
UNC-CS

Scaling Up: The Validation of
Empirically Derived Scheduling

Rules on NVIDIA GPUs

Joshua Bakita
Department of Computer Science, University of North Carolina at Chapel Hill

14th Annual Workshop on Operating Systems Platforms for Embedded Real-Time (OSPERT), Session III
July 3rd 2018

1

UNC-CS

Certifying Autonomy

▪ GPUs best fit size, weight, and power
requirements

▪ Users want safety guarantees, but millions, or
even billions of hours of road testing would be
needed to achieve statistical meaning

▪ Formal (mathematical) guarantees cannot be
made without understanding the hardware

▪ Central role of GPUs demands a solid
understanding of them

2

6.7 inches

Example GPU Platform:
NVIDIA TX2

UNC-CS

Anatomy of Autonomy

3

Hardware GPU and CPU

Scheduler

Computer
Vision

Vehicle
RoutingSensor Fusion

Traditional
Automotive
Real-time
Platform

Actuation and
Control

UNC-CS

Anatomy of Autonomy

4

Hardware GPU and CPU

Scheduler

Computer
Vision

Vehicle
RoutingSensor Fusion

Traditional
Automotive
Real-time
Platform

Actuation and
Control

UNC-CS

How do we enable GPU certification?

▪ Determine rules of behavior
▪ Rigorously validate rules

5

UNC-CS

How do we enable GPU certification?

▪ Determine rules of behavior ✔ - postulated in past research at UNC
▪ Rigorously validate rules

6

UNC-CS

How do we enable GPU certification?

▪ Determine rules of behavior ✔ - postulated in past research at UNC
▪ Rigorously validate rules X - focus of my paper

7

UNC-CS

Definitions

CUDA Thread Block: A group of GPU threads executing the same
set of user-defined instructions in lockstep. This is the lowest-level
GPU scheduling unit considered in the paper.
CUDA Kernel: A combination of instruction code and CUDA thread
block specifications. Dispatched asynchronously by a user-space
process.
CUDA Stream: A first-in-first-out (FIFO) work queue into which
processes on the CPU can dispatch kernels.

8

UNC-CS

Definitions

SM: A subdivision of an NVIDIA GPU. Single thread blocks cannot
be split across multiple SMs.
EE (Execution Engine) Queue: A special internal queue of kernels
that our past work has defined to exist between CUDA stream
queues and the actual GPU (explained in later figure).

9

UNC-CS

Limits of Empirical Observation

10

Previously Published Test [1] Same Test, Different GPU Generation
[1] N. Otterness, M. Yang, T. Amert, J. Anderson, and F.D. Smith. Inferring the scheduling policies of an embedded CUDA GPU. In OSPERT ’17.

UNC-CS

Limits of Empirical Observation

Randomized
Workload

11

UNC-CS

Superhuman Scale

Autonomous
validation of

scheduling
rules via state

machine

12

UNC-CS

Considered Events

Timestamps included in traces from GPU tests:
▪ Kernel launch start
▪ Kernel launch end
▪ Kernel end¹
▪ Thread block start
▪ Thread block end

13

¹ Pseudo-event; sometimes it is undesirable for a benchmark to perform a cudaStreamSyncronize to retrieve the actual end time. In
those cases the tokenizer uses the end time of the last thread block of the kernel as a substitute.

UNC-CS 14

UNC-CS

Results

▪ Postulated rules apply in
simple tests on recent GPUs

▪ Older GPUs follow different
rules

▪ Rules do not strictly apply in
complex tests on recent
GPUs
▪ Clock jitter?

15

Validating: BLOCK_END (SM8/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM3/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM4/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM0/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM11/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM6/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_END (SM3/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM7/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM4/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_START (SM8/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM8/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM11/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM0/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM11/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
Validation failed at timestamp 2.784003778: Block starting for kernel not at head of EE queue

UNC-CS

Different Rules in Effect

16

Previously Published Test [1] Same Test, Different GPU Generation
[1] N. Otterness, M. Yang, T. Amert, J. Anderson, and F.D. Smith. Inferring the scheduling policies of an embedded CUDA GPU. In OSPERT ’17.

UNC-CS

Improper Ordering (Kepler)

Relevant Rules:
G2: “A kernel is enqueued on the EE queue
when it reaches the head of its [CUDA] stream
queue.” [2]
G4: “A kernel is dequeued from its [CUDA]
stream queue once all of its blocks complete
execution.” [2]

17

[2] T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D. Smith. GPU scheduling on the NVIDIA TX2: Hidden details revealed. In RTSS
2017.

UNC-CS

Improper Ordering (Kepler)

New Rule:
G2 (Kepler): “A kernel is dequeued from its
stream queue and enqueued on the EE queue
when it reaches the head of its stream queue.”

Kepler dates from 2012

18

UNC-CS

Ordering Jitter (Newer GPUs)

Relevant Rules:
G3: “A kernel at the head of the EE queue is
dequeued from that queue once it becomes
fully dispatched.” [2, p. 5]
X1: “Only blocks of the kernel at the head of the
EE queue are eligible to be assigned.” [2, p. 6]

19

[2] T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D. Smith. GPU scheduling on the NVIDIA TX2: Hidden details revealed. In RTSS
2017.

UNC-CS

Ordering Jitter (Newer GPUs)

20

...
2.784003586: BLOCK_START (SM11/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
2.784003618: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2) <- Blocks of S2/K2 stop dispatch
2.784003778: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4) <- Blocks of S4/K3 begin dispatch
2.784003778: BLOCK_START (SM3/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003778: BLOCK_START (SM4/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003810: BLOCK_START (SM0/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003810: BLOCK_START (SM11/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003810: BLOCK_START (SM4/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM0/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM8/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM3/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM8/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM11/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM3/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM0/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM4/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM4/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM3/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4) <- Blocks of S4/K3 finish dispatch
2.784004962: BLOCK_START (SM6/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2) <- Block of S2/K2 dispatched
...

UNC-CS

Future Work

▪ Investigate specific source of EE queue ordering jitter
▪ Wall-clock distribution latency? (%%globaltimer)
▪ Propagation latency?
▪ Resource blocking?
▪ Multiple EE queues?

▪ Expand framework to validate more rules
▪ Only validates six of the sixteen rules [2] at present

▪ Automate random workload execution and validation cycles

21

[2] T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D. Smith. GPU scheduling on the NVIDIA TX2: Hidden details revealed. In RTSS
2017.

UNC-CS

Impacts

▪ Will eventually allow GM Research and
other autonomous vehicle developers to
more confidently build on our theoretical
rules

▪ Allows quick validation of different
NVIDIA GPUs, yielding more flexibility to
developers and creating the ability to take
real-time learnings from one generation
to the next

22

UNC-CS

Questions?

Works cited and thanks to:
1. N. Otterness, M. Yang, T. Amert, J. Anderson, and F.D. Smith.

Inferring the scheduling policies of an embedded CUDA GPU. In
OSPERT ’17.

2. T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D. Smith. GPU
scheduling on the NVIDIA TX2: Hidden details revealed. In RTSS
2017.

23

