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Introduction

Holistic approach towards system resource management

CPU, Memory and network bandwidth management can
improve computation-, communication-intensive and/or
memory-bound applications

—> allocate memory resources in a fair manner

—> avoid local saturation or monopoly phenomena

= avoid filling network capacity

= efficiently utilize available budget

Concentrating on OS support, without additional hardware
Not suitable for critical hard real-time operating systems



Related Work: Memory Management Policies
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MemGuard performs memory bandwidth regulation at core-level using
performance counters monitoring the number of last-level cache misses



Genuine MemGuard: Principles & Extensions

* Memguard allows sharing guaranteed bandwidth over several cores using a
dynamic reclaim mechanism

cores are allocated at the beginning of each period part (or all) of their assigned
bandwidth (history-based prediction)

cores donate the rest of their initially assigned bandwidth
global repository (called G) contains donations
during period, a core may obtain additional budget from G



Genuine MemGuard vs MemGuardXt

A rate-constrained (RC) flow may steal guaranteed bandwidth from other
RC flows

— exhausting global repository and leading to guarantee bandwidth violations

— potentially other RC flows have not yet demanded their full reservation
Reservation-Only (RO) mode removes prediction and reclaiming, allocating
RC traffic sources their full reservation in each regulation period

— performs poorly, due to over-provisioning

* acore cannot retrieve budget from (r_min - 2Qij), if ZQi < r_min

Limited adaptivity for predicting memory bandwidth requirements
MemGuardXt algorithm

— supports modularity (multiple LKM instances)

— provides a hard guarantee option called Violation Free or VF by restricting
reclaiming from G by one or more rate-constrained cores, if, as a result, it can lead
to a guarantee violation for another RC-flow

— improved prediction of future bandwidth requirements using EWMA



MemGuardXt LKM

init module & cleanup module
do initialization & memory cleanup

Prediction EWMA updates the
bandwidth consumed by each core

periodic timer handler resets
statistics and reassigns estimated
bandwidth per core

make traffic

— called at start of period to update
bandwidth consumed in previous period

— called on the fly (by asynchronous calls)
when more bandwidth is required
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NetGuardXt LKM
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—> make RC traffic(int node, int len, int dir);

= hook_func _incoming(..)

Netfilter - PreRouting ui [dir] [node] >= ui [dir] [node] <
gi[dix] [node]) i [dix] [node]

¥

Qheggpwet(ik_buﬁ *, int dir); m=— overflow interrupt handler();
return false;

) ui[dir] [core]+=len;
— hook func outgoing(.); ﬁ Prediction EWMA runtime(); \
- - NE_DROP return true;
Netfilter - PostRouting

‘ v
NE_ACCEPT

reset period stats();
parameter update(); // debuafs)
Prediction EWMA periodic()

hrtimer restart();

5
rd

e A s e A T

NetGuardXt uses custom netfilter hooks to drop, accept or buffer packets
Similar regulation algorithm

Incoming & outgoing flows controlled by the same LKM
— parameters configured on the fly, independently for each flow direction
— similar APl to MemGuardXt

Each incoming/outgoing packet checked using make rc traffic



Hospital Media Gateway (HMG)

MemGuardXt/NetGuardXt LKMs evaluated in correlation to
real-time using an actual mixed-criticality use case with

— critical medical tasks associated with soft real-time ECG analysis

— non-critical video streaming for delivering premium content to patient

 evolving traditional linear system (TV = infotainment/smart devices)
* quality-of-delivery via NetGuardXt

root@linaro-ubuntu-desktop:~/netquard_driver# echo "1500 50 300 1200" => /sys/kernel/debug/netguard/netguard_config
root@linaro-ubuntu-desktop:~/netquard_driver# echo "1500 50 1200 300" > /sys/kernel/debug/netguard/netguard_config
root@linaro-ubuntu-desktop:~/netquard_driverz i



Real-Time Healthcare Application Extension

|

= ST BodyGateway (BGW) =
= body worn: ECG, respiration rate,
accelerometer, holter ..

= BT 3.0 connection

= = GNU/Linux driver developed

= port to ARM v7 (in future ARM v8)
= Open source ECG analysis (soft RT)

X11

to detect arrhythmias
xview = filters detect & classify beat: N, V, ...

ool » annotated ECG (Xview/X11-based)



Target Application: In-Hospital Scenario

Hospital Media Ethernet

Gateway (HMG)
TTEthernet?

Bluetooth
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Open Source ECG: Online ECG Analysis (RT)

Visualization ECG Analysis
(WAVE) (OSEA)

* Concurrent ops (file locking, sem/mutexes)
— ECG Conversion to std format

— ECG Analysis via filters to detect/classify beats - EC13-compliant
* QRS positive predictivity ~¥99.8% for normal (N) & ventricular beats (V)
* 3min training (we use ECG synthesis, real ECG depends on age/sex)

— Visualization of heartbeat with (N, V) annotation



Distributed Embedded System
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Experimental Framework

Low critical traffic (Video)
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Hardware Configuration & Mapping

ECG traffic arrives to HMG from Odroid (two BGWs) via Ethernet

Video-on-demand traffic arrives to HMG via Ethernet and is
distributed to clients via streaming

HMG (Zedboard) has two ARMv7 Cortex-A9 cores

* ECG analysis mapped to CPUO (server rx, consumer, animator)
* Video-on-demand service runs on CPU1

NetguardXt regulates only incoming ECG/Video traffic

e QOutgoing flows not considered , since memory bandwidth increases
very slightly (1-2 MB/s) with video streaming



LKMs: Configurations and Runtime Scripts

Initial MemGuardXt configuration (static)

— period=1lms, i=2, A=0.2, r min=Q0+Q1=90MB/s, Q min=50MB/s
Initial NetGuardXt configuration (static)

— period=1ls, i=2, A=0.2, r min=Q0+Q1=70KB/s, Q min=1MB/s
Q0+Q1 based on initial ECG analysis/video experiments in isolation

Simultaneous memory/network bandwidth regulation using one of 3 scripts
— MG 25/65, meaning MemGuardXt Q0/Q1l = 25/65 (i.e. in favor of Video)
— MG 50/40 (i.e. a more balanced ratio)

— MG 75/15, meaning MemGuardXt Q0/Q1 = 75/15 (i.e. in favor of ECG)
Each such script runs 2m and periodically, every 20s, reconfigures
NetGuardXt Q0/Q1 using the sequence
{18/72, 16/74, 14/76, 12/78, 10/80, 8/82}

— this gradually decreases assigned network budget for ECG (in favor of Video)

VF mode used by default for both guards
— exception last figure, where MemGuardXt is used in Non-VF mode



Experimental Results: Kernel Logs (NetGuardXt)
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* Dropping ECG network bandwidth via NetGuardXt from 18kB/sec to
8KB/sec (in 20 sec intervals), increases cummulative ECG drop rate and
decreases the drop rate of video traffic



Experimental Results: ECG Analysis
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Experimental Results: Scalability
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For MG 25/65, BGW2 devices has completely stopped due to low
memory bandwidth; in other experiments, both BGWs lag

For MG 75/15, both BGW devices operate in soft real time.

Processed ECG data points
(incl. annotations)



Summary & Future Work

Extend MemGuard’s memory bandwidth regulation policies with
— adaptivity through EWMA
— violation free operating mode
— highly modular approach

* extension to network bandwidth regulation module (NetGuardXt)
— same “memguard” prototype used in multiple module instances
Mixed-criticality use case on a hospital media gateway prototype
— soft real-time ECG analysis
— video-on-demand streaming
Control of network/memory bandwidth can improve ECG processing
Future Work

— use ARMV9 Juno board & time-triggered TTEthernet switch (rtwifi?)
— MemGuard implementation at the level of Linux scheduler
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Soft Real Time ECG Analysis and Visualization
https://physionet.org/works/SoftRealTimeECGAnalysisandVisualization




