Network & Memory Bandwidth Regulation in a Soft Real-Time Healthcare Application*

M.D. Grammatikakis, G. Tsamis

P. Petrakis, A. Mouzakitis, M. Coppola

TEl of Crete

(Joint Work with VOSYS, STM)

(*) Work supported by the EC through ICT Project DRE MS

Introduction

- Holistic approach towards system resource management
- CPU, Memory and network bandwidth management can improve computation-, communication-intensive and/or memory-bound applications
 - ⇒ allocate memory resources in a fair manner
 - ⇒ avoid local saturation or monopoly phenomena
 - ⇒ avoid filling network capacity
 - ⇒ efficiently utilize available budget
- Concentrating on OS support, without additional hardware
- Not suitable for critical hard real-time operating systems

Related Work: Memory Management Policies

 MemGuard performs memory bandwidth regulation at core-level using performance counters monitoring the number of last-level cache misses

Genuine MemGuard: Principles & Extensions

- Memguard allows sharing guaranteed bandwidth over several cores using a dynamic reclaim mechanism
 - cores are allocated at the beginning of each period part (or all) of their assigned bandwidth (history-based prediction)
 - cores donate the rest of their initially assigned bandwidth
 - global repository (called G) contains donations
 - during period, a core may obtain additional budget from G

Genuine MemGuard vs MemGuardXt

- A rate-constrained (RC) flow may steal guaranteed bandwidth from other RC flows
 - exhausting global repository and leading to guarantee bandwidth violations
 - potentially other RC flows have not yet demanded their full reservation
- Reservation-Only (RO) mode removes prediction and reclaiming, allocating
 RC traffic sources their full reservation in each regulation period
 - performs poorly, due to over-provisioning
 - a core cannot retrieve budget from (r_min ΣQi), if ΣQi < r_min
- Limited adaptivity for predicting memory bandwidth requirements
- MemGuardXt algorithm
 - supports modularity (multiple LKM instances)
 - provides a hard guarantee option called Violation Free or VF by restricting reclaiming from G by one or more rate-constrained cores, if, as a result, it can lead to a guarantee violation for another RC-flow
 - improved prediction of future bandwidth requirements using EWMA

MemGuardXt LKM

- init_module & cleanup_module
 do initialization & memory cleanup
- Prediction_EWMA updates the bandwidth consumed by each core
- periodic_timer_handler resets statistics and reassigns estimated bandwidth per core
- make_traffic
 - called at start of period to update bandwidth consumed in previous period
 - called on the fly (by asynchronous calls)
 when more bandwidth is required

NetGuardXt LKM

- NetGuardXt uses custom netfilter hooks to drop, accept or buffer packets
- Similar regulation algorithm
- Incoming & outgoing flows controlled by the same LKM
 - parameters configured on the fly, independently for each flow direction
 - similar API to MemGuardXt
- Each incoming/outgoing packet checked using make rc traffic

Hospital Media Gateway (HMG)

- MemGuardXt/NetGuardXt LKMs evaluated in correlation to real-time using an actual mixed-criticality use case with
 - critical medical tasks associated with soft real-time ECG analysis
 - non-critical video streaming for delivering premium content to patient
 - evolving traditional linear system (TV ⇒ infotainment/smart devices)
 - quality-of-delivery via NetGuardXt

root@linaro-ubuntu-desktop:~/netguard_driver# echo "1500 50 300 1200" > /sys/kernel/debug/netguard/netguard_config root@linaro-ubuntu-desktop:~/netguard_driver# echo "1500 50 1200 300" > /sys/kernel/debug/netguard/netguard_config root@linaro-ubuntu-desktop:~/netguard_driver# |

Real-Time Healthcare Application Extension

ST BodyGateway (BGW)

- body worn: ECG, respiration rate, accelerometer, holter ...
- BT 3.0 connection
- GNU/Linux driver developed
- port to ARM v7 (in future ARM v8)
- Open source ECG analysis (soft RT) to detect arrhythmias
 - filters detect & classify beat: N, V, ...
 - annotated ECG (Xview/X11-based)

Target Application: In-Hospital Scenario

27.06.2017

Open Source ECG: Online ECG Analysis (RT)

- Concurrent ops (file locking, sem/mutexes)
 - ECG Conversion to std format
 - ECG Analysis via filters to detect/classify beats EC13-compliant
 - QRS positive predictivity ~99.8% for normal (N) & ventricular beats (V)
 - 3min training (we use ECG synthesis, real ECG depends on age/sex)
 - Visualization of heartbeat with (N, V) annotation

Distributed Embedded System

Experimental Framework

Hardware Configuration & Mapping

- ECG traffic arrives to HMG from Odroid (two BGWs) via Ethernet
- Video-on-demand traffic arrives to HMG via Ethernet and is distributed to clients via streaming
- HMG (Zedboard) has two ARMv7 Cortex-A9 cores
 - ECG analysis mapped to CPU0 (server rx, consumer, animator)
 - Video-on-demand service runs on CPU1
- NetguardXt regulates only incoming ECG/Video traffic
 - Outgoing flows not considered, since memory bandwidth increases very slightly (1-2 MB/s) with video streaming

LKMs: Configurations and Runtime Scripts

- Initial MemGuardXt configuration (static)
 - period=1ms, i=2, λ =0.2, r min=Q0+Q1=90MB/s, Q min=50MB/s
- Initial NetGuardXt configuration (static)
 - period=1s, i=2, λ =0.2, r_min=Q0+Q1=70KB/s, Q_min=1MB/s Q0+Q1 based on initial ECG analysis/video experiments in isolation
- Simultaneous memory/network bandwidth regulation using one of 3 scripts
 - MG 25/65, meaning MemGuardXt Q0/Q1 = 25/65 (i.e. in favor of Video)
 - MG 50/40 (i.e. a more balanced ratio)
 - MG 75/15, meaning MemGuardXt Q0/Q1 = 75/15 (i.e. in favor of ECG)
- Each such script runs 2m and periodically, every 20s, reconfigures
 NetGuardXt Q0/Q1 using the sequence
 {18/72, 16/74, 14/76, 12/78, 10/80, 8/82}
 - this gradually decreases assigned network budget for ECG (in favor of Video)
- **VF** mode used by default for both guards
 - exception last figure, where MemGuardXt is used in Non-VF mode

Experimental Results: Kernel Logs (NetGuardXt)

 Dropping ECG network bandwidth via NetGuardXt from 18kB/sec to 8KB/sec (in 20 sec intervals), increases cummulative ECG drop rate and decreases the drop rate of video traffic

Experimental Results: ECG Analysis

- Running MG 75/15 script
- in VF or Non-VF
- Total execution time
- ~30% for receiving ECG (server rx)
 ~20% for data conversion (wrsamp)
 ~50% for ECG analysis (easytest)
- Small variations due to file locks

 With MemGuardXt Non-VF mode, HMG cannot cope w soft real-time (~75K guarantee violations)

Fig. 10. Delays at Home Media Gateway for MG75/15 script, VF mode

Experimental Results: Scalability

- For MG 25/65, BGW2 devices has completely stopped due to low memory bandwidth; in other experiments, both BGWs lag
- For MG 75/15, both BGW devices operate in soft real time.

Summary & Future Work

- Extend MemGuard's memory bandwidth regulation policies with
 - adaptivity through EWMA
 - violation free operating mode
 - highly modular approach
 - extension to network bandwidth regulation module (NetGuardXt)
 - same "memguard" prototype used in multiple module instances
- Mixed-criticality use case on a hospital media gateway prototype
 - soft real-time ECG analysis
 - video-on-demand streaming
- Control of network/memory bandwidth can improve ECG processing
- Future Work
 - use ARMv9 Juno board & time-triggered TTEthernet switch (rtwifi?)
 - MemGuard implementation at the level of Linux scheduler

Main References

- H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, "Memguard: Memory bandwidth reservation system for efficient performance isolation in multicore platforms," in Proc. IEEE Symp. Real-Time and Embedded Tech. and Appl., 2013, pp. 55—64.
- H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, "Memory bandwidth management for efficient performance isolation in multicore platforms", IEEE Trans. on Computers, 65 (2), 2016 pp. 562—576.
- B. Akesson and K. Goossens, "Architectures and modeling of predictable memory controllers for improved system integration," in Proc. Design, Automation Test in Europe Conf., 2011, pp. 1–6.
- G. Tsamis, S. Kavvadias, A. Papagrigoriou, M.D. Grammatikakis, and K.
 Papadimitriou, "Efficient bandwidth regulation at memory controller for mixed criticality applications", in Proc. Reconfigurable SoC, 2016, pp. 1—8.
- Soft Real Time ECG Analysis and Visualization
 https://physionet.org/works/SoftRealTimeECGAnalysisandVisualization