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Background and motivation

* Resource synchronization protocols are needed
Semaphores are used to protect shared resources
Priority inversionz; may destroy the predictability

* Many synchronization protocols are available
MPCP 3 DPCP 7 and DNPP (suspension-based)
MrsP y (spin-based)

 Include runtime overheads into schedulability analysis
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Platform

Why LITMUSR T 2

« Open source code

« Well established evaluation platform

« Well distributed, plug-in architecture

« Useful tools provided (overheads and schedule tracing)

« Several protocols have been implemented (MPCP/DPCP)

LITMUS~!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
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MrsP

* Requests in FIFO queue
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MrsP

* Requests in FIFO queue
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MrsP

* Requests in FIFO queue
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MrsP

» Local ceilings are needed while spin waiting and executing
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MrsP

* Local ceilings are needed while spin waiting and executing
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Implementation of MrsP

* Requests in FIFO queue
Ticket based spin lock 9

Next = 3
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on_serving = t.Ticket

Ia *»thT‘"’  Jiork Junjie Shi et al.

- 10 -



Implementation of MrsP

* Requests in FIFO queue
Ticket based spin lock 9
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Implementation of MrsP

* Requests in FIFO queue
Ticket based spin lock 9
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Implementation of MrsP

* Local ceilings are needed while spin waiting and executing

Local cellings are given by users

Save the original priority before raising to the celiling

Lower the priority after finishing the critical section
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Implementation of MrsP

* Local ceilings are needed while spin waiting and executing

Local cellings are given by users

Save the original priority before raising to the celiling

Lower the priority after finishing the critical section
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Implementation of MrsP

* Requests in FIFO queue

* Local ceilings are needed while spin waiting and executing
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Implementation of MrsP

* Requests in FIFO queue
* Local ceilings are needed while spin waiting and executing

* Help mechanism
Spinning tasks help preempted semaphore owners
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PUSH

« Semaphore owner can migrate to the helper's processor by
itself after being preempted
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PULL

« Semaphore owner is on the ready queue, helper pulls it to
the current processor
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Potential implementation Deadlock

 Which task can be executed when there are two tasks have
the same priority?

According to the PID number (first created first execute)

T1, PID=2

Priority =2 |

Local ceiling =2
= —
Priority =4

to f1 ) {3
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Potential implementation Deadlock

 Which task can be executed when there are two tasks have
the same priority?
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Potential implementation Deadlock

 Which task can be executed when there are two tasks have

the same priority?

- According tdaEE=mlDeerisem@EEERIE ated first execute)

* First executing task can continue its execution

T, PID=2
Priority = 2

Local ceiling =2
= —
Priority =4

to f1 ) {3

B Normal execution Critical section
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Task set construction

The number of tasks with different periods (40 tasks)

----

Num of tasks

 Utilization for each task: 0.1 % - 10 %

« Total utilization ( 120 % - 280 %, step 40 %)

« Arithmetic progression is used

* Priorities are assigned under Rate-Monotonic
« BCET =50% *WCET, ACET =90 % *WCET

* Normal distribution to generate real execution time
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Shared resources

Length of these shared resources
0 us < Rshot <= 100 us and 200 us < Ring <= 300 us
Rshot = 20 % * execution time
Single: Ring = 80 % * execution time
Multi: R = 30 % * execution time
Shared resources allocation
Request one short / long resource once

Request 3 short / long resources from 6 resources

IE Jork Junjie Shi et al.
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e Sorttasks

e Calculate utilizations

 Allocate tasks
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Overheads

Unexpected overheads of distributed protocols
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Experiment results
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Conclusions and future work

Conclusions
The first publicly available implementation of the MrsP
On LITMUSRT frequent migration may cause
unexpected overhead

Future work
Eliminate unexpected overhead of the DPCP/DNPP
When doing schedulability test, include the overheads

and adopt proper partition algorithm.
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