
An experience report on the integration of ECU
software using an HSF-enabled real-time kernel

Martijn M.H.P. van den Heuvel, Erik J. Luit, Reinder J. Bril,
Johan J. Lukkien, Richard Verhoeven and Mike Holenderski

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven (TU/e),

Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Abstract—This paper gives an overview of the challenges we
faced when integrating automotive software components on an
embedded electronic control unit (ECU). The results include the
design of a communication abstraction layer, management of
scarce ECU resources and a demonstration of temporal isolation
between components in an industrial case study.

Index Terms—Automotive software; Virtualization; Real-time
scheduling; Component-Based Software Engineering (CBSE).

I. INTRODUCTION

Today’s vehicles contain an ever increasing amount of soft-
ware. These software functions consist of various components
that replace mechanical controllers. The current market situation
reinforces the challenges of integrating these software functions
on a shared platform, because adding a new function into a
vehicle often means purchasing pre-manufactured hardware and
software with little information about the internal behavior [1].

The AUTOSAR consortium, however, recognized that a
revolutionary performance increase of in-vehicle electronic
systems comes from the composition and the integration of
independently developed software functions. In AUTOSAR,
functions are developed using components which are executed
as tasks by an OSEK-certified operating system (OS). Some
of these tasks may share memory-mapped input-and-output
(I/O) devices, actuation devices (such as brakes) and software
pieces [1] (such as object detection). The protocols that manage
synchronization on these shared resources may further impact
I/O delays experienced by the tasks of a component. Many com-
ponents, especially those that implement control functionality,
are sensitive to timing and fluctuations in actuation delays.

Hierarchical scheduling frameworks (HSFs) support prom-
ising techniques to control such timing delays and fluctuations.
In order to support composition of components and temporal
isolation between them, Nolte et al. [2] investigated the
applicability of HSFs into AUTOSAR. The HSF is implemented
using so-called servers as a layer between the AUTOSAR OS
and the AUTOSAR Runtime Environment. The AUTOSAR
standard allows for inclusion of proprietary technology, as long
as the extensions can be abstracted to an AUTOSAR OS [2].
In this work we apply an HSF to real automotive software and
we demonstrate its use in the field by means of video material.

This work is supported by the Dutch High-Tech-Automotive-Systems innov-
ation programme under the VERIFIED project (Grant number: HTASI10003).

The remainder of this paper is organized as follows. Sec-
tion II gives a brief overview of the case study being explored
in this paper. Section III then presents the software components
that were developed for our use case. Section IV describes the
deployment of those software modules on our ECU. Section V
discusses some of the practical challenges we faced in the
development and deployment of our ECU software. Finally,
Section VI concludes this paper.

II. AN AUTOMOTIVE CASE STUDY

In this work we integrated 3 software applications into a
Jaguar XF (see Figure 1): an active suspension controller [3], a
supervisory controller and a run-away process. We established
timing predictable execution of these applications by means of
an HSF, which allocates a server to each application.

The active suspension is part of a more comprehensive
Integrated Vehicle Dynamics Controller (IVDC), which is
meant to stabilize a vehicle in critical situations. The IVDC
further improves the electronic stability program (ESP) of a
car by adding suspension control to the integrated control [3].

A supervisory controller checks the correctness of the shared
sensor and actuator data and handles faults when necessary. It
is split up in a Central Supervisory Control (CSC) which
coordinates central actions for the 4 wheels and a Local
Supervisory Control (LSC) which controls a single suspension
unit for one wheel. More precisely, the CSC implements logic
to coordinate the suspension per axle and for the entire car.

The run-away process can be put in a mode where it
consumes all processor cycles and it runs at the highest
priority. It is used to demonstrate temporal isolation between
the three applications, i.e., each application can consume only
the resources allocated to its server and nothing more.

A. Logical view to hardware
We use various ECUs in the car which are connected to a

fieldbus; some of these nodes are virtual ones. Each wheel is
controlled locally. In our setup, one wheel is controlled by an
ECU while the other wheels are controlled by a dSPACE [4]
system (hence, the other ECUs are not deployed in real and their
software runs on a central dSpace node). dSPACE provides a
powerful hardware platform and tools for prototyping embedded
applications. The CSC also executes on the dSPACE system.

51



⌧1 ⌧2 . . . ⌧n ⌧1 ⌧2 . . . ⌧n

RTOS+middleware

Hardware (CPU: 200 MHz)

Supervisory control Suspension control

Network

Legend: Task Virtual processor

Virtual network bus Send or receive messages

– Component composition on local ECU–

Figure 1. In this project we employed 4 ECUs at each corner of a test car for active suspension. A central dSpace coordinates the local ECUs. It therefore
implements components for supervisory control and software-based integrated-vehicle-dynamics (IVDC) state estimation. We have integrated their local
counterparts, i.e., 2 components which are (semi-)independently developed by various project partners, through an HSF with well-defined mechanisms for
resource virtualization on a local ECU.

The ECU that we used is a Freescale EVB9S12XF512E
evaluation board with a 16-bits, MC9S12XF512 processor and
32 kB on-chip RAM. The clock speed of the processor was set
to 40MHz in order to accommodate the processing load. The
board provides, among others, 16 Analog to Digital Converters
(ADCs), several PWM outputs, a CAN controller and a FlexRay
controller. The Freescale board is connected to an extension
board which protects the processor hardware from electric
overloads, it offers voltage division and it provides connectors
to the processor board and to the environment.

B. This work
In this work, a dedicated ECU is deployed in order to control

the suspension of one of the four wheels of a car. On this
ECU, we implement and run three different applications:

Two control loops for active suspension: these tasks
run at 400 Hz and 100 Hz, respectively (i.e., tasks with
periods of 2.5 ms and 10 ms). These loops execute a
control model (developed using Matlab/Simulink) and
they interact directly with the hardware.
The LSC process: it receives commands from the CSC,
sends commands to the control loops, receives data from
the control loops and sends state information to the CSC.
Run Away Process (RAP): on command it switches
between a state in which it sends an “I’m alive" message
each period and a state in which it tries to consume all
CPU cycles.

Using our HSF extensions in MicroC/OS-II, temporal isolation
is demonstrated between the three applications. Hence, the
other applications are protected against the RAP. Moreover, we
describe their mapping on a platform with scarce resources.

III. ECU SOFTWARE

In this section we give an overview of the software
modules that are integrated on our ECU. Figure 2 shows the

microC/OS-II + HSF 
+ Main LSC ASD Runtime

4PH active control Communication 
stub Run-Away Process

Hardware drivers Depends on

Figure 2. An overview of the software modules, including their dependencies,
which we have integrated in our ECU.

dependencies between the different modules. Firstly, we briefly
recapitulate MicroC/OS-II and its HSF. Secondly, we introduce
the LSC and its run-time libraries. Thirdly, we introduce the 4-
point-hydraulic (4PH) suspension control. Finally, we describe
our communication stub.

The hardware drivers are not further described. These drivers
were mostly delivered with MicroC/OS-II or by Freescale.
Moreover, the most interesting part is described by our
communication stub1, which provides an abstraction layer for
the underlying fieldbus drivers (either CAN or FlexRay).

Also the RAP is not discussed in further detail. The reason
is that the RAP is a fairly simple process, i.e., an event-
triggered infinite loop which is introduced for the purpose
of demonstrating temporal isolation within an HSF.

1The dependencies of the communication stub to the application modules
(LSC, RAP and 4PH active control) are just there to ease their definitions of
message types; they can be avoided by means of singleton-like patterns.

52



A. MicroC/OS-II and its HSF
MicroC/OS-II is a microkernel which is maintained and

supported by Micrium [5] and is applied in many application
domains, e.g., automotive2. The kernel is open source and avail-
able for free for non-commercial purposes. The MicroC/OS-II
kernel features preemptive multitasking for up to 256 tasks,
and its size is configurable at compile time, e.g. services like
mailboxes and semaphores can be disabled.

This section recapitulates our proprietary HSF module for
MicroC/OS-II [6, 7]. Extending MicroC/OS-II with basic HSF
support requires a realization of the following concepts:

1) Server scheduling: Similar to the MicroC/OS-II task
scheduling approach, we introduce a ready queue for
servers indicating whether or not a server has capacity left.
When the scheduler is called, it activates the ready server
with the highest priority. The fixed-priority scheduler of
MicroC/OS-II then selects the highest-priority ready task
from the group of tasks corresponding to the running
server. The implementation of periodic servers turned
out to be very similar to implementing periodic tasks [6].

2) Task scheduling: After masking the task groups of all
servers except the tasks of the active one, the MicroC/OS-
II fixed-priority scheduler subsequently determines the
highest priority ready task; this code is unmodified.

3) Idle Server: We reserve the lowest task priority levels for
an idle server, which contains MicroC/OS-II’s idle task
at the lowest local priority. This server cannot deplete its
budget, so that the idle server can always be switched
in whenever no other server is eligible to execute.

A major effort in the HSF’s realization translates into a
hierarchical representation of timed events. In a system we
therefore employ four timer queues to control tasks and servers.
In case of single level scheduling, we have just a single system
queue that represents the timer events associated with the arrival
of tasks. In an HSF, we use this existing system queue for
the scheduling of servers. The timers in this queue represent
budget-replenishment events corresponding to the start of a
new period. In addition there is a local queue for each server
which keeps track of the timers needed to manage the tasks
inside a server such as the arrival of periodic tasks. At any
time at most one server can be running on the processor; all
other servers are inactive. When a server is suspended, its local
queue is deactivated. In this configuration the hardware timer
drives two timer queues, i.e., the local queue of the active
(running) server and a system queue.

When the running server is preempted, its local queue is
deactivated and the queue belonging to the newly scheduled
server is activated. In order to ensure correct execution, the
time that passed since the previous deactivation needs to be
accounted for upon activation. To keep track of this time we
introduce a third queue: the stopwatch queue. Upon deactivation
of a server, a timer is added to this queue. Whenever a server
is activated, its local queue is synchronized with the stopwatch,

2Unfortunately, the suppliers of MicroC/OS-II have discontinued the support
for an OSEK-compatibility layer.

i.e., all timers in its local queue which would have expired
if the server was running are handled. As a result, all local
timers with a smaller value than the stopwatch timer are popped
from the local queue and the corresponding stopwatch event is
subsequently deleted from the stopwatch queue. The time spent
to synchronize the local queue of the newly activated server
with global time is accounted to this server and subtracted
from its budget.

Finally, a fourth queue represents timers that expire relative
to the server budget. These events trigger the depletion of (a
fraction of) the server’s budget. We call these virtual timers as
their notion of time is limited to the server budget. Rather than
putting these in the system queue we have a separate queue
for them, since otherwise we would need to insert them into
the system queue upon activation and remove them again upon
deactivation. In this new configuration, at every tick interrupt
at most four queues are updated: a system queue, an active
server queue, a stopwatch queue, and an active server virtual
queue. The last queue does not need to get synchronized when
a server is resumed, because a deactivated server does not
consume its budget.

We refer the interested reader to [6] for a detailed perform-
ance evaluation of MicroC/OS-II and our HSF.

B. Local supervisory control and its ASD runtime
The Local Supervisory Control (LSC) consists of code

generated from formally verified state charts. These state charts
are programmed using the ASD:Suite [12]. Although ASD’s
underlying model-checking techniques can guarantee absence
of faults in the state-chart models, absence of faults is not
automatically guaranteed in the modeled program unless code
generation techniques are applied.

For this purpose, amongst other approaches, Broadfoot and
Broadfoot [8] proposed to bridge the gap between formal
methods and the informal world of software engineering by
combining the sequence-based specification method (SBS) [9]
and the process algebra Communicating Sequential Processes
(CSP) [10]. Broadfoot and Hopcroft [8, 11] extended this
work by developing automated translations between SBSs,
CSP and executable code, such that the operational semantics
are preserved. This led to the invention of Analytical Software
Design (ASD) and together with the commercial product
ASD:Suite [12], developed and owned by Verum, enables its
full integration into industrial practices.

Using ASD, we describe the provided interface of the LSC
component, which consists of the following methods:

comm_ok;
controls_enabled;
reset_system;
reset_errors.

These methods can be called by other components in the system,
i.e, in our case, the communication stub.

The behaviour behind the interface of the LSC component
is then captured by a state chart, as shown in Figure 3. It has
the following states: uninitialized, passive and active. The state
changes of the LSC are triggered by the received commands

53



Uninitialized

Initialized

Passive

Active

StandBy Error

Full Performance Degraded

reset errors

[i v1 faulty]
[i v2 faulty]

reset errors

[!comm ok]

[!comm ok][controls enabled] [!controls enabled] [dp1 faulty]
[dp2 faulty]

[comm ok] reset system

Figure 3. A state-chart representation of the LSC.

from incoming network messages. From the uninitialized state,
a transition is made to the initialized/standby state when the
LSC receives the comm_ok message from the communication
stub. This message is sent as soon as the first message is
received from the CSC. When the controls_enabled signal is
received, the active/full performance state is entered.

When faults are detected, the LSC goes into either the
degraded state or into the passive state. The degraded state
is entered if the measured sensor data (i.e, the pressure and
current) deviate from their expected values. These errors are
reported to the CSC and the LSC can return to the full
performance state when the reset_errors message is received.

In the passive states the local 4PH suspension control acts
independently of the central control. This happens, e.g., when
the communication between the dSpace box and our ECU
fails. The communication is considered to be correct (see
Section V-B) as long as maximally two messages from the
CSC are missed, either because these did not arrive at the ECU
or because the ECU could not process these in time. If the
communication fails, i.e., when more than two messages are
not received, then the passive state is entered. When messages
are arriving again, the communication stub sends the comm_ok
message again and the full performance state is re-entered.
Otherwise, the LSC stays in the passive state.

Finally, the above design is formally verified by ASD. By
modeling its environment, e.g., the interface of the commu-
nication stub which may use the LSC’s provided interface,
concurrency issues of tasks interacting with the LSC can be
avoided. Subsequently, MISRA C compliant source code [13]
has been generated which implements the model.

C. 4PH active suspension
The local 4PH suspension control of our ECU controls the

suspension unit at one wheel of the car. The suspension unit
for one wheel consists of a conventional suspension extended

with a hydraulic system. The hydraulic system consists of a
fluid-filled cylinder with a piston that divides the cylinder into
two parts. The pressure on both sides of the piston can be
varied by two electrically operated valves, so that the piston
and the rod attached to it can move in both directions. The
valves are actuated via Pulse Width Modulation (PWM), so
the effective voltage applied is determined by the ratio of the
duty cycle and the period of the PWM. Hydraulic pressure is
measured on both sides of the valves. Also the actual current of
the valves and the voltage of the power supply are measured.

The code generated from this active-suspension application
for our ECU consists of 2 control loops: one controls the
pressure of the valves at 100Hz and the other controls the
current at 400Hz. The central dSpace box runs the software
for the other 3 wheels of the car and it runs the CSC which
implements logic to coordinate the suspension per axle and for
the entire car. The entire control application has been modelled
and tested using Matlab-Simulink. For details on the vehicle
dynamics, we refer the interested reader to [3].

D. Communication stub

The communication stub optimizes concurrent use of the
network bus and abstracts its underlying technology. In this
section, we describe how we connected our ECU to a CAN bus;
Section V-C shows how the CAN connection can be replaced
by a FlexRay connection.

The communication optimization focuses on minimizing the
number of messages to be transmitted from dSpace to the ECU
and vice versa. Messages that are to be sent at the same time are
therefore piggybackked into one packet. The abstraction takes
care of a uniform message format and it hides variations in
latency and jitter involved with communication. This is needed,
because the data structures, that define the messages being
communicated over the CAN network, are compiled differently
by the dSpace and the Freescale compilers. The communication
stub therefore encodes and decodes CAN messages.

Moreover, without any additional means, the clocks at the
dSpace box and our ECU will not be synchronized, which may
lead to jitter. Although the central controllers at the dSpace
and the local controllers at the ECU may roughly run at the
same speed, they will not be as tightly synchronized as they
would be in case both run on the same dSpace box. This may
have two consequences for a local controller:

1) When it runs ahead, it may expect an absent message;
2) When it runs behind, it may receive multiple messages.

Both problems are resolved by assuming that the local controller
has a state-message semantics. That is, the last value that has
been sent is returned and there is no synchronization between
sender and receiver.

This way of communication may lead to conflicts with the
LSC, because the LSC expects messages upon each event
that requires a change of its internal state. We have therefore
implemented a translation layer in the communication stub in
order to support event messages (see Section V-A).

54



IV. APPLICATION MAPPING
In this section, we firstly describe the mapping of applications

to tasks and servers. Secondly, we describe the mapping of
applications to messages on the fieldbus. Finally, we discuss
the mapping of applications to memory.

A. Servers and tasks
As suggested by Figure 2, the application settings of

MicroC/OS-II and the integrated ECU software are together
defined in a main file. This file includes declarations of tasks
and servers, their priorities and the stack size of the start tasks,
i.e., the task that creates the other tasks and that starts the
real-time clock. The real-time clock operates at 4000Hz, which
restricts the monitoring of the resource consumption to 10%
of the execution of the most frequent control loop.

In total we define 3 servers, i.e., given in descending priority
order: for the RAP, the active suspension and the LSC process.
The RAP and the LSC are (arbitrarily) allocated 10% processor
bandwidth each period of 10 ms. Based on our experiments,
the processor budget of the server corresponding to the active
suspension control is set to 80% of the processor bandwidth
with a period of 2.5 ms.

The local 4PH suspension control consists of two control
loops (for current control and for pressure control) which are
running on the same server. For each of the control loops,
a task is created and their priorities are assigned in a rate-
monotonic manner. In order to reduce the number of context
switches between these tasks, their execution is forced in a
strictly alternating manner (using a release offset and semaphore
protection), so that 1 execution of the 100Hz control loop is
followed by 4 executions of the 400Hz control loop. Moreover,
the offsets of the tasks are chosen such that the high-frequent
task cannot be preempted due to the server’s budget depletion.

B. Fieldbus communication
In our setup, the applications on the ECU report their status

to the CSC. The fieldbus (by default CAN) is therefore used
by three different applications, i.e., from the ECU’s sides:

Active-suspension control: every 2.5 ms, it reports the
current and voltage set points of the valves.
LSC: every 10 ms, it reports state and error information;
RAP: sends an “I’m alive" message every 10 ms.

The messages from the LSC and the RAP are piggybacked on
the control messages, because these have the highest frequency.

In return, the CSC on the dSpace box replies to our ECU
every 10 ms. The messages received by our ECU contain:

1) set points and estimated valve flows for the control loops;
2) state-change commands for the LSC;
3) state-change commands for the RAP.

C. Memory management
A major challenge encountered was that the control applica-

tion (generated from Simulink) did not fit into the non-paged
memory of the processor, i.e., the application requires more
than the 8KB directly accessible RAM. Additional RAM can
be used by means of the so-called banked memory model
which enables memory paging. By loading a page into the

page window and making sure no other page is loaded into
this window, 4KB additional RAM can be directly addressed.

The support for memory paging required us to change the
functions involved in context switching, including the interrupt
service routines (ISRs), because the stack needs to store the
PPAGE register and a 24-bit function pointer (only a 16-bit
pointer is stored in the non-paged case). Paging has only
been implemented for code, not for data as this would have
required additional effort which was unnecessary to solve
our memory problems. For performance reasons, compiler
directives (pragmas) were applied to ISRs in order to link them
into non-banked memory.

V. DISCUSSION: RELIABLE COMMUNICATION

A. Joint event-triggered and time-triggered message handling
In our design, two types of message semantics have been

integrated [14]: event-message and state-message semantics.
For event-message semantics, a message is associated with
an event that is processed upon receiving the message. Also,
synchronization is needed between sender and receiver. For
state-message semantics, the last value that has been sent is
returned which represents the last known state of the sender.
Since we cannot assume intermediate synchronization between
the dSpace box and our ECU, we implemented a translation
from event-message semantics to state-message semantics.

The 4PH suspension control loops are implemented using
Matlab/Simulink. Matlab/Simulink implements time-triggered
activations of control tasks and it polls for input data, corres-
ponding to state-message semantics. The local 4PH suspension
control will therefore automatically read the data of the latest
received message, i.e., following the state-message semantics.

However, the LSC assumes event-message semantics, be-
cause the supervisory control is assumed to be activated upon
a (relevant) state change in its environment. This requires a
conversion from state-message semantics to event-message
semantics in the communication stub. For this purpose, our
communication stub provides dedicated send and receive
primitives, which we briefly describe below.

1) Sending messages: When a send primitive is called
from the communication stub interface, this will simply
cause an update of local data within the communication stub
corresponding to the send request. However, no message is
being submitted at this time. Only periodically, messages are
being packed and submitted to the CAN bus.

When multiple state changes happen for the local read data
of supervisory control, it gives rise to multiple events to reflect
those state changes. This may lead to overload situations, as
discussed in the next subsection.

2) Receiving messages: When a read primitive is called
from the communication stub, all messages (if any) will be
retrieved from the message queue of the CAN driver, in the
order of arrival. Only the latest received message will be taken
into account for handling, because a state-message semantics
is assumed. This is possible because only the local state of
the LSC needs to be updated. This message may cause a
state-change in the LSC, where only the last state matters.

55



4PH local control Communication stub CAN driver

send sensor data

Update local state of 4PH controller

send packed message

Figure 4. Interaction diagram for sending a CAN message.

Note that only a state change with respect to locally stored
data (for example, by the LSC) is translated into an “event”. In
this way we effectively transformed state-message semantics
into event-message semantics.

B. Handling communication errors and overloads
Within our system, we cannot assume that message commu-

nication is reliable. When a task attempts to send a message to
an uninitialized node in the network, a CAN error interrupt is
generated. If this interrupt is not handled properly, this causes
a crash of the control software. An ISR is therefore developed
to handle this interrupt, i.e., it resets the CAN bus with a call to
CANStart. The execution time of this ISR is considerable and
it exceeds the execution time of the control loops. In practice
this is not problematic, because uninitialized nodes typically
occur only once when the applications are bootstrapped.

Furthermore, once the communication has been initialized,
our ECU may be unable to keep up with the produced messages
of the central control running on the dSpace box. In consumer-
producer situations, a consumer (e.g., a LSC) may not be
able to keep up with the producer (e.g., the CSC delivering
commands over the network). A common technique to prevent
buffer overloads is to selectively delete incoming messages. In
this way, unacceptable latencies between the reception of the
remaining commands and their handling can be avoided.

Deleting events in a state-message semantics is only possible,
if and only if the new state of the receiver depends on just the
latest event (rather than all intermediate states). Given that state
changes of the LSC do not appear often, we experienced that
in our proof of concept pruning of messages can be ignored.

C. Replacement of CAN by FlexRay
FlexRay has been introduced in order to increase the

available network bandwidth compared to CAN. The FlexRay
technology defines a communication cycle which is divided into
static and dynamic segments. The static segment enables time-
triggered communication; the dynamic segment allows each
node to transmit its messages in the remaining bandwidth using
event-driven communications (like with CAN). In this work,
we merely used the static segment. Freescale provides a library
for this, which contains a set of functions and protocol-specific
interrupt handlers to interact with the FlexRay controller.

The payload size of FlexRay slots is configured to be
16 bytes. This allows the resolution of the messages to be
increased compared to CAN. Another advantage of this payload
size is that encoding of the messages into the slots can be
done efficiently. Consequently, all messages can be encoded

and decoded by using the union of their data (i.e., fast
piggybacking). The data structures of the FlexRay messages
are defined as a union of a set of fields and a byte array. Such a
union provides the possibility to approach the memory location
at which the structure is stored as one of the fields or as a
byte in the array. This makes the earlier described functions
to encode and decode messages obsolete.

However, since FlexRay messages are larger than CAN
messages, FlexRay communication requires more data memory
compared to CAN. This reinforces the challenges related to
efficient memory management of the applications running on
our ECU (as discussed in Section IV-C).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we revisited HSFs for facilitating timing
predictable integration of automotive software components.
Previously, we have published both the theoretical [15] and
the practical impact [6, 7] of resource virtualization on the
timeliness of synthetic components. In this paper we presented
our experiences with employing our HSF in an ECU with
real automotive software. A Jaguar XF carries our HSF with
active-suspension software, which we captured on video. Future
cars are expected to rely even more on timing predictable
composition, not just for further vehicle dynamics but also
for car-to-car control (like collision avoidance). Here real-time
systems and the internet-of-things may join their forces.

REFERENCES
[1] M. Di Natale and A. Sangiovanni-Vincentelli, “Moving from federated

to integrated architectures in automotive: The role of standards, methods
and tools,” Proc. of the IEEE, vol. 98, no. 4, pp. 603–620, April 2010.

[2] T. Nolte, I. Shin, M. Behnam, and M. Sjodin, “A synchronization protocol
for temporal isolation of software components in vehicular systems,”
IEEE Trans. on Ind. Inf. (TII), vol. 5, no. 4, pp. 375–387, Nov. 2009.

[3] B. Bonsen, R. Mansvelders, and E. Vermeer, “Integrated vehicle dynamics
control using state dependent riccati equations,” in AVEC, Aug. 2010.

[4] dSPACE GmbH, “Automotive Solutions – Systems and Applications,”
2015. [Online]. Available: https://www.dspace.com/

[5] Micrium, “RTOS and tools,” 2011. [Online]. Available:
http://micrium.com/

[6] M. Holenderski, R. J. Bril, and J. J. Lukkien, “An efficient hierarchical
scheduling framework for the automotive domain,” in Real-Time Systems,
Architecture, Scheduling, and Application. InTech, 2012, pp. 67–94.

[7] M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Transparent
synchronization protocols for compositional real-time systems,” IEEE
Trans. on Industrial Informatics, vol. 8, no. 2, pp. 322–336, May 2012.

[8] G. H. Broadfoot and P. J. Broadfoot, “Academia and industry meet:
Some experiences of formal methods in practice,” in APSEC, 2003, pp.
49–59.

[9] S. J. Prowell and J. H. Poore, “Foundations of sequence-based software
specification,” IEEE Trans. on Software Engineering (TSE), vol. 29, no. 5,
pp. 417–429, 2003.

[10] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall,
Int. Ser. in Computing Science, 1985.

[11] P. J. Hopcroft and G. H. Broadfoot, “Combining the box structure
development method and CSP for software development,” ENTCS, vol.
128, no. 6, pp. 127–144, May 2005.

[12] “Verum R� - Tools for building mathematically verified software,” 2009.
[Online]. Available: www.verum.com

[13] “MISRA - The Motor Industry Software Reliability Association,”
2004-2009. [Online]. Available: http://www.misra-c2.com/

[14] S. Poledna, “Optimizing interprocess communication for embedded real-
time systems,” in RTSS, Dec. 1996, pp. 311–320.

[15] M. M. H. P. van den Heuvel, “Composition and synchronization of
real-time components upon one processor,” Ph.D. dissertation, TU/e, The
Netherlands, June 2013, ISBN 978-94-6108-443-9.

56


