
technische universität 
dortmund

Implementation and Evaluation of 

Multiprocessor

Resource Synchronization Protocol (MrsP) 

on LITMUS
RT

Junjie Shi
1
, Kuan−Hsun Chen

1
, Shuai Zhao

2
, Wen−Hung Huang

1
, 

Jian−Jia Chen
1
, Andy Wellings

2

1 Technical University of Dortmund, Germany
2 University of York, United Kingdom 



- 2 -Junjie Shi et al.

Outline

• Background and motivations

• Implementation of MrsP [1]

• Evaluation

• Conclusions



- 3 -Junjie Shi et al.

Background and motivation

• Resource synchronization protocols are needed

• Semaphores are used to protect shared resources

• Priority inversion [2] may destroy the predictability

• Many synchronization protocols are available

• MPCP [3] DPCP [7] and DNPP (suspension-based)

• MrsP [1] (spin-based)

• Include runtime overheads into schedulability analysis
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Platform 

Why LITMUS
RT

[8] ?

• Open source code

• Well established evaluation platform 

• Well distributed, plug-in architecture 

• Useful tools provided (overheads and schedule tracing)

• Several protocols have been implemented (MPCP/DPCP)
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MrsP

• Requests in FIFO queue
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MrsP

• Local ceilings are needed while spin waiting and executing
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τ 2τ 1 τ 3

Implementation of MrsP

• Requests in FIFO queue

• Ticket based spin lock [9]

Resource

on_serving = 1

Next = 3

Ticket = 1 Ticket = 2 Ticket = 3

on_serving = τ.Ticket
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Implementation of MrsP

• Requests in FIFO queue
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Implementation of MrsP

• Requests in FIFO queue

• Ticket based spin lock [9]
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Implementation of MrsP

• Local ceilings are needed while spin waiting and executing

• Local ceilings are given by users

• Save the original priority before raising to the ceiling

• Lower the priority after finishing the critical section
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Implementation of MrsP

• Local ceilings are needed while spin waiting and executing

• Local ceilings are given by users

• Save the original priority before raising to the ceiling

• Lower the priority after finishing the critical section
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Implementation of MrsP

• Requests in FIFO queue

• Local ceilings are needed while spin waiting and executing
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Implementation of MrsP

• Requests in FIFO queue

• Local ceilings are needed while spin waiting and executing

• Help mechanism

• Spinning tasks help preempted semaphore owners
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PUSH

• Semaphore owner can migrate to the helper’s processor by 

itself after being preempted 
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PULL

• Semaphore owner is on the ready queue, helper pulls it to 

the current processor 
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Normal execution Critical section

t0 t1 t2 t3

τ1, PID = 2

Priority = 2

τ2, PID = 4

Priority = 4

Potential implementation Deadlock

• Which task can be executed when there are two tasks have 

the same priority?

• According to the PID number (first created first execute)

Local ceiling = 2
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Normal execution Critical section

t0 t1 t2 t3

τ1, PID = 2

Priority = 2

τ2, PID = 4

Priority = 4

Potential implementation Deadlock

• Which task can be executed when there are two tasks have 

the same priority?

• According to the PID number (first created first execute)

• First executing task can continue its execution

Local ceiling = 2 Deadlock
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Task set construction 

• The number of tasks with different periods (40 tasks)

• Utilization for each task: 0.1 % - 10 %

• Total utilization ( 120 % - 280 %, step 40 %)

• Arithmetic progression is used

• Priorities are assigned under Rate-Monotonic

• BCET = 50 % * WCET, ACET = 90 % * WCET

• Normal distribution to generate real execution time

Period (ms) 5 10 20 50 100 200 1000

Num of tasks 2 5 8 10 8 5 2
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Shared resources

• Length of these shared resources

• 0 us < R short <= 100 us and 200 us < R long <= 300 us

• R short = 20 % * execution time

• Single:  R long = 80 % * execution time

• Multi: R long = 30 % * execution time

• Shared resources allocation

• Request one short / long resource once

• Request 3 short / long resources from 6 resources
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Partition algorithm

• Sort tasks

• Calculate utilizations

• Allocate tasks
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Overheads 
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Experiment results
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Conclusions and future work

• Conclusions 

• The first publicly available implementation of the MrsP

• On 𝐿𝐼𝑇𝑀𝑈𝑆𝑅𝑇, frequent migration may cause 

unexpected overhead

• Future work

• Eliminate unexpected overhead of the DPCP/DNPP

• When doing schedulability test, include the overheads 

and adopt proper partition algorithm. 
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