. . e Verfugbarkeit von
technische universitat %u,{; Information durch Analyse unter

dortmund Ressourcenbeschrankung

Implementation and Evaluation of
Multiprocessor
Resource Synchronization Protocol (MrsP)

on LITMUsSRT

Junjie Shi', Kuan-Hsun Chen', Shuai Zhao*, Wen-Hung Huang,
Jian-Jia Chen', Andy Wellings®

1 Technical University of Dortmund, Germany
2 University of York, United Kingdom

Outline

« Background and motivations

* Implementation of MrsP [1]

 Evaluation

 Conclusions

rj Ia @RTS/"”" 7 Junjie Shi et al.

Background and motivation

* Resource synchronization protocols are needed
Semaphores are used to protect shared resources
Priority inversionz; may destroy the predictability

* Many synchronization protocols are available
MPCP 3 DPCP 7 and DNPP (suspension-based)
MrsP y (spin-based)

 Include runtime overheads into schedulability analysis

IE Jork Junjie Shi et al.

Platform

Why LITMUSR T 2

« Open source code

« Well established evaluation platform

« Well distributed, plug-in architecture

« Useful tools provided (overheads and schedule tracing)

« Several protocols have been implemented (MPCP/DPCP)

LITMUS~!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

CSl2 &Krsw J Junjie Shi et al. 4

MrsP

* Requests in FIFO queue

Resource TITITE

0

T1

T2

I

Ts

_____ "L Tn
P.
P.
Ps |
- Normal execution BN Critical section Spinning

2 &

Junjie Shi et al.

MrsP

* Requests in FIFO queue

’Cs T2l T1 [~~~ A1 Th
Ff A
iy
I/
T - P
L
/
[
T, i— P
|
|
|
o

v

v

Ps

v

Spinning

- Normal execution - Critical section

Junjie Shi et al.

2 &

MrsP

* Requests in FIFO queue

T1

Resource

| ,/ ///
T 4*
| /I
L
- e 0
i
|
= ==
Ts

- Normal execution - Critical section

T3 | T2
H 7

A

/

Tn

I P,

P

v

Ps

v

v

Spinning

G | 2 @RTS Jirk

J

Junjie Shi et al.

MrsP

» Local ceilings are needed while spin waiting and executing

T2 I P,

Local ceiling = 1

Ts i P.

v

. m P,

v

- Normal execution - Critical section

v

Spinning

G Ia @RTSI‘%’* 7 Junjie Shi et al.

MrsP

* Local ceilings are needed while spin waiting and executing

o I — P,

Local ceiling = 1

- . P,

v

L o . P,

v

- Normal execution - Critical section

v

Spinning

G Ia @RTS)M 7 Junjie Shi et al.

Implementation of MrsP

* Requests in FIFO queue
Ticket based spin lock 9

Next = 3

T1 T2 _r_s_l

Resource Ticket = 1 [« Ticket = 2 <—>: Ticket =3 1
————— - |
on_serving = 1 —

on_serving = t.Ticket

Ia *»thT‘"’ Jiork Junjie Shi et al.

- 10 -

Implementation of MrsP

* Requests in FIFO queue
Ticket based spin lock 9

NeXt = 4 o e e e e

1 1
Ticket =1 [« Ticket = 2 [« Ticket = 3 <—>i Ticket = ?i
on_serving = 1 —

on_serving = t.Ticket

I2 RT% ok Junijie Shi et al. - 11 -

Implementation of MrsP

* Requests in FIFO queue
Ticket based spin lock 9

T n

12 T3 T4
Ticket = 2 [« Ticket = 3 |« Ticket =4
/

on_serving = 2

on_serving = t.Ticket

(L RTS /s«

Junjie Shi et al.

Ticket = n

- 12 -

Implementation of MrsP

* Local ceilings are needed while spin waiting and executing

Local cellings are given by users

Save the original priority before raising to the celiling

Lower the priority after finishing the critical section

P.

v

T, I

P

v

Local celling =1
- T —

P

»
|

. ——

- Normal execution - Critical section

| 2 __-.'i*‘ﬁ’-'j"-":RTS o

Junjie Shi et al.

Spinning
- 13-

Implementation of MrsP

* Local ceilings are needed while spin waiting and executing

Local cellings are given by users

Save the original priority before raising to the celiling

Lower the priority after finishing the critical section

T, I

:)1

Local celling =1

Lower down the priority to 3

T3

. ——

- Normal execution - Critical section

I2 i%n'rs ok

v

P

v

Junjie Shi et al.

»
|

Spinning

- 14 -

Implementation of MrsP

* Requests in FIFO queue

* Local ceilings are needed while spin waiting and executing

o — P,

Local ceiling = 3

T : . I P
EI Indirect blocking
-

1
7B P
- Normal execution - Critical section Spinning

v

v

e

2 @RTSW 7 Junjie Shi et al. . 15 -

Implementation of MrsP

* Requests in FIFO queue
* Local ceilings are needed while spin waiting and executing

* Help mechanism
Spinning tasks help preempted semaphore owners

o — P,

Local ceiling = 3

v

Ts : - I P. |
i 1
: i| Indirect blocking
) :
T4 = 7/ P- R
- Normal execution - Critical section Spinning

Ia i%RTS/‘“ Junjie Shi et al. - 16 -

PUSH

« Semaphore owner can migrate to the helper's processor by
itself after being preempted

s — P,

v

Ts I P. |
T4 m P. |
- Normal execution - Critical section

Spinning Helping execution remotely

12 f;é“Tsﬂ Junjie Shi et al. 17 -

PULL

« Semaphore owner is on the ready queue, helper pulls it to
the current processor

s — P,
- P
__ m P,

- Normal execution - Critical section

Spinning

v

v

v

Helping execution remotely

I 2 i%RTS,M Junjie Shi et al.

Potential implementation Deadlock

 Which task can be executed when there are two tasks have
the same priority?

According to the PID number (first created first execute)

T1, PID=2

Priority =2 |

Local ceiling =2
= —
Priority =4

to f1) {3

v

B Normal execution Critical section

Ia (R RTS /o Junjie Shi et al. - 19 -

Potential implementation Deadlock

 Which task can be executed when there are two tasks have
the same priority?

* According to the PID number (first created first execute)

T, PID=2
Priority = 2

Local ceiling =2
= —
Priority =4

to f1) {3

B Normal execution Critical section

G IE @RTS)@* 7 Junjie Shi et al. - 20 -

Potential implementation Deadlock

 Which task can be executed when there are two tasks have

the same priority?

- According tdaEE=mlDeerisem@EEERIE ated first execute)

* First executing task can continue its execution

T, PID=2
Priority = 2

Local ceiling =2
= —
Priority =4

to f1) {3

B Normal execution Critical section

2 @RTSW 7 Junjie Shi et al. _ 21 -

Task set construction

The number of tasks with different periods (40 tasks)

Num of tasks

 Utilization for each task: 0.1 % - 10 %

« Total utilization (120 % - 280 %, step 40 %)

« Arithmetic progression is used

* Priorities are assigned under Rate-Monotonic
« BCET =50% *WCET, ACET =90 % *WCET

* Normal distribution to generate real execution time

CS |2 @RTS/’%" 7 Junjie Shi et al.

Shared resources

Length of these shared resources
0 us < Rshot <= 100 us and 200 us < Ring <= 300 us
Rshot = 20 % * execution time
Single: Ring = 80 % * execution time
Multi: R = 30 % * execution time
Shared resources allocation
Request one short / long resource once

Request 3 short / long resources from 6 resources

IE Jork Junjie Shi et al.

- 23 -

e Sorttasks

e Calculate utilizations

 Allocate tasks

I2

ik

Partition algorithm

High Total Uti. = 200 %

1 7

50%
/@50%
: -
:50%
Tn
50%
/

Junjie Shi et al. - 24 -

H
N

-
w

t‘]
o

Priority

! T 40
Low

Overheads

Unexpected overheads of distributed protocols

4.5
g 4
c 3.5
o 3
E 25
Q2
S 1.5
@ 1
Q
X 0.5
0
R1_short R1 long Multi_short Multi_long
Resources accessing types
= DPCP DNPP = DPCP/DNPP in theory mmsm DPCP_99.99% mmmm DNPP_99.99% ------ WCET

The results of the overheads measurement

| WMigration | SCHED (MrsP) | Context switch

Average case 5.6 us <1lus 1.5us

CSle @RTS%”* 7 Junjie Shi et al. . 25-

Experiment results

o =
o a r N

R1_narrow

mmm DPCP

Response time in ms

=
,ooN

Response time in ms
o
(@) (&)

R1_narrow

= DPCP

Utilization = 120 %

R1_width Multi_narrow

DNPP msm VPCP mmmm MrsP ------ WCET

Utilization = 280 %

R1 width Multi_narrow

DNPP msm VPCP mmmm MrsP ------ WCET

Multi_width

Multi_width

CS12 Evse J

Junjie Shi et al.

- 26 -

Conclusions and future work

Conclusions
The first publicly available implementation of the MrsP
On LITMUSRT frequent migration may cause
unexpected overhead

Future work
Eliminate unexpected overhead of the DPCP/DNPP
When doing schedulability test, include the overheads

and adopt proper partition algorithm.

IE Jork Junjie Shi et al.

- 27 -

Reference

[1] Burns, Alan, and Andy J. Wellings. "A Schedulability Compatible Multiprocessor Resource
Sharing Protocol--MrsP." 2013 25th Euromicro Conference on Real-Time Systems. IEEE,
2013.

[2] Schmidt, Douglas C., et al. "Software architectures for reducing priority inversion and non-
determinism in real-time object request brokers." Real-Time Systems 21.1-2 (2001): 77-125.
[3] Rajkumar, Ragunathan, Lui Sha, and John P. Lehoczky. "Real-Time Synchronization
Protocols for Multiprocessors." RTSS. Vol. 88. 1988.

[4] Kato, Shinpei, and Nobuyuki Yamasaki. "Semi-partitioned fixed-priority scheduling on
multiprocessors." Real-Time and Embedded Technology and Applications Symposium, 20009.
RTAS 2009. 15th IEEE. IEEE, 2009.

[5] Lakshmanan, Karthik, Ragunathan Rajkumar, and John Lehoczky. "Partitioned fixed-
priority preemptive scheduling for multi-core processors." 2009 21st Euromicro Conference
on Real-Time Systems. IEEE, 2009.

[6] B. B. Brandenburg and M. G"ul. Global scheduling not required: Simple, near-optimal
multiprocessor real-time scheduling with semi-partitioned reservations. In Real-Time
Systems Symposium (RTSS), 2016 IEEE, pages 99-110. IEEE.

[7] Sha, Lui, Ragunathan Rajkumar, and John P. Lehoczky. "Priority inheritance protocols:
An approach to real-time synchronization." IEEE Transactions on computers 39.9 (1990):
1175-1185.

Ia Jork Junjie Shi et al. - 28 -

Reference

[8] Calandrino, John M., et al. "LITMUS” RT: A Testbed for Empirically Comparing Real-Time
Multiprocessor Schedulers." 2006 27th IEEE International Real-Time Systems Symposium
(RTSS'06). IEEE, 2006.

[9] Solihin, Yan. Fundamentals of parallel computer architecture. Solihin Publishing and
Consulting LLC, 2009.

[10] Kramer, S., Ziegenbein, D., Hamann, A.: Real world automotive benchmarks for free. In:
Workshop on Analysis Tools and Methodologies for Embedded and Real-Time Systems
(WATERS), July 2015.

Ia Jork Junjie Shi et al. - 20.-

