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Embedded Systems

Past:
m single, simple task
B Uuni-processor

m fault-tolerance ignored (reboot), or custom

Present/Future:
m consolidation
m certification
m multi-/many-core

m increased faults due to shrinking manufacturing processes



Embedded OSes

Past:
m single memory protection domain

m threads, FP scheduling, semaphores, mailboxes, timing
m FreeRTOS, OSEK, ...

Challenges of the Present/Future:
m spatial + temporal isolation
m system composition from independently certifiable pieces
m intra- and inter-task parallelism
m reliability built-in
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Past:
m single memory protection domain

m threads, FP scheduling, semaphores, mailboxes, timing
m FreeRTOS, OSEK, ...

Challenges of the Present/Future:
m spatial + temporal isolation
m system composition from independently certifiable pieces
m intra- and inter-task parallelism
m reliability built-in

Challenge: predictability
Challenge: maintaining system simplicity



Linux kernel map
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Map of GNU/Linux OS and FOSS
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The COMPOSITE Component-Based OS

System policies/abstractions are components
m user-level
m minimal unit of spatial isolation

Low-level functions are components
m scheduling
B memory mapping
m |/O processing

Threads orthogonal to components
m thread migration
m concurrent/parallel components

Components interact via invocation of exported function
m contractually specified interfaces
m function call semantics



System = Components + Composition

Composition
m complex behavior from simple(ish) pieces

m gluing components together — raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie
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System = Components + Composition

Composition
m complex behavior from simple(ish) pieces
m gluing components together — raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

4

wget -0 - www.ecrts.org | grep ‘‘ospert’’ | wc -1

wget = ¢ "bin/wget" "-0 - www.ecrts.org"

grep = ¢ "bin/grep" "ospert"

wc = ¢ "bin/wc" "-1"

sys = deps [ (cat, [grep, POSIX]),
(grep, [wc, POSIX]) 1]




System = Components + Composition
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System = Components + Composition

Compositiol Challenges:
m complg m end-to-end predictability

m gluing| m dependent-task structure to bstraction
mirror components?
Complex fu|  m trade between component miliar?

concurrency, and memory
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sys = deps [ (cat, [grep, POSIX]),
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But people understand components...what else?

‘ All problems can be solved by another level of indirection. — Dijkstra ‘

Component A Component B
sleep(int t) {

sched_block();

¥

kernel-mediated IPC



But people understand components...what else?

’ All problems can be solved by another level of indirection. — Dijkstra‘

Component A Component B
sleep(int t) {

sched_block();

kernel-mediated IPC

Component A Component B
sleep(int t) {

/SChed_b|0ck() {3
.s.<.:hed_block();

Mutable Protection Domains
m generalizes other system structures (ukern, exokern, ..)



Predictable Parallel Computation

Parallel systems are here, what do we do with them?

m Inter-task parallelism: simple until

m shared resources
m schedulability: partitioned + bin-packing

m Intra-task parallelism:
m fork/join (OpenMP) schedulability
m general abstractions + mechanisms for parallelism
m harness hidden parallelism in concurrent systems
think: wget www.ecrts.org& wget www.rtss.orgk



Many-core Composite: MC?

Component A Component B
sleep(int t) {
sched_block();
Shared
} - Memory

core 0 core 1l

Inter-component parallelism:
m bin-packing overheads for partitioned systems
m cut a task across cores
m synchronous communication across cores
m specialized mechanisms for cross-core thread activation

m intra-component: 4x faster than Linux (WC)
m inter-component: harness non-blocking, async APIs



Many-core Composite: MC?

Component A Component B
sleep(int t) { ched_block() {}
sched_block();
Shared
} - Memory

Pair this with:
— a smart assignment algorithm, and
— optimized holistic analysis to analyze schedulability.

m bin-packing overheads for partitioned systems
m cut a task across cores
m synchronous communication across cores
m specialized mechanisms for cross-core thread activation

m intra-component: 4x faster than Linux (WC)
m inter-component: harness non-blocking, async APIs
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Schedulability Ratio
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Transparent, System-Provided, Fault Tolerance

Decreasing process sizes
+ faster
+ less power
-+ smaller
— increased vulnerability to HW transient faults
— 65% of HW faults corrupt OS state



Transparent, System-Provided, Fault Tolerance

Decreasing process sizes
+ faster
+ less power
-+ smaller
— increased vulnerability to HW transient faults
— 65% of HW faults corrupt OS state
Can we provide fault tolerance
m even for the lowest-level components?
m predictably and efficiently?



Computational Crash Cart: C3

Component A Component B
sleep(int t) {

sched_block();

interpose on communication between components
track state of each “shared” object
m file, thread, lock, ...
fault in server!
j-reboot component
rebuild state via functions in interface
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Computational Crash Cart: C3

Component A Component B
sleep(int t) {

.s.éhed_block();

Recovery affects timing of multiple threads
m performed on-demand by thread using object
m rebuild objects at proper priority

m avoid recovery inversion



Computational Crash Cart: C3

Component A Component B
sleep(int t) {

sched_block();

C3: Efficient, system-wide fault tolerance
m recovers 100% injected faults (scheduler, memmgr, fs)
m j-reboot in < 20pu-sec
m rebuild object: < 5pu-sec

Versus checkpointing
m CRIU: 10ms, Xen: 10sec
m C3: 0.1ms per MB



FASSR
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The State of COMPOSITE is...

..In_progress.

m MC?: Full-system, predictable parallelism
m C3: Predictable, system-level fault tolerance

m HIEROS: hierarchical paravirtualization
(FreeRTOS done, Linux in-progress)

m [SOLOS: separation kernel support
m SECCOS: fine-grained authentication + monitoring

m ...POSIX support (see Rob Pike's polemic)

CoMPOSITE as CBOS:
m configurable to system reqs; as complex as required
m generalizes system structures
COMPOSITE as memory isolation + function call indirection
m general, transparent parallelism
m system-level fault tolerance



Thank You!
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Comparison Case: Apache Web-Server, Linux
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Apache provides multiple
content sources

Figures to keep in mind:
m Linux CGl communication
(pipe RPC): 6.4 p-sec
m COMPOSITE component
communication: 0.67
[1-SecC



Apache, Composite Comparison
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Resource Management

Components configured in the system:
m schedulers
B memory mappers
m |/O managers
m file systems
m networking protocols
_ I

Cost of component resource mgmt? (in p-seconds)
m Scheduler: thread switch — 0.4 (cos) vs. 0.8 (linux)
m Memory mapping: mmap — 2 (cos) vs. 6 (linux)
m 1/O: receive packet — 9.69 (cos) vs. 10.3 (linux)



Best Effort Subsystem vs. RT Task Execution
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System Management of Parallelism

Application

Library 1

Library 2

Networking

Driver

Traditional model of computation
m thread executes through system layers

m each layer has its own data working set



System Management of Parallelism

4

000..

caches
Traditional model of utilizing parallelism
m thread execute through same layers

m same data working sets in each cache
— inefficient use of caches!




System Management of Parallelism

COMPOSITE w/ invocations spreading computation across
cores

m CPU caches specialize around a specific working set
m controlled cache inefficiency
m factor of 100 performance difference

m control the parallelism of any one component



	Motivation
	Parallelism
	Fault Tolerance
	Fin
	Backup Slides
	Case Study: Component Web-Server
	Best Effort vs. HRT
	HiRes
	Parallel


