Technische Universiteit (E[s—(E[.)—ﬁ?)
e Eindhoven -6
University of Technology L

Preliminary design and validation of a modular framework for
predictable composition of medical imaging applications

7™ July 2015

Martijn van den Heuvel — S.C. Cracana — H. Salunkhe —

J.J. Lukkien — A. Lele — D. Segers
CRYSTAL

Image display

* An input signal needs several transformations before being displayed

Panel
Characteristics

L v

Uniformity JHoE
FrameBuffer Transfer Curve ‘ Response
Correction S
Optimization
A \g
External Legend Ambient Spatial and
Input Light Data Temporal
Dithering
Sensor
Dynamic Data
Data
Static Data
DataFlo
........... Image
Processing ’ (10 MP/60 fps)
Step (~9.6 Gb/s)

[1]

Envisioned new design

Main modifications

* Replace proprietary FPGAs by a COTS platforms
« Shift to a component-based software architecture

Software
Software Component
Framework
(tools + run-time environment)
—
FPGA

IMX 6 Atom N270

Envisioned new design

Main modifications

* Replace proprietary FPGAs by a COTS platforms
« Shift to a component-based software architecture

Software
Software Component
Framework
(tools + run-time environment)
—
FPGA

IMX 6 Atom N270

Advantages
e Support for product variants
* Time-to-market:
- Independent development & testing of components

Problem Description

Key issues for development

 Resources
« Performance requirements Manage variations at design time
e Desired functionality

Problem Description

Key issues for development

 Resources
« Performance requirements Manage variations at design time
e Desired functionality

Goals:

COTS software framework

* Predictable framework configuration and performance metrics
« Validate predicted performance against run-time performance

Build a prototype!

COTS Software — Logical View

Software

; * Define interface in QML language
QI User Interface

» Define pipeline architecture

—_— | Image Processing
g o Pipeline
* Proprietary algorithms for various signal
4\ Custom Algorithms transformations

Hardware
« Various COTS platforms

IMX 6 Atom N270| ...

COTS Software — new Interfaces

User Interface

[QI' qt-quickstreamer Plugin for integrating Gstreamer into QML
language => high level development

Image Processing
-~ Pipeline

 Integrate Matlab code into Gstreamer => high
C Wrapper for Matlab reusability

Custom Algorithms

IMX 6 Atom N270| ...

Adding Performance Analysis

Qt

———

~gstreamer

)

User Interface

gt-quickstreamer

Image Processing
Pipeline

Pipeline Configuration

C Wrapper for Matlab

Custom Algorithms

Performance met? (Y/N)

>

Expected performance

IMX 6 Atom N270

Requirements
(throughput)

Adding Performance Analysis and
variability management

Qt

———

~gstreamer

4

User Interface

gt-quickstreamer

Image Processing
Pipeline

Pipeline Configuration PC1... PC2 ...

C Wrapper for Matlab

Custom Algorithms

Performance met? (Y/N)

Expected performance

>

. Atom N270| ...

Requirements
(throughput)
R

Adding Performance Analysis and
variability management

Qe

———

~~gstreamer

P\

User Interface

gt-quickstreamer

Image Processing
Pipeline

Pipeline Configuration PC1... PC2 ...

C Wrapper for Matlab

Custom Algorithms

Performance met? (Y/N)

Expected performance

>

IMX6 . -

Requirements
(throughput)
R

Use case: applying the concepts

Input video stream formats to be SD - 576i: MPEG2 Transport Stream up to 6 Mbit/s
supported HD - 720p: H.264 Transport Stream up to 15 Mbit/s
HD - 1080i: H.264 Transport Stream up to 20 Mbit/s

Input video transport formats to ~ Multicast UDP

be supported RTP

Output screen resolutions 1366x768
1920x1080

Hardware Intel Atom N270

Intel Cedarview D2550
Freescale iMX6 dual and quad core
Intel Baytrail DN2820

Subtitles Decoding Buttons

Video/Audio

Play/Pauze

Channel Select

[1]

Use case: Requirements analysis

Input video stream formats to be SD - 576i: MPEG2 Transport Stream up to 6 Mbit/s
supported HD - 720p: H.264 Transport Stream up to 15 Mbit/s
HD - 1080i: H.264 Transport Stream up to 20 Mbit/s

Input video transport formats to ~ Multicast UDP

be supported RTP

Output screen resolutions 1366x768
1920x1080

Hardware Intel Atom N270

Intel Cedarview D2550
Freescale iMX6 dual and quad core
Intel Baytrail DN2820

Subtitles Decoding Buttons

Video/Audio

Play/Pauze

Channel Select

2]

Use case: variability

Input video stream formats to be SD - 576i: MPEG2 Transport Stream up to 6 Mbit/s
supported HD - 720p: H.264 Transport Stream up to 15 Mbit/s
HD - 1080i: H.264 Transport Stream up to 20 Mbit/s

Input video transport formats to ~ Multicast UDP

be supported RTP

Output screen resolutions 1366x768
1920x1080

Hardware Intel Atom N270

Intel Cedarview D2550
Freescale iMX6 dual and quad core
Intel Baytrail DN2820

Subtitles Decoding Buttons

Video/Audio

Play/Pause

Channel Select

2]

Research questions

1. How to model GStreamer pipelines?
2. What are the required inputs for performance analysis?

3. What is the mapping between an GStreamer pipeline
and a performance model?

4. What are the key configuration parameters of a
GStreamer pipeline?

GStreamer Pipeline Architecture

A number of plugins can be connected to attain the requisite media
processing

The processing unit in GStreamer is called a pipeline

It handles the clocking, the synchronizations, scheduling and the control
message flow between elements

| pipeline

=00 >

vorbis-decoder audio-sink

@)

file-source ogg-demuxer

£
= &

video-sink

=

Gstreamer pipeline for a basic ogg player

3]

Important GStreamer elements

Buffers
 Media content passed between elements
« May have different sizes

Queues
* Represent thread boundaries
 Enable/disable back pressure (i.e., write protection)

I
| thread 1 | thread 2
| | |
BN | - N -
source filter gueue decoder
src| P sink src —®»sink src| P sink src| P src

Mapping of Gstreamer and
Synchronous Data-Flow models

SDF element
Actor

Token
Channels
Rate

Gstreamer equivalent

Set of linked elements
running on same thread

Buffer
Pad links

#buffers pushed/popped

Description
Functionality, code to be executed

Data units
Data dependencies/execution order
Data units consumed/produced

Actor A Actor B
| thread 1 | thread 2 |
|
= N N N
source filter queue decoder sink
src —»sink src - »sink src —»sink src —» src
/ _ / _ / _ / N

Reference pipeline

File Traffic : X264 -
_—»

Traffic shaper:
e ensures that a data unit is equal to a video frame;

e If no back-pressure (data may be overwritten),
then limit data rate of the source

Throughput (frames/second)

Protect overwrites with back pressure

Q2 Q3

File Traffic . X264 .
Start
®
\

Buffer sizing vs.
performance

35

Read Buffer

(2,2,2)

(2,2,1)

30 (211)

25

20 (1,1,1)

15

10

0 1 2 3 4 5 8 7
Total queue size (frames) L

No back pressure

File
source

Start
®

Largest buffer sizing! J

- (:

—
Read Buffer
. Q1 Empty?>_—j @mpty?
Data loss vs. highest throughput: o o
35 5 T Read Buffer
" e
8 yas
g8 25
12}
@ 20 Push Buffer to Q1
; 15 ne
g
>
E 10
5 (Push EOS to Q1 (Push EOSto Q2) Push EOS to Q3
0o
0 1 2 3 4 5 8 7

Total queue size (frames) l

Performance analysis vs. measures
(with vs. without back pressure)

Q1(AB) Q2 (BC) Q3 (CD)

Actor A l Actor B i Actor C l Actor D
File Traffic : X264 :
4’

Back Distribution Worst case Predicted Average
Pressure Run-time Throughput Run-time
Memory usage (fps) Throughput (fps)
Enabled (2,1,1) (1,1,1) 28 31

Disabled (2,2,2) (1,1,2) 31 31

Run-time analysis of memory usage
(back-pressure enabled)

* Run-time monitoring of push/pop events on buffers
* Visualization using Time Doctor (http://sourceforge.net/projects/timedoctor/)

Q1 Q2 Q3

File Traffic - X264 > -

Q1

Q2

03

S —

http://sourceforge.net/projects/timedoctor/

Run-time analysis of memory usage
(back-pressure disabled)

* Run-time monitoring of push/pop events on buffers
* Visualization using Time Doctor (http://sourceforge.net/projects/timedoctor/)

Q1 Q2 Q3

File Traffic : X264 :
- -

=\ AR R R

.

Q2

http://sourceforge.net/projects/timedoctor/

Conclusions

Current work
* |nvestigate
- COTS software framework

- Predictable framework configuration and performance metrics

e Prototyping:
- predicted performance against run-time performance

Future work

 Complex pipelines (split and joins)

e GStreamer scalability

» Advanced platform models (processor mappings, caches, etc.)

	Slide 1
	Slide 2
	Slide 7
	Slide 8
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

