Network & Memory Bandwidth Regulation
in a Soft Real-Time Healthcare Application®

M.D. Grammatikakis, G. Tsamis
P. Petrakis, A. Mouzakitis, M. Coppola

TEI of Crete
(Joint Work with VOSYS, STM)

(*) Work supported by the EC through ICT Project DREEMS

OSPERT2017, Dubrovnik, Croatia

Introduction

Holistic approach towards system resource management

CPU, Memory and network bandwidth management can
improve computation-, communication-intensive and/or
memory-bound applications

—> allocate memory resources in a fair manner

—> avoid local saturation or monopoly phenomena

= avoid filling network capacity

= efficiently utilize available budget

Concentrating on OS support, without additional hardware
Not suitable for critical hard real-time operating systems

Related Work: Memory Management Policies

Application tasks
VIR 20 2 2 2R

System Library
MemGuard Reclaim manager Operating System
{ T] }
B/W B/W B/W B/W
Regulator Regulator Regulator Regulator
PMC PMC PMC PMC
CORE CORE CORE CORE
DRAM Controller Multicore Processor

I
DRAM

MemGuard performs memory bandwidth regulation at core-level using
performance counters monitoring the number of last-level cache misses

Genuine MemGuard: Principles & Extensions

* Memguard allows sharing guaranteed bandwidth over several cores using a
dynamic reclaim mechanism

cores are allocated at the beginning of each period part (or all) of their assigned
bandwidth (history-based prediction)

cores donate the rest of their initially assigned bandwidth
global repository (called G) contains donations
during period, a core may obtain additional budget from G

Genuine MemGuard vs MemGuardXt

A rate-constrained (RC) flow may steal guaranteed bandwidth from other
RC flows

— exhausting global repository and leading to guarantee bandwidth violations

— potentially other RC flows have not yet demanded their full reservation
Reservation-Only (RO) mode removes prediction and reclaiming, allocating
RC traffic sources their full reservation in each regulation period

— performs poorly, due to over-provisioning

* acore cannot retrieve budget from (r_min - 2Qij), if ZQi < r_min

Limited adaptivity for predicting memory bandwidth requirements
MemGuardXt algorithm

— supports modularity (multiple LKM instances)

— provides a hard guarantee option called Violation Free or VF by restricting
reclaiming from G by one or more rate-constrained cores, if, as a result, it can lead
to a guarantee violation for another RC-flow

— improved prediction of future bandwidth requirements using EWMA

MemGuardXt LKM

init module & cleanup module
do initialization & memory cleanup

Prediction EWMA updates the
bandwidth consumed by each core

periodic timer handler resets
statistics and reassigns estimated
bandwidth per core

make traffic

— called at start of period to update
bandwidth consumed in previous period

— called on the fly (by asynchronous calls)
when more bandwidth is required

[MemGuardXT LKM]

MemGuardXT Algorithm
(memguard,¢, memguard,h)

—

l init_module (veld)

init{ i, OQmin, r_min, period, VF) J

(8ynchronous)

pariod timer callbaaok

for_aach_palina_cpu (i)

Demdintion ERNR(4, parf nveat moust (alnfo-ravest)

periedio_timer handler()

ql = min{Qi,0i_prediot)s
@ = (r_min=0i_sum(})

EMMA Initialization

Lhnck_ﬂi_tnuqxity(l]; [Qi_sum()]

.,

memguard_process_overflow
amount = make_traffioc()

-
W

TR

(Amynchronous)

periocd timar_scallbaczk_slave
bhw.sample_pericd = makw_traffic(cpu,0)

-

@ Lzallla(accdad coce , paslod pazoaalage)
Af(crtllacoean_cora] == czue)

=

v

=nke_RC_traffic| mocess_cora)
if { ui[cora] >= gi[cora] }

v

lunrllu_ﬂ.ah:mt_}unﬂn:l core) |

Prediction_EWMA(core , bw D|

Y

make_RI_trufile lasesss_sere, parisd purseatige)

cleanup_modula{ void)

d

alaanup(void)

NetGuardXt LKM

NetGuardXt LKM / ‘

NetGuardXt Algorithm ‘
(netguard.c, netquard.h)

—> make RC traffic(int node, int len, int dir);

= hook_func _incoming(..)

Netfilter - PreRouting ui [dir] [node] >= ui [dir] [node] <
gi[dix] [node]) i [dix] [node]

¥

Qheggpwet(ik_buﬁ *, int dir); m=— overflow interrupt handler();
return false;

) ui[dir] [core]+=len;
— hook func outgoing(.); ﬁ Prediction EWMA runtime(); \
- - NE_DROP return true;
Netfilter - PostRouting

‘ v
NE_ACCEPT

reset period stats();
parameter update(); // debuafs)
Prediction EWMA periodic()

hrtimer restart();

5
rd

e A s e A T

NetGuardXt uses custom netfilter hooks to drop, accept or buffer packets
Similar regulation algorithm

Incoming & outgoing flows controlled by the same LKM
— parameters configured on the fly, independently for each flow direction
— similar APl to MemGuardXt

Each incoming/outgoing packet checked using make rc traffic

Hospital Media Gateway (HMG)

MemGuardXt/NetGuardXt LKMs evaluated in correlation to
real-time using an actual mixed-criticality use case with

— critical medical tasks associated with soft real-time ECG analysis

— non-critical video streaming for delivering premium content to patient

 evolving traditional linear system (TV = infotainment/smart devices)
* quality-of-delivery via NetGuardXt

root@linaro-ubuntu-desktop:~/netquard_driver# echo "1500 50 300 1200" => /sys/kernel/debug/netguard/netguard_config
root@linaro-ubuntu-desktop:~/netquard_driver# echo "1500 50 1200 300" > /sys/kernel/debug/netguard/netguard_config
root@linaro-ubuntu-desktop:~/netquard_driverz i

Real-Time Healthcare Application Extension

|

= ST BodyGateway (BGW) =
= body worn: ECG, respiration rate,
accelerometer, holter ..

= BT 3.0 connection

= = GNU/Linux driver developed

= port to ARM v7 (in future ARM v8)
= Open source ECG analysis (soft RT)

X11

to detect arrhythmias
xview = filters detect & classify beat: N, V, ...

ool » annotated ECG (Xview/X11-based)

Target Application: In-Hospital Scenario

Hospital Media Ethernet

Gateway (HMG)
TTEthernet?

Bluetooth

27.06.2017

Open Source ECG: Online ECG Analysis (RT)

Visualization ECG Analysis
(WAVE) (OSEA)

* Concurrent ops (file locking, sem/mutexes)
— ECG Conversion to std format

— ECG Analysis via filters to detect/classify beats - EC13-compliant
* QRS positive predictivity ~¥99.8% for normal (N) & ventricular beats (V)
* 3min training (we use ECG synthesis, real ECG depends on age/sex)

— Visualization of heartbeat with (N, V) annotation

Distributed Embedded System

ECG

Generator

Bluetooth Com | - _ caacaooony Shared File
. Thraad Y el Rl br] hraad |

Shared Memory

Receive Unlock Shared Unlock Shared
[M] |Luck Shared Mem ‘& |

" Bluetooth data - 4 Mem : \ y ! Mem

¥ A ¥ 4
Append ECG to Append ECG to
| Lock Shared Mem =] | Lock Shared File =¥ =t=—>Unlock Shared File
; , - Shared Mem ' 4 Shared File \ ¢
client/server
Lock Shared File Unlock Shared File®=—— Call WAVE App

/

all wrsamp App <.

synth.hea file
creation

synth.dat file |~
creation

synth atest file

* Call easytest App creation

Experimental Framework

Low critical traffic (Video)
W High critical traffic (Medical data)

--------------- Temporal and spatial isolation (DREAMS concept)

Gbit Router

Q Odroid P N ~ Zedboard
' Ethernet

(®) («)

)
64 E o
|
ST BodyGateways [I O O
(STM32) | WD awoi

Linux + MemguardXt +

NetGuardXt

Hardware Configuration & Mapping

ECG traffic arrives to HMG from Odroid (two BGWs) via Ethernet

Video-on-demand traffic arrives to HMG via Ethernet and is
distributed to clients via streaming

HMG (Zedboard) has two ARMv7 Cortex-A9 cores

* ECG analysis mapped to CPUO (server rx, consumer, animator)
* Video-on-demand service runs on CPU1

NetguardXt regulates only incoming ECG/Video traffic

e QOutgoing flows not considered , since memory bandwidth increases
very slightly (1-2 MB/s) with video streaming

LKMs: Configurations and Runtime Scripts

Initial MemGuardXt configuration (static)

— period=1lms, i=2, A=0.2, r min=Q0+Q1=90MB/s, Q min=50MB/s
Initial NetGuardXt configuration (static)

— period=1ls, i=2, A=0.2, r min=Q0+Q1=70KB/s, Q min=1MB/s
Q0+Q1 based on initial ECG analysis/video experiments in isolation

Simultaneous memory/network bandwidth regulation using one of 3 scripts
— MG 25/65, meaning MemGuardXt Q0/Q1l = 25/65 (i.e. in favor of Video)
— MG 50/40 (i.e. a more balanced ratio)

— MG 75/15, meaning MemGuardXt Q0/Q1 = 75/15 (i.e. in favor of ECG)
Each such script runs 2m and periodically, every 20s, reconfigures
NetGuardXt Q0/Q1 using the sequence
{18/72, 16/74, 14/76, 12/78, 10/80, 8/82}

— this gradually decreases assigned network budget for ECG (in favor of Video)

VF mode used by default for both guards
— exception last figure, where MemGuardXt is used in Non-VF mode

Experimental Results: Kernel Logs (NetGuardXt)

e ECG - MG 25/65 © Video - MG 25/65

0,25
—_ « ECG - MG 50/40 Video - MG 50/40 8
~ s
2 = ECG - MG 75/15 + Video - MG 75/15 Doc‘ﬁ'so as
:J; 02 o -
] s 3
< o a
:: 0000‘32- At -
S 0,15 g—RRase
o 00000 ol -‘
= s Cooo0, o g%
R— “oooopo &
P . GDWOO‘:‘C“:’OODDDOQQDDOD Oooo .l.
: 0.1 o, DODOCCODC\QODCODOOr a5 !!
'3:: %, ©0000, o -
p L] -
..o ©000c 000000
E e OO = M) CO00x 00 0000000000
& 0,05"o.. bl
s m””"""»m‘ - oU e -l
= s
] T TYTL T Y Ak ALAAALAL AL g ahA A M A A & i 2208, wPocs *o
= aaasasass ma;\m;nagﬂﬂ_ﬁ&é.ghﬁ;umauahauuuugnnshi---'

0 20 40 60 80 100 120
Time (sec)

* Dropping ECG network bandwidth via NetGuardXt from 18kB/sec to
8KB/sec (in 20 sec intervals), increases cummulative ECG drop rate and
decreases the drop rate of video traffic

Experimental Results: ECG Analysis

®Server ECG processing (wrsamp) B ECG processing (easytest etc)

1
0.9
0.8

0.7

Running MG 75/15 script
in VF or Non-VF

0.6

Total execution time 3 o3
<04
~30% for receiving ECG (server rx) 03

0.1
0

~20% for data conversion (wrsamp)
~50% for ECG analysis (easytest) Time (sc)

Fig. 10. Delavs at Home Media Gatewayv for MG75/15 script, VF mode

Execution time for 256 samples

Small variations due to file locks

EServer ECG processing (wrsamp) B ECG processing (easytest etc)

1.8

With MemGuardxt Non-VF mode,
HMG cannot cope w soft real-time
(~75K guarantee violations)

Execution time for 256 samples
(se

n o 20 40 60 80 100 120
Time (sec)

Experimental Results: Scalability

o | ——BGW1-MG 75/15
rero |~ BGW2-MG 75/15
——BGW1 - MG 25/65

30000
55000 BGW?2 - MG 25/65

20000
15000
10000
5000
0@
0 20 40 60 80 100 120
Time (sec)

For MG 25/65, BGW2 devices has completely stopped due to low
memory bandwidth; in other experiments, both BGWs lag

For MG 75/15, both BGW devices operate in soft real time.

Processed ECG data points
(incl. annotations)

Summary & Future Work

Extend MemGuard’s memory bandwidth regulation policies with
— adaptivity through EWMA
— violation free operating mode
— highly modular approach

* extension to network bandwidth regulation module (NetGuardXt)
— same “memguard” prototype used in multiple module instances
Mixed-criticality use case on a hospital media gateway prototype
— soft real-time ECG analysis
— video-on-demand streaming
Control of network/memory bandwidth can improve ECG processing
Future Work

— use ARMV9 Juno board & time-triggered TTEthernet switch (rtwifi?)
— MemGuard implementation at the level of Linux scheduler

Main References

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-
core platforms,” in Proc. IEEE Symp. Real-Time and Embedded Tech. and
Appl., 2013, pp. 55—64.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory bandwidth

management for efficient performance isolation in multicore platforms”,
IEEE Trans. on Computers, 65 (2), 2016 pp. 562—576.

B. Akesson and K. Goossens, “Architectures and modeling of predictable
memory controllers for improved system integration,” in Proc. Design,
Automation Test in Europe Conf., 2011, pp. 1-6.

G. Tsamis, S. Kavvadias, A. Papagrigoriou, M.D. Grammatikakis, and K.
Papadimitriou, “Efficient bandwidth regulation at memory controller for
mixed criticality applications”, in Proc. Reconfigurable SoC, 2016, pp. 1—38.

Soft Real Time ECG Analysis and Visualization
https://physionet.org/works/SoftRealTimeECGAnalysisandVisualization

