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Message from the Chairs

Welcome to OSPERT’18, the 14th annual workshop on Operating Systems Platforms for Embedded Real-Time
Applications. We invite you to join us in participating in a workshop of lively discussions, exchanging ideas
about systems issues related to real-time and embedded systems.

The workshop will open with a keynote by Kai Lampka. Dr. Lampka will discuss mastering security and
resource sharing challenges of high-performance controllers in automotive applications. In the afternoon, we
also have a second keynote by Dr. Michael Paulitsch, based on his experiences in aviation and chip industries.
We are delighted that Dr. Lampka and Dr. Paulitsch volunteered to share their experience and perspective, as a
healthy mix of academics and industry experts among its participants has always been one of OSPERT’s key
strengths.

The workshop received a total of twelve submissions. All papers were peer-reviewed and nine papers were
finally accepted. Each paper received three individual reviews.

The papers will be presented in three sessions. The first session includes four papers on real-time operating
systems. Best paper will be presented in the second session, while the third session will present four papers on
shared memory hierarchy and GPU management.

OSPERT’18 would not have been possible without the support of many people. The first thanks are due to
Francisco J. Cazorla and Gerhard Fohler and the ECRTS steering committee for entrusting us with organizing
OSPERT’18, and for their continued support of the workshop. We would also like to thank the chairs of prior
editions of the workshop who shaped OSPERT and let it grow into the successful event that it is today.

Our special thanks go to the program committee, a team of twelve experts for volunteering their time and
effort to provide useful feedback to the authors, and of course to all the authors for their contributions and hard
work.

Last, but not least, we thank you, the audience, for your participation. Through your stimulating questions
and lively interest you help to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Heechul Yun Adam Lackorzynski
University of Kansas TU Dresden / Kernkonzept
USA Germany

Program Committee

Marcus Völp, Université du Luxembourg
Robert Kaiser, RheinMain University of Applied Sciences
Michael Engel, Coburg University of Applied Sciences
Michal Sojka, Czech Technical University in Prague
Gabriel Parmer, George Washington University
Olaf Spinczyk, Technische Universität Dortmund
Hyoseung Kim, University of California Riverside
Renato Mancuso, Boston University
Andrea Bastoni, SYSGO AG
Juri Lelli, Redhat
Daniel Lohmann, Leibniz Universität Hannover
Euiseong Seo, Sungkyunkwan University
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Keynote Talks

Mastering Security and Resource Sharing with future High Performance
Controllers: A perspective from the Automotive Industry

Dr. Kai Lampka
System Architect, Elektrobit Automotive GmbH

On safety and real-time in embedded operating systems using modern processor
architectures in different safety-critical applications

Dr. Michael Paulitsch
Dependability Systems Architect (Principal Engineer), Intel
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Deterministic Futexes Revisited
Alexander Zuepke, Robert Kaiser

RheinMain University of Applied Sciences, Wiesbaden, Germany
Email: first.last@hs-rm.de

Abstract—Fast User Space Mutexes (Futexes) in Linux are a
lightweight way to implement thread synchronization objects like
mutexes and condition variables. Futexes handle the uncontended
case in user space and rely on the operating system only for
suspension and wake-up on contention. However, the current
futex implementation in Linux is unsuitable for hard real-time
systems due to its unbounded worst case execution time (WCET).

Based upon the ideas from our previous work presented at
OSPERT in 2013 which addressed this problem, this paper
presents an improved design for Deterministic Futexes which
shows a logarithmic upper bound of the worst case execution time
(WCET) and covers more futex use cases. The implementation
targets microkernels or statically configured real-time operating
systems.

I. INTRODUCTION

Support for Fast User Space Mutexes (Futexes) was intro-
duced in Linux in 2002 [1] with the Native POSIX Thread
Library (NPTL). Futexes allow to implement various POSIX-
compliant high level synchronization objects such as mutexes,
condition variables, semaphores, readers/writer locks, barriers,
or one-time initializers with low overhead in the system’s C
library in user space. One major design goal of futexes was to
reduce any system call overhead for these locking objects where
possible, thus the implementation uses atomic modifications
to handle uncontended locking and unlocking entirely in user
space, while a generic system call-based mechanism is used
to suspend and wake threads in the kernel on lock contention.
Basically, a futex is a 32-bit integer variable in user space,
representing a certain type of lock and its value is modified
by a type-specific locking protocol [2].

Similar approaches where the kernel is entered only on
contention are used by Critical Sections in Microsoft Windows
[3] and Benaphores in BeOS [4].

We give a short introduction to futexes using a simple mutex
implementation as example: in an integer variable, let bit 0
represent the locked state of the mutex, while bit 1 indicates
contention. The unlocked mutex is represented by the value
0x0. A thread can lock and unlock the mutex by atomically
changing the lock value from 0x0 to 0x1 and vice versa using
a Compare-and-Swap (CAS) or Load-Linked/Store-Conditional
(LL/SC) operation.

A lock operation on an already locked mutex atomically
changes the value from 0x1 to 0x3 to indicate contention and
then invokes a FUTEX_WAIT system call to suspend the calling
thread until the lock becomes available again. Symmetrically,
when the current lock-holder sees contention during an unlock
operation, it atomically clears the locked bit in the futex value
and calls the FUTEX_WAKE system call to wake a blocked thread

which then acquires the lock by atomically setting bit 0 again.
On contention, FUTEX_WAIT enqueues the thread on a wait
queue which holds blocked threads referring to the same or a
different user space futex. For wake-up, FUTEX_WAKE searches
the wait queue and wakes up matching threads, if any.

The last important operation on futexes is FUTEX_REQUEUE
to prevent thundering herd effects [5] when signalling condition
variables: instead of waking up all threads and letting them
compete to lock the associated mutex, this system call wakes
only one thread and moves any remaining blocked threads
from the wait queue associated to the condition variable to the
mutex’ one.

By design, futexes impose no restrictions on the number
of user space variables used for futexes or on the number of
threads blocked in a wait queue. This flexibility makes the
concept very attractive and led to its recent adoption by other
operating systems [6]–[8].

However, being designed for best case scenarios, the current
futex implementation in Linux has drawbacks which make it
unsuitable for hard real-time operating systems:

• Hash table with shared wait queues: Linux hashes the
futex user space address and groups threads with the same
hash value into a shared wait queue. This can lead to an
unbounded worst case execution time (WCET) when, due
to hash collisions, many unrelated threads are kept in the
same hash bucket.

• Linked lists: Linux implements wait queues using priority-
sorted linked lists, which show O(n) search time in shared
wait queues and O(p) insertion time, for n threads and p
priority levels.

• Not preemptive: When waking up or requeuing a large
number of threads, the Linux implementation is not
preemptive. Again, this can lead to an unbounded WCET.

In previous work [9], we presented a solution which tackles
these problems by using a dedicated kernel-internal wait queue
for each futex. To let the kernel look-up the wait queue, we
placed the ID of the first waiting thread next to the futex value
in user space. The solution then utilized O(1) insertion and
deletion time of linked lists to bound the WCET. However,
the solution in [9] supported only FIFO ordering in the wait
queues, so it does not fulfill the POSIX requirement to wake
up threads in priority order [10].

In this paper, we present an improved futex implementation
with the following properties:

• dedicated wait queues for each futex,
• arbitrary ordering in the wait queues,
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• bounded O(log n) worst case execution time in the kernel
for all futex operations targeting a single thread,

• preemptible implementation of futex operations which
wake up or requeue all threads, and

• no dependency on dynamic memory allocation.
The rest of this paper is organized as follows: Section II

describes all futex operations in detail and defines requirements
for determinism and reliability. Section III presents our new
approach. We discuss our new approach and compare it with
the current Linux implementation and our previous approach
in Section IV and we conclude in Section V.

II. FAST USER SPACE MUTEXES AND CONDITION
VARIABLES

A. Terminology

Before we discuss the futex operations, we define the
terminology used in the rest of this paper: a process is an
instance of a computer program executing in an address space.
A process comprises one or more threads. Threads can be
independently scheduled on different processors at the same
time. Different processes have their own distinct address space,
but processes can share parts of their address spaces via shared
memory segments. A shared memory segment is usually mapped
at different virtual addresses in each address space. A waiting
or blocked thread suspends execution until the thread is woken
up or unblocked again.

B. Futex Operations in User Space

Here, we briefly present the user space parts of a futex-based
mutex and condition variable implementation to help under-
standing the corresponding kernel parts. The mutex protocol
extends the one shown in Section I and uses different kernel
operations. Note that the presented user space implementation
is simplified for ease of understanding. An actual user space
implementation will usually be more complex, as the calls also
have to handle asynchronous signals, thread cancellation, etc.,
but the interaction with the kernel side of the presented futex
implementation remains the same. The presented futex API
also deviates from the existing Linux API in that the handling
of an arbitrary number of count threads is reduced to the two
most common use cases, one or all. This helps to bound the
WCET, as we will explain later.

Mutex: For a mutex, the futex value comprises two pieces of
information: the thread ID (TID) of the current lock holder or 0
if the mutex is free, and a waiters bit if the mutex has contention.
Also both user space and the kernel need to understand this
mutex protocol.
mutex_lock first tries to lock a mutex by atomically

changing the futex value from 0 to TID. If the mutex is already
locked, mutex_lock atomically sets the waiters bit in the
futex value to indicate contention, then calls futex_lock to
suspend itself on the current futex value. The futex_lock

operation in the kernel checks the futex value again and tries
to either acquire the mutex for the caller if it is free, or, if not,
atomically sets the waiters bit in the futex value and suspends

the calling thread. On successful return from futex_lock, the
calling thread is the new lock owner.

Conversely, mutex_unlock tries to unlock the mutex by
atomically changing the futex value from TID to 0. If this fails
(the waiters bit is set), mutex_unlock calls futex_unlock

in the kernel. If no threads are waiting, futex_unlock sets
the futex value to 0, or wakes up the next waiting thread and
makes it the new lock owner by updating the TID in the futex
value. futex_unlock sets the waiters bit as well if other
threads are still waiting.

Condition Variable: For a condition variable, the futex value
represents a counter that is incremented on each wake-up
operation. The kernel does not need to know the exact protocol.
When doing any operation on a condition variable, we assume
the caller also has the associated mutex locked [10].
cond_wait reads the condition variable’s counter value,

unlocks the associated mutex, and then calls futex_wait to
block with an optional timeout on the condition variable if the
current counter value still matches the previously read value.
Additionally, cond_wait provides the mutex object to later
requeue to as well.
cond_signal and cond_broadcast increment the counter

and call futex_requeue to requeue either one or all blocked
threads from the condition variable’s wait queue to the mutex’
wait queue. In case the caller has not locked the mutex
before, futex_requeue checks whether the associated mutex
is unlocked, wakes up the first blocked thread and makes it
the new lock owner instead of requeuing it. Remaining threads
are requeued.

After wake-up, cond_wait needs to check the cause of the
wake-up: if the thread was requeued, the condition variable
must have been signalled, and the caller already owns the mutex.
Otherwise, if the timeout expired or the counter’s current value
mismatched, the caller was not requeued to the mutex’ futex
and the function needs to lock the mutex again.

Note that the cond_wait operation exposes a race condition
which may result in a lost wake-up. Lost wake-ups are normally
prevented by the kernel comparing the futex value, but if –
between the time cond_wait unlocks the mutex in user space
and the time the kernel checks the futex value– exactly 232

wake-up operations are performed, the futex value overflows to
exactly the same value and the check would succeed. However,
this problem is unlikely to appear in practice, unless the system
overloads and low priority waiters do not progress anymore.

Corresponding futex operations in Linux with similar API
and behavior are FUTEX_LOCK_PI and FUTEX_UNLOCK_PI

for mutexes, and FUTEX_WAIT_REQUEUE_PI and
FUTEX_CMP_REQUEUE_PI for condition variables [11].
The Linux implementation additionally supports a priority
inheritance protocol which is not in the focus of this paper.

C. Futex Operations in the Kernel

We now describe the futex kernel operations. We consider a
wait queue to be a set of blocked threads waiting on a futex.
The kernel creates and destroys wait queues on demand. Note
that in the following description, a wait queue is specific to a
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single futex and is never shared between multiple futexes. The
Linux implementation differs from this model insofar as the
Linux kernel shares a single wait queue for multiple futexes,
but the description still matches the Linux model if we ignore
unrelated threads in a wait queue and assume that wait queues
always exist, as the wait queues in Linux are created at boot
time and remain persistent.

Wait Queue Look-up: As mentioned before, the kernel’s
futex operations must relate the user provided futex address
to a wait queue by a look-up function. If the futex object is
shared between processes, the kernel uses the physical address
of the futex. For futexes local to the caller’s address space, the
kernel can use the virtual address for look-up instead. We define
further requirements for the corresponding look-up function
later. For now, we assume that the kernel maintains sets of wait
queues and distinguishes local and shared futexes properly, e.g.
address space-specific sets for local futexes, and a global set
of wait queues for shared futexes.
futex_lock(&futex, timeout) handles locking for a

mutex. The function first checks whether a wait queue for the
futex exists in the set of wait queues. If not, it creates a new
wait queue and adds it to the set. Then the kernel evaluates the
futex user space value: if the mutex is unlocked, the kernel tries
to atomically acquire it for the caller and returns if successful.
If the mutex is locked, but the waiters bit is not set, the kernel
atomically sets the waiters bit in the futex value. Finally, the
kernel enqueues the thread into the wait queue and blocks
it with the given timeout. When the timeout expires or the
blocking is cancelled for other reasons, e.g. by a signal, the
kernel removes the thread from its wait queue. Otherwise, the
thread is already successfully dequeued from the wait queue.
It is woken up, and becomes the new lock owner. In all error
cases, the kernel also removes empty wait queues from the set
and destroys them.
futex_unlock(&futex) first looks up the wait queue, and

if one exists, it wakes up a waiting thread and makes it the
new lock owner by updating the futex value in user space. If
there are still blocked threads in the wait queue, the kernel
additionally sets the waiters bit. Once a wait queue becomes
empty after wake-up, the kernel removes and destroys it.
futex_wait(&futex, compare, timeout, &futex2)

first checks whether a wait queue exists in the set of wait
queues, otherwise it creates a new one and inserts it into
the set. Then, before enqueuing the calling thread into the
wait queue, the kernel checks if the futex user space value
still matches the provided compare value, and returns an
error if not. The rest of futex_wait follows futex_lock,
but without any updates of the futex value in user space.
futex_wait accepts an optional second futex which is the
target mutex in a requeue operation. futex_wait also makes
sure that all blocked threads refer to the same second futex
(or NULL) to simplify the requeue operation.
futex_wake(&futex, ONE|ALL) first looks up the wait

queue, and, if one exists, wakes up one or all threads. Again,
empty wait queues are removed afterwards.
futex_requeue(&futex, ONE|ALL) works similarly to

futex_wake: First, the kernel looks up the wait queue and
operates on the given number of blocked threads. Then the
kernel requeues threads to their associated mutex wait queue,
which it has to look-up as well and possibly create. Eventually,
the kernel also checks the mutex value, and if the mutex is
currently unlocked, the kernel wakes up the first thread instead
of requeuing it, and makes it the new lock owner with the
waiters bit set accordingly. The threads are expected to have
set a mutex to requeue to, otherwise the call fails.

Locking: All operations also require internal locks in the
kernel: Usually, a whole set of wait queues is either protected
by a specific lock, or a wait queue provides a specific lock
itself (Linux). These internal locks are necessary for the
futex protocols to serialize concurrent user space access and
concurrent futex operations.

D. Requirements for Determinism

The presented futex operations in the kernel are quite
complex. If they are to be used in a real-time system, they must
be deterministic, i.e. have a WCET which is (i) analyzable
and (ii) bounded. The main idea is to prevent sharing of wait
queues and to use dedicated wait queues for each futex instead.
This means we have to manage a set of wait queues (one for
each futex), and each wait queue only contains a set of blocked
threads specific to the futex. Here we define the requirements
for such an implementation:

1) No dynamic memory allocations shall be used for
creating wait queues. The problem is simply that dynamic
memory allocations can fail at runtime. Also, having
fewer dependencies on other components simplifies the
WCET analysis.

2) For wake-up and requeuing operations to achieve real-
time scheduling, POSIX requires that threads with the
highest scheduling priority have to be woken up first.
For threads with the same priority, FIFO ordering must
be used. This means that wait queues shall be properly
ordered.

3) All operations on a set of blocked threads in a specific
wait queue i.e. find, insert, and remove of threads,
shall have at worst O(log n) execution time, for n threads
in the wait queue. This suggests to use self-balancing
binary search trees, a data structure where the execution
time of all operations stays within logarithmic bounds.

4) Similarly, all operations on the set of wait queues, e.g.
insertion of a new wait queue into the set, shall have
at worst O(logm) execution time as well, for m wait
queues in the set.

5) futex_wake and futex_requeue handle a potentially
large number of threads in the ALL case, so their
execution shall be preemptible after handling each thread.

6) futex_wake/requeue operations on all threads in a
wait queue shall eventually terminate, i.e. threads are
not allowed to sneak in into a currently processed wait
queue again. This condition follows from the previous
requirement that futex operations shall be preemptible.
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7) The preemptible operations on all blocked threads in a
wait queue shall not be observable by these threads if
the threads follow the usage constraints properly. This
condition also follows from requirement 5.

8) The implementation should support fine granular locking,
i.e. locks on the set of wait queues and a particular
wait queue are decoupled to reduce interference between
operations on unrelated wait queues.

Note, requirements 3–6 have the same upper bound n, i.e.
the overall number of threads in the system, when all threads
block on either a different or the same futex. Also, requirements
3 and 4 are not required for determinism in the first place,
as O(n) time is deterministic as well. But having an upper
bound of O(n) execution time is only acceptable if n is both
known and small. Thus the approach would not be applicable
to systems with a very large number of threads.

Preemptible execution of the ALL operations is a good
compromise with respect to the worst case time an operation
holds internal locks, but it introduces its own problems, as
requirements 6 and 7 state.

The last requirement helps to simplify WCET analysis, but
this is not a hard requirement.

III. IMPLEMENTATION

In this section, we describe our implementation.
As described before, futexes in general require two different

data structures in the kernel: (i) a wait queue handling all
blocked threads waiting on the same futex, and (ii) a data
structure to locate this wait queue, based on the futex user
space address as look-up key. We explicitly need this two-tier
design to isolate threads waiting on unrelated futexes and to
support a preemptive implementation of the ALL operations.

For both data structures, self-balancing binary search trees
(BST) are suitable, e.g. red-black trees or AVL trees. In our
futex implementation, we chose to use AVL trees.

Like in Linux and our previous implementation [9], we keep
all data related to futex management inside the thread control
block (TCB) of the blocked threads to get rid of the dependency
on dynamic memory management, thus fulfilling requirement
1.

A. Binary Search Trees

From the BST implementation, we require the standard
operations find, max, insert, and remove, and additionally
root and swap. The root operation locates the root node of
the BST from any given node, thus requiring that nodes in the
BST use three pointers: two for the left and right child nodes,
and a third one to the parent node. The swap operation allows
to swap a node in the tree with another node outside the tree
in O(1) time without altering the order in the tree. Lastly, the
BST implementation requires a key to create an ordered tree.
The key may not be unique, e.g. threads with the same priority
are allowed to exist in the tree. If nodes with duplicate keys
need to be inserted, we require FIFO ordering of the duplicate
nodes.

B. Wait Queue Look-up in the Address Tree

To locate a wait queue from a futex address, we designate
one of the blocked threads in a wait queue as wait queue
anchor. The anchor thread has the root pointer to the wait
queue. All wait queue anchors are enqueued in an address tree,
which is rooted in an address tree root.

Key: For shared futexes, we use the physical address of the
futex as key; and for per-process futexes, we use the virtual
address as key. Also, both shared and per-process futexes are
kept in distinct trees: shared futexes are kept in a global tree
shared between all processes, while per-process futexes are
kept in process-specific data, e.g. in the process descriptor.

We use the fact that futex variables in user space are 32-bit
integers that are aligned on a 4-byte boundary. As the last two
bits of a futex address are always zero, we use them to encode
further information.

We define that a wait queue is open if threads can be added
to it, i.e. new threads can block on a futex, and a wait queue
is closed if new threads can not be added.

We decode the open/closed state of a wait queue in its key:
An open wait queue has the lowest bit set in the key, for a
closed wait queue the bit is cleared. By clearing the open bit,
we can change a wait queue from open to closed state without
altering the structure of the tree. Also, we do not allow open
wait queues with duplicate keys, as each key relates to a unique
futex in user space. However, multiple wait queues with the
same closed key may exist, and they become FIFO ordered
due to the ordering constraints in the BST when changing a
wait queue from open to closed state. We later exploit this
mechanism in futex_wake and futex_requeue to wake or
requeue all threads in a preemptible fashion.

For closed wait queues, we also define a drain ticket attribute,
a counter value which helps during ALL operations later. The
drain ticket is a global 64-bit counter incremented each time a
wait queue is closed. It should not overflow in practice.

The last specialty in the address tree is the following: if the
thread used as wait queue anchor changes, we simply swap the
old anchor thread in the tree with a newly designated anchor
thread without altering the structure of the tree and we copy
the wait queue root pointer, the current drain ticket, and the
current open/closed state in the key as well.

This design allows us to perform look-up, insertion, and
removal of wait queues in O(log n) time, while changing a
wait queue from open to closed state and changing the wait
queue anchor both need O(1) time. This fulfills requirement 4.

C. Wait Queue Management

As stated before, the wait queue anchor thread is an
arbitrarily chosen blocked thread in the wait queue which
holds the root pointer of the wait queue and the open/closed
state of the wait queue encoded in the key. We refine this now
and define that the thread being the current root node of the
wait queue is to be used as anchor. If the root node changes
due to insertion or removal in the wait queue tree, we swap the
root nodes in the address tree as described above. Using the
root node thread as its anchor is not mandatory, as any node in
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the wait queue would do, but this simplifies the implementation
when threads are woken up for other reasons, e.g. timeouts, as
explained below.

When a thread blocks on a unique futex address, the kernel
creates a new wait queue on demand in open state and inserts it
into the address tree with this first thread as anchor. Note that
this does not involve allocation of memory. Similarly, the wait
queue is implicitly destroyed when the last thread (which again
must be the anchor) is woken up. The kernel then removes the
wait queue from the address tree.

The kernel inserts threads in priority order into an existing
wait queue. Also, when waking or requeuing threads, we
remove the highest priority thread first.

Removal of an arbitrary node, e.g. on a timeout, requires
to find the associated wait queue root to rebalance the tree
afterwards. We do not look-up the wait queue in the address
tree in this case, as it might have been set to closed state and
then up to two look-ups in the address tree would be required.
Instead, we simply traverse the wait queue tree to the root
node to locate the anchor and remove the thread. This is also
necessary when a thread’s scheduling priority changes while
the thread is blocked. In this case, we remove the thread and
re-insert it with its new priority.

If during insertion or removal the wait queue root changes
due to the necessary rebalancing in the BST, we transfer the
wait queue root pointer and the other current wait queue at-
tributes to the new root and update the address tree accordingly.

This design allows to perform all internal operations on wait
queues in at most O(log n) time. With it, we are now able to
implement futex_lock, futex_unlock, and futex_wait

in O(log n) time. Also, a futex_wake and futex_requeue

operation targeting a single thread takes O(log n) time. This
fulfills requirements 2 and 3.

D. Preemptible Operation

We now discuss the preemptibility of futex_wake and
futex_requeue if ALL threads need to be handled. In this
case, both operations set the wait queue to closed state first,
so it can no longer be found by enqueuing operations, then we
draw a unique drain ticket and save the ticket in the anchor
node.

Then the kernel wakes up or requeues one thread after
another, but becomes preemptible after handling each thread.
After preemption, the kernel is always able to find the wait
queue again by looking for the now closed wait queue. If
multiple closed wait queues with the same key are found, the
drain ticket decides what to do. The FIFO ordering in the BST
makes sure that nodes are found with increasing drain ticket
numbers. If the drain ticket number of a node is less than the
originally drawn ticket, the wait queue relates to an older, but
still unfinished operation, and draining older wait queues on
behalf of some other thread is fine. So the caller can safely
perform its operations as long as the drain ticket number is
less than or equal to the drawn drain ticket. The drain ticket
is therefore necessary to prevent already handled threads to
re-enter these wait queues.

Since at most n-1 threads can be blocked before a draining
operation starts and a drain ticket is drawn, the upper limit
of steps to complete a futex_wake or futex_requeue

operation is therefore n. This fulfills requirements 5 and 6.
But is it acceptable in general to drain other thread’s wait

queues? We can answer this question if we look at the
following usage constraint of condition variables: the caller of
cond_signal and cond_broadcast shall have the support
mutex locked as well, so none of the requeued threads will
run before the caller unlocks the support mutex. Therefore,
handling threads of a previous waiting round can only happen
when cond_signal and cond_broadcast do not have the
support mutex locked, and in this case, POSIX does not longer
guarantee "predictable scheduling". This means the answer is
yes, and we fulfill requirement 7.

A different use case is a POSIX barrier implementation where
a given number of threads block until all threads have reached
the barrier. An implementation of barrier_wait could then
use futex_wake to wake all blocked threads. A preemptive
futex_wake operation could get immediately preempted by
a higher priority thread which is woken up as first thread
and then the other threads are kept blocked until the original
thread continues draining the wait queue. Note that this would
not happen in a non-preemptible implementation. However,
POSIX also notes that applications using barriers "may be
subject to priority inversion" [10]. Alternatively, the barrier
implementation can mitigate this issue by temporarily raising
the caller’s scheduling priority to a priority higher than the
priorities of all blocked threads during wake-up.

E. Locking Architecture

The final point to be discussed is the locking architecture to
fulfill requirement 8. In this case, we cannot easily provide a
solution. We could, for example, implement a nested locking
hierarchy where the kernel first locks the address tree, locates a
wait queue, locks the wait queue, and then unlocks the address
tree again. The strict order in which locks are taken is necessary
to prevent deadlocks. But this design approach does not allow
to remove an empty (and locked) wait queue from the address
tree without holding the address tree lock. Doing this would
require unlocking the wait queue first, then locking the address
tree, and then finally locking the wait queue again. However,
this kind of re-locking exposes races, as the re-locked wait
queue may no longer be empty due to concurrent insertion on
other processors. And this problem becomes even worse in
our design as changes to a wait queue anchor require frequent
updates in the address tree.

Still, we assume that a solution can be found, e.g. using a
lock-free look-up mechanism in the address tree, but it is still
questionable if such an approach would improve the WCET
or would simplify the WCET analysis in the end.

For now, we decide to not implement a nested locking
scheme as requested by requirement 8, but to use a shared
lock for both the address tree and all wait queues. Note that
we use dedicated locks for each per-process address tree and
the shared global address tree.
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Table I
COMPARISON OF FUTEX IMPLEMENTATIONS

Our new Our old Linux
approach approach

Futexes share wait queues no no yes
Wait queue look-up BST via TID hash table

O(logm) O(1) O(1)
Wait queue implementation priority-sorted FIFO-ordered priority-sorted

BST linked list linked list
- find O(logn) O(1) O(n)
- insertion O(logn) O(1) O(p)
- removal O(logn) O(1) O(1)
Locking global global per hash bucket
futex_requeue
- one thread yes yes yes
- arbitrary number of threads no no yes
- all threads yes yes yes
- preemptive implementation yes not needed no
futex_wake
- one thread yes yes yes
- arbitrary number of threads no no yes
- all threads yes not provided yes
- preemptive implementation yes not needed no
Priority ceiling protocol yes yes yes
Priority inheritance protocol no no yes

for n threads, m futexes, and p priority levels

IV. DISCUSSION

In this section, we compare our new approach presented in
this paper with our old approach in [9] and the current Linux
implementation in kernel 4.16.

We briefly repeat the key points of our previous implemen-
tation in [9]:
• All futex-related data is kept in the TCB.
• Threads on a wait queue are kept in FIFO order.
• Wait queues use linked lists with FIFO ordering.
• For wait queue look-up, the kernel saves the TID of the

first waiting thread next to the futex value in user space,
and updates the TID value each time a wait queue changes.

• The requeue all operation appends the whole linked list
of threads to requeue at the end of the mutex wait queue
list in O(1) time.

• A wake all operation is not provided.
• All other operations handle insertion or removal in O(1)

time as well.
Table I shows the differences between the implementations.

The complexity of the Linux implementation clearly show that
it was designed for the best case, e.g. when only a small
number of threads block and collisions in the futex hash
table are rare. And this is usually the case during normal
operation of a system. However, if one considers certification
or needs to determine deterministic upper bounds of the WCET,
the possible corner cases in the Linux implementation lead
to potentially unbounded execution time, e.g. a malicious
application could exploit collisions in the hash.

Our old implementation in [9] already addressed these issues,
but it does not support priority ordered wait queues which are
required for POSIX scheduling. Also, the old implementation
does not support POSIX barriers.

Our new implementation presented in this paper is superior
in all these respects, however the overhead of a BST compared

to linked lists seems quite heavy if the number of used futexes
and blocked threads is low. This needs to be evaluated in future
work.

Also, our presented locking approach is restricted to a
single lock for all futexes, which is worse in the average
case compared to the Linux implementation, as Linux uses a
dedicated lock for each hash bucket.

Finally, our old and new implementations do not support
all futex uses cases available in Linux, as we restrict our
implementation to handle either just one or all threads, not
an arbitrary number. Regarding other missing features: All
discussed approaches can support the priority ceiling protocol
defined by POSIX, which adjusts a thread’s scheduling priority
before locking a mutex [10]. But in addition, Linux also
supports a priority inheritance protocol for mutexes. This would
be possible for our presented design, but this is currently left
to future work.

V. CONCLUSION AND OUTLOOK

We have shown an approach to improve the determinism of
the kernel parts of a futex implementation by using a two-tier
design using two nested self-balancing binary search trees,
namely one tree to look up futex wait queues by their address,
and a second tree to manage blocked threads in priority order.
The shown design has a bounded WCET of O(log n) time
for all non-preemptible kernel operations with respect to the
number of concurrently used futexes and/or blocked threads.

The presented approach is suitable to implement the standard
POSIX thread synchronization mechanisms, like mutexes,
condition variables, or barriers on top [2]. Also, the presented
approach supports the POSIX priority ceiling protocol.

In future work, we would like to improve internal locking
in the kernel implementation to reduce interference between
unrelated processes. Finally, we would like to evaluate means
to support priority inheritance protocols.
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Abstract—Tasks in the multi-mode real-time model have
different execution modes according to an external input. Every
mode represents a level of functionality where the tasks have
different parameters. Such a model exists in automobiles where
some of the tasks that control the engine should always adapt
to its rotation speed. Many studies have evaluated the feasibility
of such a model under different scheduling algorithms, however,
only through simulation. This paper provides an empirical evalua-
tion for the schedulability of the multi-mode real-time tasks under
fixed- and dynamic-priority scheduling algorithms. Furthermore,
an evaluation for the overhead of the scheduling algorithms is pro-
vided. The implementation and the evaluation were carried out in
a real environment using Raspberry Pi hardware and FreeRTOS
real-time operating system. A simulation for a crankshaft was
performed to generate realistic tasks in addition to the synthetic
ones. Unlike expected, the results show that the Rate-Monotonic
algorithm outperforms the Earliest Deadline First algorithm in
scheduling tasks with relatively shorter periods.

I. INTRODUCTION

In modern automotive systems, Electronic Control Units
(ECUs) are used to control and improve the functionalities,
the performance and the safety of various components. These
embedded systems are in continuous interaction with various
parts of the automobile such as the doors, the wipers, the
lights and most importantly the engine [14]. In order to
guarantee a correct behavior, the embedded system should
react within a specific amount of time, i.e. the deadline. The
timing correctness in these systems is very important, because
a delayed reaction can result in a faulty behavior and then
affect the reliability and safety of the automobile.

The software of an automotive application can be modeled
as a set of recurrent tasks with timing constraints, i.e. periodic
real-time tasks. For instance, to control the engine of an
automobile, an angular task may release jobs depending on
the engines speed. Such a task is linked to the rotation of
specific devices such as crankshaft, gears or wheels. It could be
responsible for calculating the time at which the spark signal
should be fired, adjusting the fuel flow, or minimizing fuel
consumption and emissions [9]. The period of this task, i.e. the
time between the release of two consecutive jobs, is inversely
proportional to the speed of the crankshaft. With an increasing
rotation speed, the time available for the task to execute all of
its functions may not be long enough, which results in deadline
misses. This could lead to catastrophic consequences in hard

TABLE I: An example of a multi-mode task with three
different execution modes.

Rotation Speed (rpm) Mode Type Executed Functions
[0, 3000] A f1, f2 and f3

(3000, 6000] B f1 and f2
(6000, 9000] C f1

real-time systems [6].

In order to meet the timing constraints and prevent a
potential system failure, the job has to react before the next job
is released. Therefore, the task might have to drop some of its
functions, the non-critical ones, to meet its deadline. This can
be achieved by using tasks with different execution modes, i.e.
multi-mode tasks, to adapt to the changing environment [15]. In
some cases, tasks may react differently according to an external
input and thus switch into different modes accordingly. In our
example of the automobile’s engine, the input is the engine
speed and the functionalities of the tasks are part of the
fuel injection system. Every time the crankshaft finishes a
rotation, the tasks have to execute their respective functions.
If the engine speeds up, the tasks may need to use another
algorithm or functions to achieve their goal and avoid deadline
misses. In other cases, the engine may be more stable at
higher rotation speeds, but requires additional functions to be
executed at lower speeds to keep it stable. Consequently, these
functions are not required to be executed at higher speeds,
which can be exploited to reduce the execution time of the
tasks [7]. Table I shows an example of a multi-mode task with
3 types of execution modes: A, B and C. The selection of the
mode depends on the rotation speed, where the task executes
different functions in each mode. The rotation speed of the
engine is measured in revolutions per minute (rpm).

Such a task model was presented by Buttazzo et al.
[7]. They also provide schedulability analysis under Earliest
Deadline First (EDF) algorithm. Furthermore, another analysis
under Rate Monotonic (RM) algorithm is provided in [9], in
addition to simulation for the effectiveness of the proposed test.
However, none of the studies above performed the evaluation
of the system in a real environment. In this paper, we provide
an empirical evaluation of multi-mode tasks under EDF and
RM algorithms. The evaluation was performed on a real hard-
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ware running a real-time operating system. The contribution
of this paper can be summarized as follows:

• Modifying the FreeRTOS real-time operating system to
consider the periodic and multi-mode real-time tasks.
Furthermore, several cost functions were implemented for
a comprehensive evaluation1.

• Implementing the EDF and RM scheduling algorithms
in FreeRTOS which can be used in further studies and
researches1.

• Empirical evaluation for the schedulability of the multi-
mode tasks under EDF and RM algorithms in a real
environment, i.e. FreeRTOS running on Raspberry Pi.
Moreover, overhead evaluation of both algorithms is pro-
vided in this work.

II. BACKGROUND AND LITERATURE REVIEW

A. FreeRTOS

In this Subsection, we introduce the FreeRTOS and its main
components that were modified in our implementation [4].
FreeRTOS is a real-time operating system kernel that sup-
ports about 35 microcontroller architectures. It is a widely
used and relatively small application consisting of up to 6
C files [3]. FreeRTOS can be customized by modifying the
configuration file FreeRTOSConfig.h, e.g. turning preemption
on or off, setting the frequency of the system tick, etc.
Tasks in FreeRTOS execute within their own context with no
dependency on other tasks or the scheduler. Upon creation,
each task is assigned a Task Control Block (TCB) which
contains the stack pointer, two list items, the priority, and
other task attributes. Tasks can have priorities from 0 (the
lowest) to configMAX PRIORITIES-1 (the highest), where
configMAX PRIORITIES is defined in FreeRTOSConfig.h. A
task in FreeRTOS can be in one of the following four states:

• Running: The task is currently executing.
• Ready: The task is ready for execution but preempted by

an equal or a higher priority task.
• Blocked: The task is waiting for an event. The task will be

unblocked after the event happens or a predefined timeout.
• Suspended: The task is blocked but does not unblock after

a timeout. Instead the task enters or exits the suspended
state only using specific commands.

The following are the main functions and data structures in
FreeRTOS which will be mentioned in the following sections:

• xTaskCreate(): Creates a task and add it to the ready list.
• prvInitialiseTCBVariables(): Initialize the fields of the

TCB.
• vTaskDelayUntil(): Delays a task for a specific amount of

time starting from a specified reference of time.
• vTaskStartScheduler(): Starts the FreeRTOS scheduler.
• pxReadyTasksLists: An array of doubly linked lists with

size of configMAX PRIORITIES that contains the ready
tasks according to their priorities. Each array element and
a corresponding list represents a level of priority.

• uxTopReadyPriority: A pointer to the task with the highest
priority in the ready list.

1The implementation is available on https://github.com/
multiModeFreeRTOS/multiMode

The scheduler in FreeRTOS is responsible for deciding
which task executes at a specific time. It is triggered by every
system tick interrupt and schedules the task with the highest
static priority in the ready list for execution. It loops the ready
list from the pointer uxTopReadyPriority to the lowest priority
that has a non-empty list. If two tasks have the same priority,
they share the CPU and switch the execution for every system
tick.

B. Scheduling the Multi-Mode Tasks

Buttazzo et al. [7] provide analysis for the feasibility of
multi-mode tasks under the EDF algorithm. Furthermore, a
method is provided to determine the switching speed that keep
the utilization of the tasks below a predefined threshold. On
the contrary, Huang and Chen [9] present a feasibility test
for such a task model under RM algorithm. Furthermore, they
show the advantages of using the fixed-priority scheduling over
the dynamic-priority scheduling. Both of the studies above
evaluated their approaches by simulation.

III. REAL-TIME MULTI-MODE TASK MODEL

Multi-mode tasks are periodic tasks that can be executed
in several modes [9]. Given a set T of n independent real
time tasks. Each task i (for i = 1, 2, . . . , n) has mi execution
modes, i.e., τi = {τ1i , τ2i , . . . , τmi

i }. In each mode τ ji , the task
has different worst-case execution time (WCET) Cj

i , period
T j
i and relative deadline Dj

i . The task consists of an infinite
sequence of identical instances, called jobs. T j

i represents the
time interval between the release of two consecutive jobs of
the same task. Once a job is released, it should be executed
within the deadline Dj

i . The mode of the task may change
based on an external interrupt or any other event, which can
be used to change the execution time of the tasks and then the
total utilization accordingly. If the mode is changed during the
runtime, it will take effect in the next period.

IV. DESIGN AND IMPLEMENTATION

This section covers the implementation of the multi-mode
task model and both scheduling algorithms in FreeRTOS (A
ported version to Raspberry Pi [1]).

A. Multi-Mode Task Model

1) Periodic Real-Time Tasks: It is necessary to have a
periodic task model in order to implement the multi-mode
tasks. Therefore, the tasks in FreeRTOS were modified by
expanding the task control block (TCB) structure with the
typical fields used in periodic real-time systems [6]. In addition
to the original TCB attributes in FreeRTOS, the following ones
with portTickType data type were added:

• uxPeriod: Period.
• uxWCET: Worst-case execution time.
• uxDeadline: Relative deadline.
• uxPreviousWakeTime: The previous wake time of the task.

The absolute deadline of a task can then be calculated
as D = uxDeadline + uxPreviousWakeT ime. Those at-
tributes were also added to the parameters of the xTaskGeneric-
Create(), xTaskCreate() and prvInitialiseTCBVariables() func-
tions to be initialized upon task creation. To guarantee the
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periodicity of the tasks, i.e. constant execution frequency, the
vTaskDelayUntil() function is used to delay the task for the
specified period of time T j

i starting from the arrival time
captured by the xTaskGetTickCount() function and stored in
uxPreviousWakeTime variable.

2) Modes: Now, we have a periodic task model and it will
be modified to have different execution modes. To achieve that,
the TCB attributes described in Subsection IV-A1 should have
many values corresponding to the modes of the task. Since the
number of the modes are fixed and known upon system setup,
an array data structure is used to store the several values of
the same attribute. The TCB fields were modified as follows:

• portTickType ∗uxPeriods;
• portTickType ∗uxWCETs;
• portTickType ∗uxDeadlines;

Additional attributes were added to store the number of the
modes and determine threshold values for each mode level as
follows:

• unsigned int uxNumOfModes: The number of the
modes.

• unsigned int ∗uxModeBreaks: The range for each
mode.

uxModeBreaks contains the maximum value of each mode
level. For example, the first mode (indexed by 0) will be
chosen if the external input is between 0 and uxMode-
Breaks[0]. Similarly, the range of the second mode is (ux-
ModeBreaks[0],uxModeBreaks[1]]. The parameters were also
added to the corresponding functions as described in Subsec-
tion IV-A1.

To switch to the corresponding mode during the runtime,
the function vUpdateMode() was implemented. It chooses
the appropriate mode based on an external input and the
defined mode ranges in the array uxModeBreaks. The value
of the external input is stored in a global variable named
externalInput with type volatile unsigned int. It is declared
as volatile, because its value might change at any moment
during the runtime. So, any application can change the mode
easily by updating this variable according to an external input
or any other event. The externalInput is initialized to 0, which
means that the first mode is the default one. According to
the definition of the multi-mode tasks in Section III, tasks do
not change their mode once a mode change request is arrived,
even if they are blocked. Any changes will be applied starting
from the next release. Therefore, the mode is updated in our
implementation right before the next wake-up time. This was
done by calling vUpdateMode() at the start of the function
prvAddTaskToReadyQueue().

B. Rate-Monotonic Scheduler

According to the RM algorithm, the priorities of the tasks
are assigned statically before the execution according to their
periods, i.e., the tasks with a shorter period has a higher priority
[12]. We reserve the priority level 1 in FreeRTOS and the
corresponding ready list pxReadyTasksLists[1] for the tasks
to be scheduled under RM algorithm. All of these tasks are
assigned to priority 1 upon creation temporarily. Then, their
priorities are assigned according to RM algorithm before the
scheduler is started. A new function named vAssignPriorities()

was implemented and is called in vTaskStartScheduler() func-
tion after the creation of the idle task to assign those priorities.
Another attribute, unsigned int *uxPriorities, was added to
the TCB to store the priorities of the same task for all the
corresponding modes. Moreover, the following doubly linked
list was created to sort the tasks according to their periods in
all of their modes:

1 struct doublyLinkedListNode {
2 unsigned int value ;
3 void ∗task ;
4 int mode ;
5 volatile struct doublyLinkedListNode ∗←↩

prev ;
6 volatile struct doublyLinkedListNode ∗←↩

next ;
7 } ;

Where value and task store the period of each mode and
a pointer to the corresponding task’s TCB respectively. The
tasks in pxReadyTasksLists[1] are inserted into the doubly
linked list and sorted according to their periods. Then, the
priorities are assigned for each task for all the modes by
filling the uxPriorities array. Finally, the tasks are moved to
their corresponding ready lists according to the new assigned
priorities.

C. Earliest Deadline First Algorithm

The EDF algorithm assigns the highest priority to the job
with the earliest absolute deadline among of the ready jobs
[13]. Before implementing the EDF algorithm, task creation
functions were modified, so the tasks can be scheduled dy-
namically. The static priority parameter in the xTaskCreate()
function is discarded by setting it always to 1. The FreeRTOS
uses an array of linked lists to store the ready tasks according
to their priorities. The array size can be defined by the variable
configMAX PRIORITIES. However, it is not suitable to use an
array with a fixed size for dynamic priority assignment. Of
course this array can still be used, but either it should be big
enough for any eventual number of tasks, or its size should be
always reallocated. To avoid such an overhead, we replaced
the the ready list pxReadyTasksLists with a doubly linked list
that has the same name to maintain all the ready tasks. We
apply a binary heap on the ready tasks to find the one with
the highest priority. Every time a task is added to the ready
list by calling the prvAddTaskToReadyQueue() function, the
absolute deadline is calculated, as shown in Subsection IV-A1,
and the task with the earliest absolute deadline is scheduled
for execution.

D. Additional Modifications

1) Shared Processor Behavior: In this subsection, we
present the additional modifications to the system in order
to improve the overall performance and make our EDF im-
plementation work appropriately. In the FreeRTOS, the tasks
share the processor equally if they have the same priority. The
processor executes the tasks in a round-robin behavior, which
results in a context switching for every system tick and then
additional overhead. The actual cost of switching between two
tasks is approximately 4µs per every context switch according
to our measurements. Even if the ready list has just one task or
only one task has the highest priority, the FreeRTOS performs
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context switching on the same task for every system tick. This
includes saving the state of the task and restoring it every
system tick which results in a high overhead. We solved such
a problem by performing context switching only if we have
a new task with a higher priority or if the current task under
execution is moved to the blocked state. Context switching
is then only conducted when necessary. Tasks with the same
priority are scheduled according to their insertion order in the
ready list.

2) Performance and Evaluation metrics: For system evalu-
ation, we implemented the following cost functions to measure
the performance of the implemented schedulers [6]:

• System overhead: The time required to handle all mech-
anisms other than executing jobs such as scheduling
decisions, context switching and system tick interrupts.

• Success ratio: The percentage of the schedulable task sets
among the total number of the task sets.

• Average response time:

tr =
1

n

n∑

i=1

(fi − ai)

where ai and fi are the arrival time and the finishing time
of task execution respectively.

• Maximum lateness:

Lmax = max
i

(fi − di)

3) Configurations and Definitions: Several configuration
parameters were added to the system which are required for
the evaluation or visualization of the scheduling. The following
definitions were added to the file FreeRTOSConfig.h:

• configANALYSE METRICS: Trace the data of the tasks
for the evaluation metrics (1: Enabled, 0: Disabled).

• configANALYSE OVERHEAD: Measure the total time
consumed by the tick interrupts (1: Enabled, 0: Disabled).

• configPLOTTING MODE: Trace tasks at the context
switches (1: Enabled, 0: Disabled).

• configTICKS TO EVAL: The period time in milliseconds
for any of above modes to run.

• configEVAL THRESHOLD: The time between evaluation
rounds. It must be long enough for tasks to delete them-
selves.

• configUSE TASK SETS: Consider more than one task set
for evaluation. (1: Multiple task sets, 0: Only one task set).

• configSET SIZE: The number of the task sets used in the
evaluation.

• configNUMBER OF TASKS: The number of the tasks per
a task set.

Python scripts for the evaluation metrics, the overhead and
the plotting were also implemented.

V. EXPERIMENTAL EVALUATIONS

Two evaluation methods were conducted in our work. In
the first one, we implemented a python script to generate tasks
synthetically. In the second evaluation method, we generated
task sets with timing characteristics similar to the tasks in
a real-world automotive software system. The first and the
second types of tasks are called synthetic and realistic task
sets respectively.

Period Share
1 ms 3 %
2 ms 2 %
5 ms 2 %
10 ms 25 %
20 ms 25 %
50 ms 3 %

100 ms 20 %
200 ms 1 %

1000 ms 4 %
angle-synchronous ms 15 %

TABLE II: Task distribution among periods

Mode 0 1 2 3 4 5
Min. 0 1001 2001 3001 4001 5001
Max 1000 2000 3000 4000 5000 6000

Period 30 15 10 7.5 6 5

TABLE III: 6 modes ranging from 0 to 6000 rpm with their
periods in milliseconds.

A. Setup

The FreeRTOS was used as a real-time operating system
to implement the multi-mode tasks and both scheduling al-
gorithms on Raspberry Pi B+ board [1, 2]. The hardware
board has ARM1176JZF-S 700 MHz processor and 512 MB
of RAM. The UART interface of the Raspberry was used
to generate an external interrupt. The corresponding interrupt
service routine sets the global variable externalInput to the
number of the mode determined by the evaluation script used
in each respective evaluation method. The function setupUAR-
TInterrupt() was implemented in the file uart.c located in the
drivers directory in order to set up the UART interface.

Two types of task sets were generated: (1) synthetic and
(2) realistic. For the synthetic tasks, a set of utilization values
were generated in the range of 10% to 100% with a step size
of 10 according to the UUniFast algorithm [5]. The approach
in [8] was used to generate periods in the range of 1 to
100 ms with an exponential distribution. The WCET Cj

i of
each task was calculated by Ti∗Ui. The deadlines are implicit,
i.e. equal to the period. A proportion p of those tasks were
converted to multi-mode tasks with M modes. Note that the
normal periodic tasks are multi-mode tasks with only one mode
M = 1. The generated values above were assigned for the first
mode of all the tasks. For the multi-mode tasks, the values for
the remaining modes were scaled by the factor of 1.5, i.e.,
Cm+1

i = 1.5 ∗ Cm
i , Tm+1

i = 1.5 ∗ Tm
i . For each multi-mode

task, one of the modes was then chosen to have the highest
utilization while the WCETs of the other modes were reduced
by multiplying them with random values between 0.75 and
1. According to the configurations above, 100 task sets were
generated with 50% multi-mode tasks and cardinality of 10,
i.e. the number of the tasks per a task set. The number of
modes used in the evaluation are 5, 8 and 10. Each task set
was assigned 10 seconds for execution and 5800 ms to delete
itself.

Furthermore, realistic tasks that share the characteristics of
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Fig. 1: The overhead of RM and EDF scheduling algorithms.

an automotive software system were generated as presented by
Kramer et al. [10]. These characteristics cover the distribution
of the tasks among the periods, the typical number of the
tasks, the average execution time of the tasks and factors for
determining the best- and worst-case execution times. Table II
shows the distribution of the tasks among the periods [10]. The
angle-synchronous tasks, which take 15% of all the tasks, are
converted to multi-mode tasks as their worst-case execution
time needs to adapt to their reduced period. In our case, the
maximum engine speed is 6000 rpm with 4 available cylinders.
For the conversion to multi-mode tasks, the engine speed
was divided into 6 intervals and the periods were calculated
by the upper bound of each mode as shown in Table III.
The WCET of the tasks was assigned to the lowest mode.
For the remaining modes, it was calculated based on the
utilization of the first mode, i.e. Ci = Ti ∗ U1 and U1 = C1

T1
.

Moreover, we implemented a crankshaft simulation that starts
at an angular speed of 1 rpm and increases by 1000 rpm over
500 ms, and sends a signal every time the piston reaches the
maximum position. This happens every one full rotation of the
crankshaft. Once the simulated crankshaft reaches its highest
speed of 6000 rpm, it will slow back down to 1 rpm. The
acceleration/deceleration is steady during the whole execution.
100 task sets were generated per each utilization level from
10% to 100% with a step size of 10.

B. Results

The success ratio of the tasks and the overhead of the
algorithms used in this subsection are defined in Subsec-
tion IV-D2. Figure 1 provides an evaluation for the overhead of
both scheduling algorithms. As expected, the EDF algorithm
has a higher overhead than the RM algorithm due to the
dynamic priority assignment, where the priority of the jobs
may change during the runtime. The EDF algorithm should
always keep tracking of the absolute deadlines of the jobs,
whilst the priorities according to RM algorithm are fixed prior
to the execution, and the algorithm should just pick the next
task in the ready list. We also observe that the overhead of
both algorithms increases as the cardinality (i.e. the number of
the tasks per a task set) increases. The increase of cardinality
results in a longer ready list, which explains the growth in the
overhead.
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Fig. 2: Percentage of the schedulable task sets for 5 and 10
modes using the synthetic tasks.

Figures 2 and 3 show the impact of task utilization on the
success ratio of the synthetic and realistic tasks respectively.
They also compare between RM and EDF algorithms. What
can be clearly seen in Figure 2 is that the EDF algorithm was
able to find more feasible schedules than the RM algorithm.
All the task sets with a utilization of up to 100% and up to
10 modes were feasibly scheduled under EDF. However, the
RM algorithm could only achieve that for a utilization of up
to 50% and 40%, and for a configuration of 5 and 10 modes
respectively. After those levels of utilization, the success ratio
of the RM algorithm decreases significantly. This is due to the
fact that the EDF algorithm has a higher utilization bound than
the RM algorithm.

If we now turn to the realistic tasks, we observe that the
EDF algorithm performs worse than the RM algorithm, which
is unexpected. It was able to schedule all the task sets with a
total utilization of only 10%. It failed to schedule any task set
with a total utilization of more than 50%. However, the RM
algorithm could schedule all the task sets with a total utilization
of up to 40% and was still able to find feasible schedules for
some of the task sets with a total utilization of up to 60%. This
behavior is due to the high overhead of the EDF algorithm and
the distribution of the tasks among the periods in this data set.
The realistic data set has more tasks with shorter periods than
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Fig. 3: Percentage of the schedulable task sets using the
realistic tasks.

the synthetic one. For high workloads, the sum of the time
required for the scheduling decision and the execution time
of the job exceeds the relative deadline and then results in
unschedulable task sets.

VI. CONCLUSION

In this paper, we evaluate the multi-mode tasks under the
EDF and the RM scheduling algorithms in a real environment.
To achieve that, the FreeRTOS real-time operating system was
modified to implement this task model and both scheduling al-
gorithms. Moreover, additional modifications were performed
to provide configurable evaluation metrics. The experiments
were performed on Raspberry Pi B+ board. Synthetic and
realistic data sets were used in the evaluation. For the realistic
data set, we generated angular tasks with periods tied to the
rotation of a simulated crankshaft. The experiments confirmed
that the EDF algorithm was in general able to find more
feasible schedules than the RM algorithm for the synthetic task
sets with high utilization values. However, it performed poorly
when the realistic data set with relatively shorter periods was
used, although a binary heap was used in the implementation to
reduce the overhead of the scheduling decision. More feasible
schedules were derived under the RM algorithm for this data
set due to the low scheduling overhead.

VII. FUTURE WORK

Further work could usefully improve the implementation
of the EDF algorithm by using a hardware accelerated bi-
nary heap to reduce the overhead caused by the dynamic
scheduling [11]. However, such an implementation requires
a special or additional hardware. Moreover, the system could
be modified to handle task overruns.
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Abstract—In some real-time control applications, the
predictability of task’s timing behaviour is as important
as energy consumption. That predictability includes the re-
sponse time and short finish time jitter. This paper presents
a jitter-aware Intra-task DVFS scheme for mitigating finish
time jitter in hard real-time systems. This work exploits
Dynamic Voltage and Frequency Scaling (DVFS) technique
to proactively manipulate actual execution/response times of
tasks. The strategy proposed in this paper mainly applies
control and data flow analysis of task program to insert
additional frequency scaling codes (instructions to change
processors voltage and frequency). Moreover, it determines
the appropriate frequency scaling factor. Through evalua-
tion by multitasking simulation, it is shown that jitter can
be reduced by up to 16.2%-19.4%.

I. Introduction

In some real-time control applications, large jitter jeop-
ardise the stability or processing accuracy of the systems
[1].

To reduce jitter, deadline assignment algorithm by
linear programming was proposed [7]. Deadline assign-
ment alg. attempts to shorten relative deadlines of some
periodic tasks whilst keeping the schedulability, by pro-
moting priorities of certain tasks to reduces the number
of preemptions. Variation in preemption duration makes
contributes to jitter, accordingly the less the preemption,
the less the jitter. However, this approach only takes pre-
emptions into account. In fact, variation in execution time
is another factor leading to jitter. Other works that exploit
Dynamic Voltage and Frequency Scaling (DVFS) to
handle jitter [9], [10]. DVFS has been widely utilised
in energy efficiency, using slack time to scale down the
operating frequency. In the meanwhile, DVFS enables
the system to control the actual execution/response times
of periodic tasks, thus it is applicable to reducing finish
time jitter. Mochocki, et al. exploited only the suitable
portion of slack time to scale down the operating fre-
quency for some lower-priority tasks’ instances instead
of aggressively using all slack time for energy reduction
[9]. Their work is based on Inter-task perspective, hence
frequency scaling can be performed only at the start time
of instances. Phatrapornnant and Pont proposed a similar
jitter-aware DVFS algorithm called TTC-jDVS algorithm,
which incorporates jitter reduction in an Inter-task DVFS
scheme [10]. However, it reduces start time jitter only,
ignoring finishing time jitter or the variation in execution
time.

The objective of this paper is to reduce finishing
time jitter under Rate-Monotonic scheduling (RM). We
propose a jitter-aware Intra-task DVFS scheme to
make task scheduling adapt to runtime variations due
to both interference and execution time. The Intra-task
DVFS approach [11]–[14] promises higher granularity of
frequency scaling within one instance of task’s execu-
tion. Thus, it relatively outperforms the Inter-task DVFS
approach in terms of energy reduction. Apart from the
effect of energy efficiency, it is expected that the Intra-
task DVFS approach manipulate finishing time jitter. Our
algorithm targets at reducing variation in both execution
time and interference time.

This work is the first to control the finishing time
jitter using Intra-task DVFS, to the best of the authors
knowledge.

II. Preliminaries

A. The Causes of Jitter

It is useful to clarify the sources of jitter is nec-
essary. Start time jitter directly depends on the task’s
priority, which further affects the variation in preemp-
tion/interference within the interval from release time to
start time. On the other hand, finish time jitter is caused
by variation in both preemption and execution time.

B. Jitter Margin

In real-time control systems (e.g., closed-loop control),
a nearly constant computational delay of periodic tasks
is essential due to the system requirement of stabil-
ity/robustness. Hence the jitter margin covers time delay
in a periodic control task was introduced to guarantee
system stability [4]. Response time of a task instance
consists of two parts: 1) constant delay L and 2) time-
varying jitter. The jitter margin Jm is the maximum value
of the time-varying part. The exact values of constant
delay L and Jm for each periodic task can be calculated
by response time analysis. Accordingly, L can be regarded
as the best-case response time (BCRT) of the task whilst
Jm is the worst-case response time of task (WCRT) minus
L, as in the equations 1 and 2. In those equations, hp(i)
is the set of tasks with higher priority than task τi, P j

is the period of task τ j, and BCETi and WCETi are its
best-case and worst-case execution times respectively.
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Li = BCETi +
∑

j∈hp(i)

⌈
BCRTi

P j
− 1
⌉
· BCET j (1)

Ji
m = WCETi +

∑

j∈hp(i)

⌈
WCRTi

P j

⌉
·WCET j − Li (2)

Although DVFS can control the actual response time,
schedulability must be maintained. Hence we derive the
model of jitter margin to perform safe DVFS operation in
terms of schedulability of periodic tasks. We redefine the
constant and varying delay parts as constant response
and variance response, respectively.

The schedulability is checked for a task set T =

{τ1, τ2, ..., τn}, ∀τi ∈ T, BCRTi ≤ WCRTi ≤ Di, where
Di is the relative deadline of τi. The variance response
of a periodic task differs from instance to instance due to
the variations in execution time and total preemption time
from higher-priority tasks. Consequently, this part leads
to possible range of finish time jitter, and furthermore
it can bound available frequency-scaling factor in terms
of schedulability even if the system slows down the
processing speed. The detail of utilising the jitter margin
for DVFS operation are given in Section III-D.

C. Runtime Profiling
In any practical real-time operating system, there is

one main data structure, Task Control Block (TCBi), for
each task τi [3]. TCBi includes priority, computation time
(WCET), period, and deadline. We add three additional
control parameters into TCBi to get required profiling
information (recorded maximum response time Rmax

i ,
recorded minimum response time Rmin

i , and actual
interference time Iactual(i)). In addition, one global
control parameter for the whole task set, global slack time
Slackglobal. It represents the total difference between
WCET and the actual execution time of the currently
running task.
• Recorded Maximum/Minimum Response Time

Rmax
i and Rmin

i are used to record the maximal and
minimal response time among all past instances of
task τi. Once τi finishes each instance execution, the
system updates these two parameters if the response
time of the current instance yields maximum or
minimum response time, respectively.

• Updating the Recorded Slack Time
Once a running task finishes its instance’s execu-
tion, the system updates S lackglobal. When the ready
queue is not empty, S lackglobal is set to the difference
between WCET and actual execution time unless the
ready queue is empty then S lackglobal is reset to zero.

• Updated Actual Interference Time
WCRT is the only offline information for schedu-
lable guarantee. WCRT assumes that every higher-
priority task runs up to its WCET when it pre-
empts the target analysed task (lower-priority task).
Accordingly, we can obtain the worst-case inter-
ference time encountered by τi, Iworst(i). It cor-
responds to the difference between WCETi and

WCRTi. Obviously, there is a possibility that higher-
priority tasks would have shorter execution time
than the corresponding WCETs. This overestimation
of response time degrades accuracy. To provide a
more accurate interference time, we initialise Iworst(i)
to Iactual(i) and then update Iactual(i) by Iactual(i) =

Iactual(i)− S lackglobal at start and resume time of the
running task.

III. Jitter-aware Intra-task DVFS Scheme

In this section, Jitter-aware Intra-task DVFS scheme
is presented, which is an extension of the existing Intra-
task DVFS [12], [13]. Originally, the purposes are to
reduce energy consumption of a single periodic task. On
the other hand, our work aims to finish time jitter in
multitasking environments. The response time of periodic
tasks are controlled by changing the speed of the system
according to both actual interference and execution times.
The overall framework of the proposed approach is shown
in Figure 1. It consists of four phases, e.g. 1) control
and data flow analysis, 2) execution cycle estimation,
3) frequency-scaling point placement and 4) frequency-
updated ratio calculation.

As shown in Figure 1, our scheme is mainly separated
into off-line and run-time stages. In the off-line stages,
source code (C codes) of given target tasks are analysed
in order to obtain their control flow graphs (CFGs) and
data flow information. Then each basic block of CFGs
is examined by execution trace mining [13] to record
the worst-case remaining execution cycles (processing
cost). Finally, locations of frequency-scaling points are
determined. The details are described in Section III-A to
Section III-C.

In the run-time stage, the system mainly performs
DVFS operation as a part of the task scheduling. The new
operating frequency is decided by referring to the given
frequency(and power) settings and scaling point lists. The
details are described in Section III-D.

A. Control and Data Flow Analysis

In a task scheduling, response time of periodic tasks
can be expressed as the combination of execution time
and interference time. Although interference time encoun-
tered by task τi is the sum of execution times of higher-
priority tasks. The actual execution time varies from one
instance to another. Hence runtime variation from the
interference time and execution time are the key factors
which affect finish time jitter.

In this phase, runtime variation is estimated by static
WCET analysis of tasks’ source codes. The researches
of static timing analysis share one of common idea, that
is to break a task’s source code into a control flow
graph (CFG) with all execution paths. Figure 2a shows an
example task source code, and its corresponding CFG in
Figure 2b. Each basic block in CFG shows its calculated
execution cycles1.

1The execution cycles depend on the target micro architecture.
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Fig. 1: The framework of Jitter-aware Intra-task DVFS scheme

1: x = func1();
2: func2();
3: while(x != 0) {
4: y = func3();
5: if(y != 0)
6: func4();
7: z = func5();
8: x-=1;
9: }
10: if(z != 0)
11: func6();
12: a = func7();
13: if(a == 1)
14: func8();
15: else
16: func9();
17: func10()

(a) Source code of target
task (b) CFG of target task

Fig. 2: Control flow of target task’s source code

The control flow information is obtained by the tech-
niques in [11], considering only the branch and loop
structure. Additionally, data flow analysis is applied to
detect loop dependency [14]. When a source code con-
tains either while- or for-loop, the number of iterations is
determined by particular variables. For instance, in Figure
2a, the number of iterations of while-loop depends on the
variable x. Thus it is regarded as the induction variable
of the while-loop. Since the value of induction variable
can differ from one instance to another, it varies task’s
execution time. Thereby the Line 1 of Figure 2a is the
point making system be possible to predict the execution
time early.

B. Execution Cycle Estimation

This phase consists of two steps. In the first step, B-
type and P-type checkpoints are defined as the points
where the execution flow changes, this step prepares for
deciding the locations of frequency-scaling described in
Section III-C.

• B-type Checkpoint
It deals with the execution flow change caused
by branches. In Figure 2b, a B-type checkpoint
is inserted right after basic block 4’s execution.
When the system finishes executing basic block 4’s
instructions, it will be known which one of the two
following paths (BB7 → BB8 → BB9 → BB11 →
end or BB10 → BB11 → end).

• P-type Checkpoint
It deals with loop and loop dependency. A check-
point is inserted right after the basic block which
contains loop dependency. For instance, in Figure
2a, the while-loop’s dependency is at Line 1 and the
corresponding instructions are inside the basic block
1. Thus, the system can predict the actual number of
iterations of the while-loop in advance, that is, after
the basic block 1’s execution.

In the second step, the remaining worst-case execu-
tion cycles (RWCECs) from each checkpoint to the end
of the task’s execution is calculated. According to the
Execution Trace Mining [13], RWCECs of paths from
each branch as well as their corresponding instruction
addresses are recorded in a mining table. Our approach
constructs two types of mining tables: 1) B-type mining
table and 2) P-type mining table, as shown in Table I.

TABLE I: Mining tables of Figure 2b’s task CFG
(a) B-type mining table

B-type Mining Table
Address S uccessor1 RWCECsuccessor1 S uccessor2 RWCECsuccessor2
#1(BB4) BB7 160(cycles) BB8 110(cycles)
#2(BB8) BB9 90(cycles) BB10 15(cycles)

(b) P-type mining table

P-type Mining Table
Address Loop Entry Loop Bound WCECiteration RWCECoutside loop

#1(BB1) BB2 3(iterations) 160(cycles) 75(cycles)

B-type mining table records the locations of B-type
checkpoints (Address column), the first basic block of
each successive path and the corresponding RWCECs.
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The system looks up the RWCEC when it reaches the
checkpoint. On the other hand, in P-type mining table,
every row deals with one specific loop in the CFG.
It records the locations of P-type checkpoints, loop
entries, loop bounds (the maximal possible number of
iterations)2, WCECs for one iteration, and RWCECs after
the execution of the loop. In Figure 2b, there is one loop
starting from basic block 2 (called loop entry) and this
loop’s dependency is basic block 1. Therefore, RWCECs
from each P-type checkpoint can be calculated by the
following function.

RWCEC = C(LoopEntry) + Iteractual ·WCECiteration+

RWCECoutside loop

(3)

In this function, C(LoopEntry) means the cost for
executing the loop entry’s basic block whilst Iteractual

represents the actual number of iterations of the loop.

C. Frequency-Scaling Point Placement

In order to shorten the finish time jitter, variance of
interference and execution time is handled. The main
purpose of this phase is to determine when the sys-
tem invokes DVFS operation to reduce those the vari-
ances. There are three execution points where performing
frequency-scaling is possible: 1) task’s start point, 2) B-
type checkpoint, and 3) P-type checkpoint. The first one
aims to reconfigure a default operating frequency due to
updated actual interference time whilst the second and
third cope with variance of execution time.

In Figure 3, τ1 has WCET of 3 and period(=Deadline)
of 5, and τ2 has WCET of 2 and period(=Deadline) of
5, with τ1 having higher priority than τ2. This example
shows a finish time jitter of one tick for τ2 where response
times of τ1’s first and second instances are not constant.
This leads to different interference times on the τ2’s
instances. It is obvious that the actual start time of lower-
priority task is affected by higher-priority tasks. Here,
frequency-scaling points are inserted at the start time of a
lower-priority task. As a result, shorter response time for
τ2’s first instance or longer response time for the second
one is obtained, which can reduce the difference from all
τ2’s instances.

On the other hand, as the aforementioned variety of
execution paths in one task’s CFG, it incurs variation in
execution time. Therefore, frequency-scaling points are
inserted at every location of branch and loop dependency.
Such approach can equalise the response times of the
running task even if it follows different execution paths.

The exact resume times of the running task which
is preempted by higher-priority tasks is another factor
affecting the final response time. A strategy for inserting
frequency-scaling points right after resume time can
further control response time. This enhancement is left
for our future work.

2We assume that all loop bounds are given at the compile stage.

Fig. 3: The finish time jitter caused by the variance of interference time

Fig. 4: The target response time from the perspective of Jitter Margin

D. Frequency-Updated Ratio Calculation
The next step is to calculate the frequency-updated

ratio (frequency-scaling factor) that still makes the system
meet its given timing constraint.

1) Assignment of Target Response Time: First, we
give every jitter-sensitive task τ jitter

i
(not tolerating

large finish time jitter) an ideal guideline called target
response time Rtarget

i
. Once the DVFS operation is

invoked, the system starts calculating the frequency-
updated ratio to make actual response time gets closer
to the target response time. We propose two types of
target response times from two different perspectives,
user-specified and profile-based target response times.
• User-Specified Target Response Time

According to the definition of jitter margin de-
scribed in Section II-B, every jitter-sensitive task is
given one target response time ratio αi ranging from
0 to 1 (or 0% - 100%) by user in advance. Hence
the target response time is given by equation 4.

Rtarget
i = BCRTi + αi · (WCRTi − BCRTi) (4)

αi limits the jitter margin within low and upper
bounds. An example of αi is depicted in Figure 4.

• Profile-Based Target Response Time
The system performs one procedure called dynamic
assignment of target response time during runtime.
It decides a target response time by referring to
the profiling information as well as estimating the
currently expected response time given by the
following equation.

Rexpect
i = timeexecuted

i +
RWCECi

fcurrent
+ Iactual(i) (5)

In the above equation, timeexecuted
i is the to-

tal amount of time spent for executing τi. The
obtained Rexpect

i is compared with Rmin
i and Rmax

i .
There are two cases for DVFS operation. The first
case is that DVFS operation is not performed when
Rmin

i ≤ Rexpect
i

≤ Rmax
i . In this case, the re-

sponse time of the current instance will not increase
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the finish time jitter even if the system keeps the
current operating frequency fcurrent. Hence Rtarget

i
does not need to be considered. Otherwise the target
response time is assigned as follows.

Rtarget
i =


Rmin

i (Rexpect
i < Rmin

i )
Rmax

i (Rexpect
i > Rmax

i )
(6)

2) Ideal Operating Frequency: In order to get an
ideal operating frequency at a frequency-scaling point,
the system has to know the available time before Rtarget

i
expires and the remaining worst-case execution cycles
(RWCECi) which τi is supposed to spend from the
current time. The ideal operating frequency is calculated
by the following equation.

fidea =
RWCECi

Rtarget
i − timeexecuted

i − Iactual(i)
(7)

In this equation,Rtarget
i

− timeexecuted
i − Iactual(i)

represents the available time for task τi at the
considered frequency-scaling point. The available time
is substantially subject to the length of interference time
Iactual(i) from higher-priority tasks.

3) Discrete Bound Handling: The ideal operating
frequency assumes that the system can use continuous
frequencies from one to infinity. However it is impossible
in practical processors which can operate only with a
limited number of discrete operating frequencies(from
maximal frequency fmin to minimal frequency fmax).
Therefore, the obtained ideal operating frequency needs
to be converted to one of those practical frequencies in
the target processor model. We assume the set of practical
frequencies F discrete = {f,f, ...,fn} where f1 and fn
are fmin and fmax, respectively. The frequency conversion
is described as follows.

fnew =



fmin ( fideal ≤ f0)
fa+1 ( fa < fideal ≤ fa+1)
fmax ( fideal ≥ fn)

(8)

If fideal is between fa and fa+1, fa+1 is chosen as the
updated frequency fnew in order to avoid deadline misses.

IV. Evaluation
A. Experimental Setup

We built a CFG-based multitasking simulator for eval-
uating jitter reduction by the proposed approach. CFGs
of target tasks are input with mining tables, processor
model (DVFS settings), and lists of frequency-scaling
points. The simulation is performed on a tasks’ CFGs
basis, where execution cycles of traversed basic blocks
are counted.

We use five benchmark programs. Four of them are
from [11], e.g., bs.c, compress.c, matmul.c, and lud-
cmp.c, and the other one is a simple case study’s CFG
(cfg 1) which we prepared. Each program is executed as
as a periodic task in the simulation where rate monotonic
(RM) scheduling is applied. The tool in [11] is used to
obtain CFGs of the programs, execution cycles through

each execution path and the worst-case execution path
(WCEP). These five tasks’ models are shown in Table II.
In the table, the number of frequency-scaling points is
obtained from the technique described in Section III-C.

TABLE II: The features of target tasks

Task # Basic Block # Scaling Point WCEC (cycle)

bs 10 1 9750
compress 11 3 11950
matmul 23 6 1890395
ludcmp 46 13 27546
cfg 1 9 2 1810

We use the frequency settings of Texas Instruments
Sitara AM335x processor in which the running clock
frequency is set to 300, 600, 720, 800, or 1000 MHz [6].
To reflect runtime variation in executions of the target
tasks, we built and used a test pattern generator which,
for each task, randomly generates fifty execution paths
(including loops with randomly chosen Iter j

actual) to be
traversed. When the simulator starts executing a task in-
stance, it randomly picks one of the fifty generated paths.
Two task sets which contain the five tasks are prepared
as shown in Table III. WCET (ns) of each task is the
total execution time calculated by WCET = WCEC

fmax
. Each

period (=deadline) is randomly obtained with exponential
distribution and total system utilisation less than the RM’s
schedulability bound, N × (/N − ) where N is the
number of tasks.

TABLE III: Two task sets
(a) Task Set 1

Task WCET (ns) Period (ns) Deadline (ns) Priority

bs 9750 75582 75582 0
compress 11950 173189 173189 3
cfg 1 1810 164546 164546 2
matmul 1890395 9110699 9110699 4
ludcmp 27546 84239 84239 1

(b) Task Set 2

Task WCET (ns) Period (ns) Deadline (ns) Priority

bs 9750 162500 162500 3
compress 11950 35949 35949 0
cfg 1 1810 35951 35951 1
matmul 1890395 37807900 37807900 4
ludcmp 27546 121349 121349 2

TABLE IV: The sets of jitter-sensitivity tasks

S et Jitter-sensitive Tasks S et Jitter-sensitive Tasks
for Task Set 1 for Task Set 2

1 (bs, comp.) 1 (comp.,cfg 1)
2 (bs,comp.,cfg 1) 2 (bs,comp.,cfg 1)
3 (bs,comp.,cfg 1,ludcmp) 3 (comp.,cfg 1)
4 (bs,cfg 1,ludcmp) 4 (bs,cfg 1)
5 (comp.,cfg 1) 5 (bs,comp.,cfg 1,ludcmp)

Furthermore, we prepare five sets of jitter-sensitivity
tasks for each task set in Table IV. Finally the total
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Fig. 5: Finish time jitter of task set 1

ten task sets including different combinations of jitter-
sensitive tasks are evaluated.

In the experiments, The following three settings are
compared: 1) a system without DVFS (with fixed fmax)
(called NonDVFS, 2) a system with DVFS using the user-
specified target response times for jitter-sensitive tasks
(called StaticDVFS), and 3) a system with DVFS using
the profile-based target response times for jitter-sensitive
tasks (called ProfileDVFS).

Each target task set is simulated five times with
different execution paths generated by the test pattern
generator, and the average value of absolute finish time
jitter of the jitter-sensitive tasks are used on in the
comparison.

B. Experimental Results
Figure 5 and 6 show the results in terms of absolute

finish time jitter for.Task Set 1 and 2, respectively. From
Figure 5, it is clear that StaticDVFS and ProfileDVFS can
reduce jitter by 16.8% and 16.2% at maximum compared
to nonDVFS. Similarly, from Figure 6, StaticDVFS and
ProfileDVFS reduce jitter by up to 19.4% and 9.7%,
respectively.

V. Conclusion

This paper proposed jitter-aware Intra-task DVFS tech-
niques for reducing jitter in hard real-time systems. We
exploited DVFS technique to reduce runtime variation in
both interference and execution time, with the coopera-
tion of control and data flow analysis. To decide effective
frequency-scaling factor at every DVFS operation, a jitter
margin was defined to clarify the lower and upper bounds
of possible finish time jitter, also four control parameters
were prepared for profiling runtime situation manipulated
by system. Through our simulation, it was shown that
jitter can be reduced by 16.2% to 19.4%.

Currently, our ongoing work is trying to find a tradeoff

between jitter and energy. Different power profiles are
being mapped to the frequency settings used in this paper.
Thorough assessment under various jitter and energy
constraints are to be considered as our future exten-
sion. Together with the currently overlooked switching
overhead, which could possibly limit the number of
frequency-scaling points.

Fig. 6: Finish time jitter of task set 2
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Abstract—Lego Mindstorms Robots are a popular platform for
graduate level researches and college education purposes. As a
portation of nxtOSEK, an OSEK standard compatible real-time
operation system, EV3OSEK inherits the advantages of nxtOSEK
for experiments on EV3, the latest generation of Mindstorms
robots. Unfortunately, the current version of EV3OSEK still has
some serious errors. In this work we address task preemption,
a common feature desired in every RTOS. We reveal the errors
in the current version and propose corresponding solutions for
EV3OSEK that fix the errors in the IRQ-Handler and the
task dispatching properly, thus enabling real multi-tasking on
EV3OSEK. Our verifications show that the current design flaws
are solved. Along with this work, we suggest that researchers who
performed experiments on nxtOSEK should carefully examine if
the flaws presented in this paper affect their results.

I. INTRODUCTION

Since 1998 Lego Inc. released a series of programmable
robotics kits called Mindstorms [8], which have been exten-
sively used in graduate level researches and college education.
For the Lego Mindstorms robots of the NXT series, the OSEK
standard [11] compatible real-time operating system (RTOS)
nxtOSEK [4] has been widely adopted as an experimental
platform [1, 3, 14]. However, EV3 as the latest generation of
Mindstorms robots, released in 2013, is still not popularly used
in the real-time community. One reason is that the only RTOSs
for EV3 robots, namely EV3RT [9] and EV3OSEK [12], were
release a few years after the EV3 robots, i.e., in 2016. In this
paper we only focus on EV3OSEK, since it is the only RTOS
for EV3 aiming at supporting the OSEK standard.

EV3OSEK is a porting of nxtOSEK to the EV3 plat-
form, provided by a group at Westsächsische Hochschule
Zwickau [5]. Hence, it is generally compatible to applications
for nxtOSEK. Instead of using the limited sized display to
capture the results, the output of EV3OSEK can be obtained
directly via the EV3 Console [10] on a host machine. More-
over, unlike nxtOSEK that needs to flash the ROM on the
brick, EV3OSEK can directly boot from a SD-Card.

During our experiments with EV3OSEK, we noticed that
the task preemption mechanism did not function as expected.
Gupta and Doshi [6] described similar problems after imple-
menting nested task preemption in nxtOSEK and abandoned
the project due to problems with the IRQ-Handler and dispatch
routines. This motivated us to investigate if the problems
were related. In course of this investigation, we discovered
that EV3OSEK was unable to correctly restart preempted
jobs but instead reexecuted them completely. A more detailed
description of the preemption behaviour of EV3OSEK as well
as of nxtOSEK can be found in Section III. We encourage

researchers who performed experiments on nxtOSEK to care-
fully examine if the flaws presented in this paper affect their
results.

To narrow down the source of the problem, we examined
the ARM specifications, the hardware dependent IRQ-Handler,
and the task dispatching routines. In this work, we provide the
corresponding solutions to the errors in the current EV3OSEK,
which are released on [7]. After solving these problems,
EV3OSEK is now able to provide preemptive scheduling, and
therefore multi-tasking, with all the advantages inherited from
nxtOSEK.
Our Contributions: This paper presents the errors that exist
in the current version of EV3OSEK when task preemption
takes place and provides a solution to tackle these problems.

• We detail a flawed behaviour regarding task preemption
in EV3OSEK in Section III, and explain the origin of
these problems in Section IV.

• The corresponding solutions for the IRQ-Handler and the
task dispatching routine are provided in Section V, hence
enabling multi-tasking under EV3OSEK.

• We evaluated our solutions, the results are displayed in
in Section VI, showing that the provided solutions solve
the problems and allow fully preemptive fixed-priority
scheduling, and therefore multi-tasking, in EV3OSEK.

II. SYSTEM MODEL

A. Application Model

We consider the scheduling of n independent periodic real-
time tasks Γ = {τ1, τ2, . . . , τn} in a uniprocessor system.
Each task is defined by a tuple τi = (Ci, Ti) where Ti is
an interarrival time constraint (or period) and Ci the tasks
worst-case execution time. The deadlines is assumed to be
implicit, i.e., if a task instance (job) is released at θa, it must
be finished before θa + Ti ∀τi. We consider fully preemptive
fixed-priority scheduling, i.e., each task τi is associated to a
predefined priority p(τi)

1, since the issues considered in this
work only happens under a fully preemptive scheduling policy.

B. Lego Mindstorms EV3 and EV3OSEK

In this paper, we focus on the third generation of Lego
Mindstorms robots (EV3), which are equipped with a unipro-
cessor ARM926EJ-S 300MHz and 64MB RAM on a Tex-
asInstruments AM1808, running EV3OSEK with a C/C++

1Although EV3OSEK defines the lowest priority as 0, we use the more
common notation that lower priority values indicate higher priorities.
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compatible environment. EV3OSEK [12] is a real-time op-
erating system which aims for compatibility to the OSEK
standard [11]. It is a recent portation [5] of nxtOSEK [4],
which is only available for the older LEGO Mindstorms NXT
robots. EV3OSEK consists mainly of three parts:

1) Drivers for sensors and actors (leJOS)
2) API for development (ECRobot)
3) OSEK-OS for the EV3 robot

This work focuses on the OSEK-OS. To obtain the output from
the EV3 robots with our host machines the EV3 Console [10]
is used, which realizes an USB to UART bridge. It connects
with one of the Lego sensor cables and a micro-USB cable.
The suggested driver to access the device are provided by
Texas Instruments [13].

C. Preemption in the OSEK Standard

Here we briefly review the specifications for task pre-
emption defined by the OSEK standard [11]. The OSEK
standard defines two different scheduling policies: non-
preemptive scheduling and fully preemptive scheduling. In a
non-preemptive scheduling policy, a job cannot be preempted
once its execution has been started. In fully preemptive
scheduling, any task is preempted at the point in time a higher
priority task enters the system and that higher priority task is
scheduled instead. The context of the preempted task is stored
accordingly so that it can resume back later on.

III. MOTIVATIONAL EXAMPLE

To demonstrate the flaws in the current EV3OSEK, Figure 1
provides and example that detail the EV3OSEK preemption
behaviour. We consider three tasks: τ1 = (2, 9), τ2 = (2, 8),
and τ3 = (2, 7), indexed according to their priority, i.e.,
p(τ1) > p(τ2) > p(τ3).

Figure 1a shows the expected behaviour. The second job
of τ3 released at time 7 is preempted by the second job of
τ2 released at time 8, which afterwards is preempted by the
release of τ1 at time 9, and both τ2 and τ3 have one unit
of execution time left. After τ1 finishes its execution, the
remaining portions of τ2 and τ3 are executed. Note that in the
original EV3OSEK also the problem occurs that not all tasks
are activated at time 0, i.e., the first release of τ1 was missing
due to an index error. The array containing the tasks/alarms
was read starting at index 1. In our code, we ensured a start
at 0, hence the first job of τ1 is released as well.

In contrast, Figure 1b shows the execution behaviour of
EV3OSEK.2 Both the second job of τ2 and the second job
of τ3 are not resumed correctly but either resumed wrongly
or completely restarted which leads to one additional unit of
execution time for both jobs, called overrun in Figure 1b. Note
that, due to the deadline miss at 14, the third release of τ3 at
14 is skipped and the next job of τ3 will be released at 21.

Since EV3OSEK is a portation from nxtOSEK, this be-
haviour could directly be inherited. However, the flawed
behaviour in the original nxtOSEK was different and only

2The related source code is released on [2] as NestPreemption.

τ1(2, 9)

τ2(2, 8)

τ3(2, 7)

0 2 4 6 8 10 12 14 16 18 20

(a) Expected behaviour: τ2 preempts τ3 and is afterwards preempted by τ1.
The jobs of τ2 and τ3 are resumed where they were preempted.

τ1(2, 9)

τ2(2, 8)

Execution overrun of τ2 Execution overrun of τ3

τ3(2, 7)

0 2 4 6 8 10 12 14 16 18 20

(b) Observed behaviour in EV3OSEK: the jobs of τ2 and τ3 are restarted
instead of resumed after a preemption.

τ1(2, 9)

τ2(2, 8)

τ3(2, 7)

0 2 4 6 8 10 12 14 16 18 20

(c) Observed behaviour in nxtOSEK: τ3 is preempted by τ2, but τ2 cannot
be preempted by τ1.

Fig. 1: Expected behaviour compared to the actual behaviour
of EV3OSEK and nxtOSEK.

effected nested task preemption as displayed in Figure 1c.
Once τ3 is preempted by τ2 at time 8, the interrupt from the
scheduler is deactivated and hence τ1 cannot preempt τ2 at
time 9 although p(τ1) > p(τ2). Only when τ2 finishes at time
10, τ1 is allocated to the processor. However, when Gupta and
Doshi [6] tried to fix this problem, their efforts resulted in an
identical behaviour as in Figure 1b due to the already existing
problems with the IRQ-Handler and the task dispatching.

Overall, the current EV3OSEK does not match the expecta-
tion when resuming previously preempted tasks. Since the mis-
behavior is observed right after the preempting task finishes,
e.g., τ1, this motivated us to check the functions responsible
for the IRQ-Handler and the task dispatching. It turned out
that the IRQ handler, expended from TexasInstruments [13],
has critical errors that could have lead to complete corruption
of the program counter.

IV. ORIGINAL TASK PREEMPTION IN EV3OSEK

In this section, we first review the current design of the
functions that are responsible for IRQ-Handler3 and task
dispatching in EV3OSEK4. Afterwards we point out the source
of the aforementioned errors.

A. IRQ-Handler

To follow the OSEK standard, EV3OSEK has a hook
routine named user_1ms_isr_type2(), which is invoked

3IRQ stands for Interrupt ReQuest from the underlying hardware.
4The reviewed files are downloaded from

https://github.com/ev3osek/ev3osek/tree/master/OSEK EV3. The latest
update for exceptionhandler.S and cpu support.S was on 18 Sep 2016.
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Fig. 2: Flowchart of the current IRQ-Handler in EV3OSEK.

from a periodic interrupt service routine in category 2 (ISR2)
every 1 ms. This hook routine can be redefined by the
programmer but it should always execute the system routine
SignalCounter() to maintain the progress of EV3OSEK.
However this design partially violates the OSEK standard.

Once an ISR occurs, the CPU loads the IRQ-Handler shown
in Figure 2. It first saves the context of the interrupted task.
Now it can handle the ISR without overriding registers of
the interrupted task. The address of the ISR that called the
interrupt is saved in the AINTC_HIPVR2 register by the
hardware interrupt handler. When the ISR has finished its
execution, it returns back to the IRQ-Handler.

If the ISR was not systick_ISR_c, i.e., the function
that handles the 1ms timer, the task context is restored
and the IRQ-Handler returns to the interrupted task. But
if the ISR was systick_ISR_c, the button-routine and
user_1ms_isr_type2() are executed. In the hook func-
tion user_1ms_isr_type2(), SignalCounter() will
set the Boolean addr_should_dispatch to TRUE if the
current running task is not the highest priority task anymore.

In case that should_dispatch is false, the task context
is restored and the IRQ-Handler returns to the interrupted task.
In the other case, when should_dispatch is set to true,
the task context is restored, i.e., all registers r0 to r12 and
the lookup register. Afterwards the IRQ-Handler loads the
dispatch routine address in the lookup register and loads it
with an offset of −4.

Within the analyses, we noticed that there are five errors in
the current implementation as shown in Listing 1:

1) The lookup register contains the return address of the
preempted task and is always overwritten.

2) The lookup register has to be saved in the stack for the
CPU User-/System-mode before jumping to the dispatch
routine, since different CPU modes may have their own
lookup registers.

3) The lookup register, which already contains the address
of the dispatch routine, loads with an offset of −4. This
is not necessary, since the address is loaded from the
memory instead of the decoder.

4) The status register also has to be saved/restored, when
interrupting a task, since it also contains information
about the interrupted task.

5) SignalCounter() in ISR2 determines whether the
task dispatching should take place or not. However, the
OSEK standard defines that scheduling should be bound
to ISR2 rather than SignalCounter().

LDMFD r13 ! , { r0−r12 , l r }

LDR l r , = d i s p a t c h
SUBS pc , l r , #4

Listing 1: Assembler code fragment responsible for the five
errors related to the IRQ-Handler.

B. Task Dispatching

Before introducing the current design of task dispatching in
EV3OSEK, we list some notations used in the implementation:

• runtsk: Address of the running task ID.
• schedtsk: Address of the highest priority task.
• tcxb_pc[]: Array for the program counters of tasks.
• tcxb_sp[]: Array for the stack addresses of tasks.

For the simplicity of the presentation, we further use τlow and
τhigh in the rest of the section to describe the scenario that
there is an executing task τlow which is going to be preempted
by a ready task τhigh with higher priority.

When τhigh is ready in EV3OSEK, the currently running
task τlow has to relinquish its right on the CPU. As shown
in Figure 3, the scheduler in EV3OSEK has three main steps:
Dispatch, Preempt and Reload, detailed as follows:

• Dispatch: To preempt a task, the IRQ-Handler calls
the dispatch routine, which saves the context of the
preempted task on the tasks stack, and stores the
stack pointer in tcxb_sp[runtsk]. The address of
dispatch_r is stored in tcxb_pc[runtsk], allow-
ing the task context to be restored when it is resumed.

• Preempt: After the dispatch step, the higher prior-
ity task is executed on the CPU. Once it finishes,
it calls TerminateTask() to trigger the scheduler
with start_dispatch to reload the lower priority
task. In start_dispatch, at first runtsk is set to
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Fig. 3: Task dispatching and re-dispatching.

schedtsk, so that the scheduler knows that the current
running task is the currently highest priority task in the
system. Afterwards, the stack pointer is restored back
from tcxb_sp[runtsk] and dispatch_task is
called.

• Reload: In dispatch_task the program
counter of the preempted task is restored from
tcxb_pc[runtsk]. Instead of loading the tasks
program counter, the preempted task executes
dispatch_r to restore its context from the stack
and enable interrupts, which were disabled by
TerminateTask().

There are two errors in the current implementation:

1) In dispatch_r, the lookup register is loaded from the
stack without ˆ flag, and the status bits are not loaded as
well. See Listing 2:

d i s p a t c h e r r :
BL I n t M a s t e r I R Q E n a b l e
BL I n t M a s t e r F I Q E n a b l e
ldmfd sp ! , { r0−r12}
ldmfd sp ! , { l r }
MOV pc , l r

Listing 2: The lookup register is loaded without ˆ flag,
the status bits are not loaded at all.

Fig. 4: Enhanced version of the IRQ-Handler.

2) The status register has to be part of the save context
routine in dispatch and of the restore context routine
in dispatch_r.

V. FIXING TASK PREEMPTION IN EV3OSEK
After discussing the flaws in the current EV3OSEK, we here

present how we fix the task preemption accordingly. Please
note that EV3OSEK’s IRQ-Handler is not inherited from the
portation of nxtOSEK and hence the nested task preemption
problems in nxtOSEK are not inherited from the IRQ-Handler
but the dispatch routines.

Based on the observations in Section IV, the proposed
solutions can be summarized as follows:

• correcting the register operations in the IRQ-Handler,
• correcting the errors in dispatch_r,
• adding status register to context save/restore routines, and
• changing the trigger point of the task dispatching.

The flowcharts for the IRQ-Handler and the dispatching are
shown in Figure 4 and Figure 5, respectively, where the red
blocks are added or changed due to our solutions. In the rest
of this section, we explain more details about our solutions.
Correcting the register operations in the IRQ-Handler: In
the current EV3OSEK, the lookup register in the IRQ-Handler
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contains the address of the preempted task and is overwritten.
Moreover, the lookup register has to be saved in the User-
/System-mode stack before jumping to dispatch, since IRQ-
and User-/System-mode have their own lookup registers. Note
that there are different execution modes in modern CPUs,
where some modes have their own registers called banked
registers which are not shared with other modes.

The errors can be solved by writing the lookup register in
one of the registers r0-r12, switching to System-mode in the
IRQ-Handler, pushing the register containing the lookup reg-
ister on the System-mode stack, and switching back. This so-
lution requires to remove the instruction that stores the lookup
register on the system stack in the dispatch routine. As a
result, the dispatch routine can no longer be called from User-
/System-mode. To resolve this, the branch dispatch_irq
is introduced right after the dispatch routine stores the lookup
register, as this is already done in the IRQ-Handler. Now the
IRQ-Handler calls dispatch_irq and it is still possible to
call the dispatch routine from User-/System-mode.

Another error in the IRQ-Handler is that the lookup register
contains the address of the dispatch routine, but it is loaded
with an offset of −4. This can be easily fixed by removing the
unnecessary offset from the branch instruction. The updated
IRQ-Handler is displayed in Figure 4.
Correcting the errors in dispatch_r: As shown in Fig-
ure 5, the lookup register is loaded from the stack without the
ˆ flag in dispatch_r, so that the status bits are not loaded
as well. This can be easily resolved by adding the ˆ flag to
the load instruction. By doing so, the program status is loaded
into the status register correctly. The enhanced dispatching is
detailed in the flowchart in Figure 5.
Save/Restore status register with context: In the IRQ-
Handler and dispatch routines, the status register is not part of
saving/restoring context. However the status register contains
information about comparing instructions for the interrupt-
ed/dispatched task. By saving and restoring the status register
together with the context of registers, the informations in r0
to r12 are not lost.
Changing the trigger point of the task dispatching:
In the original implementation, SignalCounter() must
be called by the hook routine user_1ms_isr_type2(),
which is used to manage task scheduling. As defined in
the OSEK standard, the task scheduling must be bound
to ISR2. To fix this, we moved the code setting the flag
should_dispatch to the function SetDispatch() and
call it after user_1ms_isr_type2() has finished.

VI. EVALUATION OF THE PROPOSED SOLUTION

As illustrated in Section III, the current EV3OSEK is not
able to provide task preemption correctly. With the enhance-
ment mentioned in the previous section, task preemption, and
hence multi-tasking, now should work properly. We present an
additional example with three tasks to evaluate our proposed

Fig. 5: Enhanced version of task dispatching.

solution in EV3OSEK5.
In the following experiment, we considered a task set which

is schedulable in a correct preemptive fixed-priority schedul-
ing system while in the current EV3OSEK the unexpected
additional workload due to task preemption leads to deadline
misses. Once a job misses its deadline, the next job is only
released after the current job is finished and hence the number
of releases is reduced. Therefore, by checking if the number of
jobs released in the current version of EV3OSEK and in our
enhanced version of EV3OSEK is identical, we can determine
whether our enhancement solved the discovered problem. The
related source code can be found at [7].

Tasks τ1, τ2, and τ3 all print out the following line right
after it starts/finishes: ”Task τi(l1, l2, l3) starts/ends at tms”.
tms stands for the time point when a task starts or finishes its
execution. τ1, τ2, and τ3 all run roughly 2000 ms and priority’s
are p(τ1) > p(τ2) > p(τ3). The tasks are released as follows:

• τ1 releases at 0 s with a period 5 s.
• τ2 releases at 0 s with a period 8 s.

5Please note that testing the nesting depth is not necessary. As the task
stack for context-switch is managed in the OIL file, the management of the
stack should be handled by the programmers.
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• τ3 releases at 0 s with a period 10 s.
We verified that all the task preemptions behave as we expect
over a certain amount of time, checking the resulting log file,
and if the number of jobs for each task is exactly as we
predict in advance. If there is no additional execution time
after preemptions (like in the current EV3OSEK), there should
be no unexpected interference affecting the job releases. We
also intend to show that the program counter does not get
corrupted any more, even after long run times, i.e., 10 min.

We first derived an equation to predict the exact number
of jobs li after a certain amount of time that is a multiple of
10 seconds. Since the least common multiple of three tasks’
periods is 40 seconds, the so-called hyper-period, the following
equation gives us the number of jobs from τi in a 10×t second
long interval:



l1
l2
l3


 =




8
4 × t
5
4 × t
4
4 × t


 =




2t
1.25t
t


 (1)

The equation is detailed as follows:
• l1 equals 2t: τ1 is released and finishes two times in 10 s.
• l2 is 1.25t: τ2 releases and finishes 5 times in a hyper-

period of 40, every 10 s it has on average 1.25t releases.
• l3 is t: τ3 has one release every 10 seconds.

We can now predict l1, l2 and l3 after an interval of 10 min.

t = 600001(ms) ≈ 60× 10sec⇒



l1(60) = 120
l2(60) = 75
l3(60) = 60


 (2)

In the current version of EV3OSEK the example hangs
after 7000 ms, because the program counter is set to a random
address. With our enhancement, the aforementioned problem
does not exist anymore in the enhanced version of EV3OSEK.
The output can be found at listing 3.

Task 1 ( 0 , 0 , 0 ) s t a r t a t 1 .
Task 1 ( 1 , 0 , 0 ) end a t 2 005 .
Task 2 ( 1 , 0 , 0 ) s t a r t a t 200 8 .
Task 2 ( 1 , 1 , 0 ) end a t 4 003 .
Task 3 ( 1 , 1 , 0 ) s t a r t a t 400 5 .
Task 1 ( 1 , 1 , 1 ) s t a r t a t 500 1 .
Task 1 ( 2 , 1 , 1 ) end a t 6 995 .
. . .
Task 1 ( 1 2 0 , 75 , 60) s t a r t a t 600001 .

Listing 3: Output generated with the evaluation example using
the enhanced of EV3OSEK.

Hence, we conclude that our enhancement fixed the prob-
lems in EV3OSEK regarding task preemption which not only
resulted in unexpected execution behaviour but also in system
crashes.

VII. CONCLUSION

EV3OSEK as an OSEK inspired real-time operating sys-
tem for the third generation of LEGO Mindstorms robots
(EV3) has many benefits in graduate level researches and
college education. In this work, we explain how we have
fixed the IRQ handler and the task-dispatcher for the current

version of EV3OSEK to achieve a generally expected task
preemption feature. Consequently, the proposed solution fixes
multi-tasking in EV3OSEK. The release source code of our
enhancement can be found in [7].
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Abstract—System software, such as the RTOS, provides no
business value on its own. Its utility and sole purpose is to serve
an application by fulfilling the software’s functional and nonfunc-
tional requirements as efficiently as possible on the employed
hardware. As a consequence, every RTOS today provides some
means of (static) specialization and tailoring, which also has a
long tradition in the general field of system software.
However, the achievable depth of specialization, the resulting
benefits, but also the complexity to reach them differ a lot
among systems. In the paper, we provide and discuss a taxonomy
for (increasing) levels of specialization as offered by (real-time)
system software today and in the future. We argue that system
software should be specialized as far as possible – which is
always more than you think – but also discuss the obstacles that
hinder specialization in practice. Our key point is that a deeper
specialization can provide significant benefits, but requires full
automation to be viable in practice.

I. INTRODUCTION

While the domain of real-time control systems is broad and
diverse with respect to both, applications and hardware, each
concrete system has typically to serve a very specific purpose.
This demands specialization of the underlying system software,
the real-time operating system (RTOS) in particular: An “ideal”
system software fulfills exactly the application’s needs, but no
more [19]. Hence, most system software provides built-in static
variability: It supports a broad range of application requirements
and hardware platforms, but can be specialized at compile-time
with respect to a specific use case. Historically, this has led to
the notion of system software as program families [25], [14]
as well as a myriad of papers from the systems community
that demonstrate the efficiency gains by specializing kernel
abstractions to the employed application, hardware, or both.
Examples include [27], [6], [20], [26].

A. System Software Specialization

Specialization (of infrastructure software) for a particular
application–hardware setting is a process that aims to improve
on nonfunctional properties of the resulting system while
leaving the application’s specified functional properties intact.
If the application employs an RTOS with a specified API and
semantics (e.g., POSIX [2], OSEK/AUTOSAR [4], ARINC
[3]), a specialized derivative of the RTOS does no longer fulfill
this API and semantics in general, but only the subset used
by this concrete application and hardware. If successful, this
specialization leads to efficiency gains with respect to memory
footprint, hardware utilization, jitter, worst-case latencies,

This work was partly supported by the German Research Foundation (DFG)
under grant no. LO 1719/4-1

robustness, security and so on; it increases the safety margins or
makes it possible to cut per-unit-costs by switching to a cheaper
hardware. For price-sensitive domains of mass production, such
as automotive, this is of high importance [8].

Intuitively, any kind of specialization requires knowledge
about the actual application: The more we know, the better
we can specialize. In the domain of real-time systems (RTSs),
we typically know a lot about our application and its exe-
cution semantics on the employed RTOS: To achieve real-
time properties, all resources need to be bounded and are
scheduled deterministically. Timing analysis depends on the
exact specification of inputs and outputs, including their inter-
arrival times and deadlines; schedulability analysis requires that
all inter-task dependencies are known in advance – and so on.

Even though all this knowledge should pave the road to a
very rigorous subsetting of the RTOS functionality, this rarely
happens in practice. Part of the problem is that the specialization
of the RTOS typically has to be performed manually by the
application developer or integrator, which adds significant
complexity to the overall system development and maintenance
process. We are convinced that automation is the key here, as
most of the required knowledge could be extracted by tools
from the application’s code and design documents – the RTOS
specialization should become an inherent part of the compilation
process, like many other optimizations.

Another part of the problem is, however, that static spe-
cialization itself is only rarely understood. This holds in our
observation for both, RTOS users and RTOS designers, both
of which typically have been educated (and tend to be caught)
in the mindset and APIs of general-purpose operating systems,
such as Linux or Windows. So while every system software
provides some means for static specialization and tailoring, the
rigorosity at which this (a) could be possible in principle, (b) is
possible in the actual RTOS provisioning, and (c) is employable
by users in practice, differs a lot.

B. About This Paper

Our goal with this paper is to shed some light on the
aspects and the fundamental levels of specialization that
are provided by system software today and, maybe, in the
future. We claim the following contributions: (1) We provide a
classification for specialization capabilities on three increasing
levels (Section II). (2) We discuss the challenges and benefits
of system specialization by examples from the literature
(Section III). (3) We show, on the example of a small experiment
with FreeRTOS [5], the potential of different specialization
levels, even for an RTOS API that is supposed to “look like
POSIX” (Section IV).
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Fig. 1: Levels of RTOS specialization. From left to right, each level further constraints how the application may use the kernel.

Many aspects about specialization we describe in this paper
are based on our own experience with the design, development,
and employment of highly configurable application-tailorable
system software. We apologize for the (shameless) number of
self-citations, but felt that leaving them off would not have
contributed to the accessibility of the paper.

II. A TAXONOMY OF SPECIALIZATION LEVELS

In this section, we give a taxonomy of system specialization
and the different levels specialization can reach. In short, a
generic RTOS (g) can be specialized by (a) removing complete
abstractions (e.g., threads or a specific syscall), (b) make
instances fixed (e.g., there are only threads T1 and T2), and
(c) make interactions fixed (e.g., only T1 waits on event E1).
We examine these terms at the example of RTSs, which we
specify for the purpose for this paper as follows:

A (hard) real-time system RTS consumes time-labeled input
events ~I and produces observable, time-labeled output events
~O, while fulfilling strict timing constraints between both event
streams. An implementation RTS A

RTOS
HW of the abstract RTS consists

of a concrete application A that runs, mediated by a concrete
RTOS implementation RTOS, on a concrete hardware HW. We
encapsulate the specification and timing requirements of the
RTS in an equality operator RTS= that compares two outputs.

RTS(~I) = ~O RTS= RTS A
RTOS
HW (~I)

Every correct implementation of RTS produces an output
stream that is equal, under the RTS specification, to the outputs
of the abstract/ideal RTS. Therefore, we derive: Every special-
ized implementation RTS A

RTOS
HW

′ has to be a correct implementation
of RTS and the observable outputs must not change with respect
to the specification of the real-time system.

However, not every RTS A
RTOS
HW is a specialized implementation.

Specialization is the process of reducing flexibility from one or

more system components of an already existing implementation.
For real-time systems, it can take place in the application A,
the RTOS, or/and the hardware HW. For the rest of the paper,
we focus on the specialization of the RTOS, while application
and hardware remain unchanged.

The specialized RTOS′ fulfills all requirements of the
specific application that runs on top and works on the specified
hardware. However, this RTOS′ does not necessarily provide
the correct semantics to execute an alternative A′ or correct
instructions to execute on an alternative HW′. Therefore, RTOS
specialization always depends on the application that uses the
RTOS and the targeted hardware.

In the following we exemplify this by a simple RTOS that
supports only three abstractions: Threads, interrupt service
routines (ISRs) and Events. Figure 1 (g) shows the whole range
of functions provided by our example RTOS as an interaction
graph. Nodes are system abstractions that are provided by
the RTOS standard; edges are interactions between them. The
generic RTOS (i.e., the respective standard) provides the illusion
that abstractions can be instantiated arbitrarily often and all
instances (nodes within nodes) can interact according to their
abstraction. For example, every ISR can activate every thread.

When we specialize our generic RTOS, we (a) remove
abstractions, (b) make instances fixed, and (c) forbid concrete
interactions. The shrunk interaction graph reflects the reduced
flexibility of the specialized RTOS. We define three levels of
specialization, which subsequently need more information about
the actual interaction graph of the application and remove more
flexibility. Every level is a true superset of the previous one.

Specialization of Abstractions: remove complete abstrac-
tions and types of interactions.
Specialization of Instances: number and identity of instances
become fixed; dynamic instantiation is not possible.
Specialization of Interactions: interactions are constrained to
concrete instances instead of (generic) abstractions.

2
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The following sections describe the levels in detail and
outline the information is needed to reach the respective level.
If we specialize a RTOS implementation to a certain level, it
only ensures that applications with the corresponding interaction
graph are executed correctly. For all other applications, the
result is undefined. The effects of the specialization levels
(Figure 1 (a)-(c)) are examined using the following example
application code:

BoundedBuffer bb;

ISR I1 { // priority: ∞
data = readSerial();

bb.put(data);

activate(T1);

}

Thread T1 { // priority: 2

while(data = bb.get())

handleSerial(data);

}

Thread T2 { // priority: 1, autostart

while (true)

handleADC(readADC());

}

The nonpreemptable ISR reads serial data into a bounded buffer,
which is handled by the higher-priority worker thread T1. The
background thread T2 continuously reads analog data and
handles the result. For compactness reasons, we ignored the
lost wake-up problem between I1 and T1.

A. Specialization of Abstractions

Specialization on the level of abstractions is the most generic
one that is commonly used to select the availability of RTOS
features. The needed knowledge to conduct this specialization
is confined to the list of used abstractions, which could be
derived from code or explicitly listed in a configuration. This
kind of specialization is possible in most operating systems.
For instance, Linux, eCos and FreeRTOS provide support to be
specialized on the level of abstractions. The example application
employs only threads and ISRs, while events are not used at all.
Therefore, the RTOS specialized on abstractions (Figure 1 (a))
avoids everything event related. Furthermore, we can safely
forgo the nesting of ISRs and, therefore, remove the “interrupt”
interaction between ISRs.

B. Specialization of Instances

One level deeper, specialization of instances means to
specify the concrete instances of each abstraction and their prop-
erties. In addition, knowledge about these concrete instances
is necessary. For threads, this could be their name, priority,
stack size, periodicity and initial activation state. Some RTOS
specifications, such as OSEK, already require this information
in a configuration file. For others this information may be
gathered out of the source code. An instance-level specialized
RTOS looses the capability to create system objects at run time.
All instances need to be specified statically at compile time.

In an OSEK implementation like ERIKA [1], the OSEK
Implementation Language (OIL) file [23] describes all system
objects of the application and their properties. For our example
application this would be two threads, namely T1 and T2 and
one ISR, namely ISR1. The priority of ISR1 is ∞ and T1 and
T2 have the priorities 2 and 1. In Figure 1 (b), only the three
concrete instances (T1, T2, I1) remain in the interaction graph,
while the interactions are still attached to the abstractions.

C. Specialization of Interactions

The most extensive specialization takes place at the level of
interactions. Here, we limit the concrete interactions between

the system-object instances rather than abstractions. By limiting
interactions, we can derive optimized kernel paths, like remov-
ing dead code branches (e.g., syscall parameter checking). In
essence, we take the viewpoint of an optimizing whole-system
compiler that knows the RTOS semantics and thereby could,
for instance, derive scheduling decisions already at compile
time. To optimize the RTOS on this level, we have to know of
all concrete interactions of our applications. This can be done
by static code analysis or examination of external-event timing
constraints to derive possible invocation sequences.

For our application, we can derive that there is no inter-
thread activation, no interrupt blockade, and only T1 can
preempt T2. Furthermore, we know that I1 can only activate
T1, while it potentially interrupts both threads. This results in
Figure 1 (c) contain just these interactions.

D. Summary

In summary, by specialization of the RTOS kernel we
remove flexibility from the kernel implementation by restricting
the possible run-time interactions of the application already at
compile time. This can take place on the (subsequently stricter)
levels of (a) Abstractions, (b) Instances, and (c) Interactions,
which, in turn, subsequently cut of more from the unneeded
RTOS functionality.

III. SPECIALIZATION: BENEFITS AND CHALLENGES

In our experience, the less-is-more philosophy (i.e., it is a
good thing to reduce flexibility) tends to be counter-intuitive
for many software engineers and in any case it is arguable.
In the following, we discuss some benefits and challenges of
specialization in general and with respect to the different levels.

A. Benefits

Memory footprint reduction is the most obvious benefit –
and still the driving factor for industries of mass production,
such as automotive [8]. It is not a coincidence that OSEK
(and later AUTOSAR) were designed for specialization on
the instance level from the very beginning. The compile-
time instantiation of kernel objects and their management in
preallocated arrays instead of linked lists facilitates significant
RAM savings. In [17], the transformation of an RTS from the
abstraction-level specialized eCos [22] to the instance-level
specialized CiAO [21] reduced the RAM footprint by half.
But also abstraction-level specialization alone can pay off, if
applied systematically: The specialization of a Linux system
running typical appliances, such as a LAMP server or an
embedded media player, can reduce its code size by more
90 percent compared to a standard kernel [30], [28].
Security and safety improvements are less obvious, but a
corollary from memory footprint reduction: What is not there
can neither break nor be attacked or exploited and does not need
to be later maintained in this respect. For instance, specializing
the mentioned LAMP server on the level of abstractions did
not only reduce its code size, but also cut the number of
relevant entries in the CVE database1 by ten percent [30]. The
instance-level specialization of the RTS in [17] also increased
its robustness regarding bit flips by a factor of five.

1https://cve.mitre.org
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Further significant improvements in this respect are possible if
one specializes down to the level of interactions, for instance,
by inserting control-flow assertions [11].
Better exploitation of hardware by a direct mapping of
RTOS abstractions. Modern µ-Controllers are not only equipped
with an increasing number of cores, but also large arrays of
timers, interrupt nodes and so on. Nevertheless, most RTOS
implementations still multiplex a single hardware timer and
IRQ context. In Sloth [16], [15] the specialization on instance-
level is the prerequisite to map system objects at compile-time
directly to the available hardware resources, which results in
minimal kernel footprints and excellent real-time properties.
If specialization of the hardware itself is also an option, a
kernel specialized on interaction-level could even be placed
directly into the processor pipeline [12].
Reduction of jitter and kernel latencies is a further benefit
of memory footprint reduction and the better exploitation of
hardware. Intuitively, removing code, state, and indirection in
the control and data flows of the kernel also reduces noise
caused by memory access and cache pressure and increases
determinism. Shorter kernel paths and the direct mapping of
kernel objects to hardware yield a direct benefit on interrupt
lock times and event latency.
Analyzability and testability is both improved as well as
impaired (see below). In principle, any reduction of possible
kernel states and execution paths increases determinism and
makes it easier to analyze, test, and validate the kernel against
the RTS specification. The model that is required for instance-
level specialization can directly be used for static conformance
checking to find, for instance, locking protocol violations. If
specializing on interaction level, the underlying interaction
model [11] further paves the path to whole-system end-to-end
response-time and energy-consumption analysis [13], [31].

B. Challenges

However, specialization does not come for free. It depends
on a very deep understanding of your RTS on the systems level,
as well as the ability and willingness to express its properties
and demands towards the RTOS. In our experience, deep
specialization remains a hopeless attempt if the configuration
of the RTOS is mostly based on experience and manual labor
of the RTS developer. Full (or at least nearly full) automation
of specialization by tools is the key to success.

You have to know what you need and this is probably the
major challenge. In practice the burden is on the developer –
and this already hits its limits when specialization takes place
on the level of abstractions: Recent versions of Linux (4.16), but
also smaller RTOSs like eCos, provide an unbearable number of
configuration options (more than 17000 in Linux, respectively
5400 in eCos). Hence, most developers have long ago stopped
specializing more than necessary and employ, in the case of
Linux, a one-size-fits-all standard distribution kernel instead.
To be viable in practice, the RTOS configuration has to be
derived automatically: In fact, the 90 percent code savings in
Linux mentioned above were only achievable by an automatic
specialization approach that measures the required features
on a standard distribution kernel in order to derive a tailored
configuration [30], [28]. Schirmeier and colleagues suggested
automatic detection of required eCos features (level of ab-
stractions) by static analysis of the application source [29].

However, they also identified limits of their approach when
the decision about an abstraction (e.g., the need for a costly
priority inheritance protocol in the mutex abstraction) depends
on information only available on the instance or interaction
level (i.e., who accesses a particular mutex at run time).
Hence, for the developer automatic configuration becomes
actually easier with instance- or interaction-level specialization.
As she has to think about the employed system objects anyway,
specifying the requirements on the instance level is closer
to the application and more natural, while the configuration
tool can automatically derive the necessity of, for example, a
priority inheritance protocol in mutex objects. OSEK, which is
specialized on instance level, automatically derives the priority
of the resource objects specified in the OIL file [23], [24].
If interaction-level information is required, a manual provision-
ing would become completely intractable. However, in this
case static analysis of the application source code is even more
promising than on the feature level: Programming is the act
of writing down desired interactions between instances, which
are technically expressed by syscalls, and we can use static
analysis to extract these interactions. For example, Bertran
et al. [7] analyze all libraries and executables of a concrete
Linux system and remove system calls that cannot be activated.
Furthermore, with a complete and flow-sensitive analysis of the
application’s execution across the syscall boundary we could
retrieve a complete interaction model [11]. This, however, has
exponential overhead if indeterminism by external events needs
to be considered. Hence, the analysis needs to be constrained
by further information that is commonly not expressed in the
source code, such as event-activation frequencies.
You have to be able to express what you need is therefore
another challenge – and unfortunately in many cases the RTOS
interface even hinders the expression of instance-level developer
knowledge [18]: Most RTOSs adhere to (or at least mimic)
a POSIX-style API with dynamic allocation and instantiation
of a conceptually arbitrary number of system objects at run
time. This mindset stems from interactive multi-user systems
(UNIX), but has to be considered as a strong misconception in
the world of real-time systems – for both sides, developers and
users of an RTOS. The already mentioned reductions in the
kernel’s memory footprint when switching from the POSIX-like
eCos to the OSEK-like CiAO in [17] are rooted in the kernel-
internal overhead of implementing an interface that favors
(unneeded) dynamic instantiation. So, if the RTOS employs
such a “flexible” syscall interface, more additional information
has to be provided by the developer to enable instance- and
interaction-level specialization.
Testability and certifiability is in our opinion becoming the
most significant obstacle towards systematic specialization
of system software. With the advent of autonomous driving
features, the industry is facing new challenges with respect to
functional safety; ISO 26262 and ASIL D demand the employ-
ment of a certified RTOS. While in principle the certification
of a less flexible system should make this easier (see discussion
of the respective benefit in the previous section), existing
certification procedures mostly follow a certify-once-and-never-
touch-again philosophy that is fundamentally the opposite of
application-specific specialization. The certification of an RTOS
kernel is extremely expensive, so vendors shy away from the
even higher costs of certifying a kernel generator. However,
without a certified generator, each specialized kernel instance
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Fig. 2: Interaction Graph for GPSLogger

would have to be certified individually. In the extreme case
(full interaction-level specialization) this would be necessary for
every change of the application implementation. Hence, certified
RTOSs, such as RTA-OS (ETAS), MICROSAR OS (Vector),
or tresos Safety OS (EB) offer not more, but significantly less
room for specialization.
So one has either to forgo the benefits of specialization or to
swallow the bitter pill of certifying a complete kernel generator,
which is highly unrealistic. A more promising direction could
be to make a virtue out of necessity and extend the (automatic)
specialization to the certification process as well: We do not
need to validate the specialized kernel against the full RTOS
specification, but only to those parts and interactions that are
actually used on the concrete RTS. If the interaction model
could be assumed as sound and complete, it can be employed
with model checkers to automatically validate the generated
kernel instance. [9]

C. Summary

Despite very high improvements regarding many nonfunc-
tional properties, RTOS specialization is performed only half-
hearted in practice, as explicit configuration puts to much
burden on the developer. This is partly caused by unsuitable
UNIX-inspired syscall APIs and misconceptions about “what
the OS is and provides”. Hence, deep specialization requires
automation to remove the burden of having to understand
and know the details from the developer. The analysis of the
application’s requirements interactions as well as the generation
of a fitting RTOS instance has to be provided by tools.

Nevertheless, also with existing RTOSs implementations
that offer a less-than-ideal API, significant savings are achiev-
able. In the following, we exemplify this by re-analyzing an
existing application running on FreeRTOS from the viewpoint
of our taxonomy.

IV. AN EXPERIMENT WITH FREERTOS

Our example is the a freely available GPSLogger2 applica-
tion, which uses FreeRTOS [5] to orchestrate its threads. The
system runs on a “STM32 Nucleo-F103RB” evaluation board
that is equipped with a STM32F103 MCU. It is connected to
a graphical display (I2C), a GPS receiver (UART), a SD card
(SPI), and two buttons (GPIO). The application consists of 5
threads, 3 ISRs, 2 blocking queues, and one binary semaphore.
Due to a broken SD card library, we replaced the SD card
operations with a printf().

2https://github.com/grafalex82/GPSLogger

In Figure 2, we extracted the interaction graph for this appli-
cation manually from the source code. For compactness reasons,
we omitted some interactions from the figure (i.e. preempt).
The inter-process communication is mainly done with blocking
message queues. However, the GPS thread and the display
thread bypass the kernel for the transferred data and use a
shared memory region that is protected by a binary semaphore.
For most IO operations, GPSLogger uses a pattern where
one thread blocks passively until one DMA ISR signals the
completion of a data transfer. However, for the button thread,
GPSLogger uses active polling with a passive sleep. While
the employment of full-blown queues is overkill to transmit
small datagrams in 1:1 interactions, it is the primary abstraction
offered by FreeRTOS.

a) Specialization of Abstractions: FreeRTOS provides
abstraction-specialization capabilities by using conditional com-
pilation and C preprocessor macros. However, there is no formal
or semi-formal feature model, like it is provided by Linux
KConfig or the eCos configuration tool, but the configuration is
placed in a header file. As another specialization, unreachable
functions are automatically removed by the linker, as the build
system uses function- and data sections in combination with
link-time garbage collection.

At this specialization level, the resulting binary uses 91,084
bytes for code and 18,328 bytes of mutable RAM. The kernel
takes 60,426 cycles of startup time, before the first task starts.
Startup times were measured 100 times and the standard
deviation always was below 35 cycles.

b) Specialization of Instances: For the instance level,
we removed the dynamic system-object allocation in favor of
statically allocating them in the data section. These system
objects include the thread stacks, the thread control blocks,
queues, and the ready list. FreeRTOS, since version 9.0.0,
supports that the user provides a statically allocated memory
to hold system objects and, thereby, gets rid of the special
FreeRTOS heap. With static allocation, we use 112 more bytes
of code, but save 856 bytes of RAM and 6,598 cycles of startup
time compared to baseline. The increase in code size stems
from the additional parameter of the static object-initialization
functions.

As a second step, we removed the dynamic initialization
of stacks, thread-control blocks, and the scheduler. Instead,
we initialized their values and pointers statically such that the
data section already contains a prepared memory image to
start FreeRTOS. Compared to baseline, the statically initialized
GPSLogger saves 344 bytes of code and 7,327 cycles of startup
time. The RAM usage is equal to the variant only with static
memory allocation.

c) Specialization of Interactions: After carefully ex-
amining the GPSLogger, we came to the conclusion that a
interaction-level specialization that is restricted to the RTOS
is not possible here. From the FreeRTOS API usage it is hard
to tell why a specific API was used, since it hindered the
expression of the developer’s intention (see also Section III).

However, we extend the scope of the specialization to the
application. From the interaction model (Figure 2), we know
that the LED thread does not interact with any other thread
as it only periodically blinks the LED. Furthermore, toggling
a GPIO pin takes far less cycles than the thread-management

5
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overhead. Therefore, we can safely inline the GPIO toggling
into the timer ISR and remove the LED thread, including its
stack and TCB. Compared to baseline, the system becomes 512
bytes of code and 1,616 bytes of RAM smaller. The startup
time decreases by 9,397 cycles.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described a taxonomy of specialization for
real-time systems and define three levels of specialization that
successively remove (unneeded) flexibility from the system. On
the abstraction level, instance, and interaction level, we can
remove abstractions, make instances fixed, and forbid concrete
interactions. Furthermore, we discussed the benefits and chal-
lenges introduced by specialization. Although specialization
yields significant improvements of nonfunctional properties,
manual specialization has long outgrown engineers capabilities
and is thus mostly applied on the coarse-grained abstraction
level. Therefore, we argue that specialization on deeper levels
requires automation to reach it’s full potential.

To illustrate our taxonomy, we (manually) specialized an
example application on the three specialization levels. Although
the application was not designed with specialization in mind,
we were able to extract the actually required interaction graph
and, in consequence, were able to specialize the system to
show improved nonfunctional properties. Therefore, we plan to
integrate automated analysis and specialization into the build
process and the compiler toolchain. If once automated, all levels
of specialization can be generated and compared at compile
time to choose the variant with the best nonfunctional properties
for the specific use case.
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Abstract—Recently, the complexity of safety-critical cyber-
physical systems has spiked due to an increasing demand for
performance, impacting both software and hardware layers.
The timing behavior of complex systems, however, is harder
to analyze. Real-time hardware resource management aims at
mitigating this problem, but the proposed solutions often involve
OS-level modifications. In this sense, software verification is key
to build trust and allow such techniques to be broadly adopted.
This paper specifically focuses on CPU cache management,
demonstrating that OS-level hardware management logic can be
verified at the source code level in a modular way, i.e., without
verifying the entire OS.

I. INTRODUCTION

In the last decade, there has been an uptrend in the com-
plexity of safety-critical real-time systems. Such a trend is
the result of an ever increasing demand for performance, fea-
tures and efficiency. Multi-core platforms and heterogeneous
hardware largely represents the industry’s answer to such an
increase in computational demand. As the hardware grows in
complexity to match the demand for performance, it becomes
increasingly hard to fully understand or to predict its timing
behavior.

Unfortunately, the loss of timing predictability makes real-
time analysis significantly harder, with two unwanted con-
sequences. First, the inability to produce tight upper-bounds
on workload worst-case execution time (WCET) leads to
overprovision and waste of hardware resources. Nonetheless,
the decreasing cost of hardware components partially mitigates
this problem. Second, safety-critical systems are required to
undergo a rigorous certification process in order to be consid-
ered for large-scale deployment. Difficulty in determining the
logical and temporal correctness of a system heavily impacts
certification costs. These costs easily surpass the sheer cost of
hardware components by several orders of magnitude.

A number of works [9], [20], [12] have proposed OS-level
mechanisms to explicitly manage those hardware components
that, if unregulated, represent major sources of unpredictabil-
ity: i.e. shared CPU caches, DRAM memory, and I/O subsys-
tem. Management techniques proposed in the literature have
been shown to achieve substantial real-time benefits. Yet, many
industries are reluctant to widely adopt such solutions due to a
fundamental lack of confidence about the correctness of their
implementation. The fear is justified considering that hardware
management mechanisms often operate at high-privilege level,
and thus their misbehavior can lead to substantial failures.

This work represents a first step toward the verification
of system-level components that implement hardware man-
agement techniques for real-time purposes. In fact, in this
work we demonstrate that it is possible to verify the logic
of a kernel-level component at the source code level in a
modular way; i.e. without verifying the entire OS that can be
assumed verified or trusted. Specifically, this paper presents
the verification approach for Colored Lockdown [11]: a real-
time last-level cache management scheme implemented in the
Linux kernel. Colored Lockdown is part of a larger framework
of hardware resources management techniques for multi-core

+This work was done while this author was an employee of Carnegie Mellon
University.

platforms that goes under the name of Single Core Equivalence
framework (SCE) [12], [13].

The rest of the paper is structured as follows. In Section II
we provide an overview of the related work. Section III
provides the required background knowledge for this work. A
high-level description of our verification approach is discussed
in Section IV, while additional implementation details are
provided in Section V. Next, a brief evaluation is reported
in Section VI. Finally, concluding remarks and possible future
extensions are discussed in Section VII.

II. RELATED WORK

As increasingly higher level of assurance is required from
safety-critical systems, there has been an uptrend in the
popularity of verification methodologies. A consistent body
of works has used the “verified by design” approach. In this
context, the SPARK language and toolkit [3] provide extensive
capabilities to reason about the correctness of applications at a
source code level. In the SPARK environment, verification is
performed with a combination of static analysis and deductive
verification. Deductive verification on the other hand, has been
widely used on industrial use-cases [7], [10], [4]. Similarly, the
level of assurance provided by formal static analysis based
on abstract interpretation often represents a good trade-off in
terms of scalability [16], [6].

Automated assertion checking is often used as an alternative
to deductive verification. With this approach, it is typically
possible to confine the explored state space to a manageable
subset that is fundamental for the considered properties/asser-
tions. Among the different techniques for assertion checking,
bounded verification is often used for source code debugging.
A number of consolidated tools implement assertion checking,
e.g. SLAM [2], TASS [19], and CBMC [5] used in this paper.

Recent works have explored the use of verification tech-
niques to validate application-level software in the domain of
control systems [8], aerospace and avionic software [21], and
railways systems [15]. In seL4 [14], the design and verification
of an entire OS is proposed. While closely related to [14],
we take a fundamentally different approach: we consider
certified systems where new kernel-level functionality can be
introduced to improve/optimize performance and demonstrate
how modular verification of OS-level code can be performed.
Finally, many works perform verification of the interaction
between kernel modules and OS routines [17], [1]. Conversely,
we focus on the verification of kernel-level logic that interacts
with (i) kernel sub-routines, (ii) virtual memory, and (iii) CPU
cache space.

III. BACKGROUND

The philosophy behind SCE is that performance in a multi-
core system can be analyzed and certified using a modular
approach with respect to the rest of the system. In order to
attain this goal, four main components are used in SCE to
mitigate inter-core interference arising from a correspondent
number of major sources [18], [12], [22], [23], [11]. Apart
from other components used to manage DRAM and I/O,
Colored Lockdown [11] is used to perform deterministic
allocation of real-time task data and instruction in last-level
shared cache. When Colored Lockdown is used, the portion
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of task memory allocated in cache will exhibit 100% hit rate.
In this paper, we specifically focus on verifying the OS-level
logic of Colored Lockdown. In this section, we provide an
overview of the design of Colored Lockdown and briefly
describes its internal components.

On multi-core systems, the timing of an application running
on core A can be affected by a logically unrelated application
running on core B if they share cache space. This timing inter-
dependence goes under the name of “inter-core (performance)
interference”. The goal of Colored Lockdown [11] is to use
cache locking to address inter-core interference while pro-
viding a trade-off between efficiency and flexibility. Colored
Lockdown involves two main stages: an offline profiling stage;
and an online cache allocation stage.

Profiling: during the offline stage, each real-time task is
analyzed using a memory profiler [11]. When the task runs
in the profiling environment, memory accesses are traced and
per-page access statistics are maintained. Next, (i) pages of the
task’s addressing space are ranked by access frequency; and
(ii) a profile is produced identifying frequently accessed (hot)
pages by their relative position in the addressing space. The
final profile can be used online to drive the cache allocation
phase. Given the produced profile, two mechanisms are used
to provide deterministic guarantees and a fine-grained cache
allocation granularity, described below.

Page Coloring: last-level caches in modern multi-core plat-
forms are typically set-associative physically indexed caches.
As such, multiple main-memory pages can be mapped to
a given set of shared cache pages. Pages in the same set
are said to have the same “color”. Pages with the same
color can be allocated across cache ways, so that as many
pages as the number of ways can be simultaneously allocated
in last level cache. Any application page can be re-colored
transparently to the application by only manipulating physical
memory and page-table translations. Colored Lockdown relies
on this mechanism to reposition task memory pages within the
available colors, in order to exploit the entire cache space.

Lockdown: real-time applications are dominated by peri-
odic execution flows. This characteristic allows for an op-
timized use of last level cache by locking hot pages first.
Relying on profile data, Colored Lockdown first colors fre-
quently accessed memory pages to remap them on available
cache ways; next, it exploits hardware cache locking support to
guarantee that such pages (once prefetched) will persist in the
assigned location (locked), effectively overriding the default
cache replacement policy.

IV. VERIFICATION APPROACH

This section provides an overview of the approach followed
to verify the main properties of Colored Lockdown. We first
establish the boundaries of the performed verification; next,
we discuss what memory model is being considered; and
finally we describe what components of the hardware/OS are
abstracted.

Verification Strategy: we perform source-level verification
via bounded model checking of the main block of code that
is responsible for the allocation of memory pages in last-level
cache within the Colored Lockdown module. The considered
code is compiled as a Linux kernel module and runs at the
highest level of privilege in the target platform. Verifying its
correctness is therefore of great value.

In order to perform cache allocation, the Colored Lockdown
module tightly interacts with the rest of the Linux kernel in
two main ways: (i) it uses data from many descriptors used
in the kernel; (ii) it invokes memory manipulation/translation
procedures provided by the Linux kernel. The code base of the
entire Linux kernel is too large and complex to be formally
verified. For this reason, we restrict the verification to that
portion of the cache allocation logic that is directly related to

Colored Lockdown.
In order to focus the verification on the important compo-

nents, we abstract the behavior of any invoked kernel routine,
as detailed in Section V. For instance, a routine used to
allocate a new generic memory page is abstracted as a function
that returns an unsigned integer. The return value is non-
deterministic, and such that: (i) it is aligned to the memory
page size; and (ii) it is within the range defined by the bit-
width of the considered memory layout.

Similarly, only sub-fields of kernel data structures that
are relevant to verification are initialized by the verification
routines. A portion of the initialization procedure is parameter-
dependent, so that different cache allocation scenarios can be
analyzed.

Verification Boundaries and Assumptions: the hardware-
level properties that are abstracted mostly concern the behavior
of a typical cache controller that allows per-line cache locking.
Hence, we make the following assumptions. First, we assume
that the initial status of the cache is unknown. This reflects
the status of a cold cache at the time of Colored Lockdown
allocation. Second, we assume that the considered cache
is physically indexed1. Third, we consider that the bits of
the physical address that encode the index of a cache line
correspond to the least significant bits following the cache
offset bits. Hence, the structure of a physical address from the
cache controller’s perspective from most to least significant
bit is: tag bits, index bits, offset bits. Since we consider cache
controllers that support per-line locking, we assume that a
special instruction is available to set a lock bit on a per-line
basis. Once the lock bit has been set, the cache line cannot be
evicted from cache. Finally, we assume that a cache look-up
for a locked line will result in a cache hit.

We verify an implementation of Colored Lockdown as a
Linux kernel module. The same logic, however, can be ported
across different OS’s, assuming that they provide kernel-
level routines with similar semantics. In order to focus our
attention on the target module, we assume that the descriptors
belonging to the OS and used by Colored Lockdown have
been correctly initialized (see Section V). Next, we assume
that profile information about the process under consideration
have been correctly passed from user-space to kernel-space.
Finally, we assume that all the virtual memory pages of the
process have a valid mapping in physical memory. The latter
assumption is typically verified in RTOS’s that do not perform
demand-paging. Under Linux, this behavior can be achieved
using the mlockall system call.

Memory Layout Specification: our verification is paramet-
ric with respect to the memory layout and cache controller
configuration. Thus, it is possible to re-run the verification
procedure on a specific memory/cache configuration and with
a variable number of pages to be allocated, i.e. profile pages.
The following five parameters suffice to fully define the
considered memory subsystem as well as the address structure
from the cache controller’s perspective:
(1) Ps: Number of bits in a virtual address that encode the

offset of a byte in a memory page, also known as page
shift;

(2) Bw: Bit-width of a physical address in the considered
platform, e.g. 32 for 32-bit architectures; 48 for 64-bit
architectures2.

(3) O: Number of bits in a physical address that encode the
offset of a byte within a cache line;

(4) I: Number of bits in a physical address that encode the
index in cache of a cache line;

(5) W : Associativity – i.e. number of ways of the cache.

1Last-level caches in multi-core platforms are typically physically tagged and indexed.
2Despite the bit-width of CPU registers is 64 bit, the memory subsystem typically

works with 48 bit addresses. This results in 256 TB of addressable memory and a 4-
level page tables layout is used.
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Given the five parameters above, the rest of the parameters
used to perform cache locking can be derived: size of a
memory page; size of a single cache line; number of lines
and pages (i.e., available colors) per way; number of cache
sets; bit-width of the cache tag; and total size of the cache.

One more parameter controls the amount of memory that
is allocated in cache for the process under consideration. This
parameter defines a generic number of pages that is prefetched
and locked in cache as a result of the coloring/locking logic.
By default, all the pages are considered as process’ heap pages.
This however does not affect the generality of our approach
since there is no difference in the way pages belonging to
various regions are handled.

Verified Properties: a set of core properties of Colored
Lockdown was successfully verified. The target of the verifica-
tion is twofold: (i) that cache allocation is correctly performed
when profiling data are correctly specified from user-space,
and the amount of memory to be locked in cache is smaller
than the cache size; and (ii) that the status of the system
and cache is overall consistent. Note that using the current
verification infrastructure, additional system/cache properties
can be verified. The verified properties can be summarized as
follows:
(1) If the number of pages to be allocated in cache is less or

equal to the number of available cache space in pages,
cache allocation for the considered process is entirely
performed. Otherwise, no cache allocation is performed;

(2) If cache allocation is performed, then all the physical
memory mapped to each virtual address within the range
selected for allocation will be locked in cache;

(3) No more than the total number of locked pages are set
as locked in cache at the end of the Colored Lockdown
procedure;

(4) All the temporary kernel-level resources required by Col-
ored Lockdown to execute are released at the end of the
procedure.

Verification Challenges: we hereby summarize the chal-
lenges that had to be addressed to perform source-level veri-
fication of Colored Lockdown as a OS-level component. One
of the first challenges we encountered in the attempt to verify
a Linux kernel module was the large number of dependencies
with the kernel source code that a module can exhibit. Three
main type of dependencies exist: data type dependencies,
procedural dependencies, and logic dependencies.

A Linux kernel module uses several types that are defined
and exported by the kernel. Many of these types are complex
C-language structures interconnected via pointers. Obviously,
only a subset of the fields in such structures are required
for focused verification. CBMC v. 5.2 [5], the source code
verification tool we used, employs slicing to eliminate unused
variables and reduce verification complexity. However, we
found this to be inadequate for our target system. The first
challenge was to manually prune the definitions of kernel-
level structures to exclude all the irrelevant fields. In order
to overcome this issue, we have incrementally transferred
into the verification sandbox a number of kernel headers and
systematically stripped them of unneeded data types and fields.
For instance, one of the imported files was sched.h that
in the Linux kernel defines constants and types relevant for
process management. The file is about 2700 lines long in
a typical Linux source tree. In the first pruning, we only
maintained the process descriptor definition, reducing the file
length to about 370 lines. Next, we identified the only two
fields required for verification out of the 170+ fields included
in a typical process descriptor.

The second type of dependency is procedural dependency.
The code that needs to be verified uses at top level a set of
routines defined in the kernel code. To reduce the state space
and the amount of code logic to be verified, one challenge
consists in abstracting the semantics of the invoked procedures

(if possible) and making a reasonable assumption on their
output. In Section V we describe as an example the abstraction
performed on the kernel procedure get_user_pages.

Finally, many logic dependencies exist between the state
of the kernel and the verified module. This problem sets
our verification approach apart from verification of standalone
components. In fact, the Colored Lockdown module expects
the status of a number of kernel-level descriptors to be
initialized and valid. Some of these descriptors are created at
boot-time, while others are constantly updated upon system
events. Hence, it would be unfeasible to verify the code
responsible for their initialization. To tackle this challenge,
we have first identified all the logic dependencies. Next, we
have introduced an initialization routine that either explicitly
sets each referenced variable to its expected value or assumes
its value to be within the expected range. A closer look at the
initialization procedure is provided in Section V.

Overall, CBMC revealed a good maturity in handling C
source code. However, when verifying kernel-level code, we
have encountered a few glitches that need to be carefully
addressed to avoid false negatives in the verification process.
Relatively simple workarounds have been found for all the
encountered glitches. Such problems, however, can represent
a serious overhead in the verification process when reasoning
over a large base of system-level code.

The first problem we encountered regards the way void
pointers are handled in CBMC. The standard C semantics en-
forces that the increment of a void * data type is performed
at the granularity of a single byte. Consider the following code:

int void_test(void)
{

void * ptr = (void *)(1 << 12);
ptr += 0x100;
return (ptr == (void *)0x00001100UL);

}

The code compiles without warnings/errors under a standard
GCC compiler. The expected return of the test function
is always 1 under standard C-pointer arithmetic. However, a
CBMC verification instance that relies on this behavior will fail.
Running CBMC 5.2 on the considered procedure, produces the
following output:

Counterexample:

State 21 file ./cbmc_test.c line 18 function void_test thread 0
----------------------------------------------------

ptr=NULL (00000000000000000000000000000000)

State 22 file ./cbmc_test.c line 18 function void_test thread 0
----------------------------------------------------

ptr=NULL + 4096 (00000000000000000001000000000000)

State 23 file ./cbmc_test.c line 19 function void_test thread 0
----------------------------------------------------

ptr=NULL + 3840 (00000000000000000000111100000000)

Violated property:
file ./cbmc_test.c line 58 function main
assertion return_value_void_test$1
(_Bool)return_value_void_test$1

VERIFICATION FAILED

Clearly, State 23, which should reflect the pointer’s status
after the increment in the considered code extract, reports a
wrong pointer value. This triggers a verification failure. A
possible workaround consists in performing the pointer value
increment after a conversion to unsigned long3.

The second issue requires a longer explanation and due to
space constraints we omit a detailed description. Briefly, CBMC
seems to exhibit a glitch in the propagation of a variable value
after it has been assigned using a bitwise operator. Consider
the following snippet:

3The unsigned long type has typically the same width of a pointer.
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int retval = 1;
for (...) {

retval &= bool_function(...);
}
if (retval) ...

In this case, CBMC produced verification counterexamples
that reported the execution of the if block even though the
state value of the retval variable was 0 (false);

In our verification, we found that many subtle interactions
in system-level code are hard to fully capture at a source level.
Consider the following case. Colored Lockdown performs re-
coloring of a process page. For this purpose, a new physical
page is allocated and its content copied from the original page,
appropriately modifying the page tables of the process under
consideration. This behavior is “correct” as far as Colored
Lockdown is concerned. However, if no action is taken to
de-allocate the original page correctly, Colored Lockdown
can indirectly trigger a fault somewhere else in the system
as the original page descriptor remains in an inconsistent
state. Similar interplay problems can occur when a module
accesses a data structure without acquiring the required lock.
In a typical multi-threaded application, this problem would
be easy to detect since all the execution flows are known.
The problem is however significantly harder to solve without
knowing where in the kernel potential data races can arise.

Finally, a challenge that affects source-level verification
at large, is the quick increase in complexity as the state-
space expands. In our verification attempt, we were able to
overcome the vast majority of challenges described in this
section. In spite of this, verification settings with realistic
parameters required significant computational resources. We
provide additional insights on the feasibility and limits of our
verification approach in Section V.

V. VERIFICATION DETAILS

In this section, we provide additional details about the
performed verification. First, we discuss how the cache hard-
ware is modeled; next, we discuss the initialization of kernel
structures and OS state. A detailed overview about how cache
and memory layout are initialized is also provided. Finally, we
detail the structure and verification statements used to verify
the core properties of Colored Lockdown.

Cache Model: traditional source-level verification tools,
including CBMC, do not provide primitives to model platform
hardware behavior. For this reason, we use a supporting data
structure to maintain the cache state and to perform assertions
on its state. Colored Lockdown allows deterministic allocation
of memory pages in cache. Thanks to coloring, the mapping
set is explicitly controlled. Conversely, the decision about
the allocation way is left to the cache controller. The key
insight, however, is that when the replacement policy attempts
to allocate a line with a certain set, and the line for that set
is marked as locked in a given cache way, the way cannot
be selected for eviction. Thus, as long as a number of lines
less or equal to the cache associativity is locked, each locking
request can be satisfied. It follows that the logical view of a
cache is a 2D structure (sets vs. ways). One index (set index) is
derived from the physical address being allocated; while the
other index (way index) is non-deterministically determined
by the replacement policy.

Following this structure, the cache status is defined as:
1 typedef struct {
2 void * addr;
3 char locked;
4 } cache_line_t;
5
6 typedef cache_line_t cache_set_t [CACHE_ASSOC];
7 typedef cache_set_t cache_t [CACHE_NSETS];
8 cache_t cache;

In the listing above, CACHE_ASSOC and CACHE_NSETS
refer to the number of sets and to the number of ways

(associativity), respectively. Note that there is no need to
record the value of the cached data, as we are only concerned
with hit/miss behavior. Hence, only cached address and locked
status are being tracked.

The assumption we make about the initial state of the cache
is that no line is currently locked. As such, we initialize the
locked state on all the cache elements as 0, and assign a non-
deterministic value to the address field.

Profile Structure and Initialization: as stated in Sec-
tion IV, we assume that profiling information has been passed
from user-space to kernel-space before the lockdown proce-
dure is invoked. Hence, for verification purposes, we explicitly
initialize the kernel structures that hold kernel-side profile
data. In Colored Lockdown, profiling data is provided via the
Linux CGROUP virtual file-system interface. For a task for
which a profile has been loaded via the CGROUP interface,
a custom structure, namely struct task_profile is
associated with the task descriptor. The most relevant fields
of the structure are: (i) number of memory regions with pages
to be locked; (ii) list of descriptors for memory regions with
data to be locked; (iii) total number of pages to be allocated
in cache; (iv) list of descriptors for pages to be locked.

Since the state of the struct task_profile object
is assumed to be valid, an initialization routine was added.
The routine allocates enough data to contain the full list of
memory regions and memory pages. These parameters are set
at profile loading time, hence they are known at the time
Colored Lockdown is invoked. In the context of this paper,
they constitute parameters for the creation of a verification
instance. A default scheme is used to associate memory
pages to areas. This choice however does not compromise the
generality of the verification, as there is no difference in the
way pages in different areas are handled.

Within each memory region’s descriptor, only the index
that the considered region has in the list of kernel-maintained
virtual memory areas (VMA) is initialized. The logic that
resolves such a (relative) index into an absolute range of virtual
memory addresses is part of the Colored Lockdown logic.
Hence, it is part of the verification.

Task Descriptor Setup: when Colored Lockdown is in-
voked as a system call by a task, it heavily relies on infor-
mation contained within the kernel-maintained task descriptor
struct task_struct to perform cache allocation. When-
ever any system call is invoked in the kernel, a globally visible
expression, namely current, expands to a pointer to the
struct task_struct object for the calling process. For
verification purposes, the object pointed by current needs to
be initialized. The following is an extract of the task descriptor
setup routine:

1 int pages;
2 struct vm_area_struct * prev_vma;
3 struct vm_area_struct * cur_vma;
4 /* ... */
5 prev_vma->vm_start = 0x08048000UL;
6 current->mm->mmap = prev_vma;
7 pages = nd_int();
8 __CPROVER_assume(pages >= AREA_MINPAGES && pages <= AREA_MAXPAGES);
9 prev_vma->vm_end = prev_vma->vm_start + (pages << PAGE_SHIFT);

10 /* Link VMAs */
11 cur_vma->vm_start = prev_vma->vm_end;
12 prev_vma->vm_next = cur_vma;
13 /* Use cur_vma to setup next VMA */

The first area in the list of VMAs is typically the text (i.e.
the executable code) section of a process. The start of the first
area is taken as the default address at which code is logically
placed in compiled executables (line 5). The address of the
first VMA descriptor is recorded inside the current object
(line 6). Next, a non-deterministic number of pages between
the established boundaries is generated in lines 7–8, and the
end of the first VMA is set accordingly (line 9). As VMAs
are initialized, they are placed in an unidirectional linked list
(lines 11–12).
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Colored Lockdown Procedure: the Colored Lockdown
module also performs a series of initialization routines as soon
as it is loaded (once) into the kernel. The routines mostly
initialize cache parameters and buffers required to perform
page coloring. Due to space constraints, we omit the details
about how initialization is performed inside the verification
environment.

When Colored Lockdown core logic is invoked as a system
call, the sequence of operations can be summarized as follows:
(1) Access to profile structure and validation of current

object – to make sure Colored Lockdown is performed
on the right task;

(2) Derivation of virtual addresses for each memory page in
the profile to be allocated in cache;

(3) Resolution of virtual addresses into physical addresses and
cache color calculation;

(4) Check of color availability in cache and assignment of first
available color;

(5) If each page has been assigned a color, perform page re-
coloring (as needed) and lockdown.

Hereby, we provide a few extracts of kernel logic that are
relevant to understand the interaction with CBMC. The first
point is trivially verified because we assume that profile data
passing and Colored Lockdown invocation is performed cor-
rectly. The second step largely uses data in the current de-
scriptor initialized as described in Section V. Next, in order to
translate the virtual addresses of pages to be allocated, Colored
Lockdown uses a kernel routine, namely get_user_pages.
The get_user_pages routine represents an entry point for
a number of page-wide kernel operations that can be selected
via a flag parameter. When invoked with no flags, the
function takes as input a range of (virtual) addresses and a task
descriptor and returns an array of pointers to page descriptors.
Each page descriptor corresponds to a page in the selected
range. In Linux, the value of the pointer to a page descriptor
is always a linear translation of the described page’s physical
address. Hence, knowing the pointer to the page descriptor
for a page is equivalent to knowing its physical address. The
get_user_pages logic is fairly complex, but since it is part
of the kernel, it sits beyond our verification boundaries. As
such, we have abstracted much of its functionality as follows.

1 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start,unsigned long nr_pages, int write, int
force, struct page **pages, int *locked)

2 {
3 struct page * page_ptr;
4 assert(nr_pages == 1);
5 assert(write == 0);
6 assert(force == 0);
7 assert(tsk == current);
8 assert(mm == tsk->mm);
9 page_ptr = __CPROVER_uninterpreted_void_ptr(tsk, mm, start);

10 __CPROVER_assume(page_ptr >= mem_map && page_ptr < (mem_map +
MAX_PAGES));

11 __CPROVER_assume(((unsigned long)page_ptr & ((1 << sizeof(
struct page)) - 1)) == 0);

12 *pages = page_ptr;
13 return 1;
14 }

First, a set of asserts on the passed parameters is performed
(lines 4–8), to verify the expected value of a number of
parameters when get_user_pages is called within Colored
Lockdown. An uninterpreted function is used (line 9) to
construct a valid return value for the routine. In general, the
returned value can be any pointer to a page_struct object
(line 11) with a value between mem_map4 and the end of
that portion of kernel memory where page descriptors are
stored (line 10). For any specified parameter value of tsk,
mm and start, the same page pointer should be returned
by successive invocations of get_user_pages. Hence the
use of an uninterpreted function at line 9. The derivation of

4In a Linux kernel, this symbol represents the beginning of the array of page
descriptors.

physical addresses from page descriptor pointers follows a
similar logic.

In the following step the availability of colors is checked.
The check is performed using an internal structure that re-
members the color associated to each page to be allocated.
The step is performed with minimal kernel interaction. When a
“conflict” page is encountered, i.e. a page with an unavailable
color, the module selects the closest available color. It also
marks the internal descriptor for the page to reflect the change.
At this stage, no recoloring is performed, hence no final
changes are carried out.

If the procedure has determined that there exist enough
available space to perform cache allocation, the following
actions are performed. First, the module performs re-coloring
of all the conflict pages. Second, it executes a cache lock-
down operation on each line of each profile page. In the
considered architecture, the lockdown is performed using a
dedicated assembly instruction, namely DCBTLS5. In order to
perform verification, however, we also update the status of the
structure used to model the cache. More in detail, we invoke
the lock_line procedure on each address corresponding
to every line in a page being allocated. The lock_line
procedure is reported below.

1 void lock_line(void * addr)
2 {
3 unsigned int index = get_index(addr);
4 unsigned int way = nd_int();
5 __CPROVER_assume(way >= 0 && way < CACHE_ASSOC);
6 __CPROVER_assume(!cache[index][way].locked);
7 cache[index][way].addr = addr;
8 cache[index][way].locked = 1;
9 }

The procedure is invoked on physical addresses, hence it
is easy to calculate the cache index of the line, i.e. the cache
set where the line will map (line 3). Since no specific cache
replacement policy is assumed, the way selected for the alloca-
tion is generated as a non-deterministic integer (nd_int(),
line 4) between 0 and the number of available ways (line 5).
The ways where a line has been previously locked in the same
set are excluded (line 6), as per assumed hardware behavior.
Finally, with selected set/way, line locking is carried out as in
lines 7 and 8.

To complete the verification, after Colored Lockdown is
invoked, we check that: (i) every physical address (at the
granularity of single cache lines) in pages to be allocated, as
per the profile, can be found in our cache structure; and that
(ii) no more locked lines than what specified in the profile is
marked as locked.

VI. EVALUATION

In this section, we provide a brief evaluation of the time
required to perform verification using the proposed approach.
The evaluation has been performed under two memory/cache
layout scenarios using CBMC version 5.2 on a workstation
machine featuring a 28-core Intel Xeon E5-2658 CPU running
at 2.10 GHz with 32 GB of RAM. Unfortunately, CBMC only
uses only one core and it is not possible to parallelize the
verification effort due to the large amount of memory required
to acquire each sample.

In the first scenario, we consider a 32-bit system (Bw =
32) with the following memory layout: memory pages of size
256 bytes (Ps = 8); a cache line size of 64 byte (O = 6);
and a way size of 512 bytes (I = 3), so that each cache
way can entirely hold 2 memory pages. We study the length
of the verification for an increasing number of profile pages
and cache associativity. Moreover, we set the timeout for the
verification to 2 hours. The results for this setup are reported
in Figure 1.

5This instruction is common to PowerPC-based platforms, such as Freescale MCPxxx
and QorIQ P40xx platforms.
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Fig. 2. Verification runtime for scenario with Ps = 12, Bw = 32, O = 6, I = 10
and W = 1.

In the figure, we use logarithmic scale to visualize in a
compact way the runtime of the considered scenarios. As
can be seen, the verification runtime can require from few
milliseconds to entire hours, depending on the complexity of
the system. For a low number of pages and higher associativity,
we consistently observe peaks in execution time. We believe
that these peaks originate from the increased flexibility of in-
cache placement, which negatively impacts the size of the
state space. In general, as the number of pages is incremented
with a fixed associativity, the increment in runtime follows
a regular trend and is exponential in time. Intuitively, this
arises from the exponential increase in state space size to be
explored by CBMC. It can also be noted that the verification
time sharply decreases in those instances of verification that
are not supposed to succeed. These cases, highlighted in the
figure, correspond to those setup where the cache space is
insufficient to carry out allocation, and where verification fails
as it should. In this cases, CBMC stops after encountering
a verification counter-example, hence it does not perform a
complete exploration of the state space. Unfortunately, cases
beyond associativity 6 consistently timeout in our evaluation.

In a second scenario, we evaluate the verification time for a
more complex memory/cache layout by fixing the associativity
to 1 and varying the number of pages. We consider a 32-bit
system with 4 KB memory pages (Ps = 12), 64 byte cache
line size (O = 6), and a way size of 64 KB (I = 10). In
this layout, a single cache way can contain up to 16 memory
pages. The results are depicted in Figure 2.

As shown in the figure, a sharp increment in runtime is
observed at 6 profile pages. Although not included in the
graph, any verification attempt for pages beyond that boundary
runs longer than the selected 2 hours timeout threshold.
Nonetheless, even with the current approach, verification is
feasible on a general-purpose machine for a limited number
of profile pages.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we focused our attention on verification of
kernel-level cache management logic. We have demonstrated
that it is possible to perform verification by reasoning di-
rectly on the system-level C code of the target module. Key
properties for advanced kernel-level features were verified in
a modular way with respect to the rest of the OS logic.
In our approach, we relied on bounded model checking via
CBMC. The work opens many possibilities for improvement.
As a part of our future work, we will investigate how to
include elements of deductive verification to allow verification
of more complex scenarios. Additionally, we will attempt
verification of complementary real-time hardware kernel logic
with the goal of establishing an industry-ready, verified real-
time resource management framework.
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Abstract—Many emerging cyber-physical systems, such as au-
tonomous vehicles, have both extreme computation and hard la-
tency requirements. GPUs are being touted as the ideal platform
for such applications due to their highly parallel organisation.
Unfortunately, while offering the necessary performance, GPUs
are currently designed to maximise throughput and fail to offer
the necessary hard real-time (HRT) guarantees.

In this work we discuss three additions to GPUs that enable
them to better meet real-time constraints. Firstly, we provide
a quantitative argument for exposing the non-preemptive GPU
scheduler to software. We show that current GPUs perform
hardware context switches for non-preemptive scheduling in
20-26.5µs on average, while swapping out 60-270KiB of state.
Although high, these overheads do not forbid non-preemptive
HRT scheduling of real-time task sets. Secondly, we argue
that limited-preemption support can deliver large benefits in
schedulability with very minor impact on the context switching
overhead. Finally, we demonstrate the need for a more pre-
dictable DRAM request arbiter to reduce interference caused
by processes running on the GPU in parallel.

I. INTRODUCTION

An important class of cyber-physical systems now demand
both significant compute and hard real-time (HRT) support. A
prime example is the autonomous vehicle, where low-latency
engine control systems are combined with time-critical AI
classification and decision making procedures. These clas-
sification problems are solved using massively parallel al-
gorithms such as neural networks [17]. From both a cost
and performance-per-watt perspective it is attractive to offload
these problems to massively parallel accelerators like GPUs.
NVIDIA’s introduction of Drive PX computers for assisted-
and autonomous driving [2] are evidence of the shift of GPUs
towards the domain of safety-critical HRT systems.

GPUs are designed with some real-time principles in mind,
for example to resolve contention for the DRAM bus such
that it never leads to a flickering image. Unfortunately, these
real-time provisions are not applicable to the emerging cyber-
physical use-cases. Instead, there is a strong desire to bound
execution- and response time of GPU compute workloads.

A prerequisite to bound the worst-case response time of
HRT tasks and to determine schedulability is a thorough
understanding of the task scheduling policy. NVIDIA GPUs
allow FIFO scheduling of kernels plus limited (sparsely doc-
umented) support for prioritising some kernels over others
within the same hardware context [6]. Additionally, hardware
supports non-preemptive context-switching between processes
as a means to provide security mechanisms like per-task virtual
memory spaces. Unfortunately, the criteria used for scheduling

processes are unknown and not under the control of system
developers. To achieve HRT scheduling on GPUs, systems
must instead introduce a software abstraction layer [11], [14],
[15], [16], [22]. These systems add overhead and force all tasks
in a single hardware context, sacrificing inter-task protection
mechanisms. Furthermore, their non-preemptive scheduling
still imposes large worst-case blocking times on task sets,
reducing HRT schedulability.

In this paper we present a case for three changes in GPU
architecture. Firstly, we argue that exposing control over the
current non-preemptive GPU context switching mechanisms
to systems developers can facilitate low-overhead HRT task
scheduling while providing desirable security mechanisms.
From measurements we observe an average context switching
time on NVIDIA GPUs of 20−26.5µs. Using these numbers,
we demonstrate the schedulability properties of random task
sets under overhead-aware non-preemptive earliest-deadline
first (npEDF) scheduling. Secondly, we motivate from an HRT
perspective the proposal of Tanasic et al. [24] to perform con-
text switches on the boundary of a work-group (SM draining)
rather than the compute kernel. Measured by the schedulability
of randomly generated task sets under limited-preemptive EDF
scheduling, we show that this solution provides a good trade-
off between blocking time and context switching overhead. By
contrast, we show that fully preemptive scheduling on GPUs
will perform similar or worse than non-preemptive scheduling
as a result of high expected context switch overheads when
exposed to task sets of the same parameters. Finally, we show
the need for a predictable and analysable DRAM subsystem
to provide optimistic bounds on the latency of GPU com-
pute workloads. Using our measurement set-up, we expose
interference between display scan-out and context switching
by showing that increasing the bandwidth demand of scan-
out increases the worst-case context switch time from 3.7×
average to more than 5.5×.

II. BACKGROUND AND RELATED WORK

A. GPU nomenclature

Developers implement their data-parallel algorithms in one
or more compute kernels, following the Single Program,
Multiple Data streams (SPMD) programming model. A ker-
nel typically describes the transformations on a single data
element in the data stream. Hardware will spawn one thread
or work-item for every data element.

Following OpenCL nomenclature, work-items are grouped
into work-groups. On NVIDIA hardware a work-group consist

43



of multiple 32-thread groups called warps (AMD: wavefronts).
Each warp will typically be executed in a SIMD fashion.

To execute SPMD programs, NVIDIA hardware implements
the Single Instruction, Multiple Threads (SIMT) execution
model [18] following a hierarchical structure. At the bottom
level, a Streaming Multiprocessor (SM) contains many compu-
tational cores on which work is dispatched by warp schedulers.
A warp scheduler issues one or two SIMD instructions per
clock cycle at a warp granularity, temporally interleaving the
instructions of multiple warps to minimise hardware stalls. A
large register file ensures that the warp scheduler can interleave
instructions of warps from the same hardware context with
zero overhead. Further up the hierarchy, one or more SMs are
contained within a Graphics Processor Cluster (GPC). A GPU
contains one or more GPCs.

B. Non-preemptive context switching on NVIDIA GPUs

On current NVIDIA hardware a context switch is performed
by dedicated custom “Falcon” microcontrollers [28], [29]: one
at the top-level called FECS (Front-End Context Switch) and
one per GPC called GPCCS (GPC Context Switch). Each
microcontroller is connected to a set of FIFO buffers, used
to coalesce register read/write actions to memory to improve
DRAM efficiency. At the top-level, a hardware scheduling unit
triggers context switches by notifying FECS.

When FECS receives a context switch request, it config-
ures all execution engines (SMs, rasterisers etc.) to pause
after finishing the currently running compute kernel. Once
engines are paused, it notifies each GPCCS to swap state.
FECS and GPCCS microcontrollers proceed by writing the
MMIO address of every register that must be saved to their
FIFOs. After all FIFOs are drained and their register values
stored, the reverse process is initiated to restore registers of
the next context. Finally the GPCCSs signal completion, after
which FECS resumes execution of all engines.

Tanasic et al. [24] explore implementations for full- and
limited-preemptive context switching on NVIDIA GPUs. They
evaluate their approach using an in-house simulator by measur-
ing average context switching times for several benchmarks.
We extend this work by presenting a baseline for context
switching under non-preemptive scheduling (henceforth “non-
preemptive context switching”) on commodity hardware and
evaluating preemption models from an HRT point of view.

C. Real-time considerations for GPUs

We consider three key differences between popular GPU
architectures and the CPU: the SIMT execution model, the lack
of direct I/O access to external devices from GPU compute
cores, and the absence of shared memory resources between
different compute kernels.

SIMT execution allows GPUs to achieve high resource
utilisation by executing the many work-items of a compute
kernel on all available GPCs in parallel. We limit ourselves to
the base case of temporal multitasking, in which case GPUs
are best analysed as a uniprocessor where each compute kernel
represents a task in the system. Limited support exists for

spatial multitasking of kernels within a context [6], but in
the absence of scheduler implementation details we consider
this a throughput optimisation without analysable worst-case
response time benefits.

NVIDIA GPUs will never encounter context switches due to
self-suspending jobs. In traditional systems we can categorise
self-suspensions in three classes: jobs waiting to be granted
access to a shared resource, jobs blocked on I/O and jobs
explicitly yielding their core. Alglave et al. [5] show that
sharing resources between different jobs on a GPU is deemed
infeasible by the weak memory consistency model found on
current GPUs. I/O blocking is impossible because the GPU
is a slave device without direct access to external devices.
Finally, NVIDIA GPUs do not support a yield instruction.
As a consequence of not encountering self-suspension we can
bound the number of context switches in a system.

D. System model
In this work we consider the periodic task model [19]

with implicit deadlines. For limited-preemptive execution, this
model defines a set of tasks τ of size n where each task τi is
described by a three-tuple (ci, pi, qi). During execution, each
task releases a series of jobs Ji,k. The period pi describes
the time between two successive job releases from the same
task. In an implicit deadline system, a job’s absolute deadline
equals its launch time plus pi. The cost ci is the worst-
case execution time (WCET) of a job. The final parameter qi
describes the maximum preemption delay or “non-preemptive
blocking period”. The utilisation of a task Ui = ci/pi and the
utilisation of a task set Uτ =

∑
1≤i≤n Ui.

We limit our experiments to EDF scheduling [19]. Al-
though not implemented by commodity GPUs, EDF’s opti-
mality among both preemptive- and non-preemptive non-idling
uniprocessor schedulers [12] removes a factor of uncertainty
from the cause of a task set’s non-schedulability. This results in
a more accurate demonstration of the influence of the context
switch times in our experiments.

Two concepts underlie EDF schedulability analysis. Firstly,
the critical instant is the instant for which a task’s response
time is maximised [19]. For preemptive EDF this instant
corresponds with the synchronous arrival sequence, releasing
the first job of each task at time t = 0 and each subsequent
job Ji,k at time t = k ∗ pi. Secondly, Baruah et al. [7] define
the concept of demand bound as the sum of the cost of all jobs
in the critical instant whose absolute deadline is on or before
t. We define h(τi, t) as the function returning this bound for
task τi.

Building on this work, Baruah [8] proved that under EDF
scheduling, limited preemptive (implicit deadline) task sets are
not schedulable iff:

∃t : 0 ≤ t :
n∑

i=1

h(τi, t) > t

or there is a τj , 1 ≤ j ≤ n, and

∃t : 0 ≤ t < pj : qj +

n∑

i=1,i6=j
h(τi, t) > t
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NVIDIA SM GPC DRAM State Measured time (µs) Avg. BW util
GeForce # MHz GiB/s KiB Min Avg Max GiB/s %
GT 710 1 953 14.4 63.9 9.2 21.5 80.1 2.83 19.6%
GT 640 2 901 28.5 68.2 13.6 26.5 43.7 2.45 8.6%
GTX 650 2 1058 80.0 68.2 12.7 23.2 36.0 2.71 3.4%
GTX 780 12 992 288.4 268.6 9.7 20.0 28.6 13.76 4.8%

TABLE I
MEASURED CONTEXT SIZE AND SWITCHING OVERHEAD

For schedulability analysis of non-preemptive tasks, we can
define ∀i ∈ [1, n], qi = ci− 1, resulting in the original npEDF
schedulability conditions ([12], [13]).

To date, the best algorithm to bound the set of relevant
values for t is Zhang et al’s QPA [30]. Short’s [23] lpQPA-LL
extends QPA with schedulability analysis of implicit-deadline
periodic task sets under limited-preemptive EDF.

Under EDF scheduling, the number of context switches
is upper bound by two per job [10]. The rationale is that a
reactive implementation of this policy only takes decisions on
two types of events: job release and job completion. For non-
preemptive EDF, scheduling decisions caused by job releases
are postponed until after completion of the current job. This
tightens the upper bound to one context switch per job.

III. CONTEXT SWITCHING OVERHEAD

To make substantiated claims about the effectiveness of
preemption models for GPUs, in this section we present
the results of measuring context size and switching time on
NVIDIA GPUs. By manipulating measurement conditions, we
also demonstrate the effect of performance interference on
worst-case context switch times, motivating further research
in predictable DRAM subsystems for GPUs.

A. Measurement set-up

In this experiment we measure the size and switching
time of non-preemptive contexts on several NVIDIA Ke-
pler generation (2012-2014) graphics cards. Measurement is
performed by a modified context switching firmware. The
nature of our changes mandate the use of the open source
“nouveau” driver for NVIDIA graphics cards [1] rather than
the official driver. Source code and acquired data is available
at https://github.com/RSpliet/RTGPU-Preempt.

We modify the FECS firmware to report context switching
time in an available scratch register. This time spans from
the moment all GPCs are paused to the moment they resume.
We measure the context size and switching times using an
instrumentation tool built using the envytools suite.

The timer used for this measurement has a granularity of
32ns. Our firmware modifications increase the runtime of a

context switch by two register read operations. Based on
1,064,960 samples we determine that these operations skew
our measurement by 160-224ns, averaging at 176ns.

GPUs are connected to a monitor operating at
1600x1200@60Hz. To trigger context switches, we run
two generic workloads in separate contexts (XFCE on Xorg,
windowed OpenArena @1024x768). The choice of workload
should have minimal effect on the measured overheads, as
all SMs are paused during the measured interval. We use our
instrumentation tool to obtain 20 million samples per GPU.

B. Results
The fifth column in Table I lists the size of the state that

needs to be stored to memory on a non-preemptive context
switch. This state, significantly larger than that of a modern
CPU, includes OpenGL/CUDA/OpenCL configuration, hard-
ware settings, a pointer to the top-level page-table, and many
other undocumented pieces of information. The contents of
the register- and local-memory file are not included.

Such large state results in observed context switch times
in the order of tens of microseconds. Our measured average
context switch time (column 7) corresponds with NVIDIA’s
claim [26] of ∼25µs for the Fermi-generation of graphics
cards (2010-2012). Such overhead clearly needs to be ac-
counted for when performing schedulability analysis.

Experiments with lower GPC clocks, leaving all other
clocks (including the DRAM interface) unaltered, reveals that
average context switch time increases. This suggests that the
process of context switching is not solely memory bound.
However, the observed worst-case context switch times on
the low-end GeForce GT710 are slightly lower (<5%) when
the GPC clock is reduced by 15%. This worst case overhead
reduction rules out the theory that context switch is compute
bound in the worst case. Instead, data indicates that higher
worst-case context switch times correlate with lower DRAM
bandwidth. We will present further evidence of context switch-
ing being memory bound in the worst case in Section III-C.

Figure 1 shows a logarithmic histogram of samples for the
GeForce GT710, displaying the extent to which our maximum
sample introduces pessimism to schedulability analysis. We
observe that the vast majority of the samples lie around the
average of 21.5µs, whereas merely ∼0.3% of the samples lie
in the tail of the measurement. The observed maximum is
∼3.7× average.

In the next section we demonstrate how interference affects
the samples in this tail. In the light of these results we discuss
the limitation of empirical measurements.
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C. Interference effects

To demonstrate interference within a GPU we repeat the ex-
periment from Section III-B with different display resolutions.
Figure 2 shows a cumulative histogram displaying the top
0.5% samples of context switch times of this experiment. From
this graph we observe that increasing the required bandwidth
for scan-out has a strong negative effect on the observed worst-
case context switching overhead.

This interference is caused by sharing the DRAM subsys-
tem between multiple workloads. If we consider a DRAM
hierarchy, we find one or more channels on the top level.
Each channel has a data bus to its RAM chips. If two mem-
ory operations transfer data from/to the same channel, these
requests need to be serialised by an arbiter. This arbiter im-
plements a prioritisation policy that makes a trade-off between
performance and latency. If this policy is predictable it could
be possible to determine a worst-case latency on individual
memory requests, but unfortunately the prioritisation policy
of GPU memory controllers is unknown.

Scan-out is merely one example of a GPU subsystem that
requires access to DRAM in parallel with context switching.
Other examples include DMA transfers and video decoding.
Indeed, our observations on interference give reason to believe
that e.g. the proposal of Verner et al. [25] to overlap DMA
transfers with execution is likely to decrease response time
predictability unless measures are taken to account for DRAM
interference. Without analysable architectures and models, it
is impossible to use quantitative measurements like these
to distinguish between the worst-case execution time of a
workload and its worst-case response time. This results in
pessimistic GPU timing analysis.

In the next section we show how measured and extrapolated
context switch times affect schedulability. We use these results
to motivate further research in GPU preemption models.

IV. SCHEDULABILITY ANALYSIS

To illustrate the effects of context switching overheads
on schedulability, we performed a schedulability analy-
sis, comparing non-preemptive, limited-preemptive and full-
preemptive EDF. Next we explain how these scheduling poli-
cies map to microarchitectural solutions.

A. Models

Based on measured context switch overheads for non-
preemptive execution on NVIDIA GeForce GT640, similar in
specifications to the embedded Tegra K1 SoC, we extrapolate
parameters for EDF and lpEDF. Resulting estimates are sum-
marised in Table II.

For these estimates we make two simplifying assump-
tions. Firstly, we disregard cache-related preemption delays
as they depend too much on the application and GPU micro-
architecture to allow substantial claims. Secondly, divergence
between warp schedulers will cause some SMs to wait idle for
the last to finish. This idle time negatively affects the WCET
of jobs. However, without knowledge of the scheduling policy
implemented within the warp-schedulers, we cannot determine

Scheduler State (KiB) Time (µs) Preempt
policy Ctx Reg Local Total Avg Max /job [10]

EDF 68.2 512 96 676.2 263 434 ×2
lpEDF 68.2 0 0 68.2 27 44 ×2
npEDF 68.2 0 0 68.2 27 44 ×1

TABLE II
PARAMETERS FOR SCHEDULABILITY ANALYSIS

a bound on the divergence of warps in flight. This prevents us
from modelling this effect in our analysis.

Non-preemptive scheduling is currently implemented on
NVIDIA GPUs. For non-preemptive EDF analysis we inflate
ci with the measured cost of one context switch.

Limited-preemptive scheduling applies to SM draining [24],
a hardware solution that allows compute kernels to be pre-
empted on the boundary of a work-group. At these boundaries
the register and local memory contents do not need to be
preserved, hence the state size and context switch time is
estimated equal to that of the non-preemptive case. We account
for this by inflating each task’s cost by 2× the measured
context switching overhead.

For (full-)preemptive scheduling we must account for the
larger context required to preserve register and local memory
contents. To estimate the context switch time, we assume
a linear correlation with the context size. Despite evidence
that the DRAM subsystem provides more efficiency for big-
ger transfers on average [24], we cannot make optimistic
assumptions for the worst-case without further research. For
preemptive scheduling we inflate each task’s cost with 2× the
projected context switching overhead.

B. Measurement set-up

For each utilisation U ∈ (0.2, 0.21..1.0), we generated
100,000 implicit-deadline periodic task sets. Tasks have a
period between 1,000 and 15,000 (µs), modelling kernels
across the range of costs observed by Tanasic et al. [24].
Utilisation is randomly assigned to each task with a uniform
distribution using the UUniFast algorithm [9].

Schedulability tests are performed using Brandenburg et
al’s schedcat, modified to support lpQPA-LL. [23] For limited
preemption, we set qi = ci/rand(5, 500), corresponding with
5− 500 work-groups per SM.

C. Schedulability

Figure 3 shows the result of this schedulability experi-
ment when generating task sets of two tasks. We draw two
conclusions from this graph. Firstly, the large overheads we
measured do not prevent HRT schedulability. However, the
large projected overhead greatly reduces the value of full-
preemptive scheduling. Assuming worst-case context switch
times, we find a minimal benefit for task sets with Uτ 6 0.71.
For full-preemptive scheduling to become feasible in a real-
time GPU, the overhead must ideally be bound to a value close
to the average projection.

Secondly, we see that a limited-preemptive scheduler can
benefit from the combination of paying the context switch-
ing overhead of non-preemptive scheduling and achieving
response times close to preemptive scheduling. In practice this
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Fig. 4. Schedulability: 3 tasks, ci ∈ [1000, 15000]µs

means that for the chosen parameters, we can schedule 99%
of all task sets with Uτ 6 0.89 even when the worst case
context switching time is assumed.

To show the influence of the task set size on schedulability,
Figure 4 shows the results of this experiment when generating
task sets of size 3. For preemptive-scheduling, the maximum
projected overhead now outweighs the theoretical benefits of
preemption completely. However, under limited-preemption
EDF we would continue to be able to schedule many high-
utilisation task sets.

D. Maximum blocking exploration

To demonstrate the impact of the maximum blocking param-
eter q, we perform an lpEDF schedulability analysis on random
task sets where for a work-groups/SM ratio w ∈ [2, 30],
qi = ci/w. Figures 5 and 6 show the results of this analysis
with w on the x-axis. On the y-axis we find the maximum
utilisation for which > 90% (Figure 5) and > 99% (Figure 6)
of the task sets are schedulable. We generated task sets with
3 tasks, for each task ci ∈ [1000, 15000]µs

We see that even for two work-groups/SM, 99% of all task
sets with Uτ < 0.29 are schedulable. In Figure 4 we observe
that this outperforms non-preemptive scheduling. Furthermore,
for jobs containing 9 or more work-groups/SM, the figures
demonstrate that the deciding factor for schedulability is
not the preemption delay but rather the context switching
overhead. For reference, 9 work-groups/SM corresponds to
122,880 work-items (e.g. a 351×351 image or matrix) on the
largest Kepler generation GPU, the NVIDIA GeForce GTX780
TI. Such data sets are realistic for AI and computer vision
workloads, supporting our claim that lpEDF kernel scheduling
will result in increased GPU utilisation under HRT constraints.

V. DISCUSSION AND FUTURE WORK

A. DRAM interference

In Section III-C we explore the interference between context
switches and display scan-out to show how contention for

the DRAM subsystem reduces response time predictability.
However, interference does not solely occur between these two
tasks. Concurrent DMA- or video decoding activity further
diminishes the worst-case latency of individual requests.

There are two known ways to mitigate this interference.
Firstly, DRAM partitioning (e.g. bank privatisation [21]) could
be applied to isolate subsystems. Although this has far-
reaching consequences to the freedom a system has to allocate
memory to each workload, it could serve as a way to reduce
the worst-case interference on commodity hardware.

Secondly, designing a real-time DRAM request arbiter that
prioritises requests based on their time of arrival and/or
criticality level could make this interference predictable and
analysable. Such arbiters have been studied for traditional
multi-core architectures connected to DDR2 and DDR3 mem-
ory (e.g. [4], [20]), and prove effective at bounding the
response time of individual request. Unfortunately, as improve-
ments in DRAM latencies continue to stagnate and data buses
are becoming wider, the bandwidth utilisation of memory con-
trollers with such arbiters gets successively worse with each
DRAM generation [27]. Future research should explore the de-
sign space of bound-latency high-throughput DRAM subsys-
tems for GPUs under the constraints of present-day DRAM.

B. Task scheduling

In Section IV we describe how the limited-preemption
model is a good fit for GPUs, assuming it reduces the
maximum blocking time at a cost similar to that of non-
preemptive context switching. One reason why this assumption
could be too optimistic is that it disregards the context of
subsystems that are irrelevant for most compute workloads,
e.g. the rasteriser. The rasteriser keeps track of a lot of
state during execution and does not appear to work on the
granularity of work-groups. This raises questions on how the
state of such fixed-function components should be treated in
the preemptive execution models: Is it desirable to perform
a context switch on these components in lock-step with the
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compute subsystem? Can we find points in time at which
these components have less state? Do we need to take the
state of these components into account for (non-rendering)
real-time compute workloads, or is it possible to take this
out of the equation? Would this require the design of new,
compute-oriented architectures?

Another avenue for research is the concept of GPU partition-
ing or “spatial multitasking” [3]. A partitioned non-preemptive
GPU could permit a cost-based grouping of tasks, providing
lower-latency guarantees to shorter tasks. Research could
determine the architectural overhead of GPU partitioning, the
implications to the context size, the schedulability implications
for HRT workloads and the implications of DRAM-related
interference on response-time analysis.

VI. CONCLUSION

In this work we have motivated the need for research in
three areas of GPU design for real-time applications. Firstly,
we show that it is possible to use existing non-preemptive
EDF schedulability analysis to prove schedulability of task
sets under the parameters we expect for massively parallel
applications in the HRT domain running on contemporary
GPUs. Prerequisite is that GPUs provide control over their
non-preemptive task scheduler to software. We show that the
measured average context switching overhead of 20-26.5µs
has only a limited influence on schedulability. Secondly, we
motivate research in limited-preemptive scheduling following
the “SM draining” approach [24] to reduce the maximum
blocking time of tasks while retaining the security benefits
of task isolation. We show that this can result in signifi-
cantly higher schedulability of task sets. Finally, we show
that interference effects caused by contention for the shared
DRAM subsystem has a negative effect on observed worst-
case execution times of individual tasks. We suggest that
further research should be conducted towards bound-latency
DRAM request arbiters that enable more optimistic worst-case
response times with minimal sacrifices to throughput.
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Abstract— Embedded systems augmented with graphics pro-
cessing units (GPUs) are seeing increased use in safety-critical
real-time systems such as autonomous vehicles. The current
black-box and proprietary nature of these GPUs has made it
difficult to determine their behavior in worst-case scenarios,
threatening the safety of autonomous systems. In this work, we
introduce a new automated validation framework to analyze
GPU execution traces and determine if behavioral assumptions
inferred from black-box experiments consistently match behav-
ior of real-world devices. We find that the behaviors observed
in prior work are consistent on a small scale, but the rules
do not stretch to significantly older GPUs and struggle with
complex GPU workloads.

I. INTRODUCTION

Recent advancements in artificial intelligence and embed-
ded computing have started to bring the revolution of self-
driving vehicles closer to reality, but a multitude of unan-
swered questions still stand in their path to mass adoption.
One key open question is how good is good enough? Recent
fatalities [14, 18] have shown that the current standard
of “good enough” falls short in more than one commer-
cial system. To eliminate a subjective definition of “good
enough”, this paper envisions autonomous vehicle hardware
eventually requiring certification for manufacturer, customer,
and regulatory acceptance.

Unfortunately, the hardware increasingly used in vehicles
and labs today to meet size, weight, and power (SWaP)
requirements utilizes proprietary architectures with vague
or underspecified public documentation. This presents a
quandary to groups attempting to certify such systems. This
issue is exemplified in systems based on NVIDIA’s Parker
system-on-a-chip (SoC). This SoC powers NVIDIA’s TX2
development board as well as the NVIDIA’s DRIVE PX
AutoChauffeur and AutoCruise boards marketed towards
autonomous vehicles [9]. Known users of this platform
include Tesla’s Autopilot 2.0 system [7]. Due to the TX2’s
public availability, recent work [1, 20] has focused on that
board as a representative for NVIDIA’s other, more tightly
held, Parker SoC-based boards.

These embedded platforms contain the majority of their
raw computing power in their graphical processing units
(GPUs), so it becomes essential to thoroughly understand
how they behave when multiple general purpose GPU
(GPGPU) workloads share a single GPU. Danger lies in
justifying the use of these components in a self-driving

*Work supported by NSF grants CNS 1409175, CPS 1446631, CNS
1563845, and CNS 1717589, ARO grant W911NF-17-1-0294, and funding
from General Motors.

vehicle without reasoning from fundamental behaviors [13].
Making simulation-based statistical assertions about the over-
all observed lack of failures of a self-driving vehicle system
cannot carry over to the real world. Systems must either be
statically, provably safe or allowed to drive for millions of
representative miles without demonstrating any error [13].
The infeasibility of the latter option leaves us with the
former, and returns us to the importance of understanding
GPU behavior in these systems.

Our prior work attempted to solve this problem by forming
rules of behavior for CUDA, a common GPGPU program-
ming API for NVIDIA GPUs. Unfortunately, safety-critical
systems could not yet rely on our rules. We formulated the
rules from empirical observation, but rigorous applicability
of the rules remained untested. Our rules also suffered
from fragility and limited scope. As new GPU architectures
appear almost every other year and new processors based on
those architectures appear every few months, the possibility
of rigorously testing all these devices by hand becomes
vanishingly small. A field dominated by rapid and regular
change needs some automated method to validate past results
on new or more complicated devices.

To emphasize this point, consider Fig. 1, which displays
a GPU execution trace used in recent work [11]. Shaded
rectangles represent GPU executions over time. The trace
appears well-ordered and reasonably easy to step through by
hand, given familiarity with prior work. Now take Fig. 2.
This presents a trace from the same benchmark, but on a
GPU with more compute capacity. A trained eye will pick out
the subtly different rules in effect here, but even this simple
modification tests the limits of empirical observation. Real-
world executions can be far more complex. Fig. 3 provides
an extreme example. It displays a trace from the execution of
a randomly generated four-thread workload on a mainstream
GPU. So many different interactions take place that even our
graphing software struggles to cope.

No human can hand-validate what behavioral rules apply
in traces like this. But comprehensive testing of our proposed
rules requires the validation of these sorts of traces. To
accomplish that, this paper introduces an automated rule-
validation framework which provides a path to scalable,
rigorous validation.

II. BACKGROUND

Our solution builds on elements of NVIDIA GPUs, con-
cepts from CUDA, and properties of a number of represen-
tative test platforms.
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Fig. 1. EE queue benchmark trace on NVIDIA TX2

Fig. 2. EE queue benchmark trace on NVIDIA K5000

Fig. 3. Benchmark trace of random work on NVIDIA GTX 970

A. GPU and CUDA Fundamentals

A GPU is a highly parallel co-processor. Traditionally
used for fast 3D scene rasterisation, recent years have seen
GPUS used increasingly for general-purpose computing. For
the NVIDIA GPUs considered in this paper, CUDA is the
most popular API for creating and executing non-graphical
computations on the GPU. Built as a C/C++ extension, valid
CUDA code looks very similar to embedded C code. See
Algorithm 1 for a loose example of vector addition in a
CUDA program.

Some key GPU and CUDA terms used throughout this
paper:

1) CUDA Thread Block: A group of GPU threads ex-
ecuting the same set of user-defined instructions in
lockstep. This is the lowest-level GPU scheduling unit
considered in this paper.

2) CUDA Kernel: A combination of instruction code
and CUDA thread block specifications. Dispatched
asynchronously by a user-space process.

3) CUDA Stream: A first-in-first-out (FIFO) work queue
into which processes on the CPU can dispatch kernels.

4) SM (Streaming Multiprocessor): A subdivision of an
NVIDIA GPU. Single thread blocks cannot be split
across multiple SMs [10].

5) EE (Execution Engine) Queue: A special internal
queue of kernels that our past work has defined to exist
between CUDA stream queues and the actual GPU.
Fig. 6 illustrates its location in the execution flow.

B. Test Platforms

To demonstrate the scalability and broad applicability
of the framework presented in this paper, we test four
generations of NVIDIA’s graphics processors. The following
list notes the specifications and release dates of the repre-
sentatives from each generation:

Kepler The Quadro K5000 discrete GPU (Nov. 2012)
with 8 SMs.

Maxwell The GeForce GTX 970 discrete GPU (Sep.
2014) with 13 SMs.

Pascal The GeForce GTX 1070 discrete GPU (June
2016) with 15 SMs and the Jetson TX2 (March
2017) with 2 SMs.

Volta The Titan V discrete GPU (Dec. 2017) with 80
SMs.

C. Related Work

Due to a lack of public documentation on how concurrent
execution of GPU workloads behave, much past work in this
area focuses on efficiently providing an exclusive locking
mechanism for the GPU [4, 5, 6, 15, 16, 17, 19]. This
effectively prevents any interference after lock acquisition (as
processes only ever own an independent portion of the GPU)
but may lead to powerful GPUs remaining underutilized.

Moving in a different direction, other work focuses on
increasing utilization at the cost of predictability. For exam-
ple, Zhong et. al.’s scheduling approach showed increased
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Algorithm 1 Vector Addition Pseudocode from [20, p. 7].
1: kernel VECADD(A ptr to int, B: ptr to int, C: ptr to int)

. Calculate index based on built-in thread and block information
2: i := blockDim.x * blockIdx.x + threadIdx.x
3: C[i] := A[i] + B[i]
4: end kernel

5: procedure MAIN
. (i) Allocate GPU memory for arrays A, B, and C

6: cudaMalloc(d A)
7: . . .

. (ii) Copy data from CPU to GPU memory for arrays A and B
8: cudaMemcpy(d A, h A)
9: . . .

. (iii) Launch the kernel
10: vecAdd<<<numBlocks, threadsPerBlock>>>(d A, d B, d C)

. (iv) Copy results from GPU to CPU array C
11: cudaMemcpy(h C, d C)

. (v) Free GPU memory for arrays A, B, and C
12: cudaFree(d A)
13: . . .

utilization, but adds overhead and may not fully account for
potentially destructive interference between multiple concur-
rent GPU operations. [21] Several other works [21, 3, 5, 8]
attempt to expose more degrees of scheduling freedom in
CUDA by using software to approximate preemptive hard-
ware.

Our recent work addresses an orthogonal problem. It
attempts to address worst-case execution times (WCETs) in
any GPU context by better understanding and leveraging
existing undocumented GPU hardware behaviors to enable
real-time systems. Our group has postulated scheduling rules
for the Jetson TX1 [11, 12] and Jetson TX2 [1] development
boards while also discovering some more generally applica-
ble behaviors and pitfalls in CUDA [20]. This paper expands
on that work.

III. EXPERIMENTAL APPROACH

Beyond rules, our past work also provides a GPU bench-
marking framework that allows for sets of CUDA kernels to
be run in a reproducible manner. The framework provides
logs of these executions marking events such as a kernel
dispatch or thread block end with high-precision timestamps.
Our prior work visualized these traces for empirical analysis,
but the traces also provide all the information necessary to
enable an automated validation framework.

A. Validator Design

We use a state machine to validate if these logged
behaviors adhere to what we expect from our rules. We
prefer this approach over full-scale simulation due to its
simplicity and applicability to our proposed rules. Some past
work (namely GPGPU-Sim [2]) has applied a custom GPU
simulator to confirm behaviors, but we find the inherent
complexity of a full simulation too burdensome. Even the
most recent simulators fall generations behind today’s GPUs.
Our approach instead takes a subset of the events recorded
from actual executions and uses each event to trigger state
transitions.

B. Sourcing Traces

The first step in our rule-validation approach is to parse
a selection of the information logged by the benchmarking
framework. From the original trace, we obtain a series of
events that can trigger state transitions in our validator, and
sort the events by timestamp. The current version of the
validation tool focuses on the following events:

• Kernel launch start
• Kernel launch end
• Kernel end1

• Thread block start
• Thread block end

During parsing, we extract and attach contextual data about
each event. For kernel events, that includes a list of child
thread blocks and the ID of the associated CUDA stream. For
thread block events, context includes the number of threads
in the block, the parent kernel, and the SM used.

C. Building the State Machine

After preparing the series of events, the actual state
machine can proceed. Our constructed state machine appears
as a flow chart in Fig. 4, and builds off the scheduling
rules postulated in our recent work [1]. This machine only
validates a core, always-applicable subset of the full set of
our published rules (6 of 16 rules). These chosen rules and
labels have been reproduced from [1] in the following list:

G1 “A copy operation or kernel is enqueued on the
[CUDA] stream queue for its stream when the
associated CUDA API function (memory transfer
or kernel launch) is invoked.”

G2 “A kernel is enqueued on the EE queue when it
reaches the head of its [CUDA] stream queue.”

G3 “A kernel at the head of the EE queue is dequeued
from that queue once it becomes fully dispatched.”

G4 “A kernel is dequeued from its [CUDA] stream
queue once all of its blocks complete execution.”

X1 “Only blocks of the kernel at the head of the EE
queue are eligible to be assigned.”

R2 “A block of the kernel at the head of the EE queue
is eligible to be assigned only if there are sufficient
thread resources available on some SM.”

Validation proceeds by processing execution events in
chronological order. At each event, state updates and a
validity check can occur on the path between states. Fig. 4
represents events in all-caps, states as vertical rectangles,
updates with horizontal rectangles, and checks as diamonds.
Validation succeeds or fails dependent on entry into the red,
terminal failure state. Our Python implementation of this
state machine and the event stream parser is open-source
software available online2.

1Pseudo-event; sometimes it is undesirable for a benchmark to perform
a cudaStreamSyncronize to retrieve the actual kernel execution end
time. In those cases, the parser uses the end time of the last thread block
in the kernel as a substitute.

2See https://github.com/JoshuaJB/cuda_scheduling_
validator_mirror
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Fig. 4. State machine for rules G1-G4, X1, and R2 (all-caps annotations denote what events trigger each transition)

IV. EVALUATION

We evaluated our framework by assuring that it properly
categorized known good traces and known bad traces.

A. Validating Base Rules

We demonstrated that known correct traces do not falsely
enter the validation failure state by applying the convenient
fact that our selected scheduling rules mirror those first
discussed in one of our papers from last year [11]. In
that paper, we provided clear benchmark configurations to
demonstrate each scheduling rule in action. For this paper,
we ran those configurations again and confirmed that our
automated validation of each of their traces succeeded. That
verified that no single proper rule behavior would be flagged
as incorrect by our framework

We demonstrated that rule violations produce validation
failures in practice by testing handcrafted invalid traces.
Some example modifications to previously correct traces
involved swapping the execution order of two thread blocks,
adding additional threads to a block, or creating timing
abnormalities.3 By testing all of the possible ways that each
individual rule could fail, we assured that all real failures
or combinations of multiple failures will be caught by the
framework. Importantly, these invalid traces all originate
from static modifications to previously generated valid traces
- we never expect the GPU to directly generate an invalid
trace.

B. Results on Maxwell, Pascal, and Volta

After using this approach to confirm that our validator
behaves as expected for the specific platform analyzed by

3To examine the exact violations added, the tests/bad directory in
our online code repository contains all of these tests.

hand in our past work (the TX2), we expanded tests to
cover all of the platforms detailed in Sec. II-B. We found
our scheduling rules to be broadly applicable to GPUs
running NVIDIA’s Maxwell, Pascal, and Volta architectures.
This encompasses all major NVIDIA GPUs released since
late 2014. However, we ran into unexpected results when
attempting to validate large, randomly generated workloads
such as the one demonstrated in Fig. 3.

For example, on our GTX 970, only about 13% of
2,000 randomly generated 40-kernel tests passed validation.
Upon further inspection, we found that the framework was
correct; there appeared to be subtle violations of rule X1
(that only the head of the EE queue should be eligible
for dispatching) recorded in the benchmark logs. However,
the extent of this incorrect ordering never appeared to be
more than a few microseconds. We currently hypothesize
that these “violations” merely result from minor inaccuracies
in our methods for recording timestamps. CUDA does not
provide thread-block-level start or stop timestamps, so our
benchmarking framework instead obtains these by reading a
global GPU time register immediately on start and before end
inside each thread block. We believe that momentary stalls
or propagation delays may cause these reads to sometimes
not perfectly correspond to actual block start and end times.
Preliminary investigation into the traces that failed validation
have found support for this hypothesis, but we hope to further
analyze and clarify this behavior in future work.

C. Results on Kepler

While we found the rules seem to apply to the three-most-
recent architectures considered, the older Kepler architecture
behaved rather differently. The framework revealed that a
rule violation occurred during validation of the trace from
the benchmark designed to demonstrate rule G2 in action.
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Fig. 5. EE queue benchmark trace on NVIDIA K5000 with thread
block count adjusted to saturate the GPU

During the subsequent empirical investigation, it became
clear that the validator correctly detected a rule violation.
Kepler architecture GPUs do not follow the same rules as
their successors. This peculiarity brings us back to Fig. 1
and Fig. 2.

Each graph plots GPU time on the horizontal axis for
each SM plotted on the vertical axis. Every rectangle in the
plot area represents a thread block running over some time
period. The digit immediately prior to the colon in the label
on each block indicates the block’s kernel affiliation, and the
number immediately after indicates the unique identification
number of this thread block among all the kernel’s thread
blocks. Different colors indicate different CUDA streams,
and the colored arrows along the horizontal axis indicate
when kernels are released from our CPU process.

Now consider the simple plot presented in Fig. 1 generated
from a benchmark trace on the Pascal-based TX2. To walk
through the series of events represented by this plot, kernels
K1 and K2 release into stream 1 before 0.1s. At this point, K1
and K2 are in the stream 1 queue and K2 is in the EE queue.
K1 quickly dispatches all of its blocks, nearly occupies all
of the GPU’s resources, and leaves the EE queue. K3 then
releases shortly after the 0.3s mark and immediately moves
to the head of the EE queue. It goes on the EE queue before
K2 because rule G4 has kept K2 blocked behind K1 in the
stream 1 queue. (Fig. 6 illustrates this point in time.) Once
K1 completes execution around 0.55s, it leaves stream 1 and
allows K2 to enqueue on the EE queue behind K3. K3 then
fully dispatches, saturates the GPU, and leaves the EE queue.
At K3’s completion point around 1.05s, K2 then has space
for at least one of its thread blocks, begins execution, and
runs to completion. In this plot, nothing unexpected occurs.
All the rules hold and operate correctly.

Next, consider Fig. 2. We generated Fig. 2 using the
same benchmark configuration as Fig. 1, but executed on the
Quadro K5000 Kepler-architecture GPU. A similar pattern
emerges up to just before timestamp 0.4s. As in the prior
example, K3 is expected to be on the EE queue and K2 is

CUDA context of CPU process

Stream 1

K1

K2

Stream 2

K3

Stream N

...

EE Queue

K3

GPU with X SMs

SM 0 SM X

...

K1: 0

K1: 1

SM 1

K1: 2

K1: 3

K1: Y-1

K1: Y

K1 has 
Y thread 
blocks

Fig. 6. Example of expected queue states for Fig. 1, Fig. 2, and
Fig. 5 at time point 0.4s

expected to be blocked in the stream 1 queue. (See Fig. 6.)
This is not consistent with what we observe on Kepler GPUs.
If K3 were immediately moved to the head of the EE queue
as we expect, it should start almost immediately on release
due to availability of sufficient capacity for at least one thread
block. Further analysis of execution traces reveal another
interesting behavior that one would not observe simply by
viewing a plot such as Fig. 2. At a nanosecond level, K2
starts before K3. This indicates that both rules G2 and G4
do not apply on Kepler GPUs.

The violation becomes much clearer with scrutiny of
Fig. 5, which uses a similar configuration to Figs. 1 and 2, but
with the number of thread blocks scaled up to compensate for
the increased capacity of the K5000. This makes the flipped
order of execution of K2 and K3 more visually apparent in
contrast to Fig. 1.

The likely explanation for this behavior is that Kepler
GPUs handle stream queues differently than later architec-
tures. More specifically, the behavior can be explained if we
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conclude that rule G4 does not apply to Kepler and if we
change rule G2 to the following:

G2 (Kepler) A kernel is dequeued from its stream queue
and enqueued on the EE queue when it
reaches the head of its stream queue.

In essence, all the stream queues become aliases to only one
single hardware queue. One can verify that these rules for
Kepler work in at least some cases by stepping through Fig. 2
and Fig. 5. Each figure support our hypothesis by behaving
as expected under the proposed rule variation.

V. CONCLUSION

A solid understanding of hardware scheduling behavior
forms the essential foundation for any safety-critical system.
To meet SWaP requirements, GPUs have emerged as one of
the premier compute accelerators used in these platforms.
Unfortunately, sufficient low-level documentation for these
accelerators has not been forthcoming. Past solutions to
this uncertainty have precluded parallelism via locking or
introduced overheads without addressing questions about
interference. Our recent work to cast light on GPU behavior
rules has heavily depended on empirical observation. That
approach quickly proves impractical and insufficient on large
GPUs or in complicated test programs.

Our solution addresses that problem via an automated
validation framework. By minimizing human input, our
framework enables rigorous validation of scheduling rules
across a multitude of complex platforms and workloads
without the limitations of human error and inefficiency.

Future work could expand the state machine used for val-
idation in this work to include the rules for priority streams,
the NULL stream, copy operations, shared-memory blocking,
and other yet-to-be codified rules. In the more distant future,
one hopes that this framework could be modified to support
traces from NVIDIA’s native nvprof profiler, and thus be
used to validate rule authority on execution traces from any
CUDA program rather than just logs from the benchmarking
framework.

Separately, we hope to further explore the irregularities
causing complex tasks to fail validation. While we are
reasonably confident that these unexpected results are being
triggered by inaccurate timing information, we would like to
rigorously confirm that there is no fundamental flaw in our
rules.

The framework developed in this paper should enable
future work relying on rule-based models of GPU behavior
to both progress faster and yield more confident results.
We need a comprehensive understanding of hardware to
build safe autonomy, and this framework helps accelerate
the assembly of that core foundation.
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Abstract—This paper presents the evaluation of the mem-
ory subsystem of the Xilinx Ultrascale+ MPSoC. The char-
acteristics of various memories in the system are evaluated
using carefully instrumented micro-benchmarks. The impact of
micro-architectural features like caches, prefetchers and cache-
coherency are measured and discussed. The impact of multi-core
contention on shared memory resources is evaluated. Finally,
proposals are made for the design of mixed-criticality real-time
applications on this platform.

I. INTRODUCTION

The design of efficient computing platforms is essential
to achieve real-time guarantees at low power consumption
and cost in current and future real-time applications, from
complex cyber-physical systems to mobile systems, and to
ensure high-performance with acceptable quality of service
(QoS) [1]. For instance, in autonomous vehicles, tasks such
as steering control, fuel injection, and brake handling, are
critical and have hard real-time requirements. Multimedia
infotainment systems, however, demand high-performance and
tolerate large variations in QoS (i.e., best-effort requirements).
Finally, vision-based driver assistance and navigation have
become too complex to fit within the traditional development
cycle of critical embedded systems, yet they cannot be handled
as best-effort software components. Such tasks demand high-
processing power and predictability at the same time [1].

Multi-Processor System-on-a-Chip (MPSoC) architectures
provide an ideal trade-off between performance and cost
to meet such requirements found in complex cyber-physical
systems. The considered family of MPSoC architectures is
composed of several heterogeneous processing elements with
specific functionalities: general-purpose multi-core processors,
DSPs, specialized processing cores, GPUs, and FPGA. They
also feature a rich memory hierarchy, comprised of scratch-
pads, DRAMs, Block RAM, and multiple levels of cache. A
similarly rich I/O subsystem, with a number of interfaces,
embedded devices, Direct-Memory Access (DMA) engines,
shared buses and interconnects completes the picture.

It follows that on the one hand the considered MPSoC
platforms provide a vast number of configuration options.
On the other hand, however, they also make it difficult to
design basic software components (real-time operating system
– RTOS and hypervisor), and to understand all the sources of

unpredictability. The most relevant sources of unpredictability
in MPSoCs are:

• Shared Memory Hierarchy: several latency hiding
mechanisms, including caches, buffers, scratchpads, and
FIFOS are placed among the main memory, processors,
and I/O devices. Such mechanisms enable latency and
bandwidth demands to coexist in a hierarchy at the price
of poor predictability [1]. Techniques such as private
memory and cache coherency increase performance, but
suffer from limitations in scalability, energy efficiency,
and timing [1]. Thus, such techniques become the primary
sources of unpredictability in modern MPSoCs [1, 2].
DRAM itself improves the average case performance
by using row open arbitration policies or bank level
interleaving but these in turn introduce further unpre-
dictability.

• Shared I/O Subsystem: latency hiding mechanisms are
also used in I/O subsystems. I/O subsystems deliver lower
throughput compared to those designed to feed data-
hungry CPUs [1]. Many systems are designed assuming
that just a few I/O devices will be active at any given time,
which is often a wrong assumption for large MPSoCs [1].
Then, delays and deadline misses can occur due to
the contention in the I/O subsystem and the increased
variation in the response time [1].

• Shared Buses: Multi-Processor systems use limited num-
ber of shared buses to communicate with the memory
subsystems. These buses frequently become a hot spot
for contention. The memory bandwidth available to a
processor at any instant is affected by activity of other
processors. Variable memory latency due to other pro-
cessors running independent applications can cause any
number of deadline violations for a processor. For this
problem, various solutions have been proposed [3, 4] and
analyzed [5, 6].

In this paper, we provide a benchmark-based analysis of a
modern MPSoC considering the main sources of unpredictabil-
ity and, based on the obtained results, we propose a basic
software architecture to improve the predictability of real-time
applications running on a MPSoC platform. In summary, the
main contributions of this paper are:

• We benchmark the memory types available in a modern
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heterogeneous MPSoC platform. We conclude that var-
ious memories exhibit varying characteristics and sensi-
tivity to multi-core contention. We use this information
to propose an architectural design paradigm in Section V.

• We propose a software/hardware architecture to improve
the predictability in the modern MPSoC platforms. Our
software architecture relies on a partitioning hypervisor,
an RTOS, and several OS-related techniques, such as
cache memory partitioning, hardware performance coun-
ters, memory bandwidth regulation, and DRAM bank-
aware memory allocation.

II. PLATFORM OVERVIEW

The selected platform ZCU102 [7] contains a Xilinx Ul-
trascale+ MPSoC [8]. The main components of this platform
are:

1) Application Processing Unit, ARM Cortex A-53 [9]
• Quad Core ARMv8-A Architecture
• 32 KB each Private L1 Instruction and Data Cache

per core
• 1 MB Shared L2 cache

2) Real-Time Processing Unit, ARM Cortex-R5
• Dual-Core ARMv7-R Architecture
• 32 KB combined Private Instruction and Data Cache

per core
• 128 KB Tightly Coupled Memory (TCM) per core

3) Programmable Logic (PL)
4) Memory

• OCM: 256 KB On-Chip Memory
• PS DRAM: 4 GB DDR4 Kingston KVR21SE15S8/4
• PL DRAM: 512 MB DDR4 Micron

MT40A256M16GE-075E connected to
Programmable Logic

• PL BRAM: Block RAM in Programmable Logic
5) ARM Mali-400 Based GPU

Figure 1 presents a simplified block diagram of the targeted
Ultrascale+ MPSoC. Note that the programmable logic can
provide a DRAM controller to access a 512 MB DDR4
memory (here called as PL-DRAM) and a Block RAM (B-
RAM). The OCM memory is accessed by the A-53 cores
through two buses, and so is the 4 GB DDR4 memory (PS-
DRAM). Block RAM (BRAM) [10] are embedded memory
elements instantiated in the FPGA which are being used as
RAM. We use up to 2 MB of BRAM in the experiments.

The Programmable Logic (PL) communicates with the A-
53/R-5 cores and DRAM in the Processing System (PS) via
AXI-4 [11] buses. The PS side interface contains 3 AXI
Masters and 3 AXI Slaves which can be individually enabled
and configured. In our experiments we use 2 AXI Masters
on the PS side which connect to AXI Interconnects on the PL
which provide the corresponding AXI Slave ports. AXI Master
ports on these interconnects are connected to AXI Slave ports
on PL DRAM and PL BRAM controllers respectively.

III. BENCHMARKS

Platform evaluation is performed using user space bench-
marks available here [12]. The benchmarks create carefully
controlled memory traffic and use timing information for those
accesses to deduce platform characteristics.

A. Memory Mapping

Various memories are available on this platform as described
in Section II. To benchmark specific memory from linux user
space the benchmarks use the /dev/mem [13] interface which
exposes the physical memory as a file. The mmap system
call [14] is used to map the physical address space from
/dev/mem to the virtual address space of the benchmark.
The mmap system call in the kernel was modified to explicitly
control the cacheability of the mapped memory. The mapped
memory could be made cacheable or non-cacheable as desired.
Due to the small size in the same order of magnitude as L2
Cache, PL Block RAM is always mapped as non-cacheable in
all experiments.

B. Memory Latency

Memory Latency is defined here as the time difference
between the processor issuing a read request and receiving
the data. A strict data dependence is created between each
load used to evaluate the latency. This effectively eliminates
any parallelization that could be introduced by the compiler
or processor and skew this metric. The average latency is
calculated over a large number of such loads.

The behavior of this benchmark was verified by inspecting
the assembly code generated by the compiler and using perf
utility [15] at runtime. The benchmark was compiled with
gcc -O2 optimizations.

C. Bandwidth

This benchmark evaluates the read or write bandwidth
available to the processor for specific physical memory address
ranges. The benchmark accesses the memory range under
evaluation in a sequential manner with the corresponding type
of access (read or write). This is done for 5 seconds and
the average bandwidth is calculated. The benchmark evaluates
the processors’ ability to read or write sequential address
ranges. Every access made to the memory is 64 bits wide.
The benchmark was compiled with gcc -O2 optimizations.

D. Cache Coherence

The effect of cache coherence on memory access time is
also evaluated. The benchmark considered is similar to the
one used in [16]. The benchmark in [16] uses two tasks. Each
task accesses a fixed memory range with reads and writes in a
sequential manner. The two tasks can be arranged with respect
to each other in the following arrangements:

• Sequential: The two tasks are run one after the other on
the same processor;

• Parallel: The two tasks run on two different processors
but access private data only. There is no coherence
dependence between the tasks;
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Fig. 1. Simplified Block Diagram of the UltraScale+ MPSoC

• Concurrent: The two tasks run on two different proces-
sors and access shared data leading to overheads due to
coherence traffic.

IV. PLATFORM EVALUATION

This section provides a summary of the evaluation results.

A. Measuring Latency and Bandwidth

Using the latency benchmark as described earlier in Sec-
tion III-B, we measured latency of different memory sub-
systems. The results of the experiments for serialized versus
random access pattern to measure latency for PS DRAM, PL
DRAM and PL Block RAM are shown in Figure 2. Memory
accesses in this experiment bypass caches as described in
Section III-A. The experimental results reveal that both PS-
DRAM and PL-DRAM show less latency in serialized access
compared to random access. The PL-BRAM does not exhibit
any latency difference between serialized versus random ac-
cess. BRAM accesses latency is independent of access pattern
as it lacks constructs like banks and row buffers that are
common in DRAMs.

We also ran the latency benchmark with caching enabled for
varying working set sizes. Figure 3 shows the results. At the
lowest working set size of 16 KB, all accesses hit in private
L1 d-Cache of the processor. The access latency for the L1
d-Cache is hence around 3ns. The shared L2 Cache has a
capacity of 1 MB. Until the working set is increased beyond
the 1 MB mark, the majority of memory accesses hit in L1 or
L2 cache. The sharp latency increase for working sets larger
than 1 MB are due to actual DRAM accesses. L2 cache latency

Fig. 2. Stress Results of PL Versus PS DRAM

is hence around 20ns. Serialized read latency is substantially
lower than random read latency. Additionally, note that the
read latency for serialized memory accesses, even for large
working sets, is comparable to L2 cache latency. This is the
impact of speculative prefetching. Recall that the results in
Figure 2 were obtained by defining non-cacheable buffers. At
large working set sizes the latency for randomized accesses
to cacheable memory (see Figure 3) converges to the latency
observed for non-cached memory (Figure 2), as all accesses
miss in L1/L2 cache.

Similar to the latency benchmark, we run the bandwidth
benchmark described in Section III-C on A-53 core to measure
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Fig. 3. Random and Serial Read Latency With Different Working Set Size

the bandwidth of different memory sub-systems as reported in
Table I. From these results we draw several conclusions. In
general PS DRAM is better then both PL DRAM and PL
Block RAM. This is due to shorter line distance to the PS
DRAM and higher clock rates in the PS subsystem. Reads with
caching enabled are boosted by speculative prefetching as the
accesses are strictly serial. Multiple loads are issued per cache
line leading to further boost in Read bandwidth with caches as
compared to without caches. Reads without caches fetch data
from underlying memory on every access and hence suffer a
low bandwidth. Writes without caching return asynchronously
i.e. the store instruction returns without waiting for the data
to be committed to the underlying memory. Without caching
there is not a requirement to allocate a cache line to complete a
store. In case of writes with caches enabled, stores frequently
lead to dirty cache line evictions and cache line allocate for the
first write to a cache line (write-allocate policy). Hence we see
the large write bandwidth when caches are disabled but a low
write bandwidth with caching enabled. PL Block RAM is only
accessed with caches disabled. Read bandwidth from PL Block
Ram is greater than PL DRAM as the logic to reach Block
RAM in Programmable Logic is smaller than that to reach PL
DRAM. Block RAM is also inherently faster than DRAM for
single access latency which is a good approximation for the
traffic pattern of the read bandwidth benchmark. On the other
hand, write bandwith benchmark without caches bombards the
underlying memory with write requests. In this case PL Block
RAM provides a lower throughput than the PL DRAM. This is
due to lack of parallelization of memory accesses and limited
buffering in the access path to PL Block RAM, as compared
to PL DRAM.

TABLE I
BANDWIDTH MEASUREMENTS FOR DIFFERENT MEMORIES

Access Type PS DRAM
(MB/s)

PL DRAM
(MB/s)

PL BRAM
(MB/s)

Write With Cache 1881 880 xx
Read With Cache 2493 1414 xx
Write W/O Cache 12000 5440 4568
Read W/O Cache 556 320 406

B. Measuring Latency Under Stress

In this section we report the memory latency seen by a
core under analysis running the latency benchmark when other
cores are stressing the same memory as core under analysis
using the bandwidth benchmark. The bandwidth benchmark
on other cores is configured to stress with write, whereas the
latency is configured to perform read. In Figure 4, we show
the amount of read latency seen by the core under analysis on
PS DRAM and PL DRAM as we increase the stressing cores
from one to up to three. Compared to solo case, the stress case
of three cores shows a slow down of 1.85 times for the PS
DRAM and a slow down of 5.37x for the PL DRAM. This
slow-down can be explained by the DRAM specs of the PL
and PS DRAM and the interconnect between the two. We also
note that BRAM access latency is largely unaffected by the
increasing contending traffic.

Fig. 4. Stress Results of PL BRAM/DRAM Versus PS DRAM

C. Evaluating Cache Coherence

Figure 5 shows the results of cache contention experiments
as described in section III-D. We can clearly note the effects
of the cache coherence protocol on the performance. The
concurrent benchmark version, which runs two threads in
different cores at the same time accessing the same data array,
is about 3.6 times slower than the parallel version. When
the second thread accesses the shared data, it gets an invalid
access and must ask (snoop request) for the most recent copy
of the data or recover it from a higher memory level [16].
Whenever a snoop request must be completed, it takes time,
which may lead to unexpected increase of the task’s execution
time and deadline misses [2, 16]. According to [17], the time
to complete a snoop request is considerably slow (comparable
to access the off-chip RAM).

ARM Cortex-A53 processor uses the MOESI protocol to
maintain data coherency between multiple cores [9]. Co-
herency is maintained between the cores, cache, I/O master,
PL, and DRAM using the cache coherence interconnect (CCI).
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Fig. 5. Cache Coherence Results

V. PROPOSED SOFTWARE/HARDWARE PREDICTABLE
ARCHITECTURE

In order to provide strong temporal isolation among high
performance cores on the considered heterogeneous MPSoC,
we propose the software architecture as shown in Figure 6.

Our proposed architecture uses Jailhouse hypervisor [18]
that provides physical isolation of hardware devices including
processors, among the different OSes. We propose to use a
general-purpose OS such as Linux for non-critical tasks on
one of the high performance core and a Real-Time operating
system (RTOS) such as Erika [19] for safety-critical tasks.
Like any hypervisor, the communication between different
OSes running on different cores is achieved using Jailhouse.
We propose prohibiting direct access to the shared resources
from different cores. This eliminates unbounded contention
which could make the system unpredictable.

Fig. 6. Overview of the envisioned software architecture.

From our experimental results, it is clear that the main
sources of contention in our system are shared memory
resources such as LLC and the main memory such as PS
DRAM. We propose to partition the LLC using page coloring
with the help of Jailhouse. This removes the contention that
can be introduced by the LLC. In order to avoid the contention

at the DRAM, we propose the use of DRAM bank-aware
memory allocator (PALLOC) [20]. Using cache partitioning
and PALLOC we can assign a specific amount of cache and
dedicate DRAM banks to a specific core and enforce strong
isolation between the OSes running on different cores. For
shared memory, we propose to use PL block RAM (BRAM).
This is because, as shown by the experimental results in
Figure 4, the BRAM does not suffer any contention when
accessed using different cores.

VI. RELATED WORK

Our proposed software architecture is similar to one pro-
posed in [21]. However, in our proposal, Jailhouse would be
responsible for providing cache partitioning (possibly through
page coloring) and also DRAM bank-aware memory allocator
(through PALLOC [20]). Modica et al. also proposed a similar
hypervisor-based architecture targeting critical systems [22].
Cache partitioning is used to provide spatial isolation, while a
DRAM bandwidth reservation mechanism provides temporal
isolation. Both cache partitioning and memory reservation
mechanisms were implemented in the XVISOR open-source
hypervisor [23] and tested in a quad-core ARM A7 proces-
sor. Our proposed hypervisor-based approach, instead, uses
a MPSoC platform, which gives the possibility to explore
other features, such as specific FPGA DMA blocks (to handle
data transfer between PS and PL sides for instance) and data
prefetching. Another difference is that our approach will also
use DRAM bank-aware memory allocator, which can provide
better predictability in terms of main memory accesses.

MARACAS addresses shared cache and memory bus con-
tention through multicore scheduling and load-balancing on
top of the Quest OS [24]. MARACAS uses hardware per-
formance counters information to throttle the execution of
threads when memory contention exceeds a certain threshold.
The counters are also used to derive an average memory
request latency to reduce bus contention. vCAT uses the Intel’s
Cache Allocation Technology (CAT) to achieve core-level
cache partitioning for the hypervisor and virtual machines
running on top of it [25]. vCAT was implemented in Xen
and LITMUSRT . Although interesting, this approach is
architecture dependent and uses non real-time basic software
support (Linux and Xen).

Kim and Rajkumar proposed a predictable shared cache
framework for multicore real-time virtualization systems [26].
The proposed framework introduces two hypervisor techniques
(vLLC and vColoring) that enables cache-aware memory
allocation for individual tasks running running in a virtual ma-
chine. CHIPS-AHOy is a predictable holistic hypervisor [1]. It
integrates shared hardware isolation mechanism, such as mem-
ory partitioning, with an observe-decide-adapt loop to achieve
predictability and energy, thermal, and wearout management.

VII. CONCLUSIONS

In this paper we have evaluated the different memory
subsystems of the Xilinx Ultrascale+ platform. The results
of the experiments show that the platform has significant
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contention at LLC, PS DRAM and PL DRAM. Therefore, it
cannot be used as is for multi-core applications requiring hard-
real time guarantees. To provide strong isolation among the
cores, we propose the use of cache coloring using JailHouse
(a hypervisor) and DRAM bank partitioning using PALLOC.
With strict partitioning of shared resources we can run Real
Time OS on any core unaffected by application running on
other cores.
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