The State of COMPOSITE:
a Customizable Component-Based OS for

Predictable, Reliable, and Scalable

Computation

Gabriel Parmer

gparmer@gwu.edu

The George Washington University (GWU)

OSPERT 2013

Researchers include

Qi Wang, Jiguo Song, Jakob Kaivo,
Andrew Sweeney, John Wittrock, ...

Embedded Systems

Past:
m single, simple task
B Uuni-processor

m fault-tolerance ignored (reboot), or custom

Present/Future:
m consolidation
m certification
m multi-/many-core

m increased faults due to shrinking manufacturing processes

Embedded OSes

Past:
m single memory protection domain

m threads, FP scheduling, semaphores, mailboxes, timing
m FreeRTOS, OSEK, ...

Challenges of the Present/Future:
m spatial + temporal isolation
m system composition from independently certifiable pieces
m intra- and inter-task parallelism
m reliability built-in

Embedded OSes

Past:
m single memory protection domain

m threads, FP scheduling, semaphores, mailboxes, timing
m FreeRTOS, OSEK, ...

Challenges of the Present/Future:
m spatial + temporal isolation
m system composition from independently certifiable pieces
m intra- and inter-task parallelism
m reliability built-in

Challenge: predictability
Challenge: maintaining system simplicity

Linux kernel map

| ;l‘lllg}igm"ﬁes human interface system processing memory storage networking

gicharcevices s INIBFTAGES COTS FEErCCe==Clp [memory access . files & directories ~~ sockets access
user Sy Catntace sy e o . access R

inuxsyscayn S, 7 sys_socket
space NN i = w:f:“ 5 il o s

5 Lo < o p——
interfaces s : prociney
system calls - %

Py fies

protocol families
int st

= ‘
\

virtual

X user peripherals : memory disk controllers network controllers
electronics "

Map of GNU/Linux OS and FOSS

functions

layers user
presentation desktops
high level mxfce €Gnome [IKDE
and 3

general purpose ofﬁce

user programs &dOpenOffice [KOffice
Jusr/bin Jusr/lib ¢ Evolution LaTeX
application audio, video, graphics

N ~;MPlayer @Amarok

appl|_c_at|0n YJFFmpeg =GStreamer
S?gc:’gfns AVLC Xine
programs “£GIMP krita

/usr/b:n usr/lib @Inkscape >Blender
engines G

services ey

servers gdm XX.org kdm
interpreters

infrastructure ¥ GTK+ QqQt

Jusr/sbin /usr/lib Ipd cups
control user access

su
inistrati

gﬂ?'”'s ration man chown adduser
glead

asiC access bash chmod echo

/sbin /oin oo e tils: pwd printf
foundation libselinux
base libraries, : libcrypt

kernel Jergfin P

and resources Rty console

/etc /boot /sbin /lib HID

p
user peripherals

hardware

© 2008 Constantine Shulyupin www.MakeLinux.net/system, updated 9/22/2008

boot

ower.

system data net
packaging file management net clients
kpackage synaptic s Thunar JKonqueror @ Firefox
#Nautilus Krusader KMail @Thunderbird
yum portage apt
[l K3b gnome-commander & Pidgin #Kopete
rpm urpmi dpkg tar bzip2 Ark gzip Mutt mail
development text processing net utilities
@Emacs Anjuta {#VvIM diff Meld kdiff3 grep wireshark tcpdump
o =R sed nano kate gedit
NOREED e textutils: wget netcat curl
bugzilla subversion gdb yniq sort comm
make HFgcc Dbinutils join cat paste traceroute ping
system services interpreters net servers
klogd acpid syslogd Perl PHP data & net sshd ApaCh
awk Python sl postfix inetd
a5 ule
crond’ D-Bus udev DBMS Bl o imop named
PostgreSQL P NFS
init hotplug hald SQLite MySQL /samba NetworkManager
system adm storage config °¢>' network adm
Isusb Ispci Ishal mermory stat file sync lvm2 iwconfig ip
top ps jobs procps findutils Is mkdir iptables netstat
nice chkeonfig slabtop mkfs fdisk mount route ifconfig
kill printenv vmstat In dd df du cp rm host socklist
Id.so libstdc++ libxml2 libexpat zlib libssl
llibrt pthread libdl <YGNU (ZLib libm libresolv
|)
grqcedsses ALi files sockets
initrd /lib/modules ('
/lib JLinux kernel protocols
~GRUB
PCI usB RAM storage Ethernet WiFi

functions '
P human oriented
reference or call
2 — inheritance
L=
= Calculator
=
a Calendar
Q.
o <L DeskClock
c
=
= Ul framework
= c ~ AccountManager
—- O f Vibrator WindowManager
g S O LocationManager
£ o EditText
-s P] Button
— MotionEvent | ViewGroup
g & E KeyEvent' e
l‘; < n‘: TextView
~ InputEvent l
is View
- Ul services
o " WindowManagerService
8 InputMethodManagerService
S AtcaUntManagerSeiviess
‘d-.l StatusBarManagerService
wvi LocatienManagerService
SensorService.
foundation keystore
kemelbraries adbd debuggerd

hardware s fesbexd

touchscreen vibrator

x kernel media_jni drm1_jni

USB processor RAM ~ camera audio /O sensor

SD card Flash

.
Android Internals API Level 9
system multimedia ol anadtsatmge communication
. Browser
Camera QuickSearchBox
Packagelnstaller J
Email
Music Galler:
Launcher2 y Phone
BackupRestore
Hellowerld Bluetooth
Settings Contacts NFc Mms
system Framework multimedia storage framework communication
Activity framework framework
) SearchManager
oilain ContextThemeWrapper BluetoothAdapter
ContextWrapper ContactsContract NFeAdaothr
startActivity Context MediaStore ;‘:a::’:“m"mrsgf_(k"pM“"ﬂge' P SmsManager
5 hR i webkit.WebView
fnbpne, {00fation MecPlayer | ContentResolver Broweer
r TextToSpeech ContentProvider T P
qam\ameParceLable elephonyManager
Packagehlanager TR e L e SRS Socket
getSystemService media and storage media and storage communication
NotificationManagerService ‘ services services services
ActivityManlagerService ContentService NetStatservice
~——Senver[hread SeudioRlioey . LorageManitorService CosCiasenics
Me«flaf‘layerservice’ | — “Bluetoothservice
syStemserver ameraService ouniServics TelephonyRegistry
) S - N
\ X AudioPolicyService BackupManagerService 3 ,
loadLibrary | \ \ N\ S NetworkManagementService
! I di if FFTE
nstall }m""f ediaserver exi m
bionicinit — vold~ netd rild rtp_jni

WiFi telephony

The COMPOSITE Component-Based OS

System policies/abstractions are components
m user-level
m minimal unit of spatial isolation

Low-level functions are components
m scheduling
B memory mapping
m |/O processing

Threads orthogonal to components
m thread migration
m concurrent/parallel components

Components interact via invocation of exported function
m contractually specified interfaces
m function call semantics

System = Components + Composition

Composition
m complex behavior from simple(ish) pieces

m gluing components together — raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

System = Components + Composition

Composition
m complex behavior from simple(ish) pieces

m gluing components together — raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

4

wget -0 - www.ecrts.org | grep ‘‘ospert’’ | wc -1

System = Components + Composition

Composition
m complex behavior from simple(ish) pieces
m gluing components together — raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

4

wget -0 - www.ecrts.org | grep ‘‘ospert’’ | wc -1

wget = ¢ "bin/wget" "-0 - www.ecrts.org"

grep = ¢ "bin/grep" "ospert"

wc = ¢ "bin/wc" "-1"

sys = deps [(cat, [grep, POSIX]),
(grep, [wc, POSIX]) 1]

System = Components + Composition

Compositio
m comple
File Desc. API
m gluing — bstraction
\/\CGI Service)
Complex fu miliar?

G
wget -0 -

wg ‘ "
ex <>
wC X
sy CEY

’ Timer Driver Network Driver

System = Components + Composition

Compositiol Challenges:
m complg m end-to-end predictability

m gluing| m dependent-task structure to bstraction
mirror components?
Complex fu| m trade between component miliar?

concurrency, and memory

4

wget -0 - www.ecrts.org | grep ‘‘ospert’’ | wc -1

wget = ¢ "bin/wget" "-0 - www.ecrts.org"

grep = ¢ "bin/grep" "ospert"

wc = ¢ "bin/wc" "-1"

sys = deps [(cat, [grep, POSIX]),
(grep, [wc, POSIX]) 1]

But people understand components...what else?

‘ All problems can be solved by another level of indirection. — Dijkstra ‘

Component A Component B
sleep(int t) {

sched_block();

¥

kernel-mediated IPC

But people understand components...what else?

’ All problems can be solved by another level of indirection. — Dijkstra‘

Component A Component B
sleep(int t) {

sched_block();

kernel-mediated IPC

Component A Component B
sleep(int t) {

/SChed_b|0ck() {3
.s.<.:hed_block();

Mutable Protection Domains
m generalizes other system structures (ukern, exokern, ..)

Predictable Parallel Computation

Parallel systems are here, what do we do with them?

m Inter-task parallelism: simple until

m shared resources
m schedulability: partitioned + bin-packing

m Intra-task parallelism:
m fork/join (OpenMP) schedulability
m general abstractions + mechanisms for parallelism
m harness hidden parallelism in concurrent systems
think: wget www.ecrts.org& wget www.rtss.orgk

Many-core Composite: MC?

Component A Component B
sleep(int t) {
sched_block();
Shared
} - Memory

core 0 core 1l

Inter-component parallelism:
m bin-packing overheads for partitioned systems
m cut a task across cores
m synchronous communication across cores
m specialized mechanisms for cross-core thread activation

m intra-component: 4x faster than Linux (WC)
m inter-component: harness non-blocking, async APIs

Many-core Composite: MC?

Component A Component B
sleep(int t) { ched_block() {}
sched_block();
Shared
} - Memory

Pair this with:
— a smart assignment algorithm, and
— optimized holistic analysis to analyze schedulability.

m bin-packing overheads for partitioned systems
m cut a task across cores
m synchronous communication across cores
m specialized mechanisms for cross-core thread activation

m intra-component: 4x faster than Linux (WC)
m inter-component: harness non-blocking, async APIs

%A _____
o
&
if
4%
&
— 0 o.c
no2m
DlenNaDl
%5
= 8
p ” llllll
’ mw
..::8
-“‘--
-;-‘--
o S . .

oney Aujigqe|npsyos

15 20 o5 .-

Total Utilization

10

Schedulability Ratio

0.8

0.6

0.4

0.2

No Overhead =—8—
800 us PSET g

400 us PSET
200 us PSET ==#¢=-
100 us PSET st
50 us PSET &
25 us PSET ====%-==-
15 us PSET =y=lei=n , .
5 10 15 20

Total Utilization

Transparent, System-Provided, Fault Tolerance

Decreasing process sizes
+ faster
+ less power
-+ smaller
— increased vulnerability to HW transient faults
— 65% of HW faults corrupt OS state

Transparent, System-Provided, Fault Tolerance

Decreasing process sizes
+ faster
+ less power
-+ smaller
— increased vulnerability to HW transient faults
— 65% of HW faults corrupt OS state
Can we provide fault tolerance
m even for the lowest-level components?
m predictably and efficiently?

Computational Crash Cart: C3

Component A Component B
sleep(int t) {

sched_block();

interpose on communication between components
track state of each “shared” object
m file, thread, lock, ...
fault in server!
j-reboot component
rebuild state via functions in interface

Computational Crash Cart: C3

Component A Component B
sleep(int t) {

sched_block();

interpose on communication between components
track state of each “shared” object
m file, thread, lock, ...
fault in server!
j-reboot component
rebuild state via functions in interface

Computational Crash Cart: C3

Component A Component B
sleep(int t) {

sched_block();

interpose on communication between components
track state of each “shared” object
m file, thread, lock, ...
fault in server!
j-reboot component
rebuild state via functions in interface

Computational Crash Cart: C3

Component A Component B
sleep(int t) {

sched_block();

interpose on communication between components
track state of each “shared” object
m file, thread, lock, ...
fault in server!
j-reboot component
rebuild state via functions in interface

Computational Crash Cart: C3

Component A Component B
sleep(int t) {

.s.éhed_block();

Recovery affects timing of multiple threads
m performed on-demand by thread using object
m rebuild objects at proper priority

m avoid recovery inversion

Computational Crash Cart: C3

Component A Component B
sleep(int t) {

sched_block();

C3: Efficient, system-wide fault tolerance
m recovers 100% injected faults (scheduler, memmgr, fs)
m j-reboot in < 20pu-sec
m rebuild object: < 5pu-sec

Versus checkpointing
m CRIU: 10ms, Xen: 10sec
m C3: 0.1ms per MB

FASSR

Fault-Tolerant Sy§tems Schedulability:

Checkpointing and C*, 50 tasks, 100ms period

100 = =

80

60 |

40

20 c? "on-demand" recovery —&—
checkpointing 0.1ms/chkpt —»—
checkpointing 1ms/chkpt ——
0 checkpaointina 10ms/chkot My
40 50 60 70 80 90 100

Utilization

The State of COMPOSITE is...

..In_progress.

m MC?: Full-system, predictable parallelism
m C3: Predictable, system-level fault tolerance

m HIEROS: hierarchical paravirtualization
(FreeRTOS done, Linux in-progress)

m [SOLOS: separation kernel support
m SECCOS: fine-grained authentication + monitoring

m ...POSIX support (see Rob Pike's polemic)

CoMPOSITE as CBOS:
m configurable to system reqs; as complex as required
m generalizes system structures
COMPOSITE as memory isolation + function call indirection
m general, transparent parallelism
m system-level fault tolerance

Thank You!

[A

composite.seas.gwu.edu

Comparison Case: Apache Web-Server, Linux

module
Persistent
¢ CaGl
Process
Apache
uw‘ A\ ' l J A\ J
kernel
A Pipe
Tcpip File

System

Apache provides multiple
content sources

Figures to keep in mind:
m Linux CGl communication
(pipe RPC): 6.4 p-sec
m COMPOSITE component
communication: 0.67
[1-SecC

Apache, Composite Comparison

Full Isolation
No Isolation ===

12

10

Connections/Second (x1000)

Ny G
490&‘ O/
Y
%
Composite Apache

S Y, A
% 0 sy,
(al (7
S e?

Resource Management

Components configured in the system:
m schedulers
B memory mappers
m |/O managers
m file systems
m networking protocols
_ I

Cost of component resource mgmt? (in p-seconds)
m Scheduler: thread switch — 0.4 (cos) vs. 0.8 (linux)
m Memory mapping: mmap — 2 (cos) vs. 6 (linux)
m 1/O: receive packet — 9.69 (cos) vs. 10.3 (linux)

Best Effort Subsystem vs. RT Task Execution

50 webserver

% utilization

5 10 15 20 25
time

System Management of Parallelism

Application

Library 1

Library 2

Networking

Driver

Traditional model of computation
m thread executes through system layers

m each layer has its own data working set

System Management of Parallelism

4

000..

caches
Traditional model of utilizing parallelism
m thread execute through same layers

m same data working sets in each cache
— inefficient use of caches!

System Management of Parallelism

COMPOSITE w/ invocations spreading computation across
cores

m CPU caches specialize around a specific working set
m controlled cache inefficiency
m factor of 100 performance difference

m control the parallelism of any one component

	Motivation
	Parallelism
	Fault Tolerance
	Fin
	Backup Slides
	Case Study: Component Web-Server
	Best Effort vs. HRT
	HiRes
	Parallel

