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Embedded Systems

Past:

single, simple task

uni-processor

fault-tolerance ignored (reboot), or custom

Present/Future:

consolidation

certification

multi-/many-core

increased faults due to shrinking manufacturing processes



Embedded OSes

Past:

single memory protection domain

threads, FP scheduling, semaphores, mailboxes, timing

FreeRTOS, OSEK, ...

Challenges of the Present/Future:

spatial + temporal isolation

system composition from independently certifiable pieces

intra- and inter-task parallelism

reliability built-in

Challenge: predictability
Challenge: maintaining system simplicity
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The Composite Component-Based OS

System policies/abstractions are components

user-level

minimal unit of spatial isolation

Low-level functions are components

scheduling

memory mapping

I/O processing

Threads orthogonal to components

thread migration

concurrent/parallel components

Components interact via invocation of exported function

contractually specified interfaces

function call semantics



System = Components + Composition

Composition

complex behavior from simple(ish) pieces

gluing components together → raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

wget -O - www.ecrts.org | grep ‘‘ospert’’ | wc -l

wget = c "bin/wget" "-O - www.ecrts.org"

grep = c "bin/grep" "ospert"

wc = c "bin/wc" "-l"

sys = deps [ (cat, [grep, POSIX]),

(grep, [wc, POSIX]) ]
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System = Components + Composition

Composition

complex behavior from simple(ish) pieces

gluing components together → raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

wget -O - www.ecrts.org | grep ‘‘ospert’’ | wc -l

wget = c "bin/wget" "-O - www.ecrts.org"

grep = c "bin/grep" "ospert"

wc = c "bin/wc" "-l"

sys = deps [ (cat, [grep, POSIX]),

(grep, [wc, POSIX]) ]

Challenges:

end-to-end predictability

dependent-task structure to
mirror components?

trade between component
concurrency, and memory



But people understand components...what else?

All problems can be solved by another level of indirection. – Dijkstra

Mutable Protection Domains

generalizes other system structures (µkern, exokern, ..)
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Predictable Parallel Computation

Parallel systems are here, what do we do with them?

Inter-task parallelism: simple until

shared resources
schedulability: partitioned + bin-packing

Intra-task parallelism:

fork/join (OpenMP) schedulability
general abstractions + mechanisms for parallelism
harness hidden parallelism in concurrent systems
think: wget www.ecrts.org& wget www.rtss.org&



Many-core Composite: MC2

Inter-component parallelism:

bin-packing overheads for partitioned systems

cut a task across cores

synchronous communication across cores

specialized mechanisms for cross-core thread activation

intra-component: 4x faster than Linux (WC)
inter-component: harness non-blocking, async APIs



Many-core Composite: MC2

Inter-component parallelism:

bin-packing overheads for partitioned systems

cut a task across cores

synchronous communication across cores

specialized mechanisms for cross-core thread activation

intra-component: 4x faster than Linux (WC)
inter-component: harness non-blocking, async APIs

Pair this with:
– a smart assignment algorithm, and
– optimized holistic analysis to analyze schedulability.
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Transparent, System-Provided, Fault Tolerance

Decreasing process sizes

+ faster

+ less power

+ smaller

– increased vulnerability to HW transient faults

– 65% of HW faults corrupt OS state

Can we provide fault tolerance

even for the lowest-level components?

predictably and efficiently?
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Computational Crash Cart: C3

1 interpose on communication between components

2 track state of each “shared” object

file, thread, lock, ...

3 fault in server!

4 µ-reboot component

5 rebuild state via functions in interface
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Computational Crash Cart: C3

Recovery affects timing of multiple threads

performed on-demand by thread using object

rebuild objects at proper priority

avoid recovery inversion



Computational Crash Cart: C3

C3: Efficient, system-wide fault tolerance

recovers 100% injected faults (scheduler, memmgr, fs)

µ-reboot in < 20µ-sec

rebuild object: < 5µ-sec

Versus checkpointing

CRIU: 10ms, Xen: 10sec

C3 : 0.1ms per MB
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The State of Composite is...

...in progress.

MC2: Full-system, predictable parallelism

C3: Predictable, system-level fault tolerance

HierOS: hierarchical paravirtualization

(FreeRTOS done, Linux in-progress)

IsolOS: separation kernel support

SecCOS: fine-grained authentication + monitoring

...POSIX support (see Rob Pike’s polemic)

Composite as CBOS:

configurable to system reqs; as complex as required

generalizes system structures

Composite as memory isolation + function call indirection

general, transparent parallelism

system-level fault tolerance



Thank You!

? || /* */

composite.seas.gwu.edu



Comparison Case: Apache Web-Server, Linux

File
System

Process
CGI

user

kernel

TCP/IP
Pipe

Apache

module

Persistent

Apache provides multiple
content sources

Figures to keep in mind:

Linux CGI communication
(pipe RPC): 6.4 µ-sec

Composite component
communication: 0.67
µ-sec



Apache, Composite Comparison
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Resource Management

Components configured in the system:

schedulers

memory mappers

I/O managers

file systems

networking protocols

...

Cost of component resource mgmt? (in µ-seconds)

Scheduler: thread switch – 0.4 (cos) vs. 0.8 (linux)

Memory mapping: mmap – 2 (cos) vs. 6 (linux)

I/O: receive packet – 9.69 (cos) vs. 10.3 (linux)



Best Effort Subsystem vs. RT Task Execution
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System Management of Parallelism

Traditional model of computation

thread executes through system layers

each layer has its own data working set



System Management of Parallelism

Traditional model of utilizing parallelism
thread execute through same layers
same data working sets in each cache
→ inefficient use of caches!



System Management of Parallelism

Composite w/ invocations spreading computation across
cores

CPU caches specialize around a specific working set

controlled cache inefficiency

factor of 100 performance difference

control the parallelism of any one component
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