
The case for limited-preemptive scheduling in GPUs for
real-time systems

Roy Spliet Robert Mullins (first.last@cst.cam.ac.uk)

Department of Computer Science and Technology
University of Cambridge

GPUs in real-time systems

Work complementary to Amert et al.1:

§ Prior work: scheduling tasks within single context (mainly).

§ This work: scheduling properties of different HW contexts.

1Amert, T., Otternes, N., Anderson, J.H., Smith, F. D., GPU Scheduling on the
NVIDIA TX2: Hidden Details Revealed, December 2017

2 of 15

Outline

Background: context switch mechanisms and preemption models

Experiment: Measure context switch response times

Experiment: Task scheduling on GPUs

Conclusion

3 of 15

Context switch mechanisms and preemption models

Kernel invocation

clProcessImage: 1920 ˚ 1080 “ 2,073,600 threads

Non-preemptive scheduling (current GPUs):

§ Finish whole kernel.

§ Max blocking: WCRT of kernel.

§ Swap: HW+OpenCL configuration.

Preemptive scheduling2:

§ Interrupt anywhere.

§ Max blocking: none.

§ Swap: HW+OpenCL configuration,
register files, local memory.

Limited-preemptive scheduling:

§ Interrupt on work-group boundary
(“SM draining”2).

§ Max blocking: „WCRT of work-group.

§ Swap: HW+OpenCL configuration.

2Tanasic et al. “Enabling preemptive multiprogramming on GPUs, 2014”

4 of 15

Context switch mechanisms and preemption models

Kernel invocation

clProcessImage: 1920 ˚ 1080 “ 2,073,600 threads

Non-preemptive scheduling (current GPUs):

§ Finish whole kernel.

§ Max blocking: WCRT of kernel.

§ Swap: HW+OpenCL configuration.

Preemptive scheduling2:

§ Interrupt anywhere.

§ Max blocking: none.

§ Swap: HW+OpenCL configuration,
register files, local memory.

Limited-preemptive scheduling:

§ Interrupt on work-group boundary
(“SM draining”2).

§ Max blocking: „WCRT of work-group.

§ Swap: HW+OpenCL configuration.

2Tanasic et al. “Enabling preemptive multiprogramming on GPUs, 2014”

4 of 15

Context switch mechanisms and preemption models

Kernel invocation

clProcessImage: 1920 ˚ 1080 “ 2,073,600 threads

Non-preemptive scheduling (current GPUs):

§ Finish whole kernel.

§ Max blocking: WCRT of kernel.

§ Swap: HW+OpenCL configuration.

Preemptive scheduling2:

§ Interrupt anywhere.

§ Max blocking: none.

§ Swap: HW+OpenCL configuration,
register files, local memory.

Limited-preemptive scheduling:

§ Interrupt on work-group boundary
(“SM draining”2).

§ Max blocking: „WCRT of work-group.

§ Swap: HW+OpenCL configuration.

2Tanasic et al. “Enabling preemptive multiprogramming on GPUs, 2014”

4 of 15

Context switch mechanisms and preemption models

Kernel invocation

clProcessImage: 1920 ˚ 1080 “ 2,073,600 threads

2073600{1024 “ 2025 work-groups

Non-preemptive scheduling (current GPUs):

§ Finish whole kernel.

§ Max blocking: WCRT of kernel.

§ Swap: HW+OpenCL configuration.

Preemptive scheduling2:

§ Interrupt anywhere.

§ Max blocking: none.

§ Swap: HW+OpenCL configuration,
register files, local memory.

Limited-preemptive scheduling:

§ Interrupt on work-group boundary
(“SM draining”2).

§ Max blocking: „WCRT of work-group.

§ Swap: HW+OpenCL configuration.

2Tanasic et al. “Enabling preemptive multiprogramming on GPUs, 2014”

4 of 15

Context switch mechanisms and preemption models

Our claim: SM draining, modelled by limited-preemptive scheduling,
provides a good trade-off point for GPUs between:

§ Context switching cost, and

§ WCRT benefits.

5 of 15

Measure context switch response time

“The Fermi pipeline is optimized to reduce the cost of an application
context switch to below 25 microseconds.”3

§ Is 25µs an average or worst-case time?

§ Is 25µs execution time or response time?

§ What is the distribution?

3C.M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU Architecture.
Micro, IEEE 2011

6 of 15

Measure context switch response time

“The Fermi pipeline is optimized to reduce the cost of an application
context switch to below 25 microseconds.”3

§ Is 25µs an average or worst-case time?

§ Is 25µs execution time or response time?

§ What is the distribution?

3C.M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU Architecture.
Micro, IEEE 2011

6 of 15

Measure context switch response time - experiment

Characterise WCRT of hardware (non-preemptive) context switch.

Approach:

1. Modify (nouveau’s) context switching firmware to report WCRT.
§ Excluding time to finish current kernel execution.
§ Intrusive measurement, max. observed overhead 224ns.

2. Write program to read from hardware:

§ Context size,
§ Reported context switch time.

3. For several Kepler GPUs (2012-2014) gather 20M samples each.

§ 1600x1200 X.org/XFCE desktop,
§ 1024x768 OpenArena windowed timedemo.

7 of 15

Measure context switch response time - experiment

Characterise WCRT of hardware (non-preemptive) context switch.

Approach:

1. Modify (nouveau’s) context switching firmware to report WCRT.
§ Excluding time to finish current kernel execution.
§ Intrusive measurement, max. observed overhead 224ns.

2. Write program to read from hardware:
§ Context size,
§ Reported context switch time.

3. For several Kepler GPUs (2012-2014) gather 20M samples each.

§ 1600x1200 X.org/XFCE desktop,
§ 1024x768 OpenArena windowed timedemo.

7 of 15

Measure context switch response time - experiment

Characterise WCRT of hardware (non-preemptive) context switch.

Approach:

1. Modify (nouveau’s) context switching firmware to report WCRT.
§ Excluding time to finish current kernel execution.
§ Intrusive measurement, max. observed overhead 224ns.

2. Write program to read from hardware:
§ Context size,
§ Reported context switch time.

3. For several Kepler GPUs (2012-2014) gather 20M samples each.
§ 1600x1200 X.org/XFCE desktop,
§ 1024x768 OpenArena windowed timedemo.

7 of 15

Measure context switch response time - results

NVIDIA SM Cores Max bw State Time (µs) Avg. bw
GeForce MHz GiB/s KiB Min Avg Max GiB/s Util.
GT 710 1 953 14.4 63.9 9.2 21.5 80.1 2.83 19.6%
GT 640 2 901 28.5 68.2 13.6 26.5 43.7 2.45 8.6%
GTX 650 2 1058 80.0 68.2 12.7 23.2 36.0 2.71 3.4%
GTX 780 12 992 288.4 268.6 9.7 20.0 28.6 13.76 4.8%

§ What is the average context switch time? 20.0´ 26.5µs.

§ What is the worst-case context switch time? ą 28.6µs.

§ Execution time or response time?

§ Ex. time: Average context switch time not strictly memory bound.
§ Resp. time: Worst case overhead due to interference on DRAM bus from

display scan-out.

§ Distribution (GT 710): 0.3% of samples in r23.6,8s.

§ see paper for plot.

8 of 15

Measure context switch response time - results

NVIDIA SM Cores Max bw State Time (µs) Avg. bw
GeForce MHz GiB/s KiB Min Avg Max GiB/s Util.
GT 710 1 953 14.4 63.9 9.2 21.5 80.1 2.83 19.6%
GT 640 2 901 28.5 68.2 13.6 26.5 43.7 2.45 8.6%
GTX 650 2 1058 80.0 68.2 12.7 23.2 36.0 2.71 3.4%
GTX 780 12 992 288.4 268.6 9.7 20.0 28.6 13.76 4.8%

§ What is the average context switch time? 20.0´ 26.5µs.

§ What is the worst-case context switch time? ą 28.6µs.

§ Execution time or response time?
§ Ex. time: Average context switch time not strictly memory bound.

§ Resp. time: Worst case overhead due to interference on DRAM bus from
display scan-out.

§ Distribution (GT 710): 0.3% of samples in r23.6,8s.

§ see paper for plot.

8 of 15

Measure context switch response time - results

NVIDIA SM Cores Max bw State Time (µs) Avg. bw
GeForce MHz GiB/s KiB Min Avg Max GiB/s Util.
GT 710 1 953 14.4 63.9 9.2 21.5 80.1 2.83 19.6%
GT 640 2 901 28.5 68.2 13.6 26.5 43.7 2.45 8.6%
GTX 650 2 1058 80.0 68.2 12.7 23.2 36.0 2.71 3.4%
GTX 780 12 992 288.4 268.6 9.7 20.0 28.6 13.76 4.8%

§ What is the average context switch time? 20.0´ 26.5µs.

§ What is the worst-case context switch time? ą 28.6µs.

§ Execution time or response time?
§ Ex. time: Average context switch time not strictly memory bound.
§ Resp. time: Worst case overhead due to interference on DRAM bus from

display scan-out.

§ Distribution (GT 710): 0.3% of samples in r23.6,8s.

§ see paper for plot.

8 of 15

Measure context switch response time - results

NVIDIA SM Cores Max bw State Time (µs) Avg. bw
GeForce MHz GiB/s KiB Min Avg Max GiB/s Util.
GT 710 1 953 14.4 63.9 9.2 21.5 80.1 2.83 19.6%
GT 640 2 901 28.5 68.2 13.6 26.5 43.7 2.45 8.6%
GTX 650 2 1058 80.0 68.2 12.7 23.2 36.0 2.71 3.4%
GTX 780 12 992 288.4 268.6 9.7 20.0 28.6 13.76 4.8%

§ What is the average context switch time? 20.0´ 26.5µs.

§ What is the worst-case context switch time? ą 28.6µs.

§ Execution time or response time?
§ Ex. time: Average context switch time not strictly memory bound.
§ Resp. time: Worst case overhead due to interference on DRAM bus from

display scan-out.

§ Distribution (GT 710): 0.3% of samples in r23.6,8s.
§ see paper for plot.

8 of 15

Preemption models

Our claim: SM draining, modelled by limited-preemptive scheduling,
provides a good trade-off point for GPUs between:

‘

Context switching cost, and

§ WCRT benefits.

9 of 15

Task scheduling on GPUs - experiment

Study WCRT implications of scheduling models under context switching
constraints, through overhead-aware schedulability experiment.

Approach:

1. Determine feasible parameters/ranges for
§ Context switch overheads for different scheduling policies,
§ (Periodic) task sets.

2. Compare schedulability of random task sets.

10 of 15

Task scheduling on GPUs - parameters

State (KiB) Time (µs) Preempt
Scheduling policy Ctx Reg Local Total Avg Max /job4

Full preemptive (EDF) 68.2 512 96 676.2 263 434 ˆ2
SM draining (lpEDF) 68.2 0 0 68.2 27 44 ˆ2
Non-preemptive (npEDF) 68.2 0 0 68.2 27 44 ˆ1

(Based on GeForce GT 640 (2ˆSM), resembling Tegra K1)

Linear correlation state size Ø context switch time

Inflate task cost with n ˆ context switch time

4A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering
real-time fixed priority schedulers. IEEE Trans. on Software Engineering, May 1995.

11 of 15

Task scheduling on GPUs - parameters

State (KiB) Time (µs) Preempt
Scheduling policy Ctx Reg Local Total Avg Max /job4

Full preemptive (EDF) 68.2 512 96 676.2 263 434 ˆ2
SM draining (lpEDF) 68.2 0 0 68.2 27 44 ˆ2
Non-preemptive (npEDF) 68.2 0 0 68.2 27 44 ˆ1

(Based on GeForce GT 640 (2ˆSM), resembling Tegra K1)

Linear correlation state size Ø context switch time

Inflate task cost with n ˆ context switch time

4A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering
real-time fixed priority schedulers. IEEE Trans. on Software Engineering, May 1995.

11 of 15

Task scheduling on GPUs - parameters

State (KiB) Time (µs) Preempt
Scheduling policy Ctx Reg Local Total Avg Max /job4

Full preemptive (EDF) 68.2 512 96 676.2 263 434 ˆ2
SM draining (lpEDF) 68.2 0 0 68.2 27 44 ˆ2
Non-preemptive (npEDF) 68.2 0 0 68.2 27 44 ˆ1

(Based on GeForce GT 640 (2ˆSM), resembling Tegra K1)

Linear correlation state size Ø context switch time

Inflate task cost with n ˆ context switch time

4A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering
real-time fixed priority schedulers. IEEE Trans. on Software Engineering, May 1995.

11 of 15

Preemptive GPU scheduling

Compare schedulability of random task sets:

Task set:

§ Uniprocessor EDF scheduling policy.

§ U “ t0.2, 0.21, . . . , 1.0u

§ 100,000˚81 “ 8.1M random task sets (UUniFast).

§ Task set: two tasks, 1,000µs ď Pi ă15,000µs.

§ lpEDF: max blocking q “ c
randomp2,500q , 2-500 WGs per SM.

12 of 15

Preemptive GPU scheduling

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
c
h

e
d

u
la

b
ili

ty
 (

%
)

Utilisation

Preemptive (avg)
Preemptive (max)

Limited-preemptive (avg)
Limited-preemptive (max)

Non-preemptive (avg)
Non-preemptive (max)

For 0.25 ď U ď 0.72 full-preempt beneficial

Reduce preemptive ctxswitch overhead Ñ higher schedulability.

13 of 15

Preemptive GPU scheduling

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
c
h

e
d

u
la

b
ili

ty
 (

%
)

Utilisation

Preemptive (avg)
Preemptive (max)

Limited-preemptive (avg)
Limited-preemptive (max)

Non-preemptive (avg)
Non-preemptive (max)

For 0.25 ď U ď 0.72 full-preempt beneficial

Reduce preemptive ctxswitch overhead Ñ higher schedulability.

13 of 15

Preemptive GPU scheduling

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
c
h

e
d

u
la

b
ili

ty
 (

%
)

Utilisation

Preemptive (avg)
Preemptive (max)

Limited-preemptive (avg)
Limited-preemptive (max)

Non-preemptive (avg)
Non-preemptive (max)

For 0.25 ď U ď 0.72 full-preempt beneficial

Reduce preemptive ctxswitch overhead Ñ higher schedulability.

13 of 15

Preemptive GPU scheduling

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
c
h
e
d
u
la

b
ili

ty
 (

%
)

Utilisation

Preemptive (avg)
Preemptive (max)

Limited-preemptive (avg)
Limited-preemptive (max)

Non-preemptive (avg)
Non-preemptive (max)

Limited-preemption far outperforms other models!

14 of 15

Conclusion

Limited-preemptive scheduling (SM draining) provides a good trade-off
point for GPUs between context switching cost and WCRT benefits.

§ Current GPUs: context switch 20´ 26.5µs on average.

§ Overhead-aware schedulability experiment demonstrates advantage
of SM draining model.

In the paper:

§ Histogram of context switch times GeForce GT 710.

§ Demonstration of interference context switch Ø scan-out.

§ Schedulability experiment with 3-task systems.

15 of 15

Conclusion

Limited-preemptive scheduling (SM draining) provides a good trade-off
point for GPUs between context switching cost and WCRT benefits.

§ Current GPUs: context switch 20´ 26.5µs on average.

§ Overhead-aware schedulability experiment demonstrates advantage
of SM draining model.

In the paper:

§ Histogram of context switch times GeForce GT 710.

§ Demonstration of interference context switch Ø scan-out.

§ Schedulability experiment with 3-task systems.

15 of 15

NVIDIA GPU architecture - streaming multiprocessor

Streaming Multiprocessor (SM), simplified

Register file (65536 ˚ 32 bits “ 256KiB)

Warp scheduler Warp scheduler Warp scheduler Warp scheduler

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

¨ ¨ ¨ (Kepler: 192 cores total)

L1 + Local memory (64KiB) Interconnect

1 of 2

NVIDIA GPU architecture - FECS and GPCCS

GeForce GT 610

µc

FECS

GPC

SM
µc

GPCCS

Graphics Processing Cluster

GPC Context Switch

Front-End Context Switch

GeForce GTX 780

µc

FECS

GPC

SMSM

µc

GPCCS

GPC

SMSM

µc

GPCCS

GPC

SMSM

µc

GPCCS

GPC

SMSM SM

µc

GPCCS

GPC

SMSM SM

µc

GPCCS

2 of 2

NVIDIA GPU architecture - FECS and GPCCS

GeForce GT 610

µc

FECS

GPC

SM
µc

GPCCS

Graphics Processing Cluster

GPC Context Switch

Front-End Context Switch

GeForce GTX 780

µc

FECS

GPC

SMSM

µc

GPCCS

GPC

SMSM

µc

GPCCS

GPC

SMSM

µc

GPCCS

GPC

SMSM SM

µc

GPCCS

GPC

SMSM SM

µc

GPCCS

2 of 2

NVIDIA GPU architecture - FECS and GPCCS

GeForce GT 610

µc

FECS

GPC

SM
µc

GPCCS

Graphics Processing Cluster

GPC Context Switch

Front-End Context Switch

GeForce GTX 780

µc

FECS

GPC

SMSM

µc

GPCCS

GPC

SMSM

µc

GPCCS

GPC

SMSM

µc

GPCCS

GPC

SMSM SM

µc

GPCCS

GPC

SMSM SM

µc

GPCCS

2 of 2

NVIDIA GPU architecture - FECS and GPCCS

GeForce GT 610

µc

FECS

GPC

SM
µc

GPCCS

Graphics Processing Cluster

GPC Context Switch

Front-End Context Switch

GeForce GTX 780

µc

FECS

GPC

SMSM

µc

GPCCS

GPC

SMSM

µc

GPCCS

GPC

SMSM

µc

GPCCS

GPC

SMSM SM

µc

GPCCS

GPC

SMSM SM

µc

GPCCS

2 of 2

	Background: context switch mechanisms and preemption models
	Experiment: Measure context switch response times
	Experiment: Task scheduling on GPUs
	Conclusion
	Appendix
	Back-up slides

