
The State of Composite:

a Customizable Component-Based OS for

Predictable, Reliable, and Scalable

Computation

Gabriel Parmer
gparmer@gwu.edu

The George Washington University (GWU)

OSPERT 2013

Researchers include
Qi Wang, Jiguo Song, Jakob Kaivo,
Andrew Sweeney, John Wittrock, ...

Embedded Systems

Past:

single, simple task

uni-processor

fault-tolerance ignored (reboot), or custom

Present/Future:

consolidation

certification

multi-/many-core

increased faults due to shrinking manufacturing processes

Embedded OSes

Past:

single memory protection domain

threads, FP scheduling, semaphores, mailboxes, timing

FreeRTOS, OSEK, ...

Challenges of the Present/Future:

spatial + temporal isolation

system composition from independently certifiable pieces

intra- and inter-task parallelism

reliability built-in

Challenge: predictability
Challenge: maintaining system simplicity

Embedded OSes

Past:

single memory protection domain

threads, FP scheduling, semaphores, mailboxes, timing

FreeRTOS, OSEK, ...

Challenges of the Present/Future:

spatial + temporal isolation

system composition from independently certifiable pieces

intra- and inter-task parallelism

reliability built-in

Challenge: predictability
Challenge: maintaining system simplicity

The Composite Component-Based OS

System policies/abstractions are components

user-level

minimal unit of spatial isolation

Low-level functions are components

scheduling

memory mapping

I/O processing

Threads orthogonal to components

thread migration

concurrent/parallel components

Components interact via invocation of exported function

contractually specified interfaces

function call semantics

System = Components + Composition

Composition

complex behavior from simple(ish) pieces

gluing components together → raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

wget -O - www.ecrts.org | grep ‘‘ospert’’ | wc -l

wget = c "bin/wget" "-O - www.ecrts.org"

grep = c "bin/grep" "ospert"

wc = c "bin/wc" "-l"

sys = deps [(cat, [grep, POSIX]),

(grep, [wc, POSIX])]

System = Components + Composition

Composition

complex behavior from simple(ish) pieces

gluing components together → raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

wget -O - www.ecrts.org | grep ‘‘ospert’’ | wc -l

wget = c "bin/wget" "-O - www.ecrts.org"

grep = c "bin/grep" "ospert"

wc = c "bin/wc" "-l"

sys = deps [(cat, [grep, POSIX]),

(grep, [wc, POSIX])]

System = Components + Composition

Composition

complex behavior from simple(ish) pieces

gluing components together → raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

wget -O - www.ecrts.org | grep ‘‘ospert’’ | wc -l

wget = c "bin/wget" "-O - www.ecrts.org"

grep = c "bin/grep" "ospert"

wc = c "bin/wc" "-l"

sys = deps [(cat, [grep, POSIX]),

(grep, [wc, POSIX])]

System = Components + Composition

Composition

complex behavior from simple(ish) pieces

gluing components together → raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

wget -O - www.ecrts.org | grep ‘‘ospert’’ | wc -l

wget = c "bin/wget" "-O - www.ecrts.org"

grep = c "bin/grep" "ospert"

wc = c "bin/wc" "-l"

sys = deps [(cat, [grep, POSIX]),

(grep, [wc, POSIX])]Network DriverTimer Driver

Connect ion Manager

File Desc. API

TCP

HTTP Parser

Even t
Manager

IP
Port

Manager

Lock

Timed Block

Conten t Manager

CGI Service

CGI FD API

Async Invs.
Stat ic

Con ten t

Scheduler

vNIC

MPD Manager

System = Components + Composition

Composition

complex behavior from simple(ish) pieces

gluing components together → raise level of abstraction

Complex functionality from simple pieces...sound familiar?
Hint: Thompson & Ritchie

wget -O - www.ecrts.org | grep ‘‘ospert’’ | wc -l

wget = c "bin/wget" "-O - www.ecrts.org"

grep = c "bin/grep" "ospert"

wc = c "bin/wc" "-l"

sys = deps [(cat, [grep, POSIX]),

(grep, [wc, POSIX])]

Challenges:

end-to-end predictability

dependent-task structure to
mirror components?

trade between component
concurrency, and memory

But people understand components...what else?

All problems can be solved by another level of indirection. – Dijkstra

Mutable Protection Domains

generalizes other system structures (µkern, exokern, ..)

But people understand components...what else?

All problems can be solved by another level of indirection. – Dijkstra

Mutable Protection Domains

generalizes other system structures (µkern, exokern, ..)

Predictable Parallel Computation

Parallel systems are here, what do we do with them?

Inter-task parallelism: simple until

shared resources
schedulability: partitioned + bin-packing

Intra-task parallelism:

fork/join (OpenMP) schedulability
general abstractions + mechanisms for parallelism
harness hidden parallelism in concurrent systems
think: wget www.ecrts.org& wget www.rtss.org&

Many-core Composite: MC2

Inter-component parallelism:

bin-packing overheads for partitioned systems

cut a task across cores

synchronous communication across cores

specialized mechanisms for cross-core thread activation

intra-component: 4x faster than Linux (WC)
inter-component: harness non-blocking, async APIs

Many-core Composite: MC2

Inter-component parallelism:

bin-packing overheads for partitioned systems

cut a task across cores

synchronous communication across cores

specialized mechanisms for cross-core thread activation

intra-component: 4x faster than Linux (WC)
inter-component: harness non-blocking, async APIs

Pair this with:
– a smart assignment algorithm, and
– optimized holistic analysis to analyze schedulability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30
 0

 0.2

 0.4

 0.6

 0.8

 1
S

c
h

e
d

u
la

b
ili

ty
 R

a
ti
o

C
ri
ti
c
a

l
P

a
th

 /
 D

e
a

d
lin

e

Total Utilization

PST
Split-Merge

Naive
Critical Path

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

S
c
h

e
d

u
la

b
ili

ty
 R

a
ti
o

Total Utilization

No Overhead
800 us PSET
400 us PSET
200 us PSET
100 us PSET
50 us PSET
25 us PSET
15 us PSET

Transparent, System-Provided, Fault Tolerance

Decreasing process sizes

+ faster

+ less power

+ smaller

– increased vulnerability to HW transient faults

– 65% of HW faults corrupt OS state

Can we provide fault tolerance

even for the lowest-level components?

predictably and efficiently?

Transparent, System-Provided, Fault Tolerance

Decreasing process sizes

+ faster

+ less power

+ smaller

– increased vulnerability to HW transient faults

– 65% of HW faults corrupt OS state

Can we provide fault tolerance

even for the lowest-level components?

predictably and efficiently?

Computational Crash Cart: C3

1 interpose on communication between components

2 track state of each “shared” object

file, thread, lock, ...

3 fault in server!

4 µ-reboot component

5 rebuild state via functions in interface

Computational Crash Cart: C3

1 interpose on communication between components

2 track state of each “shared” object

file, thread, lock, ...

3 fault in server!

4 µ-reboot component

5 rebuild state via functions in interface

Computational Crash Cart: C3

1 interpose on communication between components

2 track state of each “shared” object

file, thread, lock, ...

3 fault in server!

4 µ-reboot component

5 rebuild state via functions in interface

Computational Crash Cart: C3

1 interpose on communication between components

2 track state of each “shared” object

file, thread, lock, ...

3 fault in server!

4 µ-reboot component

5 rebuild state via functions in interface

Computational Crash Cart: C3

Recovery affects timing of multiple threads

performed on-demand by thread using object

rebuild objects at proper priority

avoid recovery inversion

Computational Crash Cart: C3

C3: Efficient, system-wide fault tolerance

recovers 100% injected faults (scheduler, memmgr, fs)

µ-reboot in < 20µ-sec

rebuild object: < 5µ-sec

Versus checkpointing

CRIU: 10ms, Xen: 10sec

C3 : 0.1ms per MB

 0

 20

 40

 60

 80

 100

 40 50 60 70 80 90 100

F
A

S
S

R

Utilization

Fault-Tolerant Systems Schedulability:
Checkpointing and C

3
, 50 tasks, 100ms period

C
3
 "on-demand" recovery

checkpointing 0.1ms/chkpt
checkpointing 1ms/chkpt

checkpointing 10ms/chkpt

The State of Composite is...

...in progress.

MC2: Full-system, predictable parallelism

C3: Predictable, system-level fault tolerance

HierOS: hierarchical paravirtualization

(FreeRTOS done, Linux in-progress)

IsolOS: separation kernel support

SecCOS: fine-grained authentication + monitoring

...POSIX support (see Rob Pike’s polemic)

Composite as CBOS:

configurable to system reqs; as complex as required

generalizes system structures

Composite as memory isolation + function call indirection

general, transparent parallelism

system-level fault tolerance

Thank You!

? || /* */

composite.seas.gwu.edu

Comparison Case: Apache Web-Server, Linux

File
System

Process
CGI

user

kernel

TCP/IP
Pipe

Apache

module

Persistent

Apache provides multiple
content sources

Figures to keep in mind:

Linux CGI communication
(pipe RPC): 6.4 µ-sec

Composite component
communication: 0.67
µ-sec

Apache, Composite Comparison

 0

 2

 4

 6

 8

 10

 12

Static File

CGI
Static File

Module

FastCGI

C
on

ne
ct

io
ns

/S
ec

on
d

(x
10

00
)

Full Isolation
No Isolation

ApacheComposite

Resource Management

Components configured in the system:

schedulers

memory mappers

I/O managers

file systems

networking protocols

...

Cost of component resource mgmt? (in µ-seconds)

Scheduler: thread switch – 0.4 (cos) vs. 0.8 (linux)

Memory mapping: mmap – 2 (cos) vs. 6 (linux)

I/O: receive packet – 9.69 (cos) vs. 10.3 (linux)

Best Effort Subsystem vs. RT Task Execution

 0

 10

 20

 30

 40

 50

 5 10 15 20 25

%
 u

til
iz

at
io

n

time

webserver
4/25
3/20
1/10

reservation

System Management of Parallelism

Traditional model of computation

thread executes through system layers

each layer has its own data working set

System Management of Parallelism

Traditional model of utilizing parallelism
thread execute through same layers
same data working sets in each cache
→ inefficient use of caches!

System Management of Parallelism

Composite w/ invocations spreading computation across
cores

CPU caches specialize around a specific working set

controlled cache inefficiency

factor of 100 performance difference

control the parallelism of any one component

	Motivation
	Parallelism
	Fault Tolerance
	Fin
	Backup Slides
	Case Study: Component Web-Server
	Best Effort vs. HRT
	HiRes
	Parallel

