
1

2

Open-source and Real-time in
Automotive Systems:

(not only) Linux,
(not only) AUTOSAR

Paolo Gai, Evidence Srl
pj@evidence.eu.com

3

agenda

• something about Evidence

• something about ERIKA

• future plans

That is… something about the business of maintaining,
adapting and selling a (non-Linux) open-source real-time
operating system!

… plus some questions for the community!!!

4

something about Evidence

…just a quick introduction, don’t worry!

5

the company

Founded in 2002 as spin-off company of the
Real-Time Systems Lab at Scuola Superiore S.Anna
~20 qualified people with an average age of 34 years

10+ years of experience in academic and industrial projects
One third of the company has a PhD degree

Our Mission :
design and development of software for small electronic devices

6

(some) customers and partners

OSEK, microcontrollers,
schedulability analysis,
code generation

Linux,
SW devel.

Partnerships

7

Application Development

RTOS and MCU skills
• OSEK/VDX, AUTOSAR,
• Automatic code

generation
Embedded Linux skills

• 8 Yrs experience in custom
BSPs, U-Boot, kernel drivers,

• Initial developers of the
SCHED_DEADLINE patch

products and services

8

something about ERIKA

current features… and a bit of its history!

9

Something about ERIKA Enterprise

http://erika.tuxfamily.org

• ERIKA Enterprise is an RTOS OSEK/VDX certified

• ERIKA Enterprise implements an API
inspired to a subset of the AUTOSAR API

• With a suitable open-source license allowing
static linking of closed source code

• Typical footprint around 2-4KB Flash

10

OSEK/VDX for dummies

11

OSEK/VDX for dummies for a Linux hacker

Let’s compare OSEK/VDX with a typical Linux setup

What Linux ERIKA - OSEK/VDX

Birth date 90s, UNIX in early 70s OSEK: 90s ERIKA: 2002

Target General purpose OS Automotive minimal OS

Initial Target HW PC 8 bit microcontroller

Development method Open-source
community

Automotive companies

Goal Create a great free
OS?

Cost reduction

API POSIX / pthreads
300 (?) functions

OSEK/VDX, 35 functions
http://www.osek-vdx.org

IRQ response time Well…big � 3-10 usec on a small micro

12

OSEK/VDX for a Linux hacker (2)
What Linux ERIKA - OSEK/VDX

Flash Footprint 4-32 MB Flash for a
minimal system

2-4 KB Flash

RAM 8-64 MB Hundreds of Bytes

Static/Dynamic
approach

Dynamic
Static, configured with an OIL
file or AUTOSAR XML

CPU support 32-64 bit Down to 8 bit MCUs

Filesystem Yes No

MMU support Yes No (Yes for AUTOSAR)

Device Drivers Yes No (Yes for AUTOSAR, but
configured «more statically»)

Execution from flash No Yes

13

OSEK/VDX for a Linux hacker (3)
What Linux ERIKA - OSEK/VDX

Certification suite No Yes

Real-time support Available through
patches (RT-PREEMPT,
RTAI, Xenomai,
SCHED_DEADLINE…)

Native support for Fixed
priority, Preemptive and non
preemptive execution

Stack sharing No Yes

Immediate Priority
Ceiling

Yes
(with realtime priorities)

Native

Multicore support Yes, SMP Yes, Static Partitioning

IRQ handling in the kernel in the Application, exposed in
the API

Blocking primitives full support limited support

Conform. classes Kernel configurations Yes, Used to limit footprint

14

ok… but where are the drivers?

Most of the Linux code is made of drivers…

Where are the drivers in OSEK/VDX?

… they are in AUTOSAR!!!

(which is, from the OS point of view, an extension of
OSEK/VDX)

15

AUTOSAR Architecture

OSEK!

16

Let’s go back to ERIKA

As you’ll see it’s not only the OSEK/VDX part

But where did everything started from?

… in other words… things never goes the way you plan
them!

17

1999-2002 - Shark

At the beginning was … SHaRK!
A modular RTOS for PCs.
• With a modular scheduler
• Implementing around 10-15 different schedulers
• With pthread support
• With the «shadow» mechanism,

equivalent to the “Linux proxies”
• Tickless

18

2000-2006 – Multicore and MSRP

ERIKA was born in 2000 to support the Janus dualcore

• Competitive advantage on the multicore part

• Started open-source on ST10, become closed source to
leverage the multicore part

• But the project was canceled 6 months after founding
Evidence! �

19

2000-2006 - Features

Features

• Tiny footprint
• Initially as a reduction of SHaRK, from 50k to 10k
• then I rewrote it from scratch, from 10k to <1k

• Static partitioning, shared stack

• 1 copy of the RTOS per core

• Porting for ARM7, ST10, Nios II

• In 2004 I implemented the OSEK/VDX Layer
• Initially as a rename of the FP scheduling class

• But around 2004 AUTOSAR arrived, raising the barriers

20

2000-2006 – MSRP

• MSRP algorithm, with queuing spinlocks implemented
with the Graunke & Thakkar (1990) locks
• Global resources identified automatically by the mapping at

configuration time … not needed in AUTOSAR because the
communication is handled by the RTE

• Then there was an allocation algorithm to place tasks
into cores

AUTOSAR still does not have queuing spin locks…

• Which means we now removed the queuing spin-locks
as default for production!

21

2000-2006 MSRP (2)

• …but what customers really want is to extend legacy
OSEK/VDX code with MINIMAL changes

Question: is it possible to design an allocation
algorithm that guarantees the minimum number of
changes with respect to a given working software
architecture?

No way industry will accept radical changes to an app
due to allocation algorithms…

Probably a sub-optimal solution is ok too…

22

2006-2009: FLEX, open -source

• In 2006 it become clear it was impossible to sell ERIKA

• Collaboration with the ReTiS Lab to create a cheap
board

• Flex boards!
• dsPIC based
• Port of ERIKA

• Daughter boards

• Created a collaborative platform

Idea… change the business model!

• we sell the hardware

• we give the RTOS for free

23

2006-2009: Licensing error!

RTOS for free?

• let’s try Dual Licensing GPL + commercial

• In this way we’ll be able to collaborate with Universities
and labs!

Wrong choice:

• …. Are you going to make money out of the small
snippet that I’m providing you GPL?

• … I could not make a commercial distro out of GPL
code!

At the end, we reverted to… GPL2+Linking Exception

24

2006-2009: HW boards?

The FLEX boards were board in an environment where the
cheapest evaluation board was around…

300€ ARM Evaluator7T
So a price around 100€ seemed to be fine!

But… at the same time came… Arduino!
• 30€ target
• Simple to blink a led, no RTOS

% of people needing…
• A multithreaded automotive minimal RTOS? � 0.x%
• Something simple to blink on a led? � a lot of … «Makers»!!!

25

2006-2009: Research Scheduling algs

ERIKA implements:

• EDF with wraparound timers
• In 300 bytes more than Fixed priority implementations!

• FRSH with resource reservation
• In around 4k Flash on a Nios II

• (and in 2014) HR with hierarchical scheduling
by Alessandro Biondi

26

2006-2009: Research Scheduling algs ?

No way yet to get those results in production in automotive!

• They are too conservative, they protect saying the state
of the art is in the standards! � AUTOSAR

• Better results on Linux ☺
where SCHED_DEADLINE was merged in 3.14

Question: how this community can help in providing
better scheduling algorithms to the automotive
sector?

Note: I’m not talking about the usual RM vs. EDF!!!

27

2009-2012: automotive crisis

In 2009, after an automotive crisis, some companies
started to look at open-source implementations of
OSEK/VDX

Yes, still OSEK/VDX, as for some subsystems AUTOSAR
was not required

28

Industrial usages: Cobra AT

The first one was Cobra AT

with:

2009 – feasibility for a OEM product (Freescale S12XS)

2012 – Cobra ParkMaster (Freescale S12G)

(integration work performed by Massimiliano Carlesso)

http://www.cobra-es.com/parkingaid_250.html

29

Magneti Marelli

Then came Magneti Marelli Powertrain Bologna

With support for:
• PPC MPC5674F (Mamba)

• MPC5668G (Fado)

• Tricore AURIX 27x and 26x

• AUTOSAR OS implementation (not yet open source)

• Other 2 MCUs (Cobra55 and K2)

30

then…

Aprilia Motor Racing on PPC Mamba

FAAM on S12XS

esi-RISC port (made by Pebble Bay)

(undisclosed) TI Stellaris Cortex M4F, Renesas 2xx

and AUTOSAR-like drivers

PPC Leopard
(paper submitted to SAE SETC2014)

31

2009-2012: …a right licensing is the enabler

The licensing model GPL2+Linking Exception turned out
to be an advantage, because it allowed

• Customers to use the kernel in production

• Universities to contribute freely

The project was then moved to an independent site

http://erika.tuxfamily.org

And there was a business model change,
from a product business to a service business

32

2012-2014: OSEK/VDX certification

In 2012 we did the OSEK/VDX certification
funded by a research project on white goods

In 2012? Still someone cares about OSEK/VDX?

Well… yes!

• It gave a proof of quality of the code

• It gave automotive acceptance and visibility!

Then, we implemented the AUTOSAR OS specification for
an AUTOSAR member, and various other ports

33

2012-2014: community…

We are getting reports of ERIKA used in various research
projects and open-source initiatives:

• ZELOS3

• AMALTHEA

• MOTTEM

• INCOPBAT/eDAS

• eCOMPOSE

• ARAMIS

• P-SOCRATES (see later)

• Porting to the Arduino IDE and STM32F4Discovery

34

Lession learned…

• Business model change to get accepted…

• The market does not always go as you expect
(… especially if you are an unknown spinoff company!)

• Software licensing is fundamental

• The platform is fundamental to aggregate a community

• Standards are not including the latest technology
(see MSRP and queuing spin locks!)

• Customers follow the standards (no EDF!)

• Customers do not want to change, and have a huge
amount of legacy code
(allocation algorithms are not always applicable!)

35

Current status of ERIKA…

36

Hardware supported

ERIKA Enterprise supports the following microcontrollers:

A Porting guide available on the ERIKA Wiki!

Altera Nios II
Atmel AVR5, Arduino Uno, Arduino Nano
ARM ARM7, Cortex M0/M3/M4
Ensilica esi-RISC
Freescale S12XS, S12G
Freescale PPC z0, z4, z6, z7 (Mamba, FADO, Leopard)
Infineon Tricore AURIX 26x, 27x
Lattice Mico32
Microchip PIC24, dsPIC, PIC32
Renesas R21x
TI MSP430, TI Stellaris Cortex M4

37

Compilers/IDE/debuggers support

• we support more than 10 compilers /development
environments and in-circuit debuggers

In particular for Automotive:

TRACE32®

• Debug scripts automatically generated when compiling
for PPC/AURIX/Nios II

WinIdea
• Directly supported by iSystem

http://www.isystem.com/supported-rtos/erika

38

Lauterbach -Evidence press release!

39

AUTOSAR compliance

• A non-public branch of ERIKA implements AUTOSAR OS 4.0.3 for an
AUTOSAR Member (memory protection/multicore/scheduling tables);

• RT-Druid is capable of importing AUTOSAR XML produced by
SystemDesk.

We developed a set of AUTOSAR-like MCAL for various architectures

• Cortex M4 Stellaris (DIO, DMA, GPT, MCU, PORT, SCI, SPI, WDG)

• Renesas R2xx

• MPC 56xx

available on the repository

Eclipse-based configurator available on

http://www.evidence.eu.com/products/eforms.html

40

MISRA C compliance and regression tests

A subset of ERIKA Enterprise has been
checked for MISRA C compliancy

• tools used: FlexeLint 9.00h, configured using Magneti
Marelli Lin 7.10, with some additional exceptions
documented on the ERIKA Enterprise Wiki

Continuous integration test environment based on Jenkins

• Official OSEK/VDX conformance test suite

• Regression tests derived from the MODISTARC tests
published on the OSEK/VDX website

• See http://erika.tuxfamily.org/wiki/index.php?title=Main_Page#Regression_Tests

41

Benchmarks

Footprint statistics and Benchmarks have been
published on the Wiki.

• A typical scenario of 16 tasks + resources + alarms uses
2-4 Kb flash depending on the MCU

• Timings of the primitives are in the range 2-10 usec

They are in line with other commercial offerings

42

community (2)

Website traffic doubled in the last 6 months!

Jan-May 2013 Jan-May 2014

43

code size

The code base (mainly thanks to third party libraries)
increased 3x from 2009 to 06/2014

ERIKA Enterprise RT-Druid

44

The development community

http://erika.tuxfamily.org

• SVN repository open to the public
• Wiki and forum
• Application notes

– Template system available in RT-Druid
• libraries for

– console
– uWireless (802.15.4 with beaconed mode / GTS support)
– ScicosLab Libraries
– Motor control
– TCP/IP
– CMOS Cameras, tracking
– USB
– various sensors
– ball & plate, inverted pendulums, robot swarms

45

In occasion of OSPERT, we released two VM:

http://www.erika-enterprise.com

ERIKA + GCC compiler

Support for
• Arduino Uno / Nano
• STM32F4Discovery

Let’s try it… on a Virtual Machine!

ERIKA + Diab Compiler +
TRACE32 Instruction Set
Simulator

46

future plans

what will be the project in 3-5 years?

47

A complete AUTOSAR implementation?

• Let’s consider what is currently happening in the
automotive sector…

48

the basic idea

• Cost reduction is an important factor in automotive

• Every company is implementing (or buying) every time
the same subsystems
• RTOS (OSEK/VDX or AUTOSAR)
• Device Drivers

• Diagnostic protocols

• We always think in terms of Make or Buy …

there is an opportunity to

Share
software components

not in the core business

49

sharing in automotive

Sharing source code in automotive means:

nobody makes a free gift to competitors

we need a platform
where each company

adds a small part

50

first example: the Eclipse framework

The core business of tool makers
is on new functionalities,
not in the text editor!

• The automotive world adopted Eclipse since years

• Artop is a common Tool Platform for AUTOSAR
• why writing another AUTOSAR XML importer?

• Artop is based on EMF and Sphinx

http://www.eclipse.org/sphinx/

http://www.artop.org/

51

second example: code generation tools

We used the open source tool ScicosLab
as a base platform for providing
simulation and code generation
for control algorithms

http://www.e4coder.com

Composed by:

Code generator for embedded targets

Finite State Machines editor / FSM codegen

Simulation / code generation of GUI Panels

52

third example: Linux in infotainment

Many new infotainment systems on car
are based on Linux and Android

Automotive Grade Linux - http://www.linuxfoundation.org

Tizen - https://www.tizen.org

Genivi - http://www.genivi.org/

… just take a look at this citation from

Oct 12th, 2012

The Next Battleground for Open vs. Closed: Your Car

53

Wired, Oct 12 th 2012

“A luxury automaker recently told me its IVI system contains about
1,900 use cases – “of which we only consider about 3 percent
unique to our products; the other 97 percent are common across all
car companies.” Let me emphasize that: THREE percent. Can these
companies really afford to pour a lot of time and money into such a
small amount of differentiation?”

“But here’s the paradox: The automotive industry is going to have to
collaborate in order to differentiate.”

“Competitors collaborate on the code and requirements to produce a
common base, upon which they differentiate and compete with each
other.”

http://www.wired.com/opinion/2012/10/automakers-become-software-
makers-the-next-battle-between-open-and-closed/

54

Let’s go back to the platform…

The FLEX boards helped creating a platform
• Fundamental for the growth of every open-source project
• Think at Linux: Platform = x86 + GNU Project!!!

ERIKA could be the starting block for this platform!

Licensing is crucial to aggregate the users:
• Universities

• No dual licensing, need for a low-cost platform

• Companies
• Sharing to save costs on non differentiating features

55

(open?) AUTOSAR Architecture

OSEK!

E
R

IK
A

A
U

T
O

S
A

R
 O

S

MCAL Drivers
Sometimes avail. by the silicon vendor
… Not impossible to make ☺

www.comasso.org

56

A complete AUTOSAR implementation?

• The industry is converging to a common shared ecosystem
of open or pseudo-open software

• ERIKA Enterprise could play the role of the RTOS…

• COMASSO is the way to go for the basic software
(but remember it is not opensource

• The missing part is the RTE… which is still lacks an
opensource implementation

• … plus, as usual, a lot of integration effort!

Question: any ideas from the realtime community
on how to better converge this?

…hmm…. Maybe too related to the implementation?

57

ISO26262 qualification

The rise of the ISO26262 standard impose changes in the
software and a whole new level of tests to the code

We are currently discussing possible qualification
strategies for ERIKA Enterprise, including

• In-context qualification

• Out-of-context (SEOOC) qualification

It may happen in the next three years!

58

ISO26262: Freedom from interference

ISO26262 mandates (part 6, annex D) the testing of the
freedom from interference.

• this Annex provides examples of possible mechanisms
that can be considered for the prevention, or detection
and mitigation of interference between components

• D.2.2 Timing and execution
• blocking of execution;
• deadlocks;

• livelocks;

• incorrect allocation of execution time;
• incorrect synchronization between software elements.

59

ISO26262: Freedom from interference (2)

EXAMPLE Mechanisms such as cyclic execution scheduling, fixed priority
based scheduling, time triggered scheduling, monitoring of processor
execution time, program sequence monitoring and arrival rate
monitoring can be considered.

D.2.3 Memory

[…]

• read or write access to memory allocated to another software element.

60

ISO26262: Freedom from interference (3)

D.2.4 Exchange of information

• repetition of information;

• loss of information;

• delay of information;

• insertion of information;

• masquerade or incorrect addressing of information;

• incorrect sequence of information;

• corruption of information;

• asymmetric information sent from a sender to multiple receivers;

• information from a sender received by only a subset of the receivers;

• blocking access to a communication channel.

61

ISO26262: questions

Question: Can the freedom of interference on the
Timing and Execution be solved just with an
execution budgeting control?

• Hey! This is «mixed criticality»!

• Hey! This can be solved using proper allocation of
priorities, plus simulation and Schedulability Analysis!

62

ISO26262: questions (2)

…but… It’s like someone telling you the world is make in a
given way and you need to find the right point in the world
where everything works…

Can we find:

• A proper scheduling algorithm which avoids the
interference (resource reservation?)

• Plus some modeling framework to help designing the
system in a proper way???

63

Multi-thread, Multi-core, … Multi-OS!

…yet another trend in the automotive for cost reduction!

64

The basic idea…

Automotive embedded systems changed over time

• 1985 – Isolated embedded architectures

• 1995 – Distributed architectures over CAN bus

• 2005 – Integrated architectures based on AUTOSAR

• 2015 – Distributed architectures based on
Multicore AUTOSAR + Infotainment solutions

What’s next?

65

…is cost reduction

• 2025 – Distributed architectures …
…with small number of nodes

Need to:

• Integrate applications from
different sources � AUTOSAR components

• Integrate applications with heterogeneous timing
requirements � schedulability analysis

• Integrate applications with
different safety levels � mixed criticality, mem. protection

66

… but then…

• Integrate applications with different semantics � ???

A static world…
• Static allocation of resources, Static software architecture, control

• No dynamic allocation of memory

• Hard realtime, safety critical

• Limited HW resources

Compared with a dynamic world:
• Infotainment has relaxed real-time constraints

• Works on Linux-based systems (or similar)

• GUI, Network, Graphical libraries, standard applications

• iPhone/Android integration, App stores

67

the “dynamic” side: Linux in infotainment

Many new infotainment systems on car
are based on Linux and Android

Automotive Grade Linux - http://www.linuxfoundation.org

Tizen - https://www.tizen.org

Genivi - http://www.genivi.org/

68

ok, Linux is there… but…

…there are requirements of future IVI systems!

• Fast Boot
• there must be a subsystem ready to go in a few ms
• Linux boot times are usually in the order of seconds

• Real-Time support
• there must be a subsystem with real-time performance
• e.g. CAN Bus, motor control

• Quality of Service
• IVI applications need soft-realtime support
• for video/audio content

69

Infotainment, Linux, and multicores

• Next generation infotainment systems will be multi-core

• They can host more than one OS

What about

creating a complete
open-source environment

for automotive systems integrating

Infotainment + OSEK/VDX/AUTOSAR

on the same chip?

70

Towards a fully Open -Source platform

We envision the possibility to exploit multi-cores to run
Linux and Erika Enterprise complementing each other!

Multi-core SoC

Linux RTOS
(Erika)

HMI

Engine/Body

Shared memory

71

Opportunity

Linux Embedded

• Drivers, Displays, and communication infrastructure

• Soft Real-Time support using Linux and
SCHED_DEADLINE

ERIKA Enterprise

• Hard Real-Time support

• Open-source

• OSEK/VDX system, born for automotive

on a single multicore chip!!!

72

Footprint vs. Realtime

Realtime
response

Footprint/Features

Vanilla Linux

Linux
PREEMPT_RT/
SCHED_DEADLINE

RTAI/Xenomai

Middle-Class
RTOS

Here!
OSEK
ISR1

OSEK
AUTOSAR

73

Integration at different levels…

Original source: Mentor Graphics,
Automotive Linux Conference Oct 2013

74

Three scenarios for the separate cores

1) Linux boots, ERIKA = special «device» for Linux
• slow! � ERIKA needs to wait for Linux boot

2) Hypervisor-like approach

• both ERIKA and Linux as hypervisor «clients»

3) ERIKA boots from U-Boot

• modified U-Boot to boot both ERIKA and Linux

75

HW Zones

• We could use the ARM TrustedZone

• ERIKA should be put in the Trusted Zone…

Advantage: good for automotive safety qualification!

…still an idea, nothing implemented by us so far…

76

Hypervisor � SW Zones

We need a good hypervisor… candidates are:

• XEN

• KVM
• NOVA  9000 lines! …good for certification!

Current work on XEN

• A master Thesis by Arianna Avanzini done in
collaboration with UniMORE (Prof. Paolo Valente)
is almost ended

• ERIKA will be hosted as a domU of XEN

• It is a first step towards having ERIKA as dom0

77

Demo on separate cores

Demo based on a Freescale iMX6

We let U-Boot handle the multicore boot

• ERIKA starts almost immediately

• Linux can start afterwards

No hypervisor

• could be useful in some cases to protect the behavior of misbehaving
applications

• limited need because we statically allocate a CPU to each OS

78

The idea…

Core 1 (Linux)

Core 2 (ERIKA

U-Boot

ERIKA
Image Loading

Linux Boot

ERIKA
Boot

79

Interaction model

Linux � ERIKA

• Linux can trigger the following actions:
• activate a task

• set an event

• start an Alarm

• increment a counter

(similar to those doable on a remote core of an AUTOSAR OS)

• Linux can stop and reload the ERIKA application

Linux � ERIKA

• Simple asynchronous message passing allowing asynchronous
read/write of variable length buffers on predefined channels

80

The demo…

• Implemented on a iMX6 board from Engicam
(http://www.engicam.com/prodotti/icorem6.html)

• U-Boot loads ERIKA, then Linux

• ERIKA generates a SawTooth signal

• Linux reads the message and displays the data

• A slider can be used to set the sawtooth signal
amplitude
• implemented through messages

• Simulated LED
• implemented through interprocessor interrupt

• there can’t be a demo without a Blinking Led!

81

…the future will not be SMP

Vybrid with Cortex A5 + Cortex M4

82

Software reuse…

• The whole hypervisor thing is there because people want
to reuse their software
• There was a talk at SIES 2014 in Pisa of BMW using ERIKA with

the ETAS Hypervisor in the context of the ARAMIS Project

What is the best way to recycle legacy code
coming from previous AUTOSAR systems?

• Depends on the real architecture available

• But what is the best architecture available? It’s a Jungle!

http://herbsutter.com/welcome-to-the-jungle/

83

The Jungle…

from http://herbsutter.com/welcome-to-the-jungle/

84

… in the next few yrs :

You can expect to have automotive architectures to be:

• Heterogeneous in strange ways…
• Cortex A + Cortex M
• Mixture of Lockstep cores and normal cores

• Small CPUs as accelerators near peripheral buses

• Seems like that they will fit a CPU where is space in the die…

• MPU and not MMU, Hypervisor extensions

• AUROSAR is good in implementing the instruments for
building the system…
… but you have to do the analysis yourself

85

multi-core equivalence (collab . UIUC)

“Single Core Equivalent (SCE) Architecture Framework
for Safety Critical Multicore Systems ”

http://rtsl-edge.cs.illinois.edu/SCE/

Original Distributed System New Multicore System

Software from each node is
re-integrated on a single core

Applications moving from
platforms where they “own” the
entire node to one where they
must compete for cache, memory
bus, I/O resources

Node
1

Node
2

Node
3

Node
4

ne
tw

or
k

cache

main memory

Core1 Core2

Core3 Core4

Source: Russell Kegley and Dennis Perlman

86

Multicore and beyond…

And to complicate things…

• Future automotive systems will require high
computational load

The answer is probably to use a many-core platform

… think for example at:

• ST P2012 (killed!)

• Kalray MPPA

• Adapteva Parallela

• TI Keystone

87

many -cores: P -SOCRATES FP7 Project

ERIKA will be hosted
on the KALRAY MPPA

(256 cores + 16 I/O cores!!!)

P-SOCRATES (FP7-ICT-611016)

Oct 2013 – Oct 2016

http://www.p-socrates.eu

88

P-SOCRATES Architecture

OMPSS + Nanos++

89

So other questions…

Again, in the short term, think at a lot of legacy code to be ported on a
multicore machine with hypervisor.

How to do schedulability analysis and placement?
How the SMP schedulability bounds expand to these
architectures?
How should we model the overhead
(preemption/communication/hypervisor)
Should we use the hypervisor only to isolate the
safety critical jobs?
One guest OS per CPU, or more than one per CPU?
Should the hypervisor be «transparent» to the
choices of the guest RTOS, in a way to implement
hierarchical scheduling?
Can we do all this without hypervisor using a proper
scheduling algorithm?

90

Finally consider powertrain applications

For example… powertrain applications
• Not only periodic tasks

• Variable period tasks depending on the engine speed
• Computation times dependent on speed with hysteresis

• Are deadlines really hard?
• Just a few…

inertia in the engine helps also with non optimal controllers
• Tasks with high offset

to check for detonation to avoid the knock phenomena
• Oversampling… could be not dangerous to miss some activations

(skip model?) But how many of them can I skip?

• How can we model and analyze these kind of applications?
• Some efforts done in WATERS to mix SysML with Matlab to

give architecture definition…

91

conclusions

92

…a lot of opportunities

• Next years will be full of great opportunities especially in
the multi-core area

• Still to be understood which is the best way to go

• Automotive systems are rather “static” and slow-moving,
but I believe there will be good opportunities for research
in that area!

• … if you are going to use ERIKA… give feedback,
patches, and bugs to help future developments!

93

… some acknowledgements

• Thanks Björn!

• … and thanks to all people in Evidence and in the ReTiS
Lab who worked with me in making all this possible!

94

Contacts

Paolo Gai

Evidence Srl

Via Carducci 56

56010 S.Giuliano Terme

Pisa - Italy

Web: http://www.evidence.eu.com

E-mail: pj@evidence.eu.com

Phone: +39 050 99 11 224 then 101

95

Thank you for listening !

Questions ?

96

Appendix A – details on the
multicore implementation

97

U-Boot code changes

we added the cpu command to U-Boot
• (cherry pick from PPC to iMX6)

Multiprocessor CPU boot manipulation and release
cpu <num> reset

 Halts cpu <num>

cpu <num> status

 prints latest <addr> and r0, plus the status
cpu <num> release <addr> [args]

 Restart of cpu <num> at <addr> with a value for
the r0 register

98

Linux code changes

• Linux runs on a subset of the available CPUs
• 1 CPU dedicated to ERIKA

• IRQs are mapped statically to cores
• additional boot parameter to map the GIC IRQs that Linux

cannot use

git_skip_intid=142-147,152,180,205-220

99

Linux code changes

• a fixed amount of memory is allocated to ERIKA
• ERIKA allocated in the first part of the RAM, Linux afterwards

• Idle time does not change CPU frequency
• Linux by defaults reduces the CPU frequency on idle time

LinuxERIKA

0 128M 1G

100

ERIKA code changes

• ERIKA is statically linked on the first 128 Mb of the
available RAM

• the Memory Protection Unit (MPU) has been
programmed to limit the possibility to write only inside
the allocated memory
• it will not destroy Linux!

• the OIL file used to configure ERIKA has been extended
• Cortex A support

• ORTI support through
• We can make an AMP configuration for debugging Linux on one core and

ERIKA (with ORTI support) on the second core

101

OIL file extensions

CPU mySystem {
OS myOs {
MASTER_CPU = "master";  the ERIKA CPU

CPU_DATA = CORTEX_AX {
CPU_CLOCK = 660.0;
APP_SRC = "main.c";
COMPILER_TYPE = GNU;
MODEL = A9;
ID = "master";  the ERIKA CPU

};

CPU_DATA = LINUX;  the Linux CPU

102

OIL extensions

MCU_DATA = FREESCALE {  The MCU information
MODEL = IMX6Q;

};
BOARD_DATA = ENGICAM_ICOREM6;

REMOTENOTIFICATION = USE_RPC;  configuring RPC
USEREMOTETASK = ALWAYS;
USEREMOTEEVENT = ALWAYS;

ORTI_SECTIONS = ALL;  ORTI support through
Lauterbach Trace32

103

OIL extensions

MESSAGE_BOX = TRUE {  Asynchronous message box
NAME = "led_status";
DIRECTION = OUT;
MAX_MESSAGES = 5;
MAX_MESSAGE_SIZE = 8;

};
};

TASK Blinking_led_task {
CPU_ID = "master";  Task mapping to the master CPU
[...]

};
};

104

ERIKA binary format

• we defined a custom binary format
for the ERIKA images

• symbol table with a DB
of the entities defined
in the OIL configuration file

• a customized Linux driver reads the
DB and publishes the data
into /sys and /dev

startup

table entries

table values

code/rodata

data/bss/
stack

0x0000

128M

105

Linux driver

a custom driver allows Linux to do the following actions:
• activate a task
• set an event
• start an Alarm
• increment a counter
These are remapped to interprocessor interrupts in a way
similar to what specified by multicore AUTOSAR

In addition we implemented a simple asynchronous
message passing primitive allowing asynchronous
read/write of variable length buffers on predefined channels

106

/sys filesystem structure

/sys/class/
EE_alarms

[...]  information about alarms
EE_buffers

led_status  asynchronous message channel
direction
size
[...]

EE_tasks
led_task  tasks defined in the OIL file

activate  writing to this file remotely activates a task
[...]

mem_ex
symbols  symbol table as read in the binary image

107

/sys/class/mem_ex /symbols

cat /sys/class/mem_ex/symbols

rpc 0xb9b0003c RPC 28

Blinking_led_task 0xa9000000 TASK 0

Saw_tooth_task 0xa9000000 TASK 1

Activate_led_task 0xa9000000 TASK 2

AlarmMaster 0xa9000000 ALARM 0

CounterMaster 0xa9000000 COUNTER 0

led_status 0xb9b00058 IN 40

saw_tooth_data 0xb9b0006c IN 400

saw_tooth_data_max 0xb9b00080 OUT 16

108

/dev filesystem structure

/dev/

mem_ex  ERIKA image write

led_status  asynchronous message channel

[…]

• it is possible to reprogram and restart the ERIKA
application by writing on /dev/mem_ex

• asynchronous channels are inserted in the /dev
filesystem automatically
• you can read/write single messages
• no remote notification – completely asynchronous

109

memory protection

• each core has its own Memory protection unit

ERIKA Enterprise

• single table with 1Mb pages

• ERIKA cannot write outside its own memory space

• currently we allocate 128 Mb (should be enough ☺)

Linux

• first available address after the end of the ERIKA image

• Linux can access ERIKA memory only through the driver

LinuxERIKA

0 128M 1G

110

Other features

Spin Locks

• ERIKA and Linux use spin locks to guarantee mutual
exclusion during the access to shared data structures

• the spin lock location resides in the ERIKA memory
space

Interprocessor interrupt

• currently used Linux � ERIKA
to implement remote notifications

• data exchange is implemented using asynchronous
messages

111

Appendix B – more details on
E4Coder

112

E4Coder - facts

is a toolset which is able to:
• simulate continuous time and discrete time designs
• simulate finite state machines
• GUI panel generation
• generate code without changing the design
• with and without RTOS

• with support for microcontrollers without RTOS
• with support for OSEK/VDX RTOS

• support for multi-rate designs

http://www.e4coder.com

113

key advantages

high-level simulation of a design

• you can simulate the design before generating the code

• the code generator preserves the model correctness

finite-state machines

• you can simulate and generate code for state machines

technical support

• for using the code generator

• for converting existing designs

114

Building Blocks

• ScicosLab
• Simulation engine, http://www.scicos.org

• E4Coder Code Generator
• Code generation for embedded targets

• SMCube
• Simulation / code generation of Finite State

Machines

• E4Coder GUI
• Simulation / code generation of GUI Panels

• E4Box

115

E4Coder CG

• ScicosLab blockset

• Optimized code generation

• Peripheral blocks independent from the target

• Same diagram used for simulation and code generation

• Multithread code generation support

116

SMCube

• stands for: SMCube is a State Machine System modeler

• Flat Discrete-time State Machine editor

• Simulation and Code generation of state machine
diagrams

• Integrated in ScicosLab

• Hierarchical State Machines

• Junction points

117

E4Coder GUI - customizable UI designer

E4Code GUI is a simple customizable UI designer
which is able to:

• design simple user interfaces

• insert simple widgets

• simulate the interface

• generate QT target code

Example:

• Dashboard panel
Ports

Edit area

Properties Widgets

118

E4Box

E4Box is a ready to use all-in-one embedded computing box

• Intel Atom processor

• NI PCI-6221 Data acquisition board

• Open Edition
• Linux+RTAI+Comedi+ScicosLab open source software

• Professional Edition
• Open Edition + E4Coder

