Timeliness Runtime Verification and Adaptation
in Avionic Systems

José Rufino and Inés Gouveia
LaSIGE, Faculdade de Ciéncias, Universidade de Lisboa, Portugal
jmrufino@ciencias.ulisboa.pt, igouveia@lasige.di.fc.ul.pt

Abstract—Unmanned autonomous systems (UAS) avionics call
for advanced computing system architectures fulfilling strict size,
weight and power consumption (SWaP) requisites, decreasing
the vehicle cost and ensuring the overall system dependability.
The AIR (ARINC 653 in Space Real-Time Operating System)
architecture defines a partitioned environment for aerospace
applications, following the notion of time and space partitioning
(TSP), aiming to preserve the highly demanding application
timing and safety requirements.

In addition to expected changes in the vehicle configuration,
which may naturally vary according to the mission’s progress
and its phases, a vehicle may be exposed to unforeseeable events
(e.g., environmental) and to failures. Thus, vehicle survivability
requires advanced adaptability and reconfigurability features, to
be supported in the AIR architecture. Adaptation in the presence
of hazards may largely benefit from the potential of non-intrusive
runtime verification (RV) mechanisms, currently being included
in AIR. Although this paper focuses on system level (timeliness)
monitoring and adaptation, similar approaches and methods may
be taken with respect to application/mission adaptation.

I. INTRODUCTION AND MOTIVATION

Avionic systems have strict safety and timeliness require-
ments as well as strong size, weight and power consumption
(SWaP) constraints. Modern unmanned autonomous systems
(UAS) avionics follow the civil aviation trend of transitioning
from federated architectures to Integrated Modular Avionics
(IMA) [1] and resort to the use of partitioning.

Partitioned architectures implement the logical separation
of applications in criticality domains, named partitions, and
allow hosting both avionic and payload functions in the
same computational infrastructure, thus fulfilling both SWaP
and safety/timeliness requirements [2]. Avionic functions are
related with vehicle control and typically include: Attitude and
Orbit Control Subsystem (AOCS) or Guidance, Navigation and
Control (GNC); Onboard Data Handling (OBDH); Telemetry,
Tracking and Command (TTC); Fault Detection, Isolation and
Recovery (FDIR). On the other hand, payload functions are
strictly related with the mission’s purpose. Partitioning implies
that each one of those functions is hosted in a different
partition.

The notion of temporal and spatial partitioning (TSP) means
that the execution of functions in one partition does not
affect other partitions’ timeliness and that dedicated addressing
spaces are assigned to different partitions [3]. The design

This work was partially supported by FCT, through LaSIGE Strategic
Project 2015-2017, UID/CEC/00408/2013. This work integrates the activities
of COST Action IC1402 - Runtime Verification beyond Monitoring (ARVI).

and development of AIR (ARINC 653 in Space Real-Time
Operating System) has been motivated by the interest in
applying TSP concepts to the aerospace domain [4]. However,
TSP concepts can be applied to a broader set of applications
such as, planetary exploration, automotive, underwater rovers,
and aquatic/aerial drones. The case for low-cost drones, com-
monly available as radio-controlled gadgets, with little or no
provisions of safety guarantees, is specially sensitive.

Usually, an UAS mission goes through multiple phases (e.g.,
takeoff, flight, approach, exploration, flight back, landing).
Adaptation to changing temporal requirements as the mission
progresses, throughout its phases, is of great importance.
Furthermore, adaptation to unplanned circumstances, such as
unforeseeable external events and internal failures, is manda-
tory for vehicle and mission’s survivability [5]. The design
of AIR Technology already includes mechanisms of support
for adaptation and reconfiguration [6]. Nevertheless, given the
high complexity of UAS functions, modern avionic systems
may largely benefit from the verification in runtime whether
or not the system/mission parameters are in conformity with
the planned specification.

This paper addresses how innovative non-intrusive runtime
verification (RV) capabilities, specially designed for time- and
space-partitioned systems, may enable the design and im-
plementation of advanced timeliness adaptation mechanisms,
which allow to reduce the temporal overhead of such mecha-
nisms in the operation of onboard systems.

The paper is organized as follows. Section II introduces
the AIR architecture for TSP systems. Section III describes
the non-intrusive RV features being introduced in the AIR
architecture. Section IV details the new adaptability features
of AIR. Section V discusses the integration of those features
in the AIR architecture and performs its analysis. Section VI
describes the related work and, finally, Section VII presents
some concluding remarks and future research directions.

II. AIR TECHNOLOGY FOR TSP SYSTEMS

The AIR Technology evolved from a proof of feasibility
for adding ARINC 653 functional support to the Real-Time
Executive for Multiprocessor Systems (RTEMS) to a multi-
OS (operating system) TSP architecture [4]. The AIR modular
design aims at high levels of flexibility, hardware- and OS-
independence (through encapsulation), easy integration and in-
dependent component verification, validation and certification.

Application Software Layer

System System
Partition 1 R artition

L i i
i 2 ¥
(APEX Interface) (APEX Interface) (APEX Interface) (APEX Interface (subse())
i i i i i i i i
l l Corel Software Layer l
. . System Speciic System Specifc
Functions 08 Kemel) Functions
[POS Adaptatior 0S Adaptatior POS Adaptation Layer POS Adaptation Layer
Layer Layer
AIR Partition Management Kernel (PMK)]
L

Fig. 1. AIR architecture for TSP systems

A. System architecture

The AIR modular architecture is pictured in Figure 1. The
AIR Partition Management Kernel (PMK) is the basis of a
core software layer, enforcing robust TSP properties and pro-
viding support to fundamental mechanisms such as partition
scheduling and dispatching, low-level interrupt management,
interpartition communication facilities and encapsulation of
special-purpose hardware resources. Temporal partitioning en-
sures that the real-time requisites of the different functions
executing in each partition are guaranteed. Spatial partitioning
relies on having dedicated addressing spaces for the functions
executing on different partitions.

Each partition can host a different OS (the partition op-
erating system, POS), which, in turn, can be either a real-
time operating system (RTOS) or a generic non-real-time one.
The AIR POS Adaptation Layer (PAL) encapsulates the POS
of each partition, providing an adequate POS-independent
interface to the surrounding components.

The Portable Application Executive (APEX) interface [7]
provides a standard programming interface derived from the
ARINC 653 specification [1], with the possibility of being
subsetted and/or adding specific functional extensions, on a
system-level and/or on a per-partition basis [8].

The organization of vehicle functions in different partitions
requires interpartition communication services, since a func-
tion hosted in a partition may need to exchange information
with other partitions. Interpartition communication consists
of the authorized transfer of information between partitions
without violating neither spatial separation constrains nor
information security properties [3], [4], [9].

B. Two-level scheduling

The AIR technology employs a two-level scheduling
scheme, as illustrated in Figure 2. The first level corresponds to
partition scheduling and the second level to process schedul-
ing. Partitions are scheduled on a cyclic basis, through the
partition scheduling and dispatching components (Figure 2),
according to a partition scheduling table (PST) repeating over
a major time frame (MTF). The PST assigns execution time
windows to partitions. Inside each partition’s time windows,
its processes compete for processing resources according to
the POS’s native process scheduler.

Partition P4 Partition P,

Partition P3

Second hierarchy level
Process Scheduler

Proc
Tasks (processes)

2
P in partition P,
Native POS Native POS Native POS m
Process Scheduler| Process Scheduler| Process Scheduler| | 20 60

PST seloction ———»
mods PST;
mode: normal
(act

$— Process Deadline Violation Monitoring 1

Partition Scheduling Tables (PST) I

Mode-based Schedules

W Pertion P, [l Partiion P, [T] Partiion Py
First hierarchy level
Partition Scheduler

Fig. 2. Two-level hierarchical scheduling with partition scheduling featuring
timeliness adaptation through mode-based schedules

This paper proposes an evolution of the AIR two-level
hierarchical scheduling towards a highly effective short-term
adaptation of timeliness parameters to the mission phase
and/or to environmental changes, through a proficient use of
mode-based schedules, as highlighted in Figure 2.

C. Health monitoring and event handling

The AIR architecture incorporates Health Monitor (HM)
functions that spread throughout virtually all of the AIR
architectural components, aiming to contain faults within their
domains of occurrence.

At system-level, HM functions monitor the correctness of
fundamental AIR system components. In the event of an
error, handling is performed through fully integrated HM event
handlers (Figure 3). For example: system-level timeliness (e.g.,
partition scheduling) is verified at runtime, with a contingency
signalling of timing errors through low-level event handlers.

Application

/
/ Exception!

no
- S yes L

{ Interrupt I:: application-related (" EH defined? EH running?

yes.

system-related 1
yes

(Csystemevel) ((Action defined? Clgnore)
Jro
AIR Health Monitor (Default Action) (Shutdown)

Fig. 3. System-level and application-level health monitoring

EH: event
handler

0 s Activate (event-driven)

AIR PMK/POS interrupt handling

At application-level (Figure 1), which comprises both avion-
ics and payload functions, HM functions aim to enforce
overall correctness and to prevent the ill-effects of process
and/or partition level errors, occurring at one partition, from
propagating to the remaining partitions.

The runtime verification of application correctness is deeply
dependent on the application itself. Detection of deviations
from a given application/mission specification and handling
of abnormal situations must be performed by special-purpose
event handlers, provided by the application programmer and/or
by the system integrator, as shown in the diagram of Figure 3.
Only some specific aspects of application correctness may be
verified at system-level (e.g., the monitoring of violations to
registered process deadlines, pointed out in Figure 2).

In any case, the actions to be performed in the event of
errors are cast into appropriate event handlers. These may
comprise adaptability features such as the redefinition of
timing and control parameters. If no handler is provided, a
response action defined by the partition’s HM ARINC 653
configuration table is executed, as shown in Figure 3. The
design of AIR allows HM handlers to simply replace existing
exception handlers or to be added to existing ones, in pre-
and/or post-processing modes.

III. TSP-ORIENTED NON-INTRUSIVE RUNTIME
VERIFICATION

Runtime verification (RV) obtains and analyses data from
the execution of a system to detect and possibly react to
behaviours, either satisfying or violating a given specification.
The classical approach to RV implies the instrumentation of
system components. Small components, which are not part
of the functional system, acting as observers, are added to
monitor and assess the state of the system in runtime.

The usage of reconfigurable logic supporting versatile plat-
form designs (e.g., soft-processors) enables innovative ap-
proaches to RV [10]. In particular, in the context of TSP sys-
tems, a design for TSP-oriented observers was proposed [11].
The AIR Observer (AO) features: non-intrusiveness, meaning
system operation is not adversely affected; flexibility, meaning
code instrumentation with RV probes is not required, although
it may be used; configurability, being able to accommodate
a set of different system-level, application-related and even
mission-specific event observations.

MR)
Bus - >

Interfaces

Observer

Time Base

urrentTicks
other variables/registers

Q
)

Mgmt.

Interface »

Configuration

_ _1_ __ System Clock
Fig. 4. AIR Observer architecture

The AO is plugged to the platform where the AIR software
components execute, and comprises the hardware modules
depicted in Figure 4: Bus Interfaces, capturing all physical
bus activity, such as bus transfers or interrupts; Management
Interface, enabling AO configuration; Configuration, storing
the patterns of the events to be detected; Observer, detecting
events of interest based on the registered configurations.

A robust time base! accounts for, in the AO hardware
(Figure 4), the number of system-level clock ticks elapsed
so far, to which AIR components have access, through the
read only currentTicks variable/register. For optimization
purposes, other relevant read/write variables/registers may be
available from the AO.

I'The design and engineering of AIR robust timers is out of the scope of
this paper. It will be addressed in future work.

The AO continuously monitors the timeliness of AIR com-
ponents and applications, functionally assuming a dual role:
it detects when a given temporal bound is reached and/or if a
given deadline was violated; it signals that it is time to perform
a given (check) action, in order to verify/enforce timeliness.

IV. MISSION’S TIMELINESS ADAPTATION

The adaptation to changing environmental or operating
conditions is crucial for unmanned space and aerial missions
survivability, which can be significantly improved through
software reconfigurability, as reported in [5].

The design of AIR integrates special-purpose mechanisms
to address specific adaptation requirements, as thoroughly
described in [6]. Aiming to improve its time domain behaviour,
the mode-based schedules mechanism is reviewed.

A. Mode-based schedules

The original ARINC 653 notion of a single fixed PST [1],
defined offline, hinder adaptation to changes in application
requirements, according to the mission’s phase, given certain
functions may be required to execute only during some phases.

To address this primary limitation, AIR uses the notion
of mode-based partition schedules [4], [6], inspired by the
optional service defined within the scope of ARINC 653
Part 2 specification [12].

B. AIR mode-based schedules: original design and limitations

Instead of using one fixed PST, AIR-based systems can be
configured with multiple PSTs, which may differ in terms
of the MTF duration, of which partitions are scheduled, and
of how much processor time is assigned to them, as shown
in Figure 2. The system can switch between different PSTs;
selection of the active PST is performed through a service call
issued by an authorized and/or dedicated partition.

In the original definition of AIR mode-based schedules, a
PST switch request is only effectively granted at the end of the
ongoing MTF. This simple approach ensures that every process
in all partitions have executed completely, upon a PST switch.
Thus: applications are in a coherent state; PST switching is in
conformity with the specified application timing. This model
is adequate for long-term stable adaptation, such as entering
a different mission’s phase.

C. Redesigning AIR mode-based scheduling

During the ongoing MTF, a response to sudden and unex-
pected events (such as, a warning of an imminent collision)
may be adversely delayed by the execution of functions,
defined in the active PST, which do not have the capability
of reacting to those (critical) events.

To extend the number/duration of periods where the ex-
ecuting functions have the capability of responding to crit-
ical events, a different schedule is required. The selec-
tion/activation of a new schedule is enhanced in two ways:

o by design, the new schedule is activated as soon as no

critical activity is executing;

o by PST definition and configuration, the new schedule

assigns execution time windows only to critical activities.

The first condition implies that, each partition needs to be
classified as having its execution as critical or non-critical and
that the time boundaries delimiting the execution of the critical
execution periods need to be registered in the AO, both for
monitoring purposes and to avoid ill-timed mode changes.

Secondly, for each mission phase, three schedules should
be provided, each corresponding to a mode (see Figure 5), as
follows:

o normal - corresponding to the normal execution of the

activities defined for the mission;

« survival - meaning some severe external/internal condi-
tion that puts the vehicle and/or the mission in risk has
been detected. This state is entered in response to the is-
suing of a SET_MODE_SCHEDULE primitive (Table I),
by some system/application event handler (Figure 3). The
schedule for this phase/mode shall allocate processor time
only to fundamental avionic functions, in order to ensure
safe and secure operation.

o recovery - the operation of the vehicle is no longer in
risk, as confirmed, at all levels, by the RV mechanisms.
A relevant system/application component issues a further
SET_MODE_SCHEDULE primitive. Processing could
now include full FDIR activities that, once accomplished,
may allow the return to the normal mode.

SET_MODE_CHANGE A
partition (current_schedule) = ~critical V t = MTF

yyyyy _schedule), mod

SET_MODE_CHANGE A t = MTF
nt_schedule), mod

vival)

Recovery

SET_MODE_CHANGE A t = MTF
ent_schedule), mod

SET_MODE_CHANGE A t = MTF
ent_schedule), mod overy)

Fig. 5. Function schedule modes and allowed transitions

Hosting multiple PSTs aboard autonomous vehicles opens
room for the (self-)adaptability of unmanned missions, in
function of passage of time and of changing environmental
and operational conditions. The use of full-fledged mode-based
schedules contributes to a timely response to sudden changes
in the operational conditions.

Pre-generation of different partition schedules can be aided
by a tool that applies rules and formulas to the temporal
requirements of processes/partitions, taking into account the
functions’ needs in different anticipated conditions [4], [13].
Unforeseeable conditions can be handled thorough the mech-
anisms for remote update of onboard software and PSTs [8].

V. IMPLEMENTING MISSION’S TIMELINESS ADAPTATION

The proposed integration of non-intrusive RV and timeliness
adaptation features follows the hardware-assisted approach
described in [11]. This hardware/software co-design allows
to maintain some degree of AIR architectural flexibility with
advantages in terms of improved safety and timeliness, being
specially interesting for running AIR in platforms integrating
processor cores (e.g., dual-core ARM) and FPGA logic [14].

Algorithm 1 AIR Partition Scheduler with runtime verification
featuring adaptation through mode-based schedules

1: > Entered upon exception: partition preemption point signalled by the AO
2: > Runtime verification actions
3: if (mode(currentSchedule) = mode(nextSchedule) A
schedules currentSchedule - tabletaplerterator - tick 7#
(currentTicks — lastScheduleSwitch) mod
schedules currentSchedute-Mtf) V
(mode(currentSchedule) # mode(nextSchedule) A
schedules currentschedule - tabletaplerterator - cTitical >
(currentTicks — lastScheduleSwitch) mod
schedules currentSchedule-mtf) then

4: HEALTHMONITOR(active Partition)
5: else [> Partition Scheduling Table (PST) and partition switch actions
6: if currentSchedule # nextSchedule A

((mode(currentSchedule) # mode(nextSchedule) A
(currentTicks — lastScheduleSwitch) mod
schedules currentschedute - MEf >

schedules currentschedule - table tabielterator - cTitical) Vv
((currentTicks — lastScheduleSwitch) mod
schedules currentSchedule-mtf = 0)) then

7 > PST switch actions

8: currentSchedule < nextSchedule

9: lastScheduleSwitch < currentTicks
10 tablelterator < 0

11: end if

12: > Partition switch actions

13: heir Partition <+

schedules currentschedule - table apierterator - paTtition
14: tablelterator < (tablelterator + 1) mod

schedules cyrrentSchedule - numberPartition PreemptionPoints
15: end if

A. AIR full-fledged mode-based scheduling

In a hardware-assisted approach to the implementation of
AIR full-fledged mode-based scheduling, partition scheduling
switch decisions from the AO hardware are complemented
with software RV and partition switch actions: when a par-
tition is dispatched, the absolute value (in POS-level clock
ticks) of its partition preemption point is inserted in the AO
configuration; when this instant is reached, an AO’s hardware
exception triggers the execution of Algorithm 1.

In Algorithm 1, if no mode change is claimed, the RV
actions check (line 3), from the active PST, if the current
instant is a partition preemption point. If a mode change
is pending, the RV actions ensure (line 3) that no critical
activity is executing at this instant. If none of these conditions
apply, a severe system level error has occurred and the HM
is notified (line 4) to handle the situation. Otherwise, the
conditions for a full-fledged mode-based partition switch are
checked in line 6: a PST schedule switch request is pending;
a mode change switch is claimed and no critical activities are
executing at the current instant or the current instant is the
end of the MTF. If these conditions apply, the PST switching
actions specified in [4], [11] are applied (lines 7-10) and a
different PST will be used henceforth (line 8). The remaining
lines of Algorithm 1 (lines 13-14) implement the conventional
partition switch actions of [4], [11]. The processing resources
to be assigned to the heir partition, until the next partition
preemption point, are obtained from the PST in use (line 13).
The AIR Partition Scheduler is set (line 14) to access the heir
partition parameters.

Algorithm 2 AIR Partition Dispatcher

. > Entered from the AIR Partition Scheduler after partition switch actions
: SAVECONTEXT(active Partition.context)

. activePartition.lastTick < currentTicks — 1

. elapsedTicks < currentTicks — heirPartition.lastTick

REPLACEPREEMPTIONPOINT(heirPartition.tick)

REPLACECRITICALPOINT(heirPartition.critical)

: RESTORECONTEXT(heirPartition.context)
: PENDINGSCHEDULECHANGEACTION(heirPartition)

Lo auswYS

B. AIR hardware-assisted partition dispatching

The partition switch actions are followed by the execution
of the AIR Partition Dispatcher specified in Algorithm 2.
The hardware-assisted optimizations of [11] are maintained
with respect to the software-based approach [4]: suppression
of specific elapsed clock ticks setting, which are not required
because the partition dispatcher is always invoked after a
partition switch; insertion of the next partition preemption
point in the AO configuration (line 6). However, to allow
the runtime verification of mode change requests, the value
of the next time critical schedule bound is now also inserted
in the AO. The remaining actions in Algorithm 2 are related
to saving and restoring the execution context (lines 2 and 8)
and evaluation of the elapsed clock ticks (line 4). Line 9
enforces the execution of pending actions the first time the
partition is executed after a PST change [4]. This last point
is specially sensitive, since abrupt mode changes may leave
some partitions in an inconsistent state.

C. Extending the APEX interface

The implementation of AIR full-fledged mode-based
scheduling implies the addition of new primitives to the
APEX interface, summarized in Table I. The AIR PAL com-
ponent provides the adequate encapsulation with respect to
the registering of the schedule timing information in the AO.
The primitives listed in Table I can only be issued from an
authorized and/or dedicated partition.

TABLE I
EXTENDING APEX PRIMITIVES TO SUPPORT
FULL-FLEDGED MODE-BASED SCHEDULES

Primitive Short description

Need to register/update critical execution period bounds in the AO

SET_MODE_SCHEDULE Requests a mode change for a new schedule

Served if/when no critical activities

SET_PHASE_SCHEDULE Requests a new mission phase schedule

Served in normal mode, at the end of a MTF

No need to register/update critical execution period bounds in the AO
GET_MODE_SCHEDULE_ID
GET_MODE_SCHEDULE_STATUS Obtains the current schedule status

Obtains the current schedule identifier

Although semantically different APEX primitives are listed
in Table I for the long-term adaptation of mission phases and
for a (fast) short-term (self-)adaptation, through mode changes,
both primitives share the same method (i.e., the activation of
a new schedule), thus being optimal with respect to fitting the
previous design and implementation of AIR components.

D. Analysis and discussion

Critical software, namely that developed to go aboard an
aerial or space vehicle, goes through a strict process of veri-
fication, validation and certification. Code complexity affects
the effort required for that process.

The AIR hardware-assisted approach translates to a signifi-
cant reduction of AIR software code complexity. Most AIR
software-based components have constant time complexity,
O(1): accesses to multiclement structures are made by index,
being independent of the number and position of the elements.
Nevertheless, some components exhibit a linear time complex-
ity. That is the case associated with the Pending Schedule
Change Actions procedure (Algorithm 2 - line 9), which in
the worst case wields O(n), being n the number of processes
in the partition.

Similar considerations apply to timing issues. However, due
to the highly effective (i.e., O(1)) implementation of the AIR
software-based approach, the analysis in [11] for the AIR
Partition Scheduler and AIR Partition Dispatcher components
has shown only a moderate improvement in time overheads.

The expected reduction in the mode change response delay,
with the corresponding increase in the ability of AIR-based
systems to timely respond to sudden and unexpected changes
in operational conditions, is heavily dependent of the structure
of the active PST.

The exact value of the normalized mode change response
delay, Tmcq, in general depends on the instant, ¢, a mode
change primitive is issued. That value is given by:

nep
Tonea (T) =D (H(T = Tes) = H(T = Tee,i)) x "
i=1
(7-ce,i - 7:1571')
where:
t
T =mo ('TMTF) ()

is the current instant £ normalized with the major time frame
duration, Tpsrr, through the module function, mod(). H() is
the Heaviside function, defined as:

0 T <7
H(T = T5) =1 | T>TZ 3)

Furthermore, the following parameters are defined:

e ncp - the number of periods executing critical activities;

o Tes,i - the instant, normalized by 7asrp, where the
execution of the critical period ¢ starts;

o Tee,i - the instant, normalized by Tasrp, where the
execution of the critical period ¢ ends.

The results obtained for the mode change response delay
with different types of schedules is illustrated in Figure 6. In
the first case, only critical activities are scheduled for execu-
tion and therefore the mode change can only be performed
by the end of the MTF. The second schedule includes an
initial period of critical activities followed by a (small) period

== Case 1 - One critical period - Tcs1=0,00; Tce1=1.00
0,60 == Case 2 - One critical period - Tcs1=0,00; Tce1=0,86
Case 3 - Two critical periods - Tcs1=0,00; Tce1=0,20; Tes2=0,40; Tce2=0,75

Tpnca (normalized to Ty, time units)

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

T (normalized to Ty, time units)

Fig. 6. Analysis of the mode change response delay obtained under different
schedule scenarios

where mode change is allowed without delay. In the third and
last schedule, illustrated in Figure 6, critical and non-critical
activities are intermixed along the MTF, resulting in an overall
decrease in the duration of the maximum and average periods
where it is necessary to wait for a mode change to occur.

VI. RELATED WORK

Reconfiguration and adaptation approaches have been ap-
plied in the realm of TSP systems and tested in avionic
demonstrators [15]. Furthermore, non-instrusive runtime mon-
itoring has been applied in embedded systems [16], [17] and,
more specifically, in safety critical environments [18]. Con-
figurable non-intrusive event-based frameworks for runtime
monitoring have been developed within the embeddedd sys-
tems’ scope [19], employing a minimally intrusive method for
dynamic monitoring. Additionally, the RV concept has been
applied to autonomous systems [20] and to a AUTOSAR-like
RTOS, aiming the automotive domain [21]. [22] describes a
runtime monitoring approach for autonomous vehicle systems
requiring no code instrumentation by observing the network
state. A unified framework for the specification, analysis and
description of mode-change semantics applicable to real-time
systems is presented in [23]. However, to the extent of our
knowledge, no such techniques have been applied to TSP
systems, specially if targeting avionic applications.

VII. CONCLUSION

This paper addressed fundamental mechanisms providing
support for adaptive and self-adaptive behaviour to applica-
tions based on the AIR architecture for time- and space-
partitioned systems. The usage of hybrid platforms combining
processor cores and programmable logic makes advantageous
the use of a hardware-assisted design complemented with
some simple software-based components.

The introduction of full-fledged mode-base scheduling con-
tributes for achieving a timely response to sudden and/or
unexpected environmental and internal conditions, and enables
improvements in both safety and timeliness properties. These
mechanisms benefit from the use of non-intrusive runtime
verification.

Non-intrusive runtime verification is a relevant contribution
with respect to verification, validation and certification efforts
of TSP systems that will be extended in future research.

Additional work aims to take full advantage of multicore
platforms in AIR, which include adaptation/reconfiguration
features and, in the near future, extended RV capabilities.

REFERENCES

—_
—

AEEC (Airlines Electronic Engineering Committee), Avionics Applica-

tion Software Standard Interface, Part 1 - Required Services, Mar. 2006.

TSP Working Group, “Avionics time and space partitioning user needs,”

ESA, Technical Note TEC-SW/09-247/JW, Aug. 2009.

J. Rushby, “Partitioning in avionics architectures: Requirements, mech-

anisms and assurance,” SRI International, California, USA, Tech. Rep.

NASA CR-1999-209347, Jun. 1999.

[4] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and

timeliness in a new generation of aerospace systems,” in Architecting

Dependable Systems VII, ser. LNCS, A. Casimiro, R. de Lemos, and

C. Gacek, Eds., vol. 6420. Springer, 2010.

M. Tafazoli, “A study of on-orbit spacecraft failures,” Acta Astronautica,

vol. 64, no. 2-3, pp. 195-205, 2009.

[6] J. P. Craveiro and J. Rufino, “Adaptability support in time- and space-

partitioned aerospace systems,” in Proc. 2nd Int. Conf. on Adaptive and

Self-adaptive Systems and Applications, Lisbon, Portugal, Nov. 2010.

S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor, “A portable

ARINC 653 standard interface,” in Proc. 27th Digital Avionics Systems

Conference, St. Paul, MN, USA, Oct. 2008.

J. Rosa, J. P. Craveiro, and J. Rufino, “Safe online reconfiguration of

time- and space-partitioned systems,” in Proceedings 9th IEEE Int. Conf.

on Industrial Informatics (INDIN 2011), Caparica, Portugal, Jul. 2011.

J. Carraca, R. C. Pinto, J. P. Craveiro, and J. Rufino, “Information secu-

rity in time- and space-partitioned architectures for aerospace systems,”

in Atas 6th Simpdsio de Informdtica (INForum 2014), Porto, Portugal,

Sep. 2014, pp. 457-472.

[10] R. C. Pinto and J. Rufino, “Towards non-invasive run-time verification
of real-time systems,” in 26th Euromicro Conf. on Real-Time Systems -
WIP Session, Madrid, Spain, Jul. 2014, pp. 25-28.

[11] J. Rufino, “Towards integration of adaptability and non-intrusive runtime
verification in avionic systems,” SIGBED Review, vol. 13, no. 1, Jan.
2016, (Special Issue on 5th Embedded Operating Systems Workshop).

[12] AEEC (Airlines Electronic Engineering Committee), Avionics Applica-
tion Software Standard Interface, Part 2 - Extended Services, Dec. 2008.

[13] J. P. Craveiro and J. Rufino, “Schedulability analysis in partitioned
systems for aerospace avionics,” in Proceedings 15th IEEE International
Conference on Emerging Technologies and Factory Automation, Bilbao,
Spain, Sep. 2010.

[14] ZYBO Reference Manual, DILIGENT, Feb. 2014.

[15] G. Durrieu, G. Fohler, G. Gala, S. Girbal, D. G. Pérez, E. Noulard,
C. Pagetti, and S. Pérez, “DREAMS about reconfiguration and adapta-
tion in avionics,” in Proc. 8th Congress on Embedded and Real-Time
Software and Systems (ERTS2016), Toulouse, France, Jan. 2016.

[16] C. Watterson and D. Heffernan, “Runtime verification and monitoring
of embedded systems,” Software, IET, vol. 1, no. 5, Oct. 2007.

[17] T. Reinbacher, M. Fugger, and J. Brauer, “Runtime verification of em-
bedded real-time systems,” Formal Methods in System Design, vol. 24,
no. 3, pp. 203-239, 2014.

[18] A. Kane, “Runtime monitoring for safety-critical embedded systems,”
Ph.D. dissertation, Carnegie Mellon University, USA, Feb. 2015.

[19] J. C. Lee and R. Lysecky, “System-level observation framework for non-
intrusive runtime monitoring of embedded systems,” ACM Transactions
on Design Automation of Electronic Systems, vol. 20, no. 42, 2015.

[20] G. Callow, G. Watson, and R. Kalawsky, “System modelling for run-

time verification and validation of autonomous systems,” in Proc. 5th

Int. Conference on System of Systems Engineering, Loughborough, UK,

Jun. 2010, pp. 1-7.

S. Cotard, S. Faucou, J.-L. Bechennec, A. Queudet, and Y. Trinquet,

“A data flow monitoring service based on runtime verification for

AUTOSAR,” in Proceedings of the 14th Int. Conf. on High Performance

Computing and Communications. Liverpol, UK: IEEE, Jun. 2012.

[22] A. Kane, O. Chowdhury, A. Datta, and P. Koopman, “A case study on
runtime monitoring of an autonomous research vehicle (ARV) system,”
in Proc. 15th Int. Conf. on Runtime Verification, Vienna, Austria, Sep.
2015, pp. 102-117.

[23] L. T. X. Phan, I. Lee, and O. Sokolsky, “A semantic framework for mode

change protocols,” in Proceedings of the 17th Real-Time and Embedded

Technology and Applications Symposium. 1EEE, Apr. 2011.

[2

—

3

—_

%
A

[7

—

[8

—

[9

—

[21]

