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Context & Trends:

� Ever increasing functionalities & complexity

→→→→ More performances required!

→→→→ New SoC architectures are emerging: 

Multicores, GP-GPU, Manycores…

� Battery technology evolution is slower   

→→→→ Power Management becomes a must!

Introduction - Context
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Power consumption impacts:
� Thermal dissipation

� Components reliability

� Cost

→→→→ Issue for the whole system!

Introduction - TCS motivations
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Environment enabling development of power mngt policies 

Contribution to ↗ autonomy / ↘ consumption / ↘ thermal
embedded products 

Specification of OS services
to monitor and control power consumption 

Portable design on various OS and HW platforms

Safe usage of HW platforms power saving knobs

Power consumption reduction of mono & multi processors 
embedded systems hosting real-time applications
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CMOS circuit power consumption breakdown:

Introduction – power management techniques
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DVFS (Dynamic Voltage and Frequency Scaling) knobs:

� HW mechanism consisting in varying the voltage/freq uency couple 

� Technique enabling the reduction of the processor p ower consumption by  providing just 
the necessary energy to execute a job

Introduction – power management techniques
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DPM (Dynamic Power Management) knobs:

� Input voltage of the component is turned off

� Several low-power mode

� Idle: data in cache are saved

� Sleep: data are lost

Introduction – power management techniques

T1 T2 T3 T1 …
Time requirement

T > Tsleep + Twakeup, 

Real time system :
Offline or online policy based on 
the schedulabitity test

Soft system :
Probability based estimations of 
inactivity time, period, duration 

Data in the cache 
memory ?
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DVFS or DPM ?

Introduction – power management techniques
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Application driven solution:

� Intrusive, not flexible, multi-application issues

OS driven:

� General purpose OS (Linux/Windows) solutions:

� OS heuristics evaluate the processor load for a giv en past period 
and take actions if the processor reaches a specifi c workload 
threshold

� No modifications are required for the applications to use this 
framework

But,

� Not suited for real-time (soft & hard) applications  

� Usually disabled by system integrators to avoid sys tem 
misbehaviour

→→→→ System integrators need power management solutions compatible 
with real-time and critical systems! No standard so lutions exist

Introduction – power management techniques
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Example of a Low-Power scheduling algorithm:

→ EDF (Earliest Deadline First) policy combined with online DVFS 
usage

� Task WCET is known/estimated for each CPU power mod es

� Extend task execution upon a maximum tolerated time  (deadline) and 
find a compliant CPU power mode

� At runtime: Slack time recuperation to take benefit  of lower CPU power 
modes



1313

User interfaces:
� A proposal for POSIX extension to be able to hold e xtra information about timings for 

helping resource management policy development

� POSIX limitations: 

� Priority based only

� doesn’t take into account execution times

� Needs:

� Concept to associate duration to concurrent flows:  The thread segment

Low-Power scheduler implementation – usage and limitations 

Input bufferNew compressed 
data (1 frame)

arrive periodically 
every 40ms

Application instrumentation  
Identify segments

loop

Slice 1

Slice 2

Task 1

Task 2

1 frame             
decoding process

Task 2

Task 1

Slice 1

Slice 2

I type

P type

I type

P type

1 frame decoded every 
40ms (25fps)

Input Output

Segment corresponding to one 
slice computation                         
→ time constraint = 20 ms           
(Case of 1 frame = 2 slices)

Segment corresponding to I frame case                              
→ Intra prediction type computation

Segment corresponding to P frame case                              
→ Inter prediction type computation

40ms

2 slices video streams 
overall decoding process



1414 Low-Power scheduler implementation - Low Power scheduler Framework (Patent)

Linux
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Results on OMAP3530 with H.264 video codecs:

� ~30% power consumption reduction measured on OMAP35 30

� Satisfying results on soft real-time applications

� Multiprocess/Multi application issues

→→→→ Future work: Integration in Kernel space or as a se rvice of RTOS

Low-Power scheduler implementation – results and limitations 
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The safe and secure virtualization (SSV) RTOS:

� runs concurrently software of different safety and security levels …

� can provide multiple API, run time environments and  guest 
operating systems …

� enables a mixture of hard real-time and non real-ti me applications …

… on a single embedded device

� Certified technology

� Enables modular certification according to highest industrial
standards

� Runs on numerous HW architectures and platforms

� Provides multi-core functionally
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Challenge: Resources sharing

Resources

� CPUs
� Memory, IO memory
� Flies, drivers, devices, buses…

Safety

� Integrity, availability
� Isolation, application errors, fail safe

Security 

� Integrity, availability, confidentiality
� Possible side channels via shared 

resources
� Resources and API are attack surface

PikeOS Solution

Resource Partitioning

POWER is also shared

Challenge: Time sharing

Time

� CPU cycles
� Time effects of accessing shared 

resources, e.g. buses…

Safety

� Availability, deterministic behavior, 
meeting deadlines

� Right balance between time- and 
event-triggered tasks

Security 

� Availability, confidentiality
� Possible timing side channels via 

shared resources, e.g. caches, 
busses

� Time is the attack surface

PikeOS Solution

Time Partitioning
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� Static allocation of all 
system resources

� Application has 
guaranteed access to 
assigned resources

� Applications cannot 
access resources of other 
partitions if not explicitly 
configured otherwise

� No error propagation 
throughout other 
partitions

� Memory protection 
enforcement using 
Hardware (MMU) 

� All partitions execute in 
user modes



2121

Time partition principles

Time Partitioning - Temporal Separation

� ARINC 653 compliant

� Static configuration of execution 
order and duration

� Future ARINC 653 requirements

� Support for multiple scheduling 
schemes

� Scheduling schemes can be 
switched during runtime

� Partition ‘0’ offers additional 
functionality

� Threads with high priority can 
preempt active partition

� Threads with low priority can act 
as global idle-job
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Option 1: Integration as extensions of PikeOS sched uler

� A new parameter must be introduced for the VMs and 
handled by PikeOS scheduler: 

→ Max power budget to be consumed for a VMs during its time partition

→ It only impacts the background time partition execution duration, 
and/or  low priority VMs

Low Power scheduling perspectives for mixed critical systems

Traditional ARINC653 
scheduling

Scheduling with 
background time 

partition 

Scheduling with 
background time 

partition and limited 
power budget
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Option 2: Integration at level of user VM

� Apply DVFS/DPM only on Low Priority VMs
� Low-priority VMs are allocated to background time partition

� A new parameter must be handled by PikeOS scheduler : CPU 
frequency

� This is required to ensure the right power mode is used when High priority 
VMs are scheduled

Low Power scheduling perspectives for mixed critical systems

Traditional ARINC653 
scheduling

Scheduling with 
background time 

partition 

Scheduling with 
background time 

partition and DVFS 
management on this 

low-priority VMs
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Option 3: Integration at the level of PikeOS extensio ns

� Allocate high performance cores to critical VMs

� Allocate low performance cores to low priority VMs
→→→→The system integrator must provide the number of co res and/or 
frequencies to be used for each partitions to ensur e deterministic 
behavior of the application

Low Power scheduling perspectives for mixed critical systems

Traditional ARINC653 
scheduling

Scheduling with 
background time 

partition 

Scheduling with 
background time 

partition and static 
VFS and core affinity 
for high priotiy VMs
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Thank you for your attention!


