruction times were probably too pessimistic

The 2.2 ms guideline was almost certainly too pessimistic

Could probably achieve a higher CPU load - but it wasn’t needed

29 / 42



30/42

A journey back in time Elektrobit

Comparison with the automotive project

Parallels

The reset is essentially the regular schedule table interrupt

The frame functions are essentially the expiry points of the schedule table

The link functions are essentially the tasks

Differences

1 ms tick time versus 2.5 ms in FCC; but the modern processor is much faster

Tasks are activated, versus links being called (necessary for memory protection)

Expiry point allowed to interrupt tasks from previous expiry point(s) (bad practice)

Device ISRs to interrupt tasks at unpredictable time (bad practice)

Monitoring of deadlines and CPU load distribution is not possible

30 / 42



31/42

A journey back in time Elektrobit

Improvement of the automotive project

Suggested application improvements

Introduce and enforce a rule
... all tasks at an expiry point must complete before the next expiry point

Add monitoring to measure worst case time for each EP’s activations
... and to detect and report deadline violations

Move the tasks that extend beyond the tick interval into the next EP
... repeat as necessary to eliminate deadline violations
... split up long tasks to allow them to be distributed

31 / 42



32/42

A journey back in time Elektrobit

Improvement of the automotive project

Suggested application improvements

Use DMA for I/O where possible
... I/O timing doesn’t depend on software; DMA doesn’t affect CPU state

On a multi-core SoC, use a core as a dedicated I/O processor
... essentially a very sophisticated form of DMA

Where DMA not possible, eliminate ISRs and use device polling instead
... alternatively, restrict ISRs to defined windows using interrupt source control API

32 / 42



33/42

A journey back in time Elektrobit

Improvement of the automotive project

What do we gain?

Critical sections are no longer needed; remove them
... eliminates jitter of expiry point interrupt
... reduces CPU load

Most of the data copying is no longer needed; remove it
... reduces cache thrashing
... reduces CPU load

Execution path after an expiry point is more predictable
... remaining differences are code paths in functions, but that’s another story

Cache state at any time is more predictable
... if necessary, can be improved further by cleaning at each EP
... cache maintenance may be needed for DMA inputs and outputs

33 / 42



34/42

Back to the future Elektrobit

Back to the future

Improvements and new features in operating system

Did we throw away a suitable OS?

Summary and conclusion

34 / 42



35/42

Back to the future Elektrobit

How could we improve the operating system?

New features

Expiry point “frame”; only activate first task
... each subsequent task at the EP is automatically activated when predecessor
terminates

Deadline monitor to detect frame overrun

Measure execution time of each frame, store the longest

ISR window feature

Configurable cache maintenance as an activity in an expiry point

35 / 42



36/42

Back to the future Elektrobit

What about OSEK’s time-triggered operating system?

Features of OSEKtime

A single dispatcher round of configured duration

An array of dispatcher events at configured times during the dispatcher round:
... activate a specified task or
... enable a specified ISR or
... task deadline; report an error if the specified task has not completed

Tasks can be activated multiple times in the round

Double-activation is a deadline error

A newly-activated task pre-empts an executing task

36 / 42



37/42

Back to the future Elektrobit

What about OSEK’s time-triggered operating system?

Comments on OSEKtime features

No possibility to start a chain of tasks; no API to chain (or even activate) a task

Task pre-emption causes the same uncertainty as in AUTOSAR OS
... could attempt to eliminate preemption by timing
... will result in lots of wasted time between tasks

The ISR enable feature doesn’t disable the ISR until it occurs:
... arrival time is unpredictable

Times have moved on since OSEKtime was specified. Its features don’t really provide
solutions to the problems we face on modern SoCs, and it doesn’t offer features like
memory protection that are essential for modern automotive applications.

37 / 42



38/42

Back to the future Elektrobit

Summary and conclusion

Summary

Typical industry practice results in systems whose temporal behavior is not
predictable

Use of higher-performance SoCs can make the predictability worse
... even when the system is 100% time-triggered.

Conclusion

Good system design - hardware and software - is essential for determinstic behavior

New OS features in AUTOSAR could make the implementation easier

38 / 42



39/42

References Elektrobit

Useful links

Borghorst & Spinczyk :
CyPhOS - A Component-Based Cache-Aware Multi-core Operating System
https://www.betriebssysteme.org/wp-content/uploads/2019/03/abstract-borghorst.pdf

(abstract in German; full text in English available from Springer Professional)

AUTOSAR OS specification
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_OS.pdf

OSEKtime specification at archive.org
https://web.archive.org/web/20110414223336/http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf

39 / 42

https://www.betriebssysteme.org/wp-content/uploads/2019/03/abstract-borghorst.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_OS.pdf
https://web.archive.org/web/20110414223336/http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf


40/42

References Elektrobit

Useful links

Am2900 devices
https://en.wikipedia.org/wiki/AMD_Am2900

Jaguar ACT photo
https://commons.wikimedia.org/wiki/File:Sepecat_Jaguar_GR1-ACT,_AN1403546.jpg

40 / 42

https://en.wikipedia.org/wiki/AMD_Am2900
https://commons.wikimedia.org/wiki/File:Sepecat_Jaguar_GR1-ACT,_AN1403546.jpg


41/42

References Elektrobit

Disclaimer

Information about the Jaguar ACT flight control computer comes from personal
recollection. The details may be inaccurate - the memory of events of 40 years ago is
never perfect - but the general idea is correct.

The concepts that were developed were used in the Eurofighter Typhoon and in the
Boeing 777 FBW.

The design principles probably became standard practice in the avionics industry, except
when they forgot about them (*cough* MCAS *cough*).

41 / 42



42/42

References Elektrobit

Jaguar ACT links

Jaguar ACT at RAF museum
https://www.rafmuseum.org.uk/research/collections/sepecat-jaguar-act-demonstrator/

Jaguar FBW at Rochester Avionic Archives
https://rochesteravionicarchives.co.uk/platforms/jaguar-fbw

A photo of the aircraft taking off
https://imgproc.airliners.net/photos/airliners/1/4/9/0763941.jpg?v=v40

Two articles containing information about the software design
https://apps.dtic.mil/dtic/tr/fulltext/u2/p002713.pdf

https://apps.dtic.mil/dtic/tr/fulltext/u2/a161950.pdf starting on page 10

42 / 42

https://www.rafmuseum.org.uk/research/collections/sepecat-jaguar-act-demonstrator/
https://rochesteravionicarchives.co.uk/platforms/jaguar-fbw
https://imgproc.airliners.net/photos/airliners/1/4/9/0763941.jpg?v=v40
https://apps.dtic.mil/dtic/tr/fulltext/u2/p002713.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a161950.pdf


42/42

References Elektrobit

Get in touch!

david.haworth@elektrobit.com
www.elektrobit.com

42 / 42

https://www.elektrobit.com

	Introduction
	Comparison of performance variation on current hardware
	Case study
	A journey back in time
	Back to the future
	References

