
Transactional IPC in Fiasco.OC
Can we get the multicore case verified for free?

Till Smejkal, Adam Lackorzynski, Benjamin Engel and Marcus Völp

Operating Systems Group
Technische Universität Dresden, Germany

<name>.<surname>@tu-dresden.de

Abstract—Already announced in 2007 for Sun’s Rock proces-
sor but later canceled, hardware transactional memory (HTM)
finally found its way into general-purpose desktop and server
systems and is soon to be expected for embedded and real-time
systems. However, although current hardware implementations
have their pitfalls, hindering an immediate adoption of HTM
as a synchronization primitive for real-time operating-systems,
we illustrate on the example of a transactional implementation
of the L4/Fiasco.OC inter-process communication (IPC) how
extended versions of HTM may revolutionize kernel design and, in
particular, how they may reduce the verification costs of a multi-
core kernel to little more than verifying a selectively preemptible
uni-processor kernel. Removing L4/Fiasco.OC’s half thousand
lines-of-code cross-processor IPC path and making the local path
transactional, we benefit from a principal performance boost for
sending cross-core messages. However for the average case, we
experience a 30 % overhead for local calls.

I. INTRODUCTION

Cyber-physical systems such as autonomous cars, medical
robots, and airplanes increasingly apply multi-core hardware
and multi-core real-time operating systems (RTOS) to meet
the performance demand of their applications. At the same
time, these systems often operate with or in close proximity of
humans, thus safety is a must and formal verification is most
rigorous in assuring that a system is to be trusted. However,
although fully verified single processor systems are at the
verge (first microkernels have already been verified [1], [2]),
multiprocessor verification remains a milestone to be taken.

Verification of uniprocessor kernels typically proceeds by
splitting the high level verification goal into smaller properties
and invariants, which are then shown to hold for arbitrary
sequences of non-preemptively executing pieces of kernel code.
One, if not the challenge when comparing the verification
of multiprocessor kernels with uniprocessor kernels is that
non-preemptive execution no longer conveys atomicity at the
granularity of non-preemptive execution, but at the granularity
of individual processor instructions. Instead of having to
consider arbitrary interleavings of large code pieces, one
must therefore establish the desired results for all possible
interleavings of machine instructions, which easily pushes
verification complexity beyond manageable bounds. Of course,
there are several tools to assist in this tasks, for example,
concurrent separation logic [3] and the multitude of approaches
that followed Owicki and Gries [4], [5] seminal work on assume-
guarantee reasoning. However, despite these tools, one must
still specify and verify the behavior of the kernel at a fine
granular and machine-dependent level.

In this paper, we argue why we believe transactions can
re-establish some of the simplicity one finds when verifying
uniprocessor kernels by reintroducing atomicity at a coarse
granularity and, most importantly, in a machine-independent
way. Our goal is not to translate uniprocessor results to the
multiprocessor case, which if possible at all requires careful
argumentation. Instead, we propose to re-implement the kernel
as sequences of large transactions to regain the atomicity of
non-preemptive execution. We evaluate on the example of
L4/Fiasco.OC’s IPC path using the hardware transactional
memory implementation found in Intel’s Haswell processors
to which degree this is possible and at which costs.

We present our transactional IPC path in Section III,
compare its performance against mainline Fiasco in Section IV
and illustrate in a semi-formal way in Section V how lifting
atomicity from individual instructions to coarse grain transac-
tions simplifies the multicore verification task to little more
than what is required when verifying uniprocessor kernels.

II. HARDWARE TRANSACTIONAL MEMORY

In 1993, Herlihy and Moss [6] proposed transactional
memory (TM) as a mechanism to assist developers in protecting
shared data structure accesses in parallel systems. Unlike lock-
protected data structures, which to scale require cumbersome to
design and error prone fine-grain locking schemes, transactional
memory performs modifications of data structures optimistically
but is prepared to discard these modifications in case of conflicts.
Especially for low-contended locks, TM avoids the locking
overhead at the expense of guaranteed progress in situations
where transactions abort.

To implement transactional operations in hardware, i.e., to
ensure atomicity of updates in case the transaction completes
and isolation in the sense that modifications remain invisible
until the transaction commits, Herlihy and Moss proposed to
exploit processor local caches as interim storage and cache
coherence protocols (such as MESI) for conflict detection.
External writes abort transactions if they are to any data loaded
into the cache or accessed while executing transactionally;
external reads abort a transaction if they are to cachelines
that are cached in exclusive modified state (M) as a result of
transactional writes. Further aborts may happen if transactional
data exceeds the capacity of the cache or for other reasons
that are specific to the concrete implementation of hardware
transactional memory (HTM).

Many software implementations of transactional mem-
ory have been proposed over the years (see e.g. [7], [8]),

19

including hybrid hardware-software solutions [9]. However,
their applicability is limited due to significant overheads
as identified by Cascaval et al. [10]. The first full fledged
hardware implementation as described by Herlihy and Moss has
been announced in 2011 for IBM’s BlueGene-Q servers [11],
followed by Intel’s Transactional Synchronization Extension
(TSX) [12] for standard PC hardware in 2012.

TSX offers two distinct features: Hardware Lock Elision and
Restricted Transactional Memory. Hardware lock elision [13]
automatically replaces locks with transactions by replacing the
acquisition of the lock with a transaction begin and the release
with an attempt to commit the transactional state collected
while executing the critical section. In contrast, restricted
transactional memory (RTM) exposes the complete transaction
interface to the programmer allowing her to start, commit and
abort transactions through special processor instructions. The
limitations of RTM are conflict detection only at the granularity
of cachelines but no finer, the bounded amount of memory that
can be accessed from within a transaction, and, as far as Intel’s
implementation is concerned, the lack of any progress guarantee
with regard to which transaction will abort. In particular, RTM
aborts transactions on interrupts, system calls and in many
other situations, including the execution of some privileged
instructions.

Our main focus in this paper is on safety, security and
correctness but not on lifeness and guaranteed completion.
Nevertheless, we will argue why transactions should be
considered as a mechanism to simplify the kernel and why
real-time systems require future implementations of hardware
transactional memory to convey progress guarantees similar to
those provided by IBM in BlueGene-Q.

III. TRANSACTIONAL INTER-PROCESS COMMUNICATION

With TxLinux Ramadan et al. [14] have already shown
the value of hardware transactional memory for synchronizing
access to kernel data structures. However, to leverage the full
potential of HTM for both simplifying in-kernel locking and
verifying multi- and manycore kernels, all system calls must
execute transactionally, at least to the best degree possible.

To demonstrate the feasibility (and drawbacks) of almost
fully transactional system calls, we use as an example an
implementation of L4/Fiasco.OC’s IPC path with Intel’s RTM.

A. The L4/Fiasco.OC Microkernel

L4/Fiasco.OC is a 3rd-generation capability-based micro-
kernel designed for use in both security and real-time critical
scenarios. Following Liedtke’s design principle [15], the L4
family microkernel provides only those functionality in the
kernel, which cannot sensibly be implemented at application
level. This is the functionality required to isolate user-level
subsystems (capabilities and address spaces) and inter-process
communication (IPC), which provides a safe and secure means
for communicating between these subsystems.

IPC messages in L4 may contain both data and capabilities,
which are required to invoke kernel-implemented objects (such
as IPC gates to send messages to other threads). IPC is
synchronous, that is the sender blocks until the receiver is
ready to receive, which removes buffer allocation from the

IPC path and allows the threads’ user-level control block to
be used as message buffer. Through IPC operations, threads
may send or receive messages or they may call other threads,
which is an atomic send and receive operation in the sense
that when the callee receives the message, the caller is already
ready to receive from this thread. IPC is transparent, that is
IPC uniformly works in the same way irrespective of the core
on which the receiver is executing. It may be on the same core,
in which case we say IPC is local or on a different processor
core than the sender, in which case IPC is cross processor.

Mainline L4/Fiasco.OC [16] comes with two tightly inte-
grated IPC paths: a fast path for core-local communication and a
cross-processor IPC path, designed to preserve the performance
of local IPC as much as possible. In this paper, we explore how
IPC and especially cross-processor IPC can be implemented
with HTM mechanisms. Besides simplifying the cross-processor
IPC path (when compared to existing non-TM approaches),
we show that, with a few exceptions, transactions span the
same parts of the code that executes non-preemptively in the
core-local case. For these exceptions, we explain why they have
to execute non-transactional and sketch how one can further
reduce the amount of non-transactional code.

B. IPC with RTM

Ideally, from the viewpoint of verifying the kernel and to
minimize transaction overhead, the entire IPC operation should
be a single transaction. However, there are two general obstacles,
which prevent us from turning IPC and, more generally, system
calls into a single transaction each: (i) privileged instructions
and device accesses abort transactions unconditionally; and
(ii) transactional state may become too large to fit the L1
cache, which also leads to aborts. In the L4/Fiasco.OC IPC
path, the transaction-aborting operations are the programming
of timeouts, which involves setting the hardware-timer to the
earliest pending timeout, and the reloading of the page-table
base register, when IPC switches to a thread in another address
space. In addition, on architectures such as ARM, the transfer
of memory capabilities causes aborts when TLB entries have
to be flushed as a result of upgrading page-table entries.

Fig. 1 shows a schematic of the L4/Fiasco.OC IPC path
and the steps involved when the left-hand thread calls either
one of the two right-hand side threads (in the same or in
a different address space). Immediately after entering the
kernel (e.g., with sysenter on x86-systems), execution
may proceed transactionally (with xbegin) after setting the
address of the abort handler (black dot #1 in Fig. 1). IPC
proceeds by checking whether the receiver is waiting for the
sender (i.e., it has already executed a receive operation) or
whether the receiver is still involved in other operations (e.g.,
it may be running). In the first case, the sender and receiver
rendezvous and the kernel starts the message transfer. After
the transfer completes, which in case of a transfer of memory
capabilities may require additional preemption points and hence
transactions, the caller prepares its receive phase to ensure that
it is ready to receive when the receiver replies. In case of
capability transfers, the TLB shootdown can either be deferred
to after the IPC operation or handled immediately after the
capability transferring transaction commits. Switching to the
receiver involves storing and reloading the register state and
stack pointers of the IPC partners. These operations can be

20

handshake

rendezvous

user
kernel

message
transfer

prepare
receive

switch
thread

switch
address space

prepare
wait schedule

receiver is ready to receive

wait for
receiver

enter kernel exit kernel exit kernel

select next
threadset timeout

wait

load page table

1 2 3

4

deferred to

Fig. 1. Schematics of the L4/Fiasco.OC IPC path for an IPC call operation to a peer thread within the same (middle thread denoted by the wiggling line) or
another (right thread) address space, that is intra vs. inter address space communication. Black (and dashed white) dots mark the begin and end of transactions.
The path either directly proceeds to the receiver or stops at the preemption point wait. As part of waiting, the scheduler is invoked to select the next ready-to-run
thread to which it then switches. Dark gray operations are privileged operations, which cannot be executed transactionally. They are deferred until after the end of
the transaction.

executed transactionally without risk of abort. Therefore, when
sending to a thread in the same address space, only one
transaction is required, unless capability transfers needs to
be preemptible. The transaction starts at the black dot #1 and
commits immediately before returning to user-level (e.g., with
sysexit) at #2.

If the receiver resides in a different address space, the
page-table base register must be reloaded, which causes an
unconditional abort when executed transactionally. Therefore,
we defer the actual address space switch to the point in time
after the transaction commits at #3 and execute it immediately
before returning to the user. The instructions that remain non-
transactionally are the check whether an address space switch
is pending and the mov %1, cr3 instruction, which performs
the switch of the page table and hence of the address space.
For a verification, these arbitrary interleavings of these two
instructions of the transactions and other non-transactional code
must be considered. However, because only few operations must
be deferred. We expect these interleaving to remain within
manageable complexity.

So far we have only considered the case where the receiver
is ready to receive from the sender and not involved in some
other operation. If this is not the case, the sender blocks waiting
for the receiver to execute the receive and message transfer1.

L4/Fiasco.OC limits the time senders have to wait for
receivers to participate in the IPC with timeouts. As we have
already explained. Timeouts require programming the hardware
timer, which is not possible from within a transaction. However,
the actual programming of the timer can be deferred to the
wait preemption point (white-dashed dot #4) and with some
additional restructuring of the implementation also to the point
in time when the scheduler switches to the next thread to
run. Notice, interrupts remain disabled and the timer will be
programmed before any user-level code is executed on this
core. The programming of the hardware timer is a second
case where code must be executed non-transactionally and
interleavings must be considered at the instruction level. To
become ready to receive, a send timeout can be specified, which

1 For simplicity, Fig. 1 illustrates only the sender-driven part of the IPC
path.

the kernel programs by writing to the hardware timer register.
Like with the page-table load, we defer this programming
of the hardware timer register to the point in time when the
transaction is committed.

When enlarging the transaction in the prescribed way, we
must of course validate that the transactional state stays small
enough to fit in the transaction-storing cache (i.e., L1 in case of
Intel Haswell). In addition, we have to ensure that transactions
remain small enough to avoid frequent aborts due to conflicts.
With the additional preemption point at #4, no capacity aborts
occurred and, as we shall see in Sect. IV, the probability of
other IPC operations causing retries is little more than 10�7%.

C. Manipulating Page-Table Entries Transactionally

One uncertainty that remained from the documentation [17]
was whether page-table manipulations in Intel Haswell adhere
to the transaction semantics, that is, whether page-table walks
by one processor causes aborts of transactions that modify
the walked page table. We therefore performed a small test,
which transactionally updates the page table on one core while
accessing the mapped memory on another core, to confirm
that the page-table walker actually triggers aborts. As long as
this implementation is maintained, only possibly required TLB
shootdowns must remain outside the transaction. Otherwise,
if the page-table walker bypasses the transaction mechanism
and evaluates transactional state, large parts of the kernel’s
address space implementation would have to be moved out
of the transaction because intermediate state would become
visible that gets discarded if the transaction aborts.

IV. EVALUATION

Similar to other research in the area of hardware transac-
tional memory, there are two main aspects to consider when
evaluating transactions in L4/Fiasco.OC: First, whether it is
possible to reduce the complexity of the kernel code, and second,
whether the performance of the kernel can be improved or not.

A. Reducing Kernel Complexity

With HTM, writing synchronized code is easier than
with traditional locking mechanisms. This characteristic is

21

mainly related to two aspects: First, difficult problems such as
deadlocks, priority inversion, and convoying do not exist with
HTM because transactions do not block during their execution.
Instead, they execute optimistically and roll back in case of
conflict. Second, the programmer needs not to decide which
portions of its code can run in parallel and hence which fine-
grain lock to use where. Transaction detect automatically and
at the granularity of cache lines, whether data accesses conflict.
Hence, it is possible to use transactions also for larger critical
sections because the conflict sets are determined dynamically.
Still short transaction reduce the likelihood of conflict and the
aborts they entail.

The IPC mechanism of the L4/Fiasco.OC microkernel
already distinguishes core-local from cross-core communication
in its locking mechanisms, by requiring that changes of
critical process information is performed on the home core
of the modified thread. Hence, if two threads perform an
IPC operation while on the same core, no synchronization
is needed. To protect locally unsynchronized critical IPC state
from inconsistent modification during cross-core IPC, the cross-
processor IPC path temporarily stops the partner’s core to
perform the modification there. This operation requires a
comprehensive and time intensive synchronization via inter
processor interrupts (IPI).

With the introduction of RTM in IPC, we removed the
restriction that process information can only be changed on
the process’ home core. Instead, all modifications are executed
transactionally. This way, the flow of executing local and cross-
processor IPC have become identical and can be handled in
one routine. The only remaining difference is in the way how
the transitions from the sender context to the receiver context
are realized. While the local IPC case requires only a scheduler
activation, the cross-processor IPC case still requires an IPI to
trigger scheduling on the remote core.

Hence, we were able to remove most of the complexity of
cross-processor IPC path and replaced it with a simpler local
IPC path. We expect to be able to make similar changes to
other kernel routines and thereby further reduce the complexity
of the kernel.

Unfortunately, since Intel R�’s RTM extension does not
provide any progress guarantee for the transactions, our
implementation has a significant drawback. We always have
to have a fallback mechanism to guarantee completion of all
system calls in case of transaction aborts. Our current approach
is to first retry the transaction for a couple of times and then
to revert to the traditional cross-processor IPC path, which
we could have removed otherwise to safe about 400 lines of
code. In general, there is no need to abort all transactions, as
demonstrated in IBM’s HTM implementation [18], where later
transactions cannot abort earlier transactions.

In situations where probabilistic completion and progress
guarantees suffice, fall-back mechanisms are not required and
the IPC operation could simply be aborted if it did not succeed
within a limited number of retries. In Table I, we have collected
a statistics to determine the number of retries required. During
our performance benchmark (see Section IV-B), 8.64 · 10�5%
of the IPC operations failed to commit directly and only 1.05 ·
10�7% failed after a second attempt. We did not observe an
IPC operation that did not complete after two retries.

TABLE I. STATISTICS ABOUT THE ABORT AND RETRY BEHAVIOR OF
THE TRANSACTIONS USED IN THE L4/FIASCO.OC KERNEL

Total Direct Commit 1 Retry 2 Retries > 2 Fallback
10,446,981,951 10,446,972,918 9022 11 0 0

B. Performance

Yoo and Leis [19], [20] observed for their benchmarks
a general performance advantage of using HTM, except in
those that required no synchronization in the first place. To
see whether, besides the above reduction in code complexity,
IPC benefits from similar advantages when the number of
parallel operations increases, we have performed the following
experiments on an Intel Haswell i4770 running at 3.4 GHz.
We expected significant improvements in the multiprocessor
case and low overheads for local IPC.

0

1000

2000

Intra Process Inter Process
C

yc
le

s

With TM Without TM

1044
503

1569 1156

Fig. 2. Minimum number of processor cycles needed to perform a processor
local IPC send-receive operation a) within one process (intra process) and b)
between two processes (inter process) with the usage of TM and without it.
(Deviation in the result is negligible.)

To determine the performance characteristics of local IPC,
we measured the costs of transferring an empty message
between two threads using an IPC send-receive operation. We
compared intra process and inter process communication. As
shown in Fig. 2, our implementation introduces a significant
overhead of about 107 % for IPC between threads of the same
process and of about 35 % for IPC between two processes.
Our analysis indicates that the house keeping for the four
transactions we need for one IPC send-receive operation
introduces this performance decrease. Each transaction costs
about 100 cycles.

0

50

100

1 2 4 80.5 1.5 2.5 3.5 4.5R
el

at
iv

e
Th

ro
ug

hp
ut

Clients

0

50

100

1 2 4 80.5 1.5 2.5 3.5 4.5

Clients

With TM Without TM

Fig. 3. Average number of full IPC round trips achieved in a second by 1, 2,
4, or 8 clients communicating with one server (left) or equally many servers
(right) with the usage of TM relative to the same number without the usage
of TM. Deviations in the results are negligible.

While IPC cycle counts reveal raw kernel performance,
they generally reveal little insight on application performance.
We have therefore also measured two benchmarks, which
simulate client-server communication, a scenario common in
microkernel-based systems. We measured the relative through-
put in IPC send-receive operations between (a) an increasing
number of client threads communicating with one server thread
and (b) an increasing number of client threads communicating

22

with dedicated server threads. Fig. 3 shows that the transactional
implementation introduces a performance degradation between
28 % and 35 % in all scenarios. This overhead is consistent
with the results of the raw IPC performance benchmark. In
total, the original local IPC implementation, which requires
no further synchronization, performs significantly better than
transactional IPC.

0

10000

20000

IPC send IPC send-receive

C
yc

le
s

With TM Without TM

2409 12435 13359 14799

Fig. 4. Minimum number of processor cycles needed to perform a cross-
processor IPC operation within one process with a) only sending and b)
sending and receiving with the usage of Transactional Memory and without it.
Deviations in the results are negligible.

For cross-processor IPC we tried to run a similar benchmark
as described above. Unfortunately, this was not possible because
this test triggered the RTM implementation bug in Haswell [21].
Our system failed silently. To still provide performance char-
acteristics, we therefore measured the number of processor
cycles required for a cross-processor IPC send operation as
well as a cross-processor IPC send-receive operation. However,
in contrast to the local IPC benchmark, every IPC operation had
to wait for a constant time to avoid the above bug. Consequently,
the measured values do not present the full potential of our
system, but just an indication how future systems behave. As
it can be seen in Fig. 4, our implementation performs better
than the original code. Especially, the IPC send operation runs
up to five times faster than its traditional counterpart. This
large difference between the two implementations is mainly
because we were able to remove the time expensive IPI from
the critical path as we only need it to trigger the rescheduling on
the remote core in a fire-and-forget fashion. The sender could
proceed immediately. For the IPC send-receive operation, we
have to wait for one IPI to trigger the scheduling of the receiver
and for a second during the reply. As IPI costs dominate IPC
send-receive costs, our transactional implementation performs
as well but no better than the traditional path. For a saturated
server, we expect these costs to be hidden because the server
will then find the next request pending when it replies to the
current one.

V. SIMPLIFYING THE MULTICORE VERIFICATION TASK

s0 s1 s2 s3 sn-1 sn…

transaction core I

transaction core II

WIRI

WII

RII

s0s1 s2 s3sn-1 sn… …

Fig. 5. Parallel interleaved execution of transactional operations exhibits the
same visible states as a corresponding sequential execution.

Before we proceed with our argument why we believe
that a consequent application of transactions will simplify
the multiprocessor verification task to little more than what
is required for a uniprocessor kernel, let us clarify our
assumptions and goals. Our focus is on verifying multiprocessor
kernels, not on translating uniprocessor verification results
to a multiprocessor setting, which if at all possible requires
additional arguments. We assume transactions to be correct and
complete with regard to device side effects. That is, accesses
to memory used by the kernel that origin from a device must
adhere to the cache protocol and cause aborts if they conflict
with transactional kernel state.

Our confidence is based on the following observation.
If kernel code executes transactionally, interaction with this
code is limited to points in time equivalent to the beginning
of the transaction respectively to the time it commits. Any
other interaction (by devices or remote cores) will cause
an abort and unrolling of transactional state. By “equivalent
times” we mean that all interacting write must happen before
the transaction reads this data. Our argument, which we are
currently transforming into a machine-checked proof, goes as
follows. If the majority of the kernel executes transactionally,
the trace positions, which characterize the execution of atomic
machine instructions, can be rearranged to obtain a trace, which
matches the execution behavior of a uniprocessor kernel with
selectively preemptible system calls. Instead of considering
all possible interleavings at the granularity of atomic machine
instructions, it therefore suffices to consider only those inter-
leavings where the instructions inside a transaction execute one
after another and without other instructions interleaving. Fig. 5
shows this interleaving and the rearrangement into blocks. It
suffices to consider only traces such as the one below, where
transactions execute as blocks. Positions of transaction I (white)
are combined to a single block and executed after the positions
of transaction II (gray).

The rearrangement is possible because we know from the
correctness of transactions that cached state becomes only
visible if external writes went to a different set of physical
addresses than transactional reads or writes. Let RI , WI ,
RII and WII denote these read and write sets for the two
transactions. We conclude that for the interleaving of core
I and core II , cached state of core II becomes visible
only if WI \ (RII [WII) = ; and likewise for core I if
WII \ (RI [WI) = ;. But then we can shuffle the trace
positions such that preserving the order of transactions, all
positions of core II (who committed first in this trace) occur
before those of core I (who committed last) follow. We
realize that these traces are identical with regard to the visible
memory updates. Notice in particular that the above address
disjointness rules out that core I may depend on the state
written by core II (black part in s0, s3, sn) since otherwise
core I’s transactions would have aborted. But now the trace
is identical to a sequential execution of the system calls in
a non-preemptive manner while restricting the observation of
state to the preemption points.

Notice, for deferred operations, we still require the machin-
ery to verify kernel code at machine granularity. For these, we
have to consider all possible interleavings of these instructions
and of the transactions at their boundaries. The latter is because
we require devices to abort transactions in case of conflict.

23

VI. RELATED WORK

Ramadan et al. [14] were first to demonstrate the benefit
of HTM for synchronizing operating-system code. However,
unlike TxLinux, we take a more holistic approach trying to
turn every system call into a sequence of transactions to benefit
from the simplified interleaving in the verification task. In this
regards, our work is more closely related to TxOS by Porter
et al. [22] and their attempt to provide transactional kernel
behavior for certain mechanisms such as I/O. Of course, there
is a large body of work beyond the operating-system kernel.
For example, Karnagel et al. [23] and Leis et al. [20] use RTM
to improve the performance of in-memory database systems,
Kleen [24] extends the GNU C pthreads library to use HTM
for transactional synchronization. Ariel et al. [25] formally
specify HTM for the purpose of verifying correctness of their
implementation, a task which Gupta et al. [26] extend to HTM
implementations with non-transactional writes as for example
supported in AMD’s ASF proposal [27]. To the best of our
knowledge this is the first work to realize how a consequent
application of HTM can simplify the verification task.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown how L4/Fiasco.OC’s CPU-
local IPC path can be converted into an almost completely
transactional multiprocessor path. For scenarios where stochas-
tic completion guarantees suffice, we observe a performance
improvement in the cross processor case at the costs of
significantly increasing uniprocessor costs by almost a factor
of 2, and requiring retries in 1.05 ⇤ 10�7 % of all cases. In
addition, we have shown how a consequent re-implementation
using transactions may simplify the multiprocessor verification
task by allowing similar reasoning for the transactions as
in the uniprocessor case. Obvious directions for future work
include a re-evaluation on newer-generation hardware, progress
guarantees for HTM and the lifeness guarantees they entail,
and an extension of the described approach to applications and
user-level servers.

ACKNOWLEDGMENT

This work is in part funded by the German research council
DFG through the cluster of excellence “Center for Advancing
Electronics Dresden” cfaed and DFG-SPPEXA’s project FFMK.

REFERENCES

[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: formal verification of an os kernel,”
in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, ser. SOSP ’09. ACM, 2009, pp. 207–220.

[2] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta,
“Design, Implementation and Verification of an eXtensible and Modular
Hypervisor Framework,” in IEEE Security and Privacy, Oakland, 2013.

[3] S. Brookes, “A semantics for concurrent separation logic,” Theor. Comput.
Sci., vol. 375, no. 1-3, pp. 227–270, Apr. 2007.

[4] S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs,” Acta Informatica, vol. 6, pp. 319–340, 1976.

[5] ——, “Verifying properties of parallel programs: an axiomatic approach,”
Communications of the ACM, vol. 19, pp. 279–285, 1976.

[6] M. Herlihy and J. E. B. Moss, Transactional memory: Architectural
support for lock-free data structures. ACM, 1993, vol. 21, no. 2.

[7] N. Shavit and D. Touitou, “Software transactional memory,” Distributed
Computing, vol. 10, no. 2, pp. 99–116, 1997.

[8] T. Harris and K. Fraser, “Language support for lightweight transactions,”
in ACM SIGPLAN Notices, vol. 38, no. 11. ACM, 2003, pp. 388–402.

[9] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson, “Architectural support for
software transactional memory,” in 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06), 2006.

[10] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee, “Software transactional memory: Why is it only a
research toy?” Queue, vol. 6, no. 5, p. 40, 2008.

[11] R. Haring and B. Team, “The blue gene/q compute chip,” in The 23rd
Symposium on High Performance Chips (Hot Chips), vol. 4, 2011, pp.
125–180.

[12] Intel R�, “Intel R� Architecture Instruction Set Extensions Programming
Reference,” https://software.intel.com/sites/default/files/m/9/2/3/41604,
2012.

[13] R. Rajwar and J. R. Goodman, “Speculative lock elision: Enabling
highly concurrent multithreaded execution,” in Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture. IEEE
Computer Society, 2001, pp. 294–305.

[14] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, and E. Witchel, “MetaTM/TxLinux: transactional memory
for an operating system,” ACM SIGARCH Computer Architecture News,
vol. 35, no. 2, pp. 92–103, 2007.

[15] J. Liedtke, “On µ-kernel construction,” in Proceedings of the 15th ACM
Symposium on Operating System Principles (SOSP), Copper Mountain
Resort, CO, Dec. 1995, pp. 237–250.

[16] “The Fiasco.OC Microkernel,” http://os.inf.tu-dresden.de/fiasco/, 2014,
[Online, accessed 27-Nov-2014].

[17] Intel R�, “Intel R� 64 and IA-32 Architectures Optimization Reference
Manual,” http://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-optimization-manual.pdf,
2014.

[18] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael, “Evaluation of Blue Gene/Q hardware sup-
port for transactional memories,” in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques. ACM,
2012, pp. 127–136.

[19] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance evaluation
of intel R� transactional synchronization extensions for high-performance
computing,” in Proceedings of SC13: International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2013, p. 19.

[20] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware transactional
memory in main-memory databases,” in Data Engineering (ICDE), 2014
IEEE 30th International Conference on. IEEE, 2014, pp. 580–591.

[21] Intel R�, “Haswell Specification Update,” http://www.intel.com/
content/dam/www/public/us/en/documents/specification-updates/
xeon-e3-1200v3-spec-update.pdf, 2014.

[22] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel,
“Operating system transactions,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 2009.

[23] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel,
and W. Lehner, “Improving in-memory database index performance with
intel transactional synchronization extensions,” in in Proc. 20th Int’l
Symp. High-Performance Computer Architecture, 2014.

[24] A. Kleen, “Lock elision in the gnu c library,” http://lwn.net/Articles/
534758/, 2013, [Online, accessed 29-Now-2014].

[25] A. Cohen, J. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck, “Verifying
correctness of transactional memories,” in Formal Methods in Computer
Aided Design, 2007. FMCAD ’07, Nov 2007, pp. 37–44.

[26] A. Cohen, A. Pnueli, and L. Zuck, “Mechanical verification of transac-
tional memories with non-transactional memory accesses,” in Computer
Aided Verification, ser. Lecture Notes in Computer Science, A. Gupta
and S. Malik, Eds. Springer Berlin Heidelberg, 2008, vol. 5123.

[27] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier et al., “Evaluation
of AMD’s advanced synchronization facility within a complete transac-
tional memory stack,” in Proceedings of the 5th European conference
on Computer systems. ACM, 2010, pp. 27–40.

24

