

Preliminary design and validation of a modular framework for
predictable composition of medical imaging applications

7th July 2015

Martijn van den Heuvel – S.C. Cracana – H. Salunkhe –
J.J. Lukkien – A. Lele – D. Segers

Image display

● An input signal needs several transformations before being displayed

[1]

Envisioned new design

Main modifications

● Replace proprietary FPGAs by a COTS platforms
● Shift to a component-based software architecture

FPGA

Software

IMX 6 Atom N270

Software Component
 Framework

(tools + run-time environment)

…

Envisioned new design

Main modifications

● Replace proprietary FPGAs by a COTS platforms
● Shift to a component-based software architecture

Advantages
● Support for product variants
● Time-to-market:

– Independent development & testing of components

FPGA

Software

IMX 6 Atom N270

Software Component
 Framework

(tools + run-time environment)

…

Problem Description

Key issues for development

● Resources
● Performance requirements
● Desired functionality

Manage variations at design time

Problem Description

Key issues for development

● Resources
● Performance requirements
● Desired functionality

Goals:
● COTS software framework
● Predictable framework configuration and performance metrics
● Validate predicted performance against run-time performance

Build a prototype!

Manage variations at design time

COTS Software – Logical View

User Interface

Image Processing
 Pipeline

Custom Algorithms

IMX 6 Atom N270 ...

Software
● Define interface in QML language

● Define pipeline architecture

● Proprietary algorithms for various signal
transformations

Hardware
● Various COTS platforms

User Interface

Image Processing
 Pipeline

Custom Algorithms

IMX 6 Atom N270 ...

C Wrapper for Matlab

qt-quickstreamer ● Plugin for integrating Gstreamer into QML
language => high level development

● Integrate Matlab code into Gstreamer => high
reusability

COTS Software – new interfaces

Adding Performance Analysis

User Interface

Image Processing
 Pipeline

Custom Algorithms

IMX 6 Atom N270

C Wrapper for Matlab

qt-quickstreamer

Performance Analysis

...

Requirements
(throughput)

Pipeline Configuration

Performance met? (Y/N)

Expected performance

Adding Performance Analysis and
variability management

User Interface

Image Processing
 Pipeline

Custom Algorithms

Atom N270

C Wrapper for Matlab

qt-quickstreamer

Performance Analysis

...

Requirements
(throughput)
R

Pipeline Configuration PC1... PC2 ...

IMX 6

Performance met? (Y/N)

Expected performance

Adding Performance Analysis and
variability management

User Interface

Image Processing
 Pipeline

Custom Algorithms

Atom N270

C Wrapper for Matlab

qt-quickstreamer

Performance Analysis

...

Requirements
(throughput)
R

Pipeline Configuration PC1... PC2 …

IMX 6

Performance met? (Y/N)

Expected performance

Use case: applying the concepts

Input video stream formats to be
supported

SD - 576i: MPEG2 Transport Stream up to 6 Mbit/s
HD - 720p: H.264 Transport Stream up to 15 Mbit/s
HD - 1080i: H.264 Transport Stream up to 20 Mbit/s

Input video transport formats to
be supported

Multicast UDP
RTP

Output screen resolutions 1366x768
1920x1080

Hardware Intel Atom N270
Intel Cedarview D2550
Freescale iMX6 dual and quad core
Intel Baytrail DN2820

Medical Video PlayerMedical Video Player

Network Demux

Subtitles

Video/Audio

Decoding
Scaling

Player

Buttons

Play/Pauze

Channel Select

[1]

Use case: Requirements analysis

Input video stream formats to be
supported

SD - 576i: MPEG2 Transport Stream up to 6 Mbit/s
HD - 720p: H.264 Transport Stream up to 15 Mbit/s
HD - 1080i: H.264 Transport Stream up to 20 Mbit/s

Input video transport formats to
be supported

Multicast UDP
RTP

Output screen resolutions 1366x768
1920x1080

Hardware Intel Atom N270
Intel Cedarview D2550
Freescale iMX6 dual and quad core
Intel Baytrail DN2820

Medical Video PlayerMedical Video Player

Network Demux

Subtitles

Video/Audio

Decoding
Scaling

Player

Buttons

Play/Pauze

Channel Select

[2]

Use case: variability

Input video stream formats to be
supported

SD - 576i: MPEG2 Transport Stream up to 6 Mbit/s
HD - 720p: H.264 Transport Stream up to 15 Mbit/s
HD - 1080i: H.264 Transport Stream up to 20 Mbit/s

Input video transport formats to
be supported

Multicast UDP
RTP

Output screen resolutions 1366x768
1920x1080

Hardware Intel Atom N270
Intel Cedarview D2550
Freescale iMX6 dual and quad core
Intel Baytrail DN2820

Medical Video PlayerMedical Video Player

Network Demux

Subtitles

Video/Audio

Decoding
Scaling

Player

Buttons

Play/Pause

Channel Select

[2]

Research questions

1. How to model GStreamer pipelines?

2. What are the required inputs for performance analysis?

3. What is the mapping between an GStreamer pipeline
and a performance model?

4. What are the key configuration parameters of a
GStreamer pipeline?

GStreamer Pipeline Architecture

● A number of plugins can be connected to attain the requisite media
processing

● The processing unit in GStreamer is called a pipeline
● It handles the clocking, the synchronizations, scheduling and the control

message flow between elements

[1][3]

Important GStreamer elements

Buffers
● Media content passed between elements
● May have different sizes

Queues
● Represent thread boundaries
● Enable/disable back pressure (i.e., write protection)

[3]

 src

source

 src

filter

sink src

queue

sink src

decoder

sink

sink

src

thread 1 thread 2

Mapping of Gstreamer and
Synchronous Data-Flow models

[3]

SDF element Gstreamer equivalent Description

Actor Set of linked elements
running on same thread

Functionality, code to be executed

Token Buffer Data units

Channels Pad links Data dependencies/execution order

Rate #buffers pushed/popped Data units consumed/produced

 src

source

 src

filter

sink src

queue

sink src

decoder

sink

sink

src

thread 1 thread 2

Actor A Actor B

Reference pipeline

Traffic shaper:
● ensures that a data unit is equal to a video frame;

● If no back-pressure (data may be overwritten),
then limit data rate of the source

Protect overwrites with back pressure

Buffer sizing vs.
performance

No back pressure

Largest buffer sizing!

Data loss vs. highest throughput:

Performance analysis vs. measures
(with vs. without back pressure)

Back
Pressure

Distribution Worst case
Run-time

Memory usage

Predicted
Throughput

(fps)

Average
Run-time

Throughput (fps)

Enabled (2,1,1) (1,1,1) 28 31

Disabled (2,2,2) (1,1,2) 31 31

(AB) (BC) (CD)

Actor A Actor B Actor C Actor D

Run-time analysis of memory usage
(back-pressure enabled)

● Run-time monitoring of push/pop events on buffers
● Visualization using Time Doctor (http://sourceforge.net/projects/timedoctor/)

Q1

Q2

Q3

http://sourceforge.net/projects/timedoctor/

Run-time analysis of memory usage
(back-pressure disabled)

Q2

● Run-time monitoring of push/pop events on buffers
● Visualization using Time Doctor (http://sourceforge.net/projects/timedoctor/)

Q1

Q3

http://sourceforge.net/projects/timedoctor/

Conclusions

Current work
● Investigate

– COTS software framework

– Predictable framework configuration and performance metrics

● Prototyping:
– predicted performance against run-time performance

Future work
● Complex pipelines (split and joins)
● GStreamer scalability
● Advanced platform models (processor mappings, caches, etc.)

	Slide 1
	Slide 2
	Slide 7
	Slide 8
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

