
Adaptive Resource Sharing in Multicores
Kai Lampka Jonas Flodin Wang Yi

Department of Information Technology, Uppsala University
Adam Lackorzynski

Technische Universität Dresden

Abstract—This short paper presents an adaptive, operating
system (OS) anchored budgeting mechanisms for controlling
the access to a shared resource. Temporarily blocking accesses
from a core reduces the waiting times of other applications
executing in parallel on other cores. This helps to guarantee
the assumed worst case execution time bounds at run-time. In
addition to our previous work [1], the presented scheme considers
shifting of unused access bandwidth among applications and takes
advantage from a time-triggered scheduling policy for executing
real-time applications at core-level.

I. INTRODUCTION

a) Motivation: Sharing of hardware as found in COTS
multicores brings in hidden dependencies when consolidating
hard and soft real-time applications on a single processor.
These dependencies can provoke timing faults that are difficult
to foresee and can corrupt the functionality of the system.

The challenge inherent to the design of the run-time
environment to support the timing correct execution of mixed
critical workloads is three-fold.

Firstly, hard real-time tasks need to be isolated, such that
their assumed upper bound on their execution time always
holds. In addition, standard real-time analysis builds on task
sets with known bounds on their execution times. The feasibil-
ity of a scheduling strategy, shown at design time, is guaranteed
to hold at run-time if the upper bounds on the execution times
(and activation frequencies) are not violated. As unaccounted
waiting at a resource prolong execution times, it can become
a threat to a systems timing correctness.

Secondly, resource sharing needs to be considerably dy-
namic, to avoid over-provisioning and thereby achieve good
utilization of the used equipment.

Thirdly, the mechanism to coordinate the access to a shared
resource must not be too complex to limit the computational
overhead experienced at run-time.

b) Technical problem description: As an example to
resource sharing, this short paper considers the sharing of the
dynamic random access memory (DRAM).
When carrying out a worst-case response time analysis
(WCRT) for quantifying the computation time consumption
of an application, one has to assume that a memory access
from a core can be delayed by all other memory accesses
occurring while the respective access is waiting at the DRAM-
controller. With n access requests from other cores, this yields
a delay of (n + 1) times the worst case service time until
a request is served. This assumption is conservative as it
overapproximates the actual behaviour of the system at run-
time. However, it is safe as long as less than n competing
access requests occur. It is therefore of uttermost importance
to ensure at run-time that the number of competing memory

This work is partly funded by DFG-SPPEXA’s project FFMK.

access requests is bounded by a pre-defined number and
one does not experience unaccounted waiting times due to
unaccounted memory requests.
In this short paper, we summarize our effort to do this
efficiently and effectively and point out directions for improve-
ments left to the future.

c) Related Work: For dealing with memory access
contention effects in the setting of multicore architectures,
several strategies have been proposed.
Time deterministic memory designs avoid interference by
physically separating relevant parts of the memory hierarchy
and exclusively assigning parts to cores. This ranges from the
use of scratchpad memories [5] to the partitioning of main
memory [3]. However, these techniques all rely on the layout
of the memory hierarchy.
Another way to feature timing predictability is provision of
isolation mechanisms as part of the run-time environment. At
the level of OS, this can be done by controlling the virtual
to physical address mappings [6] or by restricting access
frequencies of the main memory for each core [7], [8].

d) Own Contribution: Advancing over the work of
Pellizzoni et al. [7], [8], this short paper propose the follow-
ing innovations when it comes to resource access budgeting
schemes: (a) we enable lifting of budgets, namely once all
real-time tasks are pre-maturely completed. (b) we also feature
donation of budgets. But, donation is only allowed, if the
donating real-time task has already terminated.
Both features can be considered safe, the safeness of budget
lifting is demonstrated in [1]. The safeness of budget donation
comes from the fact that we avoid premature shifting of
resource accesses. This is important and this way we avoid
starvation of real-time applications which could provoke tim-
ing faults.
In addition to our own work [1], this short paper presents a
budgeting scheme which takes advantage of a time-triggered
scheduling strategy of real-time applications at the levels of
cores. This way, we not only lift unneeded budgets more often.
We also hope to shift unused access budgets more often as this
can take place every time all real-time applications of a time-
frame have processed their workload.

II. SYSTEM MODEL

We consider a system deployed on a typical COTS mul-
ticore architecture. There are M CPU-cores, K of which
are executing hard real-time software and M � K cores are
executing best-effort applications.

There are N sporadic hard real-time tasks T =
{⌧1, ⌧2, ..., ⌧N}, each defined by the quadruple ⌧i =
(Ci, Pi, Di, Hi), with Ci as the WCET for the task when
running alone on one hard real-time core, Pi as the minimum
inter arrival time of the task, Di Pi as the task’s relative

29

ts
2

s
1

f
1

f
2

e
1

e
2

τ
1

τ
2

budget

B
2

B
1

U
2

B
2

slack

U
1

WCET

WCET

slack

τ
1

τ
2

Fig. 1. Budgeting example with two tasks. Arrows pointing up denote job
releases and dashed vertical lines denote the point in time when a job would
have finished if it needed the entirety of its WCET.

deadline and with Hi as the largest number of memory access
requests produced by ⌧i during one task instance.

Each core has its own fixed priority scheduler and each
task ⌧i is mapped to one specific core out of the K hard real-
time cores.
The other cores we collectively call soft real-time cores and
they execute soft real-time or best-effort tasks, we do not make
any assumptions about the soft real-time tasks. It is these
cores which we intend to control through the presented
budgeting scheme and thereby ensure timing correctness
of the hard real-time applications running in parallel.
All cores share a single memory controller which acts as an
arbiter for serving requests to DRAM.

III. DYNAMIC BUDGETING WITH LIFTING

The initial scheme of budget enforcement and lifting is
presented in [1]. We briefly recall its working principle by
means of an example.

Fig. 1 illustrates the execution of two tasks. The upper part
depicts their interleaved execution on the hard real-time core.
The lower part shows which budget is in effect on the soft
real-time cores. The hard real-time core starts executing ⌧2 and
signals the soft-real time cores to use budget B2 at time s2. The
hard real-time core continues executing ⌧2 until time s1, when
it is preempted by the arrival of ⌧1, which also triggers the
soft real-time cores to switch budget to B1. When ⌧1 finishes
early at f1, the soft real-time cores are signaled to exchange
the budget B1 for U1, which means that they have unlimited
access to main memory until e1. At the same time, the hard
real-time core switches to executing ⌧2. When U1 expires at
time e1 the soft real-time cores fall back to use budget B2

until ⌧2 finishes at f2. The budget B2 is then switched for U2

until it expires at e2.

IV. COMBINING RESSOURCE ACCESS BUDGETING AND
TIME TRIGGERED APPLICATION SCHEDULING

A. Time-triggered execution of tasks

Scheduling of hard real-time tasks is organized according
to a standard time-triggered scheme, e. g., as defined in [2].

A time-triggered schedule at core i is a sequence of Ki

slots si,j , where s�i,j refers to the time length of each slot.
While executing a slot si,j , we need to guard that all the

cores running soft real-time applications do not issue more

Algorithm 1 Enforcing budgets on a soft core
1: Requires: timer T , active budget B,
2: set of active budgets Budget
3: Input: signal e mapping to a slot and action
4: procedure BSCHEDULER(signal e)
5: PREEMPTION = OFF
6: if action(e) 2 {depleted, expired} then
7: wait4Timer(T)
8: goto line 28

9: end if
10: update(Budgets,B.beff � readPMC(), B.t� T)
11: if action(e) == activate then
12: insert(Budgets, slot(e))
13: else if action(e) == deactivate then
14: remove(Budgets, slot(e)))
15: else if action(e) == donated then
16: C = peek(Budgets, slot(e))
17: updateDonation(Budgets,B.d, C.t)
18: end if
19: while B = peek(Budgets)) 6= ; ^B.t 0 do
20: remove(Budgets,B)
21: end while
22: if B == ; then
23: stopTimer(T)
24: else
25: setPMC(B.beff)
26: setTimer(T = B.t)
27: end if
28: PREEMPTION = ON
29: end procedure

than Beff (si,j) accesses to the main memory in total.
Below we detail on the algorithm to implement this basic

functionality. For simplicity, we ignore the distribution of
budgets and donations over multiple cores executing a soft
real-time workload,. For the presented algorithms, the distri-
bution could be arranged transparently, through a dedicated
administering core.

B. Budget enforcement for soft real-time workloads

The required functionality for guarding the number of
memory accesses such that timing correctness of the hard real-
time tasks is ensured, is provided by Algorithm 1.

The implementation details of Algorithm 1 are as follows:
we assume that there is a queue Budgets of active budgets,
with at most one active budget per hard real-time core.

Within the queue, the active budgets are ordered by increas-
ing budget sizes. The following functions are used to access
items of the queue: function replace and remove, which work
as expected. Function update(Budgets, a, b) decreases all
budgets of the queue by value a and decreases their lifetimes
by value b. This is needed once the decisive budget has reached
its lifetime or is replaced by a newly activated budget. Function
peek gives the head of the queue, i. e., the active budget with
the smallest number of allowable cache misses. The functions
does not remove the item from the queue.

The algorithm itself works as follows: upon depletion of
the decisive budget or at the end of its lifetime the core suspend

2

30

execution for the remaining lifetime, which in case of the “end
of lifetime” situation is 0 (line 5).

In case the decisive budget has reached the end of its life
time or a new budget to be activated has arrived, we update all
active budgets with respect to to the number of cache misses
and the expired time occurred during the current budget has
been made the decisive one.

In case of a premature deactivation the decisive budget, it
is removed from the budget queue and the next active budget
is fetched. This can either be the same, but updated budget, a
new one, where budgets with invalid lifetime are discarded, or
it is an empty budget (line 18-20).

In case of an empty budget all active budgets have been
prematurely invalidated and the core has a non-restricted
allowance to the main memory.

In case a valid budget is fetched from the queue, the LLC-
register and the lifetime clock counter are set accordingly (line
25 and 26).

Budget donation executed by a hard real-time core is
considered before actually fetching a budget from the queue.
Function updateDonation(Budgets, a, b) adds value a to
each budget, here parameter B.beff and does so only for those
budgets which have a residual lifetime smaller than b.

V. IMPLEMENTATION

For evaluation, we use the L4Re microkernel system that
provides the environment to run existing applications and
operating systems through virtualization as well as native
microkernel-based applications. The L4Re gives us the flexibil-
ity to use virtualization as well as specific native applications
in a very controlled environment.

Scheduling in the L4Re microkernel applies scheduling
contexts (SCs), a thread-specific data structure that contains
all information required for scheduling [4]. A special fea-
tures of the SC mechanism is that a thread, or vCPU, can
have multiple SCs, allowing to give a thread/vCPU multiple
different scheduling parameters. This is especially useful in
virtualization contexts where the guest OS can use multiple
SCs to express the requirements of its internal tasks to the
microkernel. In our work we use the SC mechanism to
implement budgets based on performance counters.

1) Hardware Performance Counters: Modern processors
have a performance monitor counter (PMC) unit that allows to
count hardware-related events in the CPU core, such as cache
misses. The core can also generate interrupts when a counter
reaches a predefined threshold. Using the PMC it is possible to
count the number of last-level cache misses which is equivalent
to the number of main memory fetches. If the number of
memory fetches reaches a certain threshold, the microkernel
may suspend the execution of soft real-time applications to
avoid an overload of the main memory with memory access
requests. The challenge is to use the PMC in such a way, that
is dynamically resetting the PMC and adjusting the threshold,
that the maximum amount of memory accesses can be placed
on the DRAM without affecting real-time applications.

2) PMC Pecularities: All Intel Core-i CPUs have a min-
imal standard set of performance counters that includes the
last-level-cache-miss counter. The first experiment we did was

checking whether our test program indeed uses all of the
memory bandwidth available. By running it on a different
number of cores in parallel we expect the runtime of each
program to increase with the number of cores. That is, on 4
cores each program shall run 4 times longer compared when
running alone in the system. We observed this behavior.

However, when we added delays to the memory access
loop in the test program, with the goal to not fully use up
all the memory bandwidth, the respective last-level-cache-
miss counter shows significantly less events although the same
amount of memory was accessed. This is likely because of the
hardware memory prefetcher where memory accesses are not
counted, as they are no cache misses. We tried to disable the
prefetcher via the IA32_MISC_ENABLE MSR [8], however,
this yields to a general protection fault when writing the MSR
on the used i7-4770 CPU. Using non-cached memory is no
choice either because those accesses do not causes cache-
relevant events, such as misses. Using other counters available
on the specific CPUs showed either the same behavior (signif-
icantly different values for with and without delay loops), or
did not count at all.

Intermediate result is that Intel-based x86 desktop CPU,
such as the i7-4770, can not be used to implement memory
access budgeting based on performance counters. We need to
look at other CPU lines, such as Xeon CPUs, or older Intel
CPUs, whether they are better suited, for example, because
they allow to disable the prefetcher. Alternatively, looking at
ARM Cortex-A CPUs shows a counter called MEM_ACCESS

which sounds promising as well.

REFERENCES

[1] Jonas Flodin, Kai Lampka, and Wang Yi. Dynamic budgeting for
settling DRAM contention of co-running hard and soft real-time tasks.
In Proceedings of the 9th IEEE International Symposium on Industrial
Embedded Systems, SIES 2014, Pisa, Italy, June 18-20, 2014, pages 151–
159, 2014.

[2] Gerhard Fohler. Joint scheduling of distributed complex periodic and
hard aperiodic tasks in statically scheduled systems. In proceedings of
the 16th IEEE Real-Time Systems Symposium, pages 152–161, 1995.

[3] Min Kyu Jeong, Doe Hyun Yoon, Dam Sunwoo, M. Sullivan, Ikhwan
Lee, and M. Erez. Balancing dram locality and parallelism in shared
memory cmp systems. In High Performance Computer Architecture
(HPCA) 2012, pages 1–12, Feb 2012.

[4] Adam Lackorzyński, Alexander Warg, Marcus Völp, and Hermann
Härtig. Flattening hierarchical scheduling. In Proceedings of the tenth
ACM international conference on Embedded software, EMSOFT ’12,
pages 93–102, New York, NY, USA, 2012. ACM.

[5] I. Liu, J. Reineke, and E.A. Lee. A pret architecture supporting
concurrent programs with composable timing properties. In ASILOMAR
2010, pages 2111–2115, Nov 2010.

[6] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and
Chengyong Wu. A software memory partition approach for eliminating
bank-level interference in multicore systems. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, pages 367–376, New York, NY, USA, 2012.
ACM.

[7] Heechul Yun, Gang Yao, R. Pellizzoni, M. Caccamo, and Lui Sha.
Memory access control in multiprocessor for real-time systems with
mixed criticality. In Real-Time Systems (ECRTS), 2012 24th Euromicro
Conference on, pages 299–308, 2012.

[8] Heechul Yun, Gang Yao, R. Pellizzoni, M. Caccamo, and Lui Sha. Mem-
guard: Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms. In RTAS 2013, pages 55–64, 2013.

3

31

