
technische universität
dortmund

Implementation and Evaluation of

Multiprocessor

Resource Synchronization Protocol (MrsP)

on LITMUS
RT

Junjie Shi
1
, Kuan−Hsun Chen

1
, Shuai Zhao

2
, Wen−Hung Huang

1
,

Jian−Jia Chen
1
, Andy Wellings

2

1 Technical University of Dortmund, Germany
2 University of York, United Kingdom

- 2 -Junjie Shi et al.

Outline

• Background and motivations

• Implementation of MrsP [1]

• Evaluation

• Conclusions

- 3 -Junjie Shi et al.

Background and motivation

• Resource synchronization protocols are needed

• Semaphores are used to protect shared resources

• Priority inversion [2] may destroy the predictability

• Many synchronization protocols are available

• MPCP [3] DPCP [7] and DNPP (suspension-based)

• MrsP [1] (spin-based)

• Include runtime overheads into schedulability analysis

- 4 -Junjie Shi et al.

Platform

Why LITMUS
RT

[8] ?

• Open source code

• Well established evaluation platform

• Well distributed, plug-in architecture

• Useful tools provided (overheads and schedule tracing)

• Several protocols have been implemented (MPCP/DPCP)

- 5 -Junjie Shi et al.

MrsP

• Requests in FIFO queue

P 1

P 2

P 3

Normal execution Critical section

τ 1

τ 2

τ 3

Spinning

Resource τ τ τ τ n

- 6 -Junjie Shi et al.

MrsP

• Requests in FIFO queue

P 1

P 2

P 3

Normal execution Critical section

τ 1

τ 2

τ 3

Spinning

Resource τ 3 τ 2 τ 1 τ n

- 7 -Junjie Shi et al.

MrsP

• Requests in FIFO queue

P 1

P 2

P 3

Normal execution Critical section

τ 1

τ 2

τ 3

Spinning

Resource τ 3 τ 2 τ 1 τ n

- 8 -Junjie Shi et al.

MrsP

• Local ceilings are needed while spin waiting and executing

P 1

P 1

P 2

Normal execution Critical section

τ 2

τ 3

τ 4

Spinning

Local ceiling = 1

- 9 -Junjie Shi et al.

MrsP

• Local ceilings are needed while spin waiting and executing

P 1

P 1

P 2

Normal execution Critical section

τ 2

τ 3

τ 4

Spinning

Local ceiling = 1

- 10 -Junjie Shi et al.

τ 2τ 1 τ 3

Implementation of MrsP

• Requests in FIFO queue

• Ticket based spin lock [9]

Resource

on_serving = 1

Next = 3

Ticket = 1 Ticket = 2 Ticket = 3

on_serving = τ.Ticket

- 11 -Junjie Shi et al.

τ 2τ 1 τ nτ 3

Implementation of MrsP

• Requests in FIFO queue

• Ticket based spin lock [9]

Resource

on_serving = 1

Next = 4

Ticket = 1 Ticket = 2 Ticket = 3 Ticket = ?

on_serving = τ.Ticket

- 12 -Junjie Shi et al.

τ 3τ 2 τ nτ 4

Implementation of MrsP

• Requests in FIFO queue

• Ticket based spin lock [9]

Resource

on_serving = 2

Ticket = 2 Ticket = 3 Ticket = 4 Ticket = n

on_serving = τ.Ticket

- 13 -Junjie Shi et al.

Implementation of MrsP

• Local ceilings are needed while spin waiting and executing

• Local ceilings are given by users

• Save the original priority before raising to the ceiling

• Lower the priority after finishing the critical section

P 1

P 1

P 2

Normal execution Critical section

τ 2

τ 3

τ 4

Spinning

Local ceiling = 1

- 14 -Junjie Shi et al.

Implementation of MrsP

• Local ceilings are needed while spin waiting and executing

• Local ceilings are given by users

• Save the original priority before raising to the ceiling

• Lower the priority after finishing the critical section

P 1

P 1

P 2

Normal execution Critical section

τ 2

τ 3

τ 4

Spinning

Local ceiling = 1 Lower down the priority to 3

- 15 -Junjie Shi et al.

Implementation of MrsP

• Requests in FIFO queue

• Local ceilings are needed while spin waiting and executing

P 1

P 1

P 2

Normal execution Critical section

τ 2

τ 3

τ 4

Spinning

Local ceiling = 3

Indirect blocking

- 16 -Junjie Shi et al.

Implementation of MrsP

• Requests in FIFO queue

• Local ceilings are needed while spin waiting and executing

• Help mechanism

• Spinning tasks help preempted semaphore owners

P 1

P 1

P 2

Normal execution Critical section

τ 2

τ 3

τ 4

Spinning

Local ceiling = 3

Indirect blocking

- 17 -Junjie Shi et al.

PUSH

• Semaphore owner can migrate to the helper’s processor by

itself after being preempted

P 1

P 1

P 2

Normal execution Critical section

τ 2

τ 3

τ 4

Spinning Helping execution remotely

- 18 -Junjie Shi et al.

PULL

• Semaphore owner is on the ready queue, helper pulls it to

the current processor

P 1

P 1

P 2

Normal execution Critical section

τ 2

τ 3

τ 4

Spinning Helping execution remotely

- 19 -Junjie Shi et al.

Normal execution Critical section

t0 t1 t2 t3

τ1, PID = 2

Priority = 2

τ2, PID = 4

Priority = 4

Potential implementation Deadlock

• Which task can be executed when there are two tasks have

the same priority?

• According to the PID number (first created first execute)

Local ceiling = 2

- 20 -Junjie Shi et al.

Normal execution Critical section

t0 t1 t2 t3

τ1, PID = 2

Priority = 2

τ2, PID = 4

Priority = 4

Potential implementation Deadlock

• Which task can be executed when there are two tasks have

the same priority?

• According to the PID number (first created first execute)

Local ceiling = 2 Deadlock

- 21 -Junjie Shi et al.

Normal execution Critical section

t0 t1 t2 t3

τ1, PID = 2

Priority = 2

τ2, PID = 4

Priority = 4

Potential implementation Deadlock

• Which task can be executed when there are two tasks have

the same priority?

• According to the PID number (first created first execute)

• First executing task can continue its execution

Local ceiling = 2 Deadlock

- 22 -Junjie Shi et al.

Task set construction

• The number of tasks with different periods (40 tasks)

• Utilization for each task: 0.1 % - 10 %

• Total utilization (120 % - 280 %, step 40 %)

• Arithmetic progression is used

• Priorities are assigned under Rate-Monotonic

• BCET = 50 % * WCET, ACET = 90 % * WCET

• Normal distribution to generate real execution time

Period (ms) 5 10 20 50 100 200 1000

Num of tasks 2 5 8 10 8 5 2

- 23 -Junjie Shi et al.

Shared resources

• Length of these shared resources

• 0 us < R short <= 100 us and 200 us < R long <= 300 us

• R short = 20 % * execution time

• Single: R long = 80 % * execution time

• Multi: R long = 30 % * execution time

• Shared resources allocation

• Request one short / long resource once

• Request 3 short / long resources from 6 resources

- 24 -Junjie Shi et al.

Partition algorithm

• Sort tasks

• Calculate utilizations

• Allocate tasks

High

Low

τ 1

τ 2

τ 3

τ 4

τ 40

τ n
P

ri
o
ri

ty .

.

.

.

.

.

P 1

P 2

P 3

P 4

50 %

50 %

50 %

50 %

Total Uti. = 200 %

- 25 -Junjie Shi et al.

Overheads

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R1_short R1_long Multi_short Multi_long

R
e
s
p
o
n
s
e
 t
im

e
 in

 m
s

Resources accessing types

Unexpected overheads of distributed protocols

DPCP DNPP DPCP/DNPP in theory DPCP_99.99% DNPP_99.99% WCET

The results of the overheads measurement

Migration SCHED (MrsP) Context switch

Average case 5.6 us < 1 us 1.5 us

- 26 -Junjie Shi et al.

Experiment results

0

0.5

1

1.5

2

R1_narrow R1_width Multi_narrow Multi_widthR
e
s
p
o
n
s
e
 t
im

e
 in

 m
s

Utilization = 120 %

DPCP DNPP MPCP MrsP WCET

0

0.5

1

1.5

2

R1_narrow R1_width Multi_narrow Multi_width

R
e
s
p
o
n
s
e
 t
im

e
 in

 m
s

Utilization = 280 %

DPCP DNPP MPCP MrsP WCET

- 27 -Junjie Shi et al.

Conclusions and future work

• Conclusions

• The first publicly available implementation of the MrsP

• On 𝐿𝐼𝑇𝑀𝑈𝑆𝑅𝑇, frequent migration may cause

unexpected overhead

• Future work

• Eliminate unexpected overhead of the DPCP/DNPP

• When doing schedulability test, include the overheads

and adopt proper partition algorithm.

- 28 -Junjie Shi et al.

Reference

[1] Burns, Alan, and Andy J. Wellings. "A Schedulability Compatible Multiprocessor Resource

Sharing Protocol--MrsP." 2013 25th Euromicro Conference on Real-Time Systems. IEEE,

2013.

[2] Schmidt, Douglas C., et al. "Software architectures for reducing priority inversion and non-

determinism in real-time object request brokers." Real-Time Systems 21.1-2 (2001): 77-125.

[3] Rajkumar, Ragunathan, Lui Sha, and John P. Lehoczky. "Real-Time Synchronization

Protocols for Multiprocessors." RTSS. Vol. 88. 1988.

[4] Kato, Shinpei, and Nobuyuki Yamasaki. "Semi-partitioned fixed-priority scheduling on

multiprocessors." Real-Time and Embedded Technology and Applications Symposium, 2009.

RTAS 2009. 15th IEEE. IEEE, 2009.

[5] Lakshmanan, Karthik, Ragunathan Rajkumar, and John Lehoczky. "Partitioned fixed-

priority preemptive scheduling for multi-core processors." 2009 21st Euromicro Conference

on Real-Time Systems. IEEE, 2009.

[6] B. B. Brandenburg and M. G ül. Global scheduling not required: Simple, near-optimal

multiprocessor real-time scheduling with semi-partitioned reservations. In Real-Time

Systems Symposium (RTSS), 2016 IEEE, pages 99–110. IEEE.

[7] Sha, Lui, Ragunathan Rajkumar, and John P. Lehoczky. "Priority inheritance protocols:

An approach to real-time synchronization." IEEE Transactions on computers 39.9 (1990):

1175-1185.

- 29 -Junjie Shi et al.

Reference

[8] Calandrino, John M., et al. "LITMUS^ RT: A Testbed for Empirically Comparing Real-Time

Multiprocessor Schedulers." 2006 27th IEEE International Real-Time Systems Symposium

(RTSS'06). IEEE, 2006.

[9] Solihin, Yan. Fundamentals of parallel computer architecture. Solihin Publishing and

Consulting LLC, 2009.

[10] Kramer, S., Ziegenbein, D., Hamann, A.: Real world automotive benchmarks for free. In:

Workshop on Analysis Tools and Methodologies for Embedded and Real-Time Systems

(WATERS), July 2015.

