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● Futexes: underlying mechanism for thread 
synchronization in Linux

● libc provides:
– Mutexes and Condition Variables

– Semaphores, Reader-Writer Locks, Barriers, …

● Linux kernel provides system calls to:
– suspend the calling thread

– wake a given number of waiting threads

● First prototype in Linux kernel version 2.5.7
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● Linux Futex API
#include <linux/futex.h>

int SYS_futex(int *uaddr, int op, int val,
const struct timespec *timeout, int 

*uaddr2, int val3);

● Operations
– FUTEX_WAIT Suspend calling thread on futex uaddr

– FUTEX_WAKE Wake val threads waiting on futex uaddr

– FUTEX_REQUEUE Move threads waiting on uaddr to uaddr2

– … more operations available → see FUTEX(2) man page



 

4

OSPERT
2018-07-03
A. Zuepke Mutex Example

● mutex_lock / mutex_unlock

– Fast path: use atomic operations       
to change a 32-bit integer variable in user space

– No system call involved!

● mutex_lock on contention

– Atomically indicate pending waiters

– futex_wait system call
● Look-up wait queue
● Check futex value again
● Enqueue calling thread in wait queue
● Suspend calling thread

● mutex_unlock on contention

– futex_wake system call
● Look-up wait queue
● Wake first waiting thread

unlocked

locked

locked w/ contention
wait queue in kernel

fast path:
atomic ops

slow path:
futex syscall
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● cond_signal/broadcast

– Atomically increment futex value

– Call futex_requeue to move one/all waiters  
from condition variable wait queue         
to mutex wait queue

edcbe

Cond

Wait
Queue dc

Mutex

Wait
Queue a}
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● Futex ↔ generic compare-and-block mechanism
● Implement POSIX synchronization mechanisms in 

user space

● But:

– Can we use it in safety critical systems?
– Certification?
– WCET?
– Interference analysis?
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● Futex ↔ generic compare-and-block mechanism
● Implement POSIX synchronization mechanisms in 

user space

● But:

– Can we use futexes in real-time systems?
– WCET?
– Interference?
– Determinism?

FUTEX
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● Linux implementation
● Our OSPERT 2013 approach
● Requirements for determinism
● Our new approach
● Discussion
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Linux Implementation
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● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket
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#Futex B

Futex C

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket

Futex A
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Futex A

#

a

Futex B

Futex C

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket
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#
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Futex B
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Futex C

Futex A
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– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket



 

15

OSPERT
2018-07-03
A. Zuepke Linux Implementation

Futex A

#

a

Futex B

b

c

Futex C

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal
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● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket

Futex A

#

a

b

c

Futex C

Futex BHash
Collision!
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● Experiment
– Two processes

– 2048 blocked threads each

– Process α requeues 2048 threads from αsrc to αdst

– Process β requeues 1 thread from βsrc  to βdst

– Measure β’s execution time

– Note: four wait queues!
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● Drawbacks of Linux implementation
– Shared wait queues

– Dynamic memory allocations for PI mutexes

– Not preemptive
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Our OSPERT 2013

Approach
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● Save thread ID of first waiter 
next to the futex in user space

→ O(1) look-up of wait queue

● FIFO ordering in wait queue

→ wait queues use linked lists

● futex_requeue appends whole linked lists

→ in O(1) time

● other operations: also O(1) time 

* A. Zuepke, “Deterministic Fast User Space Synchronization”, OSPERT 2013

Thread ID
of 1st waiter

futex
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● Limitations of paper version:
– Limited set of futex operations

– No “wake all” operation (for barriers)

– Only FIFO ordering

● Overcoming these limitations is possible:
– Priority ordering of wait queue

– Preemptive “wake_all” operation

* A. Zuepke, “Deterministic Fast User Space Synchronization”, OSPERT 2013
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● Particular Problems:
– Consistency of linked list during deletion/timeout 

handling while another thread walks this list

– “Sneak-in”: prevent woken threads from re-entering 
a wait queue

– Scalability: requires a global lock design

→ Result: complex implementation

→ Take a fresh look ...

* A. Zuepke, “Deterministic Fast User Space Synchronization”, OSPERT 2013
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Requirements

for Determinism

Use dedicated wait queues!
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0. Do not share wait queues

1. No dynamic memory allocations

2. Priority ordered wait queues; FIFO order on tie

3. Wait queue: use binary search tree (BST)

4. Wait queue look-up: use BST as well

5. Preemptible “wake/preempt all” operations

6. Prevent “sneak-in”

7. Transparent preemption

8. Fine granular locking
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0. Do not share wait queues

1. No dynamic memory allocations

2. Priority ordered wait queues; FIFO order on tie

3. Wait queue: use binary search tree (BST)

4. Wait queue look-up: use BST as well

5. Preemptible “wake/preempt all” operations

6. Prevent “sneak-in”

7. Transparent preemption

8. Fine granular locking

O(log n) time

Problem
of preemptible
implementation

No unexpected
failures

Optional
feature

No interference
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New Approach*

(* this paper)
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● Use two nested BST
● Keep all data in TCB
● Create wait queues 

on demand

● Address tree            
for wait queue look-up

● Wait queue keeps 
blocked threads

Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

a

c
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● Wait queue changes 
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c    

in address tree
● Remove a

Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

a

c
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Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

c
wait

queue

a

● Wait queue changes 
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c    

in address tree
● Remove a
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Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

c
wait

queue

a

copy

● Wait queue changes 
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c    

in address tree
● Remove a
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Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

c aswap

● Wait queue changes 
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c    

in address tree
● Remove a
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Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

c

● Wait queue changes 
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c    

in address tree
● Remove a

a
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● Preemptible Operations
– For futex_wake(all) and futex_requeue(all)

– Prevent re-insertion in wait queues (“sneak in”)

– Use lowest bit of wait queue’s futex address
● Open:   allow adding threads
● Closed: only allow wake-up/requeueing

– futex_*(all) operations close wait queues
● Clear open bit → order in address tree is preserved

→ but now multiple closed wait queues may exist
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● Preemptible Operations
– Problem: multiple wait queues in closed state

e

f

address tree

a

b

d

closed

c

closed closed open
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● Preemptible Operations
– Problem: multiple wait queues in closed state

– Global 64-bit drain counter

– On close: drain counter++, draw a drain ticket

e

f

address tree

a

b

d

closed
d-ticket 39

c

d-counter
42

closed
d-ticket 41

closed
d-ticket 42

open
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● Preemptible Operations
– Problem: multiple wait queues in closed state

– Global 64-bit drain counter

– On close: drain counter++, draw a drain ticket

Loop:
– look up closed wait queues

– Stop if wait queue’s drain 
ticket > drawn drain ticket

– perform wake up/requeue 
operation on one thread

– next preemption point ...

e

f

address tree

a

b

d

closed
d-ticket 39

c

d-counter
42

closed
d-ticket 41

closed
d-ticket 42

open
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● Preemptible Operations
– Problem: multiple wait queues in closed state

– But: It is OK to drain older wait queues?

– Requeue and wake-up all operations are not atomic!
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● Preemptible Operations
– Problem: multiple wait queues in closed state

– But: It is OK to drain older wait queues?

– Requeue and wake-up all operations are not atomic!

● Condition Variables
– POSIX: caller of cond_broadcast() should have 

the support mutex locked → uses requeue internally
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● Preemptible Operations
– Problem: multiple wait queues in closed state

– But: It is OK to drain older wait queues?

– Requeue and wake-up all operations are not atomic!

● Condition Variables
– POSIX: caller of cond_broadcast() should have 

the support mutex locked → uses requeue internally

● Barriers
– POSIX does not guarantee any scheduling order
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● Fine Granular Locking
– Idea: nested locks

– Example: Look-up a wait queue
● Lock address tree
● Locate wait queue & lock wait queue
● Unlock address tree
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● Fine Granular Locking
– Idea: nested locks

– Example: Look-up a wait queue
● Lock address tree
● Locate wait queue & lock wait queue
● Unlock address tree

– Problem:
● Removal of empty wait queues
● Frequent changes of wait queue anchor threads
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● Fine Granular Locking
– Idea: nested locks

– Example: Look-up a wait queue
● Lock address tree
● Locate wait queue & lock wait queue
● Unlock address tree

– Problem:
● Removal of empty wait queues
● Frequent changes of wait queue anchor threads

Not solved → use a single lock
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● Summarized
– Dedicated wait queues per futex

– No dynamic memory allocations

– O(log n) look-up/insert/remove of wait queues

– O(log n) handling inside wait queues

– Preemptible operations of wake all and requeue all
● Maximum of n-1 threads in all operations
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Discussion
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● Our new approach compared to Linux
– Missing use cases

● No “wake arbitrary number of threads”

→ but not needed for POSIX synchronization mechanisms
● No priority inheritance protocol for mutexes
● No FUTEX_WAKE_OP
● No FUTEX_WAIT/WAKE_BITSET

– Different API
● Caller of futex_wait must provide requeue target futex

– But
● Priority ceiling protocol possible (unrelated to futex API)
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Our new Our old Linux
approach approach

Futexes share wait queues no no yes
Wait queue look­up BST via TID hash table

O(log m) O(1 ) O(1 )
Wait queue implementation priority­sorted FIFO­ordered priority­sorted

BST linked list linked list
­ find O(log n ) O(1 ) O(n )
­ insertion O(log n ) O(1 ) O(p )
­ removal O(log n ) O(1 ) O(1 )
Locking global global per hash bucket
futex_requeue
­ one thread yes yes yes
­ arbitrary number of threads no no yes
­ all threads yes yes yes
­ preemptive implementation yes not needed no
futex_wake
­ one thread yes yes yes
­ arbitrary number of threads no no yes
­ all threads yes not provided yes
­ preemptive implementation yes not needed no
Priority ceiling protocol yes yes yes
Priority inheritance protocol no no yes

for n threads, m futexes, and p priority levels
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Thank you for your attention!

Questions?
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Backup Slides
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● Priority Inheritance Mutexes
– POSIX: PTHREAD_PRIO_INHERIT

– On contention, blocked threads boost the cheduling 
priority of the current lock holder

– Implemented in Linux via FUTEX_LOCK_PI API

● Problems
– Nested locks: applied recursively ...

– Potentially unbounded recursion!

– Cycles in dependency graph lead to deadlocks
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● Priority Ceiling Mutexes
– POSIX: PTHREAD_PRIO_PROTECT

– Each mutex has an assigned ceiling priority

– Before locking: increase scheduling priority to ceiling 
priority

– After locking: restore previous scheduling priority

– Implemented independently of futex API

● Can be implemented without system calls

→ Fast User Space Priority Switching, OSPERT 2014
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The End
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