
OSPERT
2018-07-03
A. Zuepke

Deterministic Futexes

Revisited

Alexander Zuepke, Robert Kaiser

first.last@hs-rm.de

2

OSPERT
2018-07-03
A. Zuepke Futexes

● Futexes: underlying mechanism for thread
synchronization in Linux

● libc provides:
– Mutexes and Condition Variables

– Semaphores, Reader-Writer Locks, Barriers, …

● Linux kernel provides system calls to:
– suspend the calling thread

– wake a given number of waiting threads

● First prototype in Linux kernel version 2.5.7

3

OSPERT
2018-07-03
A. Zuepke Futexes

● Linux Futex API
#include <linux/futex.h>

int SYS_futex(int *uaddr, int op, int val,
const struct timespec *timeout, int

*uaddr2, int val3);

● Operations
– FUTEX_WAIT Suspend calling thread on futex uaddr

– FUTEX_WAKE Wake val threads waiting on futex uaddr

– FUTEX_REQUEUE Move threads waiting on uaddr to uaddr2

– … more operations available → see FUTEX(2) man page

4

OSPERT
2018-07-03
A. Zuepke Mutex Example

● mutex_lock / mutex_unlock

– Fast path: use atomic operations
to change a 32-bit integer variable in user space

– No system call involved!

● mutex_lock on contention

– Atomically indicate pending waiters

– futex_wait system call
● Look-up wait queue
● Check futex value again
● Enqueue calling thread in wait queue
● Suspend calling thread

● mutex_unlock on contention

– futex_wake system call
● Look-up wait queue
● Wake first waiting thread

unlocked

locked

locked w/ contention
wait queue in kernel

fast path:
atomic ops

slow path:
futex syscall

5

OSPERT
2018-07-03
A. Zuepke Condition Variable Example

● cond_signal/broadcast

– Atomically increment futex value

– Call futex_requeue to move one/all waiters
from condition variable wait queue
to mutex wait queue

edcbe

Cond

Wait
Queue dc

Mutex

Wait
Queue a}

6

OSPERT
2018-07-03
A. Zuepke Futexes

● Futex ↔ generic compare-and-block mechanism
● Implement POSIX synchronization mechanisms in

user space

● But:

– Can we use it in safety critical systems?
– Certification?
– WCET?
– Interference analysis?

7

OSPERT
2018-07-03
A. Zuepke Futexes

● Futex ↔ generic compare-and-block mechanism
● Implement POSIX synchronization mechanisms in

user space

● But:

– Can we use it in safety critical systems?
– Certification?
– WCET?
– Interference analysis?

FUTEX

8

OSPERT
2018-07-03
A. Zuepke Futexes

● Futex ↔ generic compare-and-block mechanism
● Implement POSIX synchronization mechanisms in

user space

● But:

– Can we use futexes in real-time systems?
– WCET?
– Interference?
– Determinism?

FUTEX

9

OSPERT
2018-07-03
A. Zuepke Outline

● Linux implementation
● Our OSPERT 2013 approach
● Requirements for determinism
● Our new approach
● Discussion

10

OSPERT
2018-07-03
A. Zuepke

Linux Implementation

11

OSPERT
2018-07-03
A. Zuepke Linux Implementation

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket

12

OSPERT
2018-07-03
A. Zuepke Linux Implementation

#Futex B

Futex C

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket

Futex A

13

OSPERT
2018-07-03
A. Zuepke Linux Implementation

Futex A

#

a

Futex B

Futex C

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket

14

OSPERT
2018-07-03
A. Zuepke Linux Implementation

#

a

Futex B

b

Futex C

Futex A

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket

15

OSPERT
2018-07-03
A. Zuepke Linux Implementation

Futex A

#

a

Futex B

b

c

Futex C

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket

16

OSPERT
2018-07-03
A. Zuepke Linux Implementation

● Hash of shared wait queues
– num_cpus x 256 hash buckets

– all operations in O(1) time

● Wait queues
– Priority-sorted linked list

● O(n) find
● O(p) insertion
● O(1) removal

● Locking: per hash bucket

Futex A

#

a

b

c

Futex C

Futex BHash
Collision!

17

OSPERT
2018-07-03
A. Zuepke Linux Implementation

● Experiment
– Two processes

– 2048 blocked threads each

– Process α requeues 2048 threads from αsrc to αdst

– Process β requeues 1 thread from βsrc to βdst

– Measure β’s execution time

– Note: four wait queues!

18

OSPERT
2018-07-03
A. Zuepke Linux Implementation

#1: β requeues to distinct futex wait queues
 α not involved

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

900

Thread # requeued from set of blocked threads

β
's

 e
xe

cu
tio

n
 t

im
e

 [
u

s]

typically
5 us

Core 2 Duo @ 3.00 GHz, Linux 4.6.12-rt5, Ubuntu 16.04

#1 distinct wait queues
β

src
 ≠ β

dst
, α

...
 ≠ β

...

operations in constant time

19

OSPERT
2018-07-03
A. Zuepke Linux Implementation

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

900

Thread # requeued from set of blocked threads

β
's

 e
xe

cu
tio

n
 t

im
e

 [
u

s]

#2: β requeues to same futex wait queue
 α not involved

linear search

in plist

Core 2 Duo @ 3.00 GHz, Linux 4.6.12-rt5, Ubuntu 16.04

#2 shared wait queue for β
β

src
 = β

dst
, α

...
 ≠ β…

linear search in plist,
threads remain in place

#1 distinct wait queues
β

src
 ≠ β

dst
, α

...
 ≠ β

...

operations in constant time

20

OSPERT
2018-07-03
A. Zuepke Linux Implementation

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

900

Thread # requeued from set of blocked threads

β
's

 e
xe

cu
tio

n
 t

im
e

 [
u

s]

#3: β requeues to same futex wait queue
 α also requeues 2048 threads

#3 shared wait queue for α, β
β

src
 = β

dst
 = α

src
 = α

dst

linear search in plist,
2048 unrelated threads

#2 shared wait queue for β
β

src
 = β

dst
, α

...
 ≠ β…

linear search in plist,
threads remain in place

#1 distinct wait queues
β

src
 ≠ β

dst
, α

...
 ≠ β

...

operations in constant time

WorstCase?unrelated
threads

Core 2 Duo @ 3.00 GHz, Linux 4.6.12-rt5, Ubuntu 16.04

21

OSPERT
2018-07-03
A. Zuepke Linux Implementation

● Drawbacks of Linux implementation
– Shared wait queues

– Dynamic memory allocations for PI mutexes

– Not preemptive

22

OSPERT
2018-07-03
A. Zuepke

Our OSPERT 2013

Approach

23

OSPERT
2018-07-03
A. Zuepke OSPERT 2013 Approach*

● Save thread ID of first waiter
next to the futex in user space

→ O(1) look-up of wait queue

● FIFO ordering in wait queue

→ wait queues use linked lists

● futex_requeue appends whole linked lists

→ in O(1) time

● other operations: also O(1) time

* A. Zuepke, “Deterministic Fast User Space Synchronization”, OSPERT 2013

Thread ID
of 1st waiter

futex

24

OSPERT
2018-07-03
A. Zuepke OSPERT 2013 Approach*

● Limitations of paper version:
– Limited set of futex operations

– No “wake all” operation (for barriers)

– Only FIFO ordering

● Overcoming these limitations is possible:
– Priority ordering of wait queue

– Preemptive “wake_all” operation

* A. Zuepke, “Deterministic Fast User Space Synchronization”, OSPERT 2013

25

OSPERT
2018-07-03
A. Zuepke OSPERT 2013 Approach*

● Particular Problems:
– Consistency of linked list during deletion/timeout

handling while another thread walks this list

– “Sneak-in”: prevent woken threads from re-entering
a wait queue

– Scalability: requires a global lock design

→ Result: complex implementation

→ Take a fresh look ...

* A. Zuepke, “Deterministic Fast User Space Synchronization”, OSPERT 2013

26

OSPERT
2018-07-03
A. Zuepke

Requirements

for Determinism

Use dedicated wait queues!

27

OSPERT
2018-07-03
A. Zuepke Requirements

0. Do not share wait queues

1. No dynamic memory allocations

2. Priority ordered wait queues; FIFO order on tie

3. Wait queue: use binary search tree (BST)

4. Wait queue look-up: use BST as well

5. Preemptible “wake/preempt all” operations

6. Prevent “sneak-in”

7. Transparent preemption

8. Fine granular locking

28

OSPERT
2018-07-03
A. Zuepke Requirements

0. Do not share wait queues

1. No dynamic memory allocations

2. Priority ordered wait queues; FIFO order on tie

3. Wait queue: use binary search tree (BST)

4. Wait queue look-up: use BST as well

5. Preemptible “wake/preempt all” operations

6. Prevent “sneak-in”

7. Transparent preemption

8. Fine granular locking

No interference

29

OSPERT
2018-07-03
A. Zuepke Requirements

0. Do not share wait queues

1. No dynamic memory allocations

2. Priority ordered wait queues; FIFO order on tie

3. Wait queue: use binary search tree (BST)

4. Wait queue look-up: use BST as well

5. Preemptible “wake/preempt all” operations

6. Prevent “sneak-in”

7. Transparent preemption

8. Fine granular locking

No unexpected
failures

No interference

30

OSPERT
2018-07-03
A. Zuepke Requirements

0. Do not share wait queues

1. No dynamic memory allocations

2. Priority ordered wait queues; FIFO order on tie

3. Wait queue: use binary search tree (BST)

4. Wait queue look-up: use BST as well

5. Preemptible “wake/preempt all” operations

6. Prevent “sneak-in”

7. Transparent preemption

8. Fine granular locking

O(log n) time

No unexpected
failures

No interference

31

OSPERT
2018-07-03
A. Zuepke Requirements

0. Do not share wait queues

1. No dynamic memory allocations

2. Priority ordered wait queues; FIFO order on tie

3. Wait queue: use binary search tree (BST)

4. Wait queue look-up: use BST as well

5. Preemptible “wake/preempt all” operations

6. Prevent “sneak-in”

7. Transparent preemption

8. Fine granular locking

O(log n) time

Problem
of preemptible
implementation

No unexpected
failures

No interference

32

OSPERT
2018-07-03
A. Zuepke Requirements

0. Do not share wait queues

1. No dynamic memory allocations

2. Priority ordered wait queues; FIFO order on tie

3. Wait queue: use binary search tree (BST)

4. Wait queue look-up: use BST as well

5. Preemptible “wake/preempt all” operations

6. Prevent “sneak-in”

7. Transparent preemption

8. Fine granular locking

O(log n) time

Problem
of preemptible
implementation

No unexpected
failures

Optional
feature

No interference

33

OSPERT
2018-07-03
A. Zuepke

New Approach*

(* this paper)

34

OSPERT
2018-07-03
A. Zuepke New Approach

● Use two nested BST
● Keep all data in TCB
● Create wait queues

on demand

● Address tree
for wait queue look-up

● Wait queue keeps
blocked threads

Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

a

c

35

OSPERT
2018-07-03
A. Zuepke New Approach

● Wait queue changes
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c

in address tree
● Remove a

Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

a

c

36

OSPERT
2018-07-03
A. Zuepke New Approach

Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

c
wait

queue

a

● Wait queue changes
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c

in address tree
● Remove a

37

OSPERT
2018-07-03
A. Zuepke New Approach

Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

c
wait

queue

a

copy

● Wait queue changes
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c

in address tree
● Remove a

38

OSPERT
2018-07-03
A. Zuepke New Approach

Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

c aswap

● Wait queue changes
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c

in address tree
● Remove a

39

OSPERT
2018-07-03
A. Zuepke New Approach

Futex C
Futex B

Futex A

e

f

address tree

b d

wait
queue

c

● Wait queue changes
require care

● Example: timeout of a
● a is wait queue root
● c becomes new root
● Copy WQ information
● Swap a and c

in address tree
● Remove a

a

40

OSPERT
2018-07-03
A. Zuepke New Approach

● Preemptible Operations
– For futex_wake(all) and futex_requeue(all)

– Prevent re-insertion in wait queues (“sneak in”)

– Use lowest bit of wait queue’s futex address
● Open: allow adding threads
● Closed: only allow wake-up/requeueing

– futex_*(all) operations close wait queues
● Clear open bit → order in address tree is preserved

→ but now multiple closed wait queues may exist

41

OSPERT
2018-07-03
A. Zuepke New Approach

● Preemptible Operations
– Problem: multiple wait queues in closed state

e

f

address tree

a

b

d

closed

c

closed closed open

42

OSPERT
2018-07-03
A. Zuepke New Approach

● Preemptible Operations
– Problem: multiple wait queues in closed state

– Global 64-bit drain counter

– On close: drain counter++, draw a drain ticket

e

f

address tree

a

b

d

closed
d-ticket 39

c

d-counter
42

closed
d-ticket 41

closed
d-ticket 42

open

43

OSPERT
2018-07-03
A. Zuepke New Approach

● Preemptible Operations
– Problem: multiple wait queues in closed state

– Global 64-bit drain counter

– On close: drain counter++, draw a drain ticket

Loop:
– look up closed wait queues

– Stop if wait queue’s drain
ticket > drawn drain ticket

– perform wake up/requeue
operation on one thread

– next preemption point ...

e

f

address tree

a

b

d

closed
d-ticket 39

c

d-counter
42

closed
d-ticket 41

closed
d-ticket 42

open

44

OSPERT
2018-07-03
A. Zuepke New Approach

● Preemptible Operations
– Problem: multiple wait queues in closed state

– But: It is OK to drain older wait queues?

– Requeue and wake-up all operations are not atomic!

45

OSPERT
2018-07-03
A. Zuepke New Approach

● Preemptible Operations
– Problem: multiple wait queues in closed state

– But: It is OK to drain older wait queues?

– Requeue and wake-up all operations are not atomic!

● Condition Variables
– POSIX: caller of cond_broadcast() should have

the support mutex locked → uses requeue internally

46

OSPERT
2018-07-03
A. Zuepke New Approach

● Preemptible Operations
– Problem: multiple wait queues in closed state

– But: It is OK to drain older wait queues?

– Requeue and wake-up all operations are not atomic!

● Condition Variables
– POSIX: caller of cond_broadcast() should have

the support mutex locked → uses requeue internally

● Barriers
– POSIX does not guarantee any scheduling order

47

OSPERT
2018-07-03
A. Zuepke New Approach

● Fine Granular Locking
– Idea: nested locks

– Example: Look-up a wait queue
● Lock address tree
● Locate wait queue & lock wait queue
● Unlock address tree

48

OSPERT
2018-07-03
A. Zuepke New Approach

● Fine Granular Locking
– Idea: nested locks

– Example: Look-up a wait queue
● Lock address tree
● Locate wait queue & lock wait queue
● Unlock address tree

– Problem:
● Removal of empty wait queues
● Frequent changes of wait queue anchor threads

49

OSPERT
2018-07-03
A. Zuepke New Approach

● Fine Granular Locking
– Idea: nested locks

– Example: Look-up a wait queue
● Lock address tree
● Locate wait queue & lock wait queue
● Unlock address tree

– Problem:
● Removal of empty wait queues
● Frequent changes of wait queue anchor threads

Not solved → use a single lock

50

OSPERT
2018-07-03
A. Zuepke New Approach

● Summarized
– Dedicated wait queues per futex

– No dynamic memory allocations

– O(log n) look-up/insert/remove of wait queues

– O(log n) handling inside wait queues

– Preemptible operations of wake all and requeue all
● Maximum of n-1 threads in all operations

51

OSPERT
2018-07-03
A. Zuepke

Discussion

52

OSPERT
2018-07-03
A. Zuepke Discussion

● Our new approach compared to Linux
– Missing use cases

● No “wake arbitrary number of threads”

→ but not needed for POSIX synchronization mechanisms
● No priority inheritance protocol for mutexes
● No FUTEX_WAKE_OP
● No FUTEX_WAIT/WAKE_BITSET

– Different API
● Caller of futex_wait must provide requeue target futex

– But
● Priority ceiling protocol possible (unrelated to futex API)

53

OSPERT
2018-07-03
A. Zuepke Discussion

Our new Our old Linux
approach approach

Futexes share wait queues no no yes
Wait queue look­up BST via TID hash table

O(log m) O(1) O(1)
Wait queue implementation priority­sorted FIFO­ordered priority­sorted

BST linked list linked list
­ find O(log n) O(1) O(n)
­ insertion O(log n) O(1) O(p)
­ removal O(log n) O(1) O(1)
Locking global global per hash bucket
futex_requeue
­ one thread yes yes yes
­ arbitrary number of threads no no yes
­ all threads yes yes yes
­ preemptive implementation yes not needed no
futex_wake
­ one thread yes yes yes
­ arbitrary number of threads no no yes
­ all threads yes not provided yes
­ preemptive implementation yes not needed no
Priority ceiling protocol yes yes yes
Priority inheritance protocol no no yes

for n threads, m futexes, and p priority levels

54

OSPERT
2018-07-03
A. Zuepke

Thank you for your attention!

Questions?

55

OSPERT
2018-07-03
A. Zuepke

Backup Slides

56

OSPERT
2018-07-03
A. Zuepke Priority Inheritance Mutexes

● Priority Inheritance Mutexes
– POSIX: PTHREAD_PRIO_INHERIT

– On contention, blocked threads boost the cheduling
priority of the current lock holder

– Implemented in Linux via FUTEX_LOCK_PI API

● Problems
– Nested locks: applied recursively ...

– Potentially unbounded recursion!

– Cycles in dependency graph lead to deadlocks

57

OSPERT
2018-07-03
A. Zuepke Priority Ceiling Mutexes

● Priority Ceiling Mutexes
– POSIX: PTHREAD_PRIO_PROTECT

– Each mutex has an assigned ceiling priority

– Before locking: increase scheduling priority to ceiling
priority

– After locking: restore previous scheduling priority

– Implemented independently of futex API

● Can be implemented without system calls

→ Fast User Space Priority Switching, OSPERT 2014

58

OSPERT
2018-07-03
A. Zuepke

The End

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58

