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Certifying Autonomy

▪ GPUs best fit size, weight, and power 
requirements

▪ Users want safety guarantees, but millions, or 
even billions of hours of road testing would be 
needed to achieve statistical meaning

▪ Formal (mathematical) guarantees cannot be 
made without understanding the hardware

▪ Central role of GPUs demands a solid 
understanding of them
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Anatomy of Autonomy
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How do we enable GPU certification?

▪ Determine rules of behavior
▪ Rigorously validate rules
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How do we enable GPU certification?

▪ Determine rules of behavior ✔ - postulated in past research at UNC
▪ Rigorously validate rules
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How do we enable GPU certification?

▪ Determine rules of behavior ✔ - postulated in past research at UNC
▪ Rigorously validate rules X - focus of my paper
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Definitions

CUDA Thread Block: A group of GPU threads executing the same 
set of user-defined instructions in lockstep. This is the lowest-level 
GPU scheduling unit considered in the paper.
CUDA Kernel: A combination of instruction code and CUDA thread 
block specifications. Dispatched asynchronously by a user-space 
process.
CUDA Stream: A first-in-first-out (FIFO) work queue into which 
processes on the CPU can dispatch kernels.
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Definitions

SM: A subdivision of an NVIDIA GPU. Single thread blocks cannot 
be split across multiple SMs.
EE (Execution Engine) Queue: A special internal queue of kernels 
that our past work has defined to exist between CUDA stream 
queues and the actual GPU (explained in later figure).

9



UNC-CS

Limits of Empirical Observation
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Previously Published Test [1] Same Test, Different GPU Generation
[1] N. Otterness, M. Yang, T. Amert, J. Anderson, and F.D. Smith. Inferring the scheduling policies of an embedded CUDA GPU. In OSPERT ’17.
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Limits of Empirical Observation

Randomized 
Workload
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Superhuman Scale

Autonomous 
validation of 

scheduling 
rules via state 

machine
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Considered Events

Timestamps included in traces from GPU tests:
▪ Kernel launch start
▪ Kernel launch end
▪ Kernel end¹
▪ Thread block start
▪ Thread block end
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¹ Pseudo-event; sometimes it is undesirable for a benchmark to perform a cudaStreamSyncronize  to retrieve the actual end time. In 
those cases the tokenizer uses the end time of the last thread block of the kernel as a substitute.
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Results

▪ Postulated rules apply in 
simple tests on recent GPUs

▪ Older GPUs follow different 
rules

▪ Rules do not strictly apply in 
complex tests on recent 
GPUs
▪ Clock jitter?
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Validating: BLOCK_END (SM8/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM3/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM4/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM0/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM11/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM6/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_END (SM3/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM7/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_END (SM4/770) (K1/pri-0/stream-25524) (Multi-kernel submission: Stream 3)
Validating: BLOCK_START (SM8/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM8/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM11/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM0/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM11/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
Validating: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
Validation failed at timestamp 2.784003778: Block starting for kernel not at head of EE queue
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Different Rules in Effect
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Previously Published Test [1] Same Test, Different GPU Generation
[1] N. Otterness, M. Yang, T. Amert, J. Anderson, and F.D. Smith. Inferring the scheduling policies of an embedded CUDA GPU. In OSPERT ’17.
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Improper Ordering (Kepler)

Relevant Rules:
G2: “A kernel is enqueued on the EE queue 
when it reaches the head of its [CUDA] stream 
queue.” [2]
G4: “A kernel is dequeued from its [CUDA] 
stream queue once all of its blocks complete 
execution.” [2]
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[2] T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D. Smith. GPU scheduling on the NVIDIA TX2: Hidden details revealed. In RTSS 
2017.
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Improper Ordering (Kepler)

New Rule:
G2 (Kepler): “A kernel is dequeued from its 
stream queue and enqueued on the EE queue 
when it reaches the head of its stream queue.”

Kepler dates from 2012
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Ordering Jitter (Newer GPUs)

Relevant Rules:
G3: “A kernel at the head of the EE queue is 
dequeued from that queue once it becomes 
fully dispatched.” [2, p. 5]
X1: “Only blocks of the kernel at the head of the 
EE queue are eligible to be assigned.” [2, p. 6]
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[2] T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D. Smith. GPU scheduling on the NVIDIA TX2: Hidden details revealed. In RTSS 
2017.
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Ordering Jitter (Newer GPUs)
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...
2.784003586: BLOCK_START (SM11/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2)
2.784003618: BLOCK_START (SM5/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2) <- Blocks of S2/K2 stop dispatch
2.784003778: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4) <- Blocks of S4/K3 begin dispatch
2.784003778: BLOCK_START (SM3/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003778: BLOCK_START (SM4/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003810: BLOCK_START (SM0/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003810: BLOCK_START (SM11/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003810: BLOCK_START (SM4/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM0/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM8/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM3/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM8/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM11/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003842: BLOCK_START (SM3/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM0/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM4/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM4/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM7/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4)
2.784003874: BLOCK_START (SM3/323) (K3/pri-0/stream-25525) (Multi-kernel submission: Stream 4) <- Blocks of S4/K3 finish dispatch
2.784004962: BLOCK_START (SM6/376) (K2/pri-0/stream-25523) (Multi-kernel submission: Stream 2) <- Block of S2/K2 dispatched
...
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Future Work

▪ Investigate specific source of EE queue ordering jitter
▪ Wall-clock distribution latency? (%%globaltimer)
▪ Propagation latency?
▪ Resource blocking?
▪ Multiple EE queues?

▪ Expand framework to validate more rules
▪ Only validates six of the sixteen rules [2] at present

▪ Automate random workload execution and validation cycles
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[2] T. Amert, N. Otterness, M. Yang, J. Anderson, and F. D. Smith. GPU scheduling on the NVIDIA TX2: Hidden details revealed. In RTSS 
2017.
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Impacts

▪ Will eventually allow GM Research and 
other autonomous vehicle developers to 
more confidently build on our theoretical 
rules

▪ Allows quick validation of different 
NVIDIA GPUs, yielding more flexibility to 
developers and creating the ability to take 
real-time learnings from one generation 
to the next
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Questions?
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