Software Architectures for Advanced Driver Assistance Systems (ADAS)

Robert Leibinger July 7th, 2015

Agenda

Short overview of Elektrobit automotive

The road to Advanced Driver Assistance Systems

Challenges for ADAS

System Architecture

ECU Software Architecture

Agenda

Short overview of Elektrobit automotive

The road to Advanced Driver Assistance Systems

Challenges for ADAS

System Architecture

ECU Software Architecture

About Elektrobit (EB) Automotive

EB'S TECHNICAL CORE COMPETENCES ARE: Automotive-grade software System and software architectures

OVER 1300 EMPLOYEES

GLOBAL PRESENCE:

development and business offices in Austria, China, Finland, France, Germany, Japan, Romania and USA

2014 NET SALES* OF MEUR 171.4, up 24%

LISTED ON NASDAQ OMX HELSINKI: EBC1V

Over **70 million** vehicles on the road and **1 billion** embedded devices

* including 51% of e.solutions

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Our solutions for the automotive world

Infotainment software and services

- Connected navigation software
- HMI tools for in-dash, digital instrument clusters and head-up displays
- Global software integration and engineering services

Car Infrastructure software and services

- EB tresos integrated ECU software and tools, based on AUTOSAR standards
- Complete solutions for: basic software, functional safety, automotive security
- Test & Analyzing solutions
- Functional Safety consulting

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Driver Assistance software and services

- Software development for driver assistance functions
- Electronic horizon and test drive recording solutions
- Driver Assistance modules and algorithms

Connected services

- Connected experiences around urbanization and electrification
- Online diagnostics
- Software and content updates

Delivering unique experiences year over year

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

EB at the forefront of automotive technology Paving the way to automated driving

Automated Driving

- EB's electronic horizon information is playing a major role for predictive driving
- Connected Navigation in combination with Driver Assistance is the lever for highly automated driving

Car as a Sensor

- Delivering ADAS and navigation data (electronic horizon) to enable future driving experiences
- Long-standing experience with connected services in safety- and security-critical environments

Connected Everything

- Know-how in OBD with experience in mission critical client/server systems
- Secure back-end infrastructure to enable OTA data and service updates.
- Always up-to-date maps validated by EB via vehicle sensor data to provide the highest quality maps

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Agenda

Short overview of Elektrobit automotive

The road to Advanced Driver Assistance Systems

Challenges for ADAS

System Architecture

ECU Software Architecture

History and Roadmap for Accident-Free Driving

http://www.continental-corporation.com/www/download/portal_com_en/themes/ir/financial_reports/download_download_channel/fb_2014_en.pdf

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Agenda

Short overview of Elektrobit automotive

The road to Advanced Driver Assistance Systems

Challenges for ADAS

System Architecture

ECU Software Architecture

Confidence

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Taken from wikipedia.org

Bridget Driscoll

- Bridget Driscoll received instant notoriety when she stepped off the kerb and into the history books on August 17th 1896.
- Mrs Driscoll, a 44 year old housewife, who was travelling from Old Town, Croydon to a folk-dancing display in Crystal Palace, became the first pedestrian in the UK to be killed by a car.
- Mrs Driscoll, a resident of Croydon, was hit by a demonstration car travelling at 4mph. She died within minutes of receiving a head injury.

The Case

- Witnesses said that the car, driven by Arthur Edsel, was travelling at a **reckless pace**, in fact: "like a fire engine".
- Mr Edsel claimed that he had only been doing 4 mph and that he had **rung his bell as a warning**.
- The jury took six hours to reach a verdict that Mrs. Driscoll had died of **accidental death**.
- At Mrs Driscoll's inquest, Coroner William Percy Morrison said he hoped that *"such a thing would never happen again"* and was the first to apply the term *"accident"* to violence caused by speed.

Coroners across the country have followed his example ever since.

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Today...

REUT BILDPIUS NEWS POLITIK GELD UNTERHALTUNG SPORT BUNDESLIGA LIFESTYLE RATGEBER REISE

1.97.2016 - 17:02 UHR HOME > NEWS AKTUELL > DEUTSCHLAND > VOLK SWAGEN > VOLK SWAGEN: ROBOTER TÖTET MITARBEITER

WERK IN BAUNATAL

Foto: dog Dichurg-Alijand

Roboter tötet VW-Mitarbeiter!

Das VW-Werk in Baunatal (Archivbild)

Baunatal (Hessen) – Horror-Unfall im Volkswagenwerk Baunatal: Ein Mitarbeiter ist von einem Roboter getötet worden!

Der 22-Jährige war am Montag bei einer neuen Produktionslinie der Elektromotorenfertigung mit dem Einrichten des Roboters beschäftigt, als dieser ihn erfasste und gegen eine Metallplatte drückte. Das teilte ein Sprecher des VW-Werks am Mittwoch mit.

Der Mitarheiter einer Fremdfirma aus Sachsen erlitt schwere Quetschungen im

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Complexity

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Complexity - Callgraph of an Engine Control Unit

Simon Fürst, BMW, EMCC2015 Munich

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Complexity - Callgraph of an integration platform

- 150 software components
- 14 of them are safety-relevant according to ASIL B
- Over 1000 assembly connectors
- Multiple n:m edges between SWCs

Simon Fürst, BMW, EMCC2015 Munich

Rising amount of OEM application software at Volkswagen

T. Flämig, Volkswagen, EMCC2015 Munich

Standardized software architectures necessary. AUTOSAR is the first step to handle this complexity.

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015

Computing Power

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BMW i8 and i3 – Figures and Facts

Simon Fürst, BMW, EMCC2015 Munich

Already large number of ECUs Where to get the computing power for ADAS?

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Power Consumption within BMW cars

Simon Fürst, BMW, EMCC2015 Munich

Max. power consumption limits the number of ECUs

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Automotive Multicore Microcontroller

Infineon TriCore AURIX TC29x

Simon Fürst, BMW, EMCC2015 Munich

Freescale Matterhorn MPC5777M

Rising Quota of Multicore deliveries at Volkswagen

T. Flämig, Volkswagen, EMCC2015 Munich

Multicore usage ramps up (e.g. Powertrain). ADAS will speed this up.

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Next level of Functional Safety

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

"Definition" of a safe system

There is a very basic and helpful definition for a safe system:

"You know what the system does"

Current Systems (usually fail-safe)

Failure Detected?

- Deactivate / degrade function
 → Safe State
- Inform the driver
- Report a diagnostic error

Standard approach in many safety relevant systems:

- Airbag, ESP, air conditioning, battery charging, ...
- Driver assistant functions such as adaptive cruise control, lane assist, ...

Some functions provide a degraded mode, sometimes limited in time:

- Electronic Power Steering
- Braking

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Software Architectures for Advanced Driver Assistance Systems (ADAS)

Wolfgang Schäfer, Continental, May 19, 2015

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Levels of Autonomous Driving (AD)

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Goal: Autonomous driving

Safe State means:

- Continue driving until driver is in the loop
 - approx. 7-15s for conditional autonomous driving
 - Several minutes for high and full autonomous driving
- Perform an autonomous "safe-stop" (stand-still at a non-hazardous place)
 - Main issue is to get the driver attention focused on the situation
 - Several minutes, depending on the situation

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Agenda

Short overview of Elektrobit automotive

The road to Advanced Driver Assistance Systems

Challenges for ADAS

System Architecture

ECU Software Architecture

Approach: 2 channels with comparison

Two ECUs working on the input data, outputs are compared

A 2 channels with comparison system is simply fail-safe and since you cannot distinguish between "ECU1 not ok" and "ECU2 not ok".

The safe state is a complete system shutdown.

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Approach: 2003 Systems

If one of the ECUs fails the system can continue with the remaining two ECUs.

Failures in the input data can be detected by an "Input-Voter".

This pattern is well established.

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

2003 Systems and automotive

Applicable for automotive?

- More ECUs
- More wiring
- More weight
- More power consumption
- Higher complexity to manage

Will we as a customer accept that?

- Different opinions and market studies
- Referring to several studies, customer will pay 1500 3000€ more for autonomous driving car (mid-size car).

Source: KPMG(2013), autelligence (2015)

Approach: 1002D System

- High diagnostic coverage needed to detect failures in one channel
- IF component fails in one of the two channels, the system does not shut down but continues to operate with one channel

Common sense:

The best policy is not to operate on a single channel, or not for a long period of time. \rightarrow See above: only some seconds may be needed.

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Diagnostics in software in autonomous driving systems

Integrity mechanism

- Memory Partitioning
- Temporal Monitoring
- Data protection

Infrastructure

- Fault tolerant Ethernet
- Service Orientated communication

Software Engineering

- Plausibility checks
- Functional monitoring
- Defensive programming
- Dynamic analysis

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

management

Outlook: Reconfiguration for rebuilding 1002D

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

1002D - Normal operation

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

1002D – 1 channel

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

1002D*

Requirements for Reconfiguration

- Req. 1: Functions can be dynamically relocated
- Req. 2: Sensor/Actuators are redundant or accessible via network

disabled critical noncritical

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Dynamic Reconfiguration

Req. 1: Functions can be dynamically relocated

- Application information based on AUTOSAR xml description available
- Runtime environment (RTE) supporting reconfigurable software components
- Threads can started/stopped in EB tresos Safety OS

Req. 2: Sensor/Actuators are redundant or accessible via network

- Service orientated communication
- Multi-cast fault-tolerant Ethernet

Agenda

Short overview of Elektrobit automotive

The road to Advanced Driver Assistance Systems

Challenges for ADAS

System Architecture

ECU Software Architecture

Overview of different architecture approaches

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Full AUTOSAR architecture

- Safety Microcontroller
- AUTOSAR Multi-Core Safety OS
- ADAS algorithms as SWC
- Advanced hardware drivers integration as Complex Device Drivers
 - e.g. OpenCL, AVB
 - Proprietary video bus systems

Core1	Core	2	Core3
ADAS Appli SW-C	cation	,	Autosar SW-C
	R	TE	
Safety OS,BSW			

Pro	Con
Easy integration into OEM/T1 AUTOSAR process	Advanced hardware support needs AUTOSAR complex device drivers
One System	High Performance Safety Microcontoller necessary

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Microcontroller partitioning architecture

- Partitioning in Safety and Performance Microcontroller
- Separated applications treated as different ECUs during development
- Private Network for communication

Pro	Con
Scalable (combine two or more Microcontoller)	Additional hardware costs
Suitable Micocontroller already available	Need for private communication link
	Complex Flashloader and Startup

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Core partitioning architecture

 One Microcontroller with several performance cores and one safety core (typically Lockstep)

Pro	Con
No need for private network hardware	No suitable Microcontroller available today
Performance and Safety in one Micro	

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Hypervisor architecture

- Host OS with AUTOSAR guest system on one Microcontroller
- Hypervisor could be part of Guest OS

Core1	Core2		Core3
Applicatio	on		Autosar SW-C
Linux/QNX/			RTE BSW
Hypervisor		rvisor	

Pro	Con
Hypervisor as Gateway between different OS	Limited realtime capabilites
Hypervisor as Security Gateway between car and cloud	Limited Performance

Compare and contrast each architecture

Software Architectures define next generation Microcontroller Architectures

AUTOSAR is part of each architecture as a common standard for

- Basic Software, Safety and Security in ECUs
- Synchronized development process between OEM and T1

OSPERT Leibinger | 2015-07-07 | © Elektrobit Automotive GmbH 2015.

Software Architectures for Advanced Driver Assistance Systems (ADAS)

Summary

- Re-use of available integrity mechanisms from fail-safe systems is the basis for building fail-operational systems.
- Software systems that are designed to achieve a high diagnostic coverage are available today
- Fault tolerant Automotive Ethernet is available today.
- Established concepts for fail-operational system are available and can be reused in automotive systems with cost constraints.

Elektrobit

Let's build the next generation software systems for autonomous driving!

automotive.elektrobit.com Robert.Leibinger@elektrobit.com

