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GPUs in real-time systems

Work complementary to Amert et al.1:

§ Prior work: scheduling tasks within single context (mainly).

§ This work: scheduling properties of different HW contexts.

1Amert, T., Otternes, N., Anderson, J.H., Smith, F. D., GPU Scheduling on the
NVIDIA TX2: Hidden Details Revealed, December 2017
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Context switch mechanisms and preemption models

Kernel invocation

clProcessImage: 1920 ˚ 1080 “ 2,073,600 threads

Non-preemptive scheduling (current GPUs):

§ Finish whole kernel.

§ Max blocking: WCRT of kernel.

§ Swap: HW+OpenCL configuration.

Preemptive scheduling2:

§ Interrupt anywhere.

§ Max blocking: none.

§ Swap: HW+OpenCL configuration,
register files, local memory.

Limited-preemptive scheduling:

§ Interrupt on work-group boundary
(“SM draining”2).

§ Max blocking: „WCRT of work-group.

§ Swap: HW+OpenCL configuration.

2Tanasic et al. “Enabling preemptive multiprogramming on GPUs, 2014”
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Context switch mechanisms and preemption models

Our claim: SM draining, modelled by limited-preemptive scheduling,
provides a good trade-off point for GPUs between:

§ Context switching cost, and

§ WCRT benefits.
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Measure context switch response time

“The Fermi pipeline is optimized to reduce the cost of an application
context switch to below 25 microseconds.”3

§ Is 25µs an average or worst-case time?

§ Is 25µs execution time or response time?

§ What is the distribution?

3C.M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU Architecture.
Micro, IEEE 2011
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Measure context switch response time - experiment

Characterise WCRT of hardware (non-preemptive) context switch.

Approach:

1. Modify (nouveau’s) context switching firmware to report WCRT.
§ Excluding time to finish current kernel execution.
§ Intrusive measurement, max. observed overhead 224ns.

2. Write program to read from hardware:

§ Context size,
§ Reported context switch time.

3. For several Kepler GPUs (2012-2014) gather 20M samples each.

§ 1600x1200 X.org/XFCE desktop,
§ 1024x768 OpenArena windowed timedemo.
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Measure context switch response time - results

NVIDIA SM Cores Max bw State Time (µs) Avg. bw
GeForce MHz GiB/s KiB Min Avg Max GiB/s Util.
GT 710 1 953 14.4 63.9 9.2 21.5 80.1 2.83 19.6%
GT 640 2 901 28.5 68.2 13.6 26.5 43.7 2.45 8.6%
GTX 650 2 1058 80.0 68.2 12.7 23.2 36.0 2.71 3.4%
GTX 780 12 992 288.4 268.6 9.7 20.0 28.6 13.76 4.8%

§ What is the average context switch time? 20.0´ 26.5µs.

§ What is the worst-case context switch time? ą 28.6µs.

§ Execution time or response time?

§ Ex. time: Average context switch time not strictly memory bound.
§ Resp. time: Worst case overhead due to interference on DRAM bus from

display scan-out.

§ Distribution (GT 710): 0.3% of samples in r23.6,8s.

§ see paper for plot.
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Preemption models

Our claim: SM draining, modelled by limited-preemptive scheduling,
provides a good trade-off point for GPUs between:

‘

Context switching cost, and

§ WCRT benefits.
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Task scheduling on GPUs - experiment

Study WCRT implications of scheduling models under context switching
constraints, through overhead-aware schedulability experiment.

Approach:

1. Determine feasible parameters/ranges for
§ Context switch overheads for different scheduling policies,
§ (Periodic) task sets.

2. Compare schedulability of random task sets.
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Task scheduling on GPUs - parameters

State (KiB) Time (µs) Preempt
Scheduling policy Ctx Reg Local Total Avg Max /job4

Full preemptive (EDF) 68.2 512 96 676.2 263 434 ˆ2
SM draining (lpEDF) 68.2 0 0 68.2 27 44 ˆ2
Non-preemptive (npEDF) 68.2 0 0 68.2 27 44 ˆ1

(Based on GeForce GT 640 (2ˆSM), resembling Tegra K1)

Linear correlation state size Ø context switch time

Inflate task cost with n ˆ context switch time

4A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering
real-time fixed priority schedulers. IEEE Trans. on Software Engineering, May 1995.
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Preemptive GPU scheduling

Compare schedulability of random task sets:

Task set:

§ Uniprocessor EDF scheduling policy.

§ U “ t0.2, 0.21, . . . , 1.0u

§ 100,000˚81 “ 8.1M random task sets (UUniFast).

§ Task set: two tasks, 1,000µs ď Pi ă15,000µs.

§ lpEDF: max blocking q “ c
randomp2,500q , 2-500 WGs per SM.
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Preemptive GPU scheduling
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Preemptive GPU scheduling
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Limited-preemption far outperforms other models!
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Conclusion

Limited-preemptive scheduling (SM draining) provides a good trade-off
point for GPUs between context switching cost and WCRT benefits.

§ Current GPUs: context switch 20´ 26.5µs on average.

§ Overhead-aware schedulability experiment demonstrates advantage
of SM draining model.

In the paper:

§ Histogram of context switch times GeForce GT 710.

§ Demonstration of interference context switch Ø scan-out.

§ Schedulability experiment with 3-task systems.
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NVIDIA GPU architecture - streaming multiprocessor

Streaming Multiprocessor (SM), simplified

Register file (65536 ˚ 32 bits “ 256KiB)
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NVIDIA GPU architecture - FECS and GPCCS

GeForce GT 610
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