
Proceedings of

OSPERT 2013

9th annual workshop on

Operating Systems Platforms for
Embedded Real-Time Applications

July 9th, 2013 in Paris, France

in conjunction with the
25th Euromicro Conference on Real-Time Systems

Paris, July 10-12, 2013

Editors:

Andrea Bastoni

Shinpei Kato

Copyright 2013 SYSGO AG.
All rights reserved. The copyright of this collection is with SYSGO AG. The copyright of the
individual articles remains with their authors.

Contents

Message from the Chairs 3

Program Committee 3

Keynote Talk 4

Program 5

Implementation and Performance evaluation 5

Investigation and Improvement on the Impact of TLB misses in Real-Time Systems
Takuya Ishikawa, Toshikazu Kato, Shinya Honda, Hiroaki Takada 5

Implementation of the Multi-Level Adaptive Hierarchical Scheduling Framework
Nima Moghaddami Khalilzad, Moris Behnam, Thomas Nolte 11

A Comparison of Scheduling Latency in Linux, PREEMPT RT, and LITMUSRT

Felipe Cerqueria, Bjöern Brandenburg . 20

Power-Management and Open-Source Projects 31

Towards power-efficient mixed-critical systems
Florian Broekaert, Sergey Tverdyshev, Laurent San, Agnes Fritsch 31

Reverse engineering power management on NVIDIA GPUs - Anatomy of an autonomic-ready
system
Martin Peres . 36

The state of Composite
Jiguo Song, Qi Wang, Gabriel Parmer . 45

Resource Sharing and Locking 46

Priority Inheritance on Condition Variables
Tommaso Cucinotta . 46

Deterministic Fast User Space Synchronization
Alexander Züpke . 56

2

Message from the Chairs

In this 9th workshop on Operating Systems Platforms for Embedded Real-Time Applications
we aimed at continuing the discussion-based focus and the interaction between Academia and
Industry that traditionally characterize OSPERT. The workshop will be opened by Frederic
Weisbecker’s keynote who will discuss the challenges of virtual CPU-time accounting, dynamic
ticks, and enabling the full tickless mode in the Linux Kernel. To increase the interaction
possibilities, we have looked at providing ample discussion time between the paper presentations.

Following the positive trend of last year’s OSPERT, the workshop will feature the presenta-
tion of traditional technical papers, forward-looking papers—with a strong focus on innovative
ideas, open problems, and implementation issues—as well as a new category of papers that
targets discussions on existing OS-related open source projects. OSPERT this year accepted
6 of 7 peer reviewed papers and will further include two invited papers on the comparison of
scheduling latencies in Linux, PREEMPT RT, and LITMUSRT (a Linux-based framework to
experiment scheduling and locking protocols), and on the challenges to uncover—through re-
verse engineering—and exploit the complex power-management and RTOS embedded features
currently included in modern GPGPUs. We would like to thank all the authors for their hard
work: given the presented topics and the quality of the submissions, we expect a lively workshop.

OSPERT 2013 would not have been possible without the support of many people. The
first thanks goes to Gerhard Fohler and to the ECRTS chairs for making it possible to have
this venue to discuss operating system and implementation-oriented real-time topics. We would
also like to thank the program committee, for their effort in carefully selecting an interesting
program and providing useful feedback to the authors.

Last, but not least, we would like to thank you, the audience, for actively contributing—
through your stimulating questions and lively interest— to define and improve OSPERT. We
hope you will enjoy this day.

The Workshop Chairs,
Andrea Bastoni

Shinpei Kato

Program Committee

Neil Audsley, University of York

Björn B. Brandenburg, Max Planck Institute for Software Systems

Robert Kaiser, Hochschule RheinMain University of Applied Sciences

Wolfgang Mauerer, Siemens

Paul McKenney, IBM
Thomas Nolte, Malardaren University

Gabriel Parmer, George Washington University

Rodolfo Pelizzoni, University of Waterloo

Steven Rostedt, Red Hat

Richard West, Boston University

3

Keynote Talk

Present and Future of Linux dynticks

Frederic Weisbecker
Red Hat

Linux has been able to stop the tick for a few years now. This feature is known as dynticks.
Although it was limited to idle CPUs, this was a great step towards enabling power-saving

solutions. Now, the 3.10 Linux Kernel can extend this dynamic tick behavior not only to idle

CPUs, but also to busy CPUs. This time, power-saving is not the only target, but rather latency

and performance. For now the benefit is mostly to be expected in extreme real-time and High

Performance Computing, but it may extend to more general purposes in the long run. This talk

aims at diving into dynticks internals and speculates about its future improvements.

Biography:
Frederic Weisbecker is a Linux Kernel developer working for Red Hat. His involvement and role
in the Linux community has evolved over time: he has been working on tracing with ftrace and
perf events subsystems, on timers and dynticks-mode, and he helped to remove the big kernel
lock. In 2010, he took up the challenge of disabling the tick interrupt on non-idle processors.
Eventually, after many changes and helps from other Linux Kernel developers, his work has
been merged into the 3.10 kernel.

4

Program

Tuesday, July 9th 2012

8:30-9:30 Registration
9:30-11:00 Keynote Talk: Present and Future of Linux dynticks

Frederic Weisbecker

11:00-11:30 Coffee Break
11:30-13:00 Session 1: Implementation and Performance evaluation

Investigation and Improvement on the Impact of TLB misses in Real-Time Systems
Takuya Ishikawa, Toshikazu Kato, Shinya Honda, Hiroaki Takada

Implementation of the Multi-Level Adaptive Hierarchical Scheduling Framework
Nima Moghaddami Khalilzad, Moris Behnam, Thomas Nolte

A Comparison of Scheduling Latency in Linux, PREEMPT RT, and LITMUSRT

Felipe Cerqueria, Bjöern Brandenburg

13:00-14:30 Lunch
14:30-16:00 Session 2: Power-Management and Open-Source Projects

Towards power-efficient mixed-critical systems
Florian Broekaert, Sergey Tverdyshev, Laurent San, Agnes Fritsch

Reverse engineering power management on NVIDIA GPUs - Anatomy of an
autonomic-ready system

Martin Peres

The state of Composite
Jiguo Song, Qi Wang, Gabriel Parmer

16:00-16:30 Coffee Break
16:30-17:30 Session 3: Resource Sharing and Locking

Priority Inheritance on Condition Variables
Tommaso Cucinotta

Deterministic Fast User Space Synchronization
Alexander Züpke

17:30-18:00 Discussion and Closing Thoughts

Wednesday, July 10th - Friday, July 12th 2013

ECRTS main conference.

5

Investigation and Improvement on the Impact of

TLB misses in Real-Time Systems

Takuya Ishikawa, Toshikazu Kato, Shinya Honda and Hiroaki Takada
Nagoya University, Nagoya, Japan

Abstract—Memory protection for real-time systems is needed
to ensure safety of the systems, in recent years. The memory
management unit used for memory protection uses the translation
lookaside buffer (TLB) which is a caching mechanism. When
using the TLB in real-time systems, the worst-case execution
time (WCET) is estimated pessimistically, because it is difficult
to predict the occurrence of TLB misses. In this paper, first,
the impact of TLB misses on the WCET is evaluated. Secondly,
methods to control the occurrence of TLB misses by using the
TLB locking mechanism are proposed. The result of evaluation
shows the effectiveness of the proposed methods.

I. INTRODUCTION

Memory protection [1] for real-time systems is needed to
ensure safety of the systems, in recent years [2]. A memory
management unit (MMU) is hardware that manages virtual
memory systems for memory protection, and it is used in most
general-purpose systems and high-end embedded systems,
such as avionic computer systems. An MMU performs address
translation with a page table, which is a table for mapping a
virtual address to a physical address. Furthermore, each entry
of a page table contains a field for access permission. An MMU
can detect run-time illegal memory access with an address
translation. A translation lookaside buffer (TLB), where a page
table entry is cached, is usually used to reduce the time of
address translation by an MMU. In the case that a TLB does
not contain a required entry, a TLB miss exception occurs, then
a required entry is obtained from a page table in memory (page
table walk) and replaced with another entry that is contained
in a TLB. A page table walk requires a considerable amount
of execution time to access memory several times.

Meanwhile, real-time analysis requires worst-case execu-
tion times (WCETs) of each task in a system [3] [4]. However,
most real-time analysis uses WCETs that are pessimistically
estimated, because it is difficult to estimate the exact WCET
[5]. In the case that an MMU (a TLB) is used in real-time
systems, WCETs have the potential to be estimated even more
pessimistically. This is because it is difficult to predict the
occurrence of TLB misses. Nevertheless the impact of TLB
misses on WCETs and methods to improve predictability of
WCETs are not studied.

In this paper, the impact of TLB misses on WCETs and
methods to improve predictability of WCETs are studied. First,
execution time distribution of a task in a micro-benchmark of
real-time systems with an MMU is evaluated. The results of
evaluation demonstrate that TLB misses have a considerable
impact on WCETs. Furthermore, methods to reduce the impact
of TLB misses are proposed. The proposed methods control
the occurrence of TLB misses by using TLB locking, which
makes a specified TLB entry not to be replaced (expired) and

inhibit the occurrence of TLB misses related to that entry.
A WCET of a task in the micro-benchmark become able to
be estimated, when the proposed methods are applied to the
micro-benchmark. In addition, response time of the micro-
benchmark with the proposed methods is evaluated.

The rest of this paper is organized as follows. Section II
describes evaluation environment and a micro-benchmark. Sec-
tion III evaluates an impact of TLB misses on WCETs. Section
IV presents methods to reduce the impact of TLB misses by
using TLB locking. Section V evaluates the proposed methods.
Section VI concludes this paper.

II. EVALUATION ENVIRONMENT

In this paper, an SH7750R processor [6], whose core speed
is 235MHz, with the MMU is used as the evaluation target
processor. A TLB of an SH7750R processor has 64 entries for
both data and instruction accesses, and each page size is 4096
bytes. A TLB miss exception of this processor is handled by a
real-time operating system (RTOS), that is to say, handled by
software. In this paper, TOPPERS/HRP2 kernel (High Reliable
system Profile version 2: HRP2) [7], which is an RTOS with
memory protection, is used. The specifications of HRP2 are
described in the TOPPERS new generation kernel specification
[8], which is based on the protection extension of µITRON4.0
specification [9]. In addition, each TLB entry is associated with
an address space identifier (ASID) which identifies a currently
executing task. HRP2 changes an ASID of the processor with
the context switch instead of flushing the TLB. Besides, cache
is disabled to make it easier to evaluate an impact of TLB
misses on WCETs in this evaluation.

A micro-benchmark used in this evaluation includes auto-
motive application software and multimedia application soft-
ware. This benchmark is with consideration of automotive
software integration [10], for example, that both automotive
control systems and automotive navigation systems are in
the same electronic control unit. The automotive application
software and the multimedia application software are part
of AutoBench and DENBench in EEMBC (The Embedded
Microprocessor Benchmark Consortium) benchmark software
[11]. Each benchmark software runs as one task of HRP2.
Table I shows benchmark software names that are used in
the micro-benchmark, a task ID that each benchmark is as-
signed to, the priority of each task, and memory consumption
size of each benchmark. Here, A task with smaller value
of the priority has higher priority. Each RT TASK executes
benchmark software of AutoBench, and NR TASK executes
benchmark software of DENBench. Every RT TASK is a real-
time task, and NR TASK is a non real-time task. In addi-
tion, Figure 1 shows execution flow of the micro-benchmark.

6

TABLE I. BENCHMARKS USED FOR THE EVALUATION

task ID Benchmark Software Priority Size (Byte)

RT TASK1 ttsprk01 1 58,164

RT TASK2 a2time01 2 6,564

RT TASK3 rspeed01 3 4,088

RT TASK4 puwmod01 4 13,392

RT TASK5 canrdr01 5 9,360

NR TASK djpegv2data4 6 535,332

!"#"$%&'(

!"#"$%&)!

!"#"$%&*!

!"#"$%&+!

!"#"$%&,!

-!#"$%&! ./01(

$2./34./56(718/59!

Fig. 1. Execution Flow of the Micro-Benchmark

Firstly, NR TASK is activated, and RT TASK1 is activated
periodically at a constant period. After RT TASK1 executes
the own benchmark, RT TASK1 activates RT TASK2 and
ends. Subsequently, RT TASKn (n = 2,3,4) executes the own
benchmark, activates RT TASKn+1, and ends in the same
manner as above. NR TASK is not running while RT TASK is
running, because every RT TASK is assigned higher priority
than NR TASK. Now, NR TASK does not end until every
RT TASK is activated 10,000 times. The average execution
time and the maximum execution time of each RT TASK are
3 milliseconds and 5 milliseconds, respectively. The activation
period of RT TASK1 is 50 milliseconds.

III. IMPACT OF TLB MISSES ON WCETS

In this paper, an impact of TLB misses on WCETs is
evaluated with the metric that is calculated by the following
expression:

EH

ET − EH

(1)

Here, EH and ET indicate the execution time of TLB miss
exception handlers and an evaluated task. This evaluation
metric is a ratio of the exception time of TLB miss exception
handlers to the best case execution time of a evaluated task,
which is execution time of that task in the case that TLB misses
never occurs.

The evaluated task is RT TASK1. The execution time
of RT TASK1 and the number of TLB misses that occur
while RT TASK1 is running are measured with each itera-
tion, and the average and maximum values of the evaluation
metric. Now, input data of RT TASK1, that is ttsprk01, is
constant, and this input data maximizes the execution time of
RT TASK1. This prevents fluctuations in the execution time
of RT TASK1 that are due to differences in input data, or
paths in the program code. Furthermore, the execution time
of RT TASK1 does not include cache effects. In addition, the
average execution time of each TLB miss exception handler is
16.9 microseconds.

!"

!#"

!##"

!###"

!####"

$!##" $!%#" $!&#" $!'#" $!(#" $%##" $%%#" $%&#" $%'#" $%(#" $$##" $$%#" $$&#" $$'#" $$(#" $&##" $&%#"

)
*+
,
-
+.
/0
"

12+/-345."647+!

8347+9:!

874/*59+/5.;9:!

Fig. 2. Execution Time Distribution of the RT TASK1

Figure 2 shows the execution time distribution of
RT TASK1. The horizontal axis indicates execution time of
RT TASK1 in microseconds, and the vertical axis indicates
frequency of occurrence in logarithmic scale. The minimum
execution time is 3,139 microseconds, and a TLB miss does
not occur in that case. The WCET is 3,391 microseconds, and
TLB misses occur 15 times in that case. The average and max-
imum values of the evaluation metric are 2.91 percent and 8.13
percent, respectively. Therefore, the WCET of RT TASK1
includes the execution time of TLB miss exception handlers
that is more than 8.13 percent of the essential execution time of
RT TASK1. This result shows that the impact of TLB misses
on the WCET can be considerable.

IV. IMPROVEMENT ON WCET WITH TLB LOCKING

This section presents methods to reduce TLB misses and
improve WCETs by taking advantage of TLB locking. TLB
locking makes a specified TLB entry not to be replaced
(expired) and inhibit the occurrence of TLB misses related
to that entry. The proposed methods apply TLB locking to
entries that are accessed by a real-time task in order to reduce
TLB misses that occur while a real-time task is running and
improve the WCET of a real-time task.

Generally, TLB locking assigns a normal entry of TLB
as a locked entry. Furthermore, if a locked entry is released,
this entry can be used as a normal entry. In the case that
a TLB miss exception and TLB management is handled by
an RTOS, TLB locking is implemented in software, and an
RTOS should support TLB locking. On the other hand, some of
ARM processors implement TLB locking in hardware [12]. In
this paper, TLB locking is implemented in an RTOS, because
evaluation target is an SH7750R processor as mentioned in
Section II.

This paper proposes the two types of TLB locking methods:
the method that statically locks target TLB entries (static
locking method), and the method that dynamically locks those
(dynamic locking method). Now, this paper assumes that all
of the TLB entries which are accessed by a real-time task can
be locked. However, if the number of TLB entries that are
accessed by a real-time task is more than the number of TLB

7

!"#"$%&!

'!#"$%&!

()*+!

",-!

'./*01234(/5!

,.67+8234(/529./2!"#"$%&!

Fig. 3. Static Locking Method

entries that can be locked, all of the entries that are accessed
by a real-time task cannot be locked. In that case, an algorithm
to select locked TLB entries so that WCETs are improved as
effectively as possible should be considered.

A. Static Locking Method

The static locking method locks the target TLB entries
during system initialization, and these entries remain locked
while the system is running. Figure 3 shows a schema for
the static locking method. This method locks the TLB entries
that are accessed by a real-time task (RT TASK) during
system initialization. After that, those entries remain locked
and only the rest of entries are used while non real-time task
(NR TASK) is running.

An advantage of the static locking method is that it is easy
to analyze the WCET of RT TASK. Furthermore, if all of
the entries that are accessed by RT TASK can be locked, the
WCET of RT TASK is deterministic because a TLB miss does
not occur while RT TASK is running. Another advantage is
that TLB locking increase only the execution time of system
initialization and other execution time is not increased. By
contrast, a disadvantage is that the response time of an entire
system can be increased. This is because the static locking
method reduces TLB entries that NR TASK can use, and TLB
misses can be increased while NR TASK is running.

B. Dynamic Locking Method

The static TLB locking can increase the response time of an
entire system as described in previous section. If TLB entries
that are accessed by a real-time task are locked and there are
few TLB entries that are used by a non real-time task, TLB
misses can be increased while a non real-time task is running.
Thus, the response time of an entire system can be increased by
TLB locking. In order to consider a solution for this challenge,
the dynamic locking method is proposed in addition to the
static locking method, and this paper evaluates both methods.

The dynamic locking method locks the target TLB entries
when a job of a real-time task is activated, and releases the
locked TLB entries when a job of a real-time task ends.
After the locked TLB entry is released, this entry can be
used as a normal entry. In order to simplify the problem, this
paper assumes that a real-time task is not preempted. Figure 4
shows a schema for the dynamic locking method. This method
locks the TLB entries that are accessed by RT TASK when
RT TASK is activated. After that, those locked entries are
released when RT TASK ends.

!"#"$%&!

'!#"$%&!

()*+!

",-!

'./*01234(/5!

,.67+8234(/529./2!"#"$%&!

,.672",-234(/5! !+1+0:+2,.67+82",-234(/5!

Fig. 4. Dynamic Locking Method

The execution time of TLB locking should be short as
possible. It is inadequate to obtain a locked entry by a page
table walk, because the execution time of TLB locking is the
same as a TLB miss exception handler in this case. Hence, the
proposed methods statically prepare a table for locked TLB
entries, and obtain the entry from this table in order to reduce
time to search locked entries.

An advantage of the dynamic locking method is that it is
easy to analyze the WCET of RT TASK, that is the same as the
static locking method. Another advantage is that the response
time of an entire system has less potential to be increased than
the static locking method. This is because the locked TLB
entries are released while NR TASK is running, TLB misses
can be less than that in the case of the static locking method.
By contrast, a disadvantage is that TLB locking increases the
execution time of RT TASK to lock and release TLB entries
when every RT TASK is activated and ends, respectively.

Moreover, before TLB locking, an entry which indicates
the same virtual page of memory as a locked entry shall be
invalidated. If different TLB entries indicate the same virtual
page, an exception occurs. In the case of the static locking
method, it is adequate to invalidate all TLB entries. This is
because the static locking method locks an entry only during
system initialization and invalidation of all entry at this time
has little impact on subsequent TLB misses. Furthermore,
invalidation of all entry can be done by only one memory
access with an SH7750R processor, which is an access to the
MMU control register. However, in the case of the dynamic
locking method, invalidation of TLB entries is required when
every RT TASK is activated. Therefore, invalidation of entries
can have much impact on TLB misses so that the response time
of an entire system can be increased.

In order to consider a better method to invalidate a TLB
entry, two methods are proposed and evaluated for the dynamic
locking method: the dynamic locking method 1 and 2. The
dynamic locking method 1 invalidates only TLB entries related
to a locked entry. This method prevents invalidation of an
entry which does not related to a locked entry. However, the
execution time can be increased because invalidation is done
with each entry. The dynamic locking method 2 invalidates
all TLB entries. In addition, this method saves all TLB
entries to memory before invalidation, and restores all TLB
entries from memory when locked entries are released. This
method can be expected not to increase the execution time of
NR TASK because TLB entries for NR TASK are not expired
by RT TASK. However, saving and restoring all TLB entries

8

can increase the response time of an entire system.

V. EVALUATION FOR TLB LOCKING METHOD

In this section, the effectiveness of the proposed TLB
locking methods is evaluated with the micro-benchmark, which
is described in Section II. We measured the execution time
distribution and the evaluation metric, which is described in
Section III, of RT TASK1. In addition, we measured the
execution time of each dynamic locking method, and the
execution efficiency of the entire micro-benchmark.

Now, the static locking method locks TLB entries before
NR TASK is activated. The dynamic locking method locks
TLB entries when RT TASK1 is activated, and releases the
locked entries when RT TASKm (m = 1 or 5) ends. Each TLB
locking method is evaluated in two cases: that each method is
applied to only RT TASK1, or that each method is applied to
all of RT TASKn (n = 1, 2, 3, 4, 5). In the case that each
method is applied to only RT TASK1 and all of RT TASKn,
16 entries and 49 entries are locked, respectively. Now, in the
case that each method is applied to only RT TASK1, input
the constant parameters to RT TASK1, which are the same as
the evaluation in Section III. On the other hand, in the case
that each method is applied to all of RT TASKn, input the
random parameters to each RT TASKn, which are provided
in EEMBC benchmark software.

The execution time of each dynamic locking method is
evaluated by varying the number of locked entries. Here, the
execution time of a dynamic locking method includes a time
to lock, release and invalidate TLB entries. Meanwhile, the
execution efficiency of the entire micro-benchmark is evaluated
by the response time, the execution time and TLB misses of
NR TASK Here, the response time is a time between after
NR TASK is activated and before NR TASK ends, and the
execution time is a time that NR TASK is running.

A. Evaluation Result

Figure 5 shows the execution time distribution of
RT TASK1 in the case that each TLB locking method is
applied to only RT TASK1 with the result of Figure 2. The
horizontal axis indicates execution time of RT TASK1 in
microseconds, and the vertical axis indicates frequency of
occurrence in logarithmic scale. This result shows that all TLB
locking methods can get rid of a TLB miss for RT TASK1,
and the evaluation metric is 0 percent in the all cases. In other
words, no TLB miss occurs in the execution of RT TASK1
with any TLB locking methods and the execution time is
constant.

Figure 6 shows the execution time of each dynamic TLB
locking method with that of a TLB miss exception handler.
The horizontal axis indicates the number of locked TLB
entries, and the vertical axis indicates the execution time in
microseconds. This result shows that the execution time of the
dynamic locking method 1 is shorter than TLB miss exception
handler, if more than 2 entries are locked. The execution time
of the dynamic locking method 1 increases 9.6 microseconds
for each additional one locked entry, whereas that of one TLB
miss exception handler is 17 microseconds. This difference is
caused by preparing a table for locked entries statically, as
described in Section IV-B. On the other hand, the dynamic

!"

!#"

!##"

!###"

!####"

$!##" $!%#" $!&#" $!'#" $!(#" $%##" $%%#" $%&#" $%'#" $%(#" $$##" $$%#" $$&#" $$'#" $$(#" $&##" $&%#"

)
*+
,
-
+.
/0
!

12+/-345."647+!

89"3:+"6;<"=5/>4.?"7+3:5@"

895"3:+"6;<"=5/>4.?"7+3:5@"

A347+BC!

A74/*5B+/5.@BC!

Fig. 5. Execution Time Distribution of the RT TASK1 with TLB Locking

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'" %" ''" '%" #'" #%" ('" (%" $'" $%")'")%" %'" %%"

*
+
,-
.
/0
1
2
"3
04
,!

5.46,7"18"9:;,<!

3=>"40<<"*+-,?/012"@:2AB,7"

CD2:40-"=1-E02;"F,/G1A"'"

CD2:40-"=1-E02;"F,/G1A"#"

H40-71<,-12A<I!

Fig. 6. Execution Time for TLB Locking Methods

locking method 2 takes 290 microseconds to lock only one
entry. This is caused by saving and restoring all TLB entries.
However, the execution time of the dynamic locking method
2 increases 4.2 microseconds for each additional one locked
entry, and this increase is less than that of the dynamic locking
method 1. Thus, the execution time of the dynamic locking
method 2 is the shortest of the all TLB locking methods, if
the number of locked entries is more than 52.

Figure 7 and Figure 8 show the result of the execution
efficiency of the entire micro-benchmark in the case that each
TLB locking method is applied to only RT TASK1 and all
RT TASKn, respectively. These figures indicate the response
time, the execution time and TLB misses of NR TASK. The
horizontal axis indicates the applied TLB locking method. The
left vertical axis indicates the response time and the execution
time, and the right vertical axis indicates the number of TLB
misses. In these figure, the response time, the execution time
and the number of TLB misses are indicated as a ratio of each
value with a TLB locking to each value without a TLB locking.

In the case that the static locking method is applied, if
few TLB entries are locked (Figure 7), every evaluated value

9

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!#))*"

!#))&"

!#))+"

!#))'"

!#)))"

("

(#!!("

(#!!$"

(#!!,"

(#!!%"

-./"012"

1/34"

-."567683"

9:6;/<"

-."=>?7@83"

9:6;/<"("

-."=>?7@83"

9:6;/<"$"

A
:B768C

:"0
1
2
"@
8DD"A

768/
!

A
:B
76
8C
:"
0
8@
:"
A
76
8/
!

012"1/348?E"9:6;/<!

FG@H:I"/J"012"@8DD:D"

KL:3G68/?"08@:"

A:DM/?D:"08@:"

Fig. 7. Results for the NR TASK with Appling TLB Locking to RT TASK1

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

!()%"

!()*"

!()&"

!())"

'"

'(!'"

'(!#"

'(!+"

'(!$"

'(!,"

'(!%"

'(!*"

-./"012"

1/34"

-."567683"

9:6;/<"

-."=>?7@83"

9:6;/<"'"

-."=>?7@83"

9:6;/<"#"

A
:B768C

:"0
1
2
"@
8DD"A

768/
!

A
:B
76
8C
:"
0
8@
:"
A
76
8/
!

012"1/348?E"9:6;/<!

FG@H:I"/J"012"@8DD:D"

KL:3G68/?"08@:"

A:DM/?D:"08@:"

Fig. 8. Results for the NR TASK with Appling TLB Locking to All
RT TASK

is ranged in 0.1 percent. The response time with the static
locking method is less than that without a locking method. This
is because the TLB locking minimizes the execution time of
RT TASK1. Otherwise if many TLB entries are locked (Figure
8), TLB misses occur 13 times as many as the case without
a TLB locking, and the response time increases by 5 percent.
This is because TLB entries which NR TASK can be used are
reduced, and TLB misses occur frequently.

In the case that each dynamic locking method is applied,
the dynamic locking method 2 has less impact on NR TASK
than the dynamic locking method 1. This result shows that
saving and restoring all TLB entries for NR TASK are much
more effective.

The result of this evaluation shows that all TLB locking
methods are effective to improve WCETs. On the other hand,
the execution time of a TLB locking method and the execution
efficiency of an entire system is different depending on the
locking method. As a result, if few TLB entries are locked,
the static locking method is the most effective. Otherwise if
many TLB entries are locked, the dynamic locking method 2 is
the most effective. However, this conclusion can be depending
on this evaluation environment and a different environment can
make a different conclusion.

VI. CONCLUSION

This paper has presented the impact of TLB misses on
WCETs of a real-time system and method to improve TLB
misses and WCETs by using TLB locking. The impact of TLB
misses is evaluated with the micro-benchmark, and the result
shows that the impact of TLB misses on the WCET can be
considerable. In order to reduce the impact of the TLB misses,
the TLB locking methods in RTOS are proposed, which are
the static locking method and dynamic locking method. The
proposed methods apply TLB locking to entries which are
accessed by a real-time task, and improve a WCET of a real-
time task. Meanwhile, when a TLB entry is locked, other TLB
entries related to the same virtual page as a locked entry shall
be invalidated. Hence, the methods to invalidate TLB entry
are proposed. The proposed methods are evaluated with the
micro-benchmark. The result of evaluation shows that all TLB
locking methods are effective to improve WCETs. Moreover,
this evaluation shows that the TLB lock methods have different
features each other. Thus, it is depending on a system which
method should be applied.

As a future work, the impact of TLB misses on WCETs
and the TLB locking methods should be evaluated with other
environments, for example, different task sets, ARM proces-
sors which implement TLB locking in hardware, and cache
enabled. In addition, algorithm to select a locked TLB entry
should be considered for the case that all TLB entries which
are accessed by a real-time task cannot be locked because
of lack of a TLB entry which can be locked. Furthermore,
if the proposed methods are implemented in hardware, more
improved WCET and execution efficiency can be expected.

REFERENCES

[1] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, “Shar-
ing and protection in a single-address-space operating system,” ACM

Transactions on Computer Systems, vol. 12, no. 4, pp. 271–307, Nov.
1994.

[2] F. Bruns, D. Kuschnerus, A. Showk, and A. Bilgic, “An extensible
partitioning framework for safety-critical systems,” in Embedded Real-

Time Software and Systems 2012, Feb. 2012.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[4] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of the 11th IEEE Real-Time Systems

Symposium, 1990, pp. 201–209.

[5] J. M. López, J. L. Dı́az, J. Entrialgo, and D. Garcı́a, “Stochastic analysis
of real-time systems under preemptive priority-driven scheduling,” Real-

Time Systems, vol. 40, no. 2, pp. 180–207, 2008.

[6] SH7750, SH7750S, SH7750R Group Hardware Manual, Renesas Elec-
tronics.

[7] TOPPERS/HRP2 kernel, http://www.toppers.jp/en/hrp2-kernel.html.

[8] TOPPERS Project, Inc., http://toppers.jp/en/index.html.

[9] TRON Association, “Protection Extention of µITRON4.0 Specifica-
tion,” 2002.

[10] R. Racu, A. Hamann, R. Ernst, and K. Richter, “Automotive software
integration,” in Proceedings of the 44th annual Design Automation

Conference, 2007, pp. 545–550.

[11] EEMBC – The Embedded Microprocessor Benchmark Consortium,
http://www.eembc.org/.

[12] ARM, “ARM Architecture Reference Manual ARMv7-A and ARMv7-
R edition.”

10

Implementation of the Multi-Level Adaptive

Hierarchical Scheduling Framework

Nima Moghaddami Khalilzad, Moris Behnam, Thomas Nolte

MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden

nima.m.khalilzad@mdh.se

Abstract—We have presented a multi-level adaptive hierarchi-

cal scheduling framework in our previous work. The framework

targets compositional real-time systems which are composed of

both hard and soft real-time systems. While static CPU portions

are reserved for hard real-time components, the CPU portions of

soft real-time components are adjusted during run-time. In this

paper, we present the implementation details of our framework

which is implemented as a Linux kernel loadable module. In

addition, we present a case-study to evaluate the performance

and the overhead of our framework.

I. INTRODUCTION

Hierarchical scheduling and resource reservation tech-

niques have been widely used for composing independent hard

real-time systems on a shared underlying hardware [1]. Using

such techniques, the timing behavior of the individual systems

(components) are studied in isolation, while the correctness

of the entire systems is inferred from the correctness of the

individual components before the composition. This compo-

sitional timing study is especially useful in open systems in

which components are added or removed during the system’s

life time [2].

Hierarchical scheduling is often performed through CPU

reservations. When dealing with hard real-time systems, based

on the worst case CPU demand of the individual components,

a CPU portion is reserved for each component such that the

component’s inner tasks are guaranteed to receive enough CPU

resource time to complete their executions in time.

While there exists a variety of techniques to handle the

composition when composing hard real-time systems (e.g., [2],

[3], [4], [5]), the problem of composing soft and hard real-

time systems together has not been deeply studied. A con-

siderable group of soft real-time systems have the following

attributes. First of all, they demonstrate a wide difference

between their worst case and average case CPU demands.

Secondly, occasional timing violations can be tolerated in

these type of systems. Last but not least, resource demand

analysis are rarely done for these systems. As a result, de-

signers do not have enough information about the resource

demand requirements of such systems. Note that the timing

requirements are often known a priori, whereas, the resource

requirements are unknown. In dealing with real-time systems

that have the aforementioned attributes, reserving the CPU

portions based on the worst case CPU demand of the tasks

is not an efficient design approach. Because even if the worst

case CPU demand is available, it will result in an unnecessary

CPU overallocation. Consequently, the CPU resource will be

wasted.

To address this problem, we presented an adaptive frame-

work in [6] where for hard real-time systems we reserve the

CPU portions based on their worst case resource demand.

On the other hand, soft real-time systems receive dynamic

CPU portions based on their actual need at each point in

time. For acquiring the resource demand of the soft real-

time components, we monitor their behavior during run-time

and use the gathered information to adjust the component

CPU reservations. While the design and evaluation of our

framework is presented in [6], in this paper we present the im-

plementation details of our Adaptive Hierarchical Scheduling

(AdHierSched) framework1. In particular we present the

following contributions in this paper.

• The data structures and the mechanisms that are used

in the implementation of our framework as a Linux

kernel loadable module.

• The performance evaluation of AdHierSched with

respect to timing requirements of the real-time com-

ponents.

• The overhead evaluation of the scheduler and the CPU

reservation adapter component.

The rest of the paper is organized as follows. The related

work is reviewed in Section II. In Section III we present

our system model. Section IV presents the data structures

and implementation techniques used in AdHierSched. We

evaluate the performance of AdHierSched in Section V.

The overhead of AdHierSched is presented in Section VI.

Finally, the paper is concluded in Section VII.

II. RELATED WORK

There exists an enormous number of papers that address

the implementation of real-time schedulers (e.g, RTLinux [7]

and RTAI [8]). However, in this paper we only review a part of

1The source code is available at:

http://www.idt.mdh.se/∼adhiersched.

11

them that focus either on hierarchical scheduling or on adaptive

scheduling.

In [9] hierarchical scheduling is done on top of the Vx-

Works operating system. Hierarchical scheduling on top of the

FreeRTOS operating system is presented in [10]. ExSched [11]

is a platform independent real-time scheduler which has a

hierarchical scheduling plug-in. Hierarchical scheduling is also

implemented in µC/OS-II [12]. All of these works are two-

level hierarchical schedulers and are designed for hard real-

time applications, i.e, they are not adaptive frameworks.

HLS [13] is a multi-level hierarchal scheduling imple-

mented in Windows 2000 which targets composing soft real-

time systems. In [14], Parmer and West presented a hierarchical

scheme for managing CPU, memory and I/O. These frame-

works are not adaptive in the sense that the resource demands

are not monitored and hence the resource reservations (if used)

are fixed during run-time.

Hierarchical scheduling is also used for virtualization pur-

poses. Recursive virtual machines are proposed in [15] where

each virtual machine can directly access the microkernel.

A two-level hierarchical scheduler using L4/Fiasco as the

hypervisor is presented in [16]. Lee et al. developed a vir-

tualization platform using the Xen hypervisor [17]. A Virtual

CPU scheduling framework in the Quest operating system is

developed by Danish et al. [18]. In [19], the CPU reservations

are used for scheduling virtual machines. The VirtualBox and

the KVM hypervisores are scheduled using CPU reservation

techniques in [20].

The AQuoSA framework [21] is an adaptive framework im-

plemented in Linux which uses the CPU reservation techniques

together with feedback loops to adjust the reservations during

run-time. Our work is different than AQuoSA in the following

two aspects. First of all, we target multi-level hierarchical

systems while AQuoSA only targets flat systems, i.e the

systems with one task per CPU reservation and without local

schedulers. Secondly, we have implemented AdHierSched

as a kernel loadable module, whereas, AQuoSA requires kernel

patching.

ACTORS [22] is an adaptive framework which targets

multicore systems. In this framework, the CPU reservations are

used for providing isolation among real-time tasks, while the

reservation sizes are being adjusted during run-time. ACTORS

uses SCHED_DEADLINE [23] for implementing the CPU

reservations. Similar to the AQuoSA framework, ACTORS

addresses flat systems and not hierarchical systems.

AIRS [24] is a framework designed to provide high quality

of service to interactive real-time applications. AIRS uses a

new CPU reservation scheme as well as a new multiprocessor

scheduling policy. Alike AQuoSA and ACTORS, AIRS targets

flat systems.

III. MODEL

In this section, we explain how we model servers, tasks

and systems.

A. Server model

We use the periodic resource model [25] in our framework,

and we implement the periodic model using the periodic

servers which work as follows. The servers are released period-

ically, providing their children with a predefined amount of the

CPU time in each period. The periodic servers idle their CPU

allocation if there is no active task/server inside them. Any

server implementation compliant with the periodic resource

model can be used in our framework. A periodic server is rep-

resented with the following 4-tuple S
j
i =< P

j
i , B

j
i , P r

j
i , ζ

j
i >,

where P
j
i , B

j
i , Pr

j
i and ζ

j
i represent period, budget, scheduling

priority and importance of server S
j
i . The importance value

represents the relative importance of the servers with respect

to their other sibling servers. This parameter is only used in an

overload situation where the total CPU demand is more than

the available CPU. In the overload situations, AdHierSched

prioritizes the servers in the order of their importance. Note

that the overload situation is only considered to happen in

soft real-time servers. The superscript in the server notation,

represents the parent server index. Based on the scheduling

policy of Sj , a subset of the parameters in the server 4-tuple are

used. For instance, when the scheduling is done according to

EDF, Pr
j
i is ignored. In the case of soft real-time servers, B

j
i is

adapted during run-time. Thus, the budget is a function of time

B
j
i (t). Consequently, server’s children may receive a different

share of the CPU in different server periods. The adaptation

is done through the budget controller component based on on-

line monitoring of the server’s workload. The budget controller

adapts the budgets such that each server receives just enough

CPU time at each server period. The details of the adaptation

mechanism is presented in our previous work [6].

Furthermore, server S
j
i is composed of ni child servers and

mi child tasks. Server S
j
i schedules its children according to

its local scheduling policy. Servers and tasks inherit the type

of their parents, e.g., if a server is a soft-real-time server its

children will also be treated as soft real-time servers/tasks. At

each point in time there is at most one server assigned to the

CPU which is called the “active server”.

Since our adaptation mechanism is designed for the pe-

riodic servers, we focus on the explanation of the periodic

servers in this paper. Nevertheless, the Constant Bandwidth

Server (CBS) [26] is implemented in AdHierSched, and it

can be used inside the periodic servers for providing timing

isolation among tasks and servers that reside inside the same

periodic server parent.

B. Task model

We assume the periodic task model in which a periodic

task τ
j
i , which is a child of server Sj , is represented using the

following parameters: task period T
j
i , task deadline D

j
i , worst

case execution time C
j
i and task priority π

j
i . Similar to the

server model, depending on the parent scheduling policy some

task parameters may be ignored. At each point in time, at most

one task is assigned to the CPU which is called the “running

task”. In the case of soft real-time tasks, we assume that the

12

���

�
�

�
�

�
���

�
���

��������

�		�

��������

�		��

	
����
���������

	
����
���������

�������

�		�

�������

�		��

��

�
��

�
��

��
��

��
��� ���

��� ���

�
�
�

�
�
�

�
�
�

�

�

�

�
�
�

�����������
��

����������
��

�
�
�

����������
��

����������
�� ����������
��

�����

Fig. 1: Visualization of the system model.

tasks are dynamic, i.e, their execution times are changing in

a wide range during run-time and their execution time is not

known a priori. One instance of the task execution is called a

job.

C. System model

We assume a single processor system which consists of

n soft real-time servers and m hard real-time servers at the

root level. The servers contain applications which consist of

tasks and/or sub-servers. Therefore, our system model is a

multi-level hierarchical model. A system has a global scheduler

which schedules the servers and tasks at the root level of the

hierarchy. In addition, there is a local scheduler in each server

which is responsible for scheduling the server’s inner children

(both tasks and servers). Figure 1 illustrates our hierarchical

system model. The hard real-time applications are shown

using dark gray background in the figure. There is a budget

controller component attached to the soft real-time servers.

The budget controller component monitors the CPU demand

of the applications and assigns a sufficient CPU portion to the

servers.

Considering the system hierarchy, we would like to present

two definitions that are used in the later sections of the paper

for explaining the implementation of the scheduler.

Definition 1: S
j
i is an ancestor of Sl

κ if either i = l or by

upward traversing the parent of Sl we reach S
j
i . For instance,

S1 is an ancestor of S3
5 in Figure 2.

Definition 2: S
j
i outranks Sl

κ if and only if one of an

ancestor of Sl is Sj . For instance, S2 outranks S1
3 in Figure 2.

�
�

�
�

�
�

�

�

�
�

�
�

�

�

�
�

�
�

�

�

Fig. 2: Example tree structure (S0 represents the root sched-

uler).

IV. FRAMEWORK

In this section, we explain how our assumed model is

implemented as a Linux kernel loadable module.

A. Real-time scheduling through a kernel loadable module

We use a similar idea to the work presented in [11]. The

idea is to implement a real-time scheduler in Linux without

modifying the kernel. To this end, we developed a kernel

loadable module that plays a middleware role between real-

time tasks and the Linux kernel. The module is responsible to

release, run and stop the real-time tasks. When a task has to

run, the module inserts it into the Linux run queue and changes

its state to running. On the other hand, when the module has

to stop a real-time task, it removes the task from the Linux

run queue and the task goes to the sleep state. Thus, at each

point in time, there is at most one real-time task (priority 0

to 99) in the Linux run queue. Consequently, no matter which

Linux real-time scheduling class is used, the schedule()

system call will always pick the single real-time task that is in

the Linux run queue. Figure 3 illustrates the relation between

the AdHierSched module and the Linux run queue.

B. Managing time

In order to manage the scheduling events, we use the

classic Linux timers (low-resolution timers) available in

kernel/timer.c. As will be explained in the rest of this

section, we use one timer per task and two timers per server for

managing their corresponding scheduling events. Therefore,

AdHierSched does not have a release queue and instead it

delegates the job of the release queue to the Linux timer list.

Since the Linux timer list is implemented using the red-black

trees, when the number of timers increases, retrieving and

inserting them are still efficient (O(logn)). Nevertheless, we

assume that systems will not excess a handful of levels, hence

n will not be a large number. We insert the timers using the

setup_timer_on_stack and mod_timer system calls,

and remove them using the del_timer system call.

In order to convert the relative scheduling parameters to

absolute parameters, we use the jiffies variable available

in the kernel which return the current time.

13

Code Snippet 2: Server descriptor.

1: struct Server {
2: struct list head head;

3: Children children;

4: int type;

5: int id;

6: int priority;

7: int cnt; /* number of jobs */

8: int control period;

9: int importance; /* ζ*/

10: unsigned long budget;

11: unsigned long period;

12: unsigned long relative deadline;

13: unsigned long abs deadline;

14: unsigned long current budget;

15: unsigned long consumed budget;

16: unsigned long extra req budget;

17: unsigned long total budget;

18: unsigned long timestamp;

19: struct Queue *ready queue;

20: struct timer list period timer;

21: struct timer list budget timer;

22: struct Server *parent; };

1) Fixed priority scheduling: When the scheduling policy

is fixed priority, the insert_queue function inserts the new

entities based on their priorities.

2) EDF scheduling: The insertion to the ready queue, when

the scheduling policy is EDF is based on the abs_deadline

of the scheduling entities.

Note that since we use multiple ready queues (one queue

per server):

q
j
i ≤ n

j
i +m

j
i ,

where q
j
i is the number of elements in the ready queue of S

j
i .

Hence, the complexity of the insertion to the queue is O(qji).

F. Communication between tasks and AdHierSched

The communication between tasks and AdHierSched

is done through a device file. The AdHierSched library

provides a number of API functions. The API functions use

the ioctl() system call for the communication purpose.

When the message is delivered to the AdHierSched mod-

ule, it relays the message to the message’s corresponding

function. The list of provided API functions is presented

in Table I. The names of the functions are self explana-

tory, however, we explain a few of them here. As soon as

AdHierSched receives a run() message, it releases all

of the servers and tasks immediately. So, the release time of

all scheduling entities will be equal if this function is used.

The stop() function first stops inserting new timers to the

timer list, i.e, it stops the release events. Secondly, it calls the

wake_up_process() system call for all of the tasks that

are still running. In other words, when the stop() function

run()

stop()

create task()

detach task(task id)

release task(task id)

task finish job(task id)

detach server(server id)

release server(server id)

attach task to mod(task id)

create server(queue type, server type)

attach server to server(server id, server id2)

attach task to server(server id, task id, server type)

set task param(task id, period, deadline, exec time, priority)

set server param(server id, period, deadline, budget, priority, server type)

TABLE I: List of provided API functions by

AdHierSched library.

is called, the AdHierSched module no longer operates and

Linux takes the complete responsibility of scheduling the real-

time tasks. The task_finish_job(task_id) function

should be called at the end of the task jobs. This call indeed

changes the task status to sleep until the next release of the

task. Note that it is possible to add/remove tasks and servers

through the API functions while the module is running.

G. Configuration and run

The API functions allow the users to configure their target

system, i.e, to create their desirable hierarchy and to set the

scheduling parameters. Once the system is set up, the Linux

tasks need to be attached to the AdHierSched tasks using

the attach_task_to_mod(task_id) API function. A

sample task structure is presented in Code Snippet 3. Finally,

the run() API function needs to be called to release all

servers and tasks. When AdHierSched receives a run()

Code Snippet 3: Sample task structure.

1: int main(int argc, char* argv[]){
2: task id = atoi(argv[1]);

3: attach task to mod(task id);

4: while i < job no do

5: /* periodic job */

6: task finish job(task id);

7: end while

8: detach task(task id);

9: return 0; }

call, it releases all servers and tasks and then tries to run them.

Depending on the global level scheduling policy, among all

released scheduling entities at the root level of the hierarchy,

the one that has the highest priority or shortest deadline will

be assigned to the CPU.

If a server is assigned to the CPU, it will try to run its local

ready queue. If from the server’s ready queue a sub-server

receives the CPU, the local ready queue running operation

continues until the scheduler decides to run a task. As soon as

server S
j
i becomes active, we insert its corresponding budget

depletion timer (budget_timer) to be invoked at time tdep,

15

where:

tdep = jiffies+B
j
i (t).

When the jiffies is equal to tdep, the budget depletion

timer handler is invoked. The handler deactivates its corre-

sponding server (S
j
i) and all of its child servers. If S

j
i is an

ancestor (see Definition 1) of the active server, the active server

is stopped. If the running task is a child of the server that is

getting deactivated, the running task is also stopped. Finally,

the timer handler runs the first element that is in the ready

queue of Sj (the parent of the server whose budget is depleted).

When a server is stopped (either because of its parent budget

depletion or because of a preemption), its remaining budget is

updated.

Each scheduling entity belongs to a ready queue. The

entities at the root level belong to the global ready queue,

while the other entities belong to their parent server’s ready

queue. Therefore, when an entity causes a scheduling event,

the event takes place at its corresponding ready queue.

The scheduling decisions are taken only at the scheduling

events. We have the following scheduling events in the system.

• task and server release

• server (periodic and constant bandwidth) budget de-

pletion

• task finishing its job

• task and servers leaving the system

When a task is released and the active ready queue is

different than the task’s ready queue, the task will wait until its

ready queue, i.e., its server is activated. Even when the released

task’s parent is active, it will only be assigned to the CPU if it

is able to preempt the running task or the active server. Note

that the preemption rules depend on the parent’s scheduling

policy. When a server is released, it should wait unless one of

the following conditions hold in which the released server is

allowed to preempt the active server or the running task.

• The server’s parent is active and the released server

can preempt the running/active scheduling entity.

• The released server outranks (see Definition 2) the

active server.

H. Budget adaptation

The budget adaptation is done periodically. The adapta-

tion period is proportional to the server periods. The budget

adaptation is done through a function which is called at

certain server release events. When calling the budget adapter

function, the pointer to the caller server structure is passed to

the function. This function uses the consumed_budget and

the extra_req_budget fields in the server data structure

to derive the new budget field. The extra_req_budget

field is updated by the server’s child tasks and sub-servers

that are violating their timing requirements. We also have a

mechanism to guarantee that adapting the soft real-time server

budgets does not influence the amount of provided budget to

the hard real-time servers. For more details about the budget

adaptation mechanism refer to [6].

V. EVALUATION

In this section, we first design a case-study to study the

performance of our framework. Thereafter, we present the

results.

A. Tasks

As we mentioned earlier, AdHierSched mainly targets

systems containing dynamic soft real-time applications. To this

end, in our evaluations we use two types of dynamic real-time

tasks. Moreover, we use tasks with fixed execution times. In

general the following three types of tasks are used in the case-

study.

1) Fixed execution time tasks (static tasks). These tasks are

indeed a simple C program that contain a loop with a

constant number of instructions.

2) Mplayer media player2. We have modified the source code

of the Mplayer media player such that it registers itself to

the AdHierSched module before starting the playback.

Thus, the AdHierSched module schedules the player

task. In addition, after decoding and playing frames,

Mplayer uses the task_finish_job(task_id) API

function to inform the AdHierSched module that a job

execution is finished.

3) Image processing program. This program is developed

using the OpenCV library and its objective is to filter a

color range of its input frame. The input is a movie file

to this application in our case-study.

B. Setup

We use an Intel Core i5-2540M processor clocked at 2.60

GHz in which only CPU 0 is active. Our hardware is equipped

with 4 GB of memory. In addition, Ubuntu 12.04.2 with Linux

kernel version 3.8.2 is used in the evaluations. The scheduler

resolution is set to one millisecond.

C. Case-study

The case-study that we investigate in this paper is a system

composed of five applications of which one is a hard real-

time application and the rest are soft real-time applications.

Figure 4 illustrates the structure of the case-study system that

we are using in this section. Note that τ11 , τ21 and S1 are hard

real-time tasks and a server respectively. The hard real-time

server uses a fixed priority scheduler, while the rest of the

servers use EDF schedulers for scheduling their children. The

tasks are assumed to be ordered based on their priority, i.e,

π1
1 > π1

2 . We use different inputs for the same type tasks. The

specifications of the tasks and servers used in the case-study

are presented in Table II. All scheduling parameters presented

in the table are in milliseconds. We assume that the servers are

2 http://www.mplayerhq.hu

16

���

�
�

�
�

��	
�������

��	
�������	�
�������

�
�

�

��	
�������

�
�

�

��	
�������

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�

�
�

�

��	
�������

�
�

�
�

�

�
�

�

�

Fig. 4: The sample system investigated in the case-study.

Hard-Soft Task type Pj − T
j

i

S1 HRT server - 100

τ1

1
HRT task 1 200

τ1

2
HRT task 1 400

S2 SRT server - 10

S2

3
SRT server - 20

τ3

1
SRT task 2 40

τ3

2
SRT task 3 200

S2

4
SRT server - 100

τ4

1
SRT task 3 350

τ4

2
SRT task 3 200

S2

5
SRT server - 75

τ5

1
SRT task 3 350

τ5

2
SRT task 3 150

TABLE II: Servers and tasks specification in the case-study.

ordered based on their importance meaning that ζ23 > ζ24 > ζ25 .

D. Workload

In order to observe the workload of the applications, we

ran each server separately while assigning 100 % of the CPU

to them. The average and the maximum CPU demand of the

tasks in the servers are reported in Table III. To illustrate the

workload variations of the soft real-time serves we present the

CPU demand percentage of S2
3 in Figure 5.

Server AVG MAX

S2

3
13.35 60.00

S2

4
12.36 54.00

S2

5
11.98 44.00

total 37.43 158

TABLE III: The CPU demand percentage of the servers.

Moreover, in our experiments we observe that C1
1 = C1

2 =

Server fixed adaptive

S2

3
3.36 1.11

S2

4
27.28 6.49

S2

5
2.19 4.69

total 32.83 12.29

TABLE IV: The deadline miss ratio percentage of the servers.

31. Therefore, based on the suggestion presented in [25] we

choose the following period for S1: P1 = 100. In addition, we

derive the minimum budget that guarantees the schedulability

of τ11 and τ21 using the analysis presented in [25] which is

B1 = 39. Therefore, 39 % of the total bandwidth will be

assigned to S1 and the rest of the bandwidth (61 %) may be

utilized by S2.

E. Adaptive budgets

Recall that AdHierSched targets soft real-time applica-

tions for which their run-time behavior is not known a priori.

Therefore, assuming that we have no information about the

task CPU demands, we assign an initial budget to the servers

and then we let the budget controller to adapt the budgets.

We choose the deadline miss ratio as our performance metric

that is the number of jobs that finish their execution after their

deadline points, divided by the total number of finished jobs.

The number of jobs for a server is equal to the sum of its

tasks’ jobs. As a result of assigning adaptive budgets, the soft

real-time servers experience an average of 4.09 % deadline

miss ratio. While the most important server S2
3 experiences

only 1.1 % deadline miss ratio. As we show in the rest of this

section, the system is overloaded. Thus, missing deadlines is

inevitable. However, adapting the bandwidth of the servers, we

are serving the real-time tasks in such a way that the available

CPU bandwidth is efficiently utilized.

F. Static budgets

Allocating the soft real-time server budgets based on the

maximum demand of their tasks is impossible because the sum

of the bandwidth (158 %) is more than the available bandwidth

(61 %). Therefore, in another experiment we assign the server

budgets based on their average CPU demand. Table IV summa-

rizes the results of the case-study for both adaptive and static

budget allocation experiments. The adaptive CPU allocation

technique results in a total of 20 % less deadline misses than

the static technique. In addition, since S2
3 is the most important

application in the system, the deadline misses avoided for this

server is of more importance than the other deadline misses

potentially avoided. Figure 6 illustrates the budget adaptations

of the soft real-time servers used in the case-study.

VI. OVERHEAD

In this section, we report the overhead imposed by the

AdHierSched module in the case-study presented in Sec-

tion V. Note that our measurements exclude the Linux sched-

uler overhead that is responsible to assign the AdHierSched

17

� ����� ����� ����� ����� ����� �����

�

��

��

��

��

��

��

�	
�������
�����

������	
�
������������

��������

Fig. 5: The CPU demand variation of S2
3 .

� ����� ����� ����� ����� ����� �����
�

��

��

��

��

��

��

��

��

��

��

����	
���

	�

Fig. 6: The budget adaptations over the course of one minute experiment.

real-time tasks to the CPU. Therefore, we do not include the

context switch overhead.

There are two sources of overhead: (i) the multi-level

hierarchical scheduling overhead, i.e., the amount of extra

calculation that is done just for scheduling the real-time time

tasks in a hierarchical manner. (ii) the budget adaptation

overhead, i.e., the amount of extra calculations that are done

because of adapting the server budgets.

We measured the two types of overhead for the case-

study. The total overhead is less than 0.2 % (≃ 122 millisec-

onds). Figure 7 shows that the budget adaptation overhead

(≃ 8 milliseconds) has a small share of the total overhead.

The figure represents the overhead present in the case-study

explained in Section V. The overhead has been measured

using time stamps that are monitoring the execution length of

the timer handlers and the task_finish_job(task_id)

API function. Then, the total value is divided by the total time

that the experiment ran.

VII. CONCLUSION

In this paper, we presented the implementation details

of our adaptive hierarchal scheduling framework which is

called AdHierSched. We showed how the framework is

����

����

����	�
����

��
��
����

��	�������

Fig. 7: The overhead of the AdHierSched module.

implemented in the Linux kernel as a kernel loadable module.

We demonstrated that our framework can efficiently deal with

unknown workloads. Finally, we reported the overhead of our

framework.

Our implementation can be improved in a number of ways.

For instance, we can use a more efficient queue structure to

reduce the overhead of the AdHierSched scheduler. As a

18

next step we are contemplating extending our framework to

multiprocessors. Although we are not currently considering I/O

operations, we would like to investigate the implications of

modeling them in our adaptive framework. For instance, we

can model the I/O requests as critical sections and we can use

available semaphore based protocols such as SIRAP [27] and

HSRP [28].

ACKNOWLEDGMENT

The authors wish to thank Shinpei Kato for his help with

adopting the Mplayer code, and acknowledge the constructive

comments of anonymous reviewers.

REFERENCES

[1] G. Lipari and S. Baruah, “A hierarchical extension to the constant

bandwidth server framework,” in Proceedings of the 7th IEEE Real-

Time Technology and Applications Symposium (RTAS’01), May 2001,

pp. 26–35.

[2] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications in an

open environment,” in Proceedings of the 18th IEEE Real-Time Systems

Symposium (RTSS’97), December 1997, pp. 308–319.

[3] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time sys-

tems,” in Proceedings of the 7th Real-Time Technology and Applications

Symposium (RTAS’01), May 2001, pp. 75–84.

[4] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:

response-time analysis and server design,” in Proceedings of the 4th

ACM International Conference on Embedded Software (EMSOFT’04),

September 2004, pp. 95–103.

[5] F. Zhang and A. Burns, “Analysis of hierarchical EDF pre-emptive

scheduling,” in Proceedings of the 28th IEEE International Real-Time

Systems Symposium (RTSS’07), December 2007, pp. 423–434.

[6] N. M. Khalilzad, M. Behnam, and T. Nolte, “Multi-level adaptive

hierarchical scheduling framework for composing real-time systems,” in

Proceedings of the 19th IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA’13), to

appear, August 2013.

[7] M. Barabanov and V. Yodaiken, “Real-time linux,” Linux journal,

vol. 23, March 1996.

[8] P. Mantegazza, E. L. Dozio, and S. Papacharalambous, “RTAI: Real

Time Application Interface,” Linux Journal, vol. 2000, no. 72es, April

2000.

[9] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards

hierarchical scheduling on top of VxWorks,” in Proceedings of the 4th

International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications (OSPERT’08), July 2008, pp. 63–72.

[10] R. Inam, J. Maki-Turja, M. Sjodin, S. M. H. Ashjaei, and S. Afshar,

“Support for hierarchical scheduling in FreeRTOS,” in Proceedings

of the 16th IEEE International Conference on Emerging Technologies

Factory Automation (ETFA’11), September 2011, pp. 1–10.

[11] M. Åsberg, T. Nolte, S. Kato, and R. Rajkumar, “ExSched: An external

CPU scheduler framework for real-time systems,” in Proceedings of

the 18th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA’12), August 2012, pp.

240–249.

[12] M. van den Heuvel, R. J. Bril, J. J. Lukkien, and M. Behnam,

“Extending a HSF-enabled open-source real-time operating system with

resource sharing,” in Proceedings of the 6th International Workshop

on Operating Systems Platforms for Embedded Real-Time Applications

(OSPERT’10), July 2010, pp. 71–81.

[13] J. Regehr and J. Stankovic, “HLS: a framework for composing soft real-

time schedulers,” in Proceedings of the 22nd IEEE Real-Time Systems

Symposium (RTSS’01), December 2001, pp. 3–14.

[14] G. Parmer and R. West, “HIRES: A system for predictable hierarchical

resource management,” in Proceedings of the 17th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS’11), April

2011, pp. 180–190.

[15] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson,

“Microkernels meet recursive virtual machines,” in Proceedings of the

2nd USENIX symposium on Operating systems design and implemen-

tation (OSDI’96), 1996, pp. 137–151.

[16] J. Yang, H. Kim, S. Park, C. Hong, and I. Shin, “Implementation of

compositional scheduling framework on virtualization,” SIGBED Rev,

vol. 8, pp. 30–37, 2011.

[17] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokol-

sky, “Realizing compositional scheduling through virtualization,” in

Proceedings of the 18th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS’12), April 2012, pp. 13–22.

[18] M. Danish, Y. Li, and R. West, “Virtual-cpu scheduling in the quest

operating system,” in Proceedings of the 17th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS’11), April

2011, pp. 169–179.

[19] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting temporal con-

straints in virtualised services,” in Proceedings of the 33rd Annual

IEEE International Computer Software and Applications Conference

(COMPSAC’09), vol. 2, July 2009, pp. 73–78.

[20] M. Åsberg, N. Forsberg, T. Nolte, and S. Kato, “Towards real-time

scheduling of virtual machines without kernel modifications,” in Pro-

ceedings of the 16th IEEE International Conference on Emerging Tech-

nology and Factory Automation (ETFA’11), Work-in-Progress (WiP)

session, September 2011, pp. 1–4.

[21] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA-

adaptive quality of service architecture,” Softw. Pract. Exper., vol. 39,

no. 1, pp. 1–31, January 2009.

[22] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-

E. Årzen, V. Romero, and C. Scordino, “Resource management on

multicore systems: The ACTORS approach,” Micro, IEEE, vol. 31,

no. 3, pp. 72–81, May-June 2011.

[23] D. Faggioli, M. Trimarchi, F. Checconi, M. Bertogna, and A. Mancina,

“An implementation of the earliest deadline first algorithm in Linux,” in

Proceedings of the ACM symposium on Applied Computing (SAC’09),

March 2009, pp. 1984–1989.

[24] S. Kato, R. Rajkumar, and Y. Ishikawa, “AIRS: Supporting interactive

real-time applications on multicore platforms,” in Proceedings of the

22nd Euromicro Conference on Real-Time Systems (ECRTS’10), July

2010, pp. 47–56.

[25] I. Shin and I. Lee, “Periodic resource model for compositional real-

time guarantees,” in Proceedings of the 24th IEEE Real-Time Systems

Symposium, (RTSS’03), December 2003, pp. 2–13.

[26] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard

real-time systems,” in Proceedings of the 19th IEEE Real-Time Systems

Symposium (RTSS’98), December 1998, pp. 4–13.

[27] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Sirap: a synchronization

protocol for hierarchical resource sharing in real-time open systems,”

in Proceedings of the 7th ACM & IEEE international conference on

Embedded software (EMSOFT’07), 2007, pp. 279–288.

[28] R. Davis and A. Burns, “Resource sharing in hierarchical fixed priority

pre-emptive systems,” in Proceedings of the 27th IEEE International

Real-Time Systems Symposium (RTSS’06), December 2006, pp. 257–

270.

19

A Comparison of Scheduling Latency

in Linux, PREEMPT RT, and LITMUSRT

Felipe Cerqueira Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract
Scheduling latency under Linux and its principal real-time

variant, the PREEMPT RT patch, are typically measured us-

ing cyclictest, a tracing tool that treats the kernel as a black

box and directly reports scheduling latency. LITMUSRT, a

real-time extension of Linux focused on algorithmic improve-

ments, is typically evaluated using Feather-Trace, a fined-

grained tracing mechanism that produces a comprehensive

overhead profile suitable for overhead-aware schedulability

analysis. This difference in tracing tools and output has to

date prevented a direct comparison. This paper reports on a

port of cyclictest to LITMUSRT and a case study comparing

scheduling latency on a 16-core Intel platform. The main

conclusions are: (i) LITMUSRT introduces only minor over-

head itself, but (ii) it also inherits mainline Linux’s severe

limitations in the presence of I/O-bound background tasks.

1 Introduction

Real-time tasks are usually activated in response to external

events (e.g., when a sensor triggers) or by periodic timer

expirations (e.g., once every millisecond). At the kernel level,

both types of activations require the following sequence of

steps to be carried out:

1. the processor transfers control to an interrupt handler

to react to the device or timer interrupt;

2. the interrupt handler identifies the task waiting for the

event and resumes it, which causes the task to be added

to the ready queue;

3. the scheduler is invoked to check whether the resumed

real-time task should be scheduled immediately (and, if

so, on which processor); and finally,

4. if the resumed real-time task has higher priority than

the currently executing task, then it is dispatched, which

requires a context switch.

In theory, the highest-priority real-time task should be sched-

uled immediately when its activating event occurs, but in

practice, Step 1 is delayed if interrupts are temporarily

masked by critical sections in the kernel,1 Steps 2–4 are

delayed by cache misses, contention for memory bandwidth,

and (in multiprocessor systems) lock contention, Step 3 is

further delayed if preemptions are temporarily disabled by

1In Linux, via the local irq disable() interface.

critical sections in the kernel,2 and Step 4 generally causes

a TLB flush (on platforms without a tagged TLB), which

causes additional delays. Thus, even for the highest-priority

task, there is always a delay between the activating event

and the instant when the task starts executing. This delay,

called scheduling latency, affects the response times of all

tasks and imposes a lower bound on the deadlines that can

be supported by the system. Therefore, it is essential to con-

sider scheduling latency when determining whether a system

can provide the desired temporal guarantees. The focus of

this paper is an empirical evaluation of scheduling latency in

Linux and two of its real-time variants, PREEMPT RT and

LITMUSRT, using cyclictest, a latency benchmark.

PREEMPT RT and cyclictest. The importance of schedul-

ing latency has made it a standard metric for the evaluation

of real-time operating systems in general, and Linux and

its real-time extensions in particular. Concerning the latter,

the PREEMPT RT patch—the de facto standard real-time

variant of Linux—specifically aims to improve scheduling

latency by reducing the number and the length of critical

sections in the kernel that mask interrupts or disable preemp-

tions [21, 27]. The efficacy of these changes is commonly

quantified using cyclictest, a scheduling latency benchmark

originally created by Thomas Gleixner and currently main-

tained by Clark Williams [2].

A key feature of cyclictest is that it is easy to use, and as a

result it has been widely adopted as the universal benchmark

of real-time performance under Linux. For instance, it has

been applied to evaluate different hardware and software

platforms (e.g., [15, 25, 26, 29]) as well as various aspects of

the kernel (e.g., [16, 22, 24, 31]); the cyclictest approach has

even been extended to continuously monitor the scheduling

latency of real applications in a production environment [20].

In short, low scheduling latency as reported by cyclictest can

be considered the gold standard of real-time performance in

the Linux real-time community.

LITMUSRT. In contrast to the PREEMPT RT project,

which has been primarily driven by industry concerns, the

Linux Testbed for Multiprocessor Scheduling in Real-Time

Systems [1, 10, 13, 14] is a primarily algorithms-oriented

real-time extension of Linux. While PREEMPT RT aggres-

sively optimizes scheduling latency, LITMUSRT facilitates

the implementation and evaluation of novel scheduling and

locking policies, which it does by introducing a scheduler

2In Linux, via the preempt disable() interface.

20

plugin interface. That is, the PREEMPT RT patch reengi-

neers core parts of the kernel to avoid delaying Steps 1 and 3,

whereas LITMUSRT primarily modularizes the scheduling

logic that is invoked in Step 3, and leaves other aspects of

the kernel unchanged.

LITMUSRT has served its purpose well and has enabled

a number of studies exploring the tradeoff between system

overheads and analytical temporal guarantees across a di-

verse range of scheduling approaches (e.g., see [5, 7, 14,

19, 23]; a full list is provided online [1]). The key com-

ponent of LITMUSRT that enables such studies is Feather-

Trace [11], a light-weight event tracing toolkit for x86 plat-

forms that is used to collect fine-grained measurements of

kernel overheads. With Feather-Trace, it is possible to extract

detailed overhead profiles, which can then be incorporated

into overhead-aware schedulability analysis to formally val-

idate timing requirements under consideration of system

overheads (this process is discussed in detail in [10, Ch. 4]).

The overhead characteristics of LITMUSRT’s scheduling

policies are well documented and have been evaluated in

detail in prior work [5, 10]. However, because cyclictest can-

not be used (without modifications) to evaluate LITMUSRT

(see Sec. 2), and because Feather-Trace and cyclictest pro-

duce fundamentally different outputs (see Sec. 4), to date

it has unfortunately not been possible to directly compare

LITMUSRT with Linux and the PREEMPT RT patch.

In this paper, we present a comprehensive experimental

evaluation of scheduling latency under LITMUSRT based

on data obtained with a ported version of cyclictest. By com-

paring LITMUSRT against stock Linux and PREEMPT RT,

we seek to address two questions concerning the real-time

capabilities of the current LITMUSRT implementation:

1. Does the LITMUSRT scheduling framework introduce

a significant overhead in terms of scheduling latency?

And:

2. To what extent is LITMUSRT affected by high schedul-

ing latencies due to not (yet) incorporating the improve-

ments of the PREEMPT RT patch?

To answer the first question, we compared LITMUSRT

against the underlying Linux version; to answer the sec-

ond question, we compared LITMUSRT against the latest

stable version of the PREEMPT RT patch.

The rest of the paper is organized as follows. Sec. 2 re-

views how cyclictest operates and describes a faithful port of

cyclictest to LITMUSRT. In Sec. 3, we present our experi-

mental setup and discuss our results. In Sec. 4, we compare

cyclictest with Feather-Trace and remark on some of the

advantages and limitations of the cyclictest benchmark. In

Sec. 5, we conclude and mention future work directions.

2 Porting cyclictest to LITMUSRT

While cyclictest is a remarkably versatile utility, it cannot be

applied to LITMUSRT “out of the box”, since LITMUSRT

provides its own, non-standard system call and userspace

API, which must be used to configure a real-time task’s

scheduling parameters. In this section, we discuss the (few)

changes that were required to port cyclictest to LITMUSRT.

Since the validity of the measurements depends on a

correct and unbiased application of cyclictest, we begin

with a review of cyclictest in Sec. 2.1 and explain how its

scheduling parameters are configured under stock Linux

and PREEMPT RT in Sec. 2.2. In Sec. 2.3, we review

LITMUSRT’s task model and show how cyclictest was

mapped to it. Finally, Sec. 2.4 briefly discusses a simple, but

unexpected problem with the resolution of Linux’s one-shot

timers that we encountered during the experiments.

2.1 An Overview of cyclictest

The execution of cyclictest can be divided into three phases.

During the initialization phase, the program creates a con-

figurable number of threads (according to the specified pa-

rameters), which are then admitted as real-time tasks. The

processor affinity mask is also set, which enables migration

to be restricted. After that, each thread starts a periodic (i.e.,

cyclic) execution phase, during which cyclictest executes the

main measurement loop. An iteration (i.e., one test cycle)

starts when the thread’s associated one-shot timer expires.3

Once the thread resumes, a sample of scheduling latency

is recorded as the difference between the current time and

the instant when the timer should have fired. The timer is

then rearmed to start a new iteration and the thread suspends.

After a configurable duration, the thread is demoted to best-

effort status and exits, and the recorded scheduling latency

samples are written to disk.

The cyclic phase, during which the measurements are

collected, uses only standard userspace libraries (for ex-

ample, POSIX APIs to set up timers, synchronize threads,

etc.) and does not rely on scheduler-specific functional-

ity. Since LITMUSRT maintains compatibility with most

userspace APIs, only the code pertaining to task admis-

sion and exit must be adapted, i.e., it suffices to replace

sched setscheduler() system calls with LITMUSRT’s library

functions for task admission. Importantly, cyclictest’s core

measurement loop does not have to be changed, which helps

to avoid the inadvertent introduction of any bias.

The required modifications, which amount to only 18

lines of new code, are discussed in Sec. 2.3 below. To

illustrate how LITMUSRT’s interface differs from stock

Linux’s interface, we first review how cyclictest is config-

ured as a real-time task in Linux (either with or without the

PREEMPT RT patch).

2.2 Setting Task Parameters under Linux

In accordance with the POSIX standard, Linux implements

a fixed-priority real-time scheduler (with 99 distinct priority

levels). Tasks are dispatched in order of decreasing priority,

3cyclictest supports a large number of options and can be configured to

use different timer APIs. We focus herein on the tool’s default behavior.

21

and ties in priority are broken according to one of two poli-

cies: under the SCHED RR policy, tasks of equal priority

alternate using a simple round-robin scheme, and, under the

SCHED FIFO policy, multiple tasks with the same priority

are simply scheduled in FIFO order with respect to the time

at which they were enqueued into the ready queue. By de-

fault, tasks are allowed to migrate among all processors in

Linux, but it is possible to restrict migrations using processor

affinity masks, and cyclictest optionally does so.

Fig. 1 summarizes the relevant code from cyclictest that

is used to admit a thread as a SCHED FIFO real-time task

under Linux. First, the thread defines the CPU affinity mask,

which is assigned with pthread setaffinity np() (lines 6–13

in Fig. 1). To attain real-time priority, the thread calls the

sched setscheduler() system call with the desired scheduling

policy and priority as parameters (lines 17-20). Finally, after

the measurement phase, the thread transitions back to non-

real-time status by reverting to the SCHED OTHER best-

effort policy (lines 24-25).

In the experiments discussed in Sec. 3, cyclictest was

configured to spawn one thread per core and to use the

SCHED FIFO policy with the maximum priority of 99. Fur-

ther, processor affinity masks were assigned to fix each mea-

surement thread to a dedicated core. Since there is only one

task per core, the choice of tie-breaking policy is irrelevant.

Executing the initialization sequence depicted in Fig. 1

under LITMUSRT would not result in an error (LITMUSRT

does not disable SCHED FIFO); however, it would also not

achieve the desired effect because, for historical reasons,

real-time tasks must use a different API (which also allows

specifying more explicit and detailed parameters) to attain

real-time status in LITMUSRT. We thus adapted cyclictest

to use LITMUSRT’s API to create an analogous setup.

2.3 Setting Task Parameters under LITMUSRT

LITMUSRT implements the sporadic task model [28], in

which real-time tasks are modeled as a sequence of recurrent

jobs and defined by a tuple Ti = (ei, di, pi), where ei de-

notes the worst-case execution time (WCET) of a single job,

di the relative deadline, and pi the minimum inter-arrival

time (or period). Under LITMUSRT’s event-driven schedul-

ing policies, the parameter ei is optional and used only for

budget enforcement (if enabled). The parameter di, how-

ever, is required for scheduling plugins based on the earliest-

deadline first (EDF) policy, and the parameter pi is always

required to correctly identify individual jobs. In LITMUSRT,

all task parameters are expressed in nanosecond granularity

since this is the granularity internally used by the kernel.

As mentioned in Sec. 2.1, each thread in cyclictest exe-

cutes in a loop, alternating between resuming, measuring

latency, and suspending. The wake-up timer is armed peri-

odically, according to a configurable interval I (in microsec-

onds) defined as a parameter.4 cyclictest’s periodic pattern

4In fact, cyclictest allows two parameters: i, the timer interval of the

1 s t r u c t t h r e a d p a r a m * p a r ;

2

3 / * p a r c o n t a i n s t h e c y c l i c t e s t c o n f i g u r a t i o n

4 * and t h r e a d p a r a m e t e r s * /

5

6 i f (par−>cpu != −1) {
7 CPU ZERO(&mask) ;

8 CPU SET (par−>cpu , &mask) ;

9 t h r e a d = p t h r e a d s e l f () ;

10 i f (p t h r e a d s e t a f f i n i t y n p (t h r e a d ,

11 s i z e o f (mask) , &mask) == −1)

12 warn (” Could n o t s e t CPU a f f i n i t y ”) ;

13 }
14

15 / * . . . * /

16

17 memset(& schedp , 0 , s i z e o f (schedp)) ;

18 schedp . s c h e d p r i o r i t y = par−>p r i o ;

19 i f (s e t s c h e d u l e r (0 , par−>p o l i c y , &schedp))

20 f a t a l (” F a i l e d t o s e t p r i o r i t y \n ”) ;

21

22 / * measurement phase * /

23

24 schedp . s c h e d p r i o r i t y = 0 ;

25 s c h e d s e t s c h e d u l e r (0 , SCHED OTHER, &schedp) ;

Figure 1: Task admission in Linux (original cyclictest).

of execution exactly matches the assumptions underlying the

sporadic task model and can thus be trivially expressed with

parameters di = pi = I . To avoid having to estimate the

per-job (i.e., per-iteration) execution cost of cyclictest, we

set ei to a dummy value of 1 ns and disable budget enforce-

ment, so that each thread can always execute without being

throttled by LITMUSRT.

The code necessary to realize admission of a cyclictest

thread as a real-time task under LITMUSRT is shown in

Fig. 2. The first step is defining the task parameters (in

particular, ei, di, and pi) in lines 3–8 and initializing the

userspace interface with init rt thread(). Budget enforce-

ment is disabled (line 7) and the maximum possible priority

is assigned (line 8). LITMUSRT’s fixed-priority plugin cur-

rently supports 512 distinct priorities; the priority field is

ignored by EDF-based plugins.

Next, if a partitioned scheduler is used, a scheduling ap-

proach where each task is statically assigned to a core, the

task must specify its assigned processor in the rt task struc-

ture (line 13) and perform this migration (line 14), which is

accomplished by calling be migrate to().5 Otherwise, if a

global scheduler is used, a scheduling approach where tasks

may migrate freely, a processor assignment is not required

(and ignored by the kernel if provided). The task parame-

first thread, and d, an increment which is added to the interval of each

consecutive thread. For example, if i = 1000 and d = 100, cyclictest

launches threads with intervals I ∈ {1000, 1100, 1200, . . .} µs. For

simplicity, we assume a single interval I . By default, and as employed in

our experiments, cyclictest uses i = 1000µs and d = 500µs.
5The function be migrate to() is currently implemented as a wrapper

around Linux’s processor affinity mask API, but could be extended to

incorporate LITMUSRT-specific functionality in the future. The “be ”

prefix stems from the fact that it may be called only by best-effort tasks.

22

1 s t r u c t r t t a s k r t t ; / * LITMUSˆRT API * /

2

3 i n i t r t t a s k p a r a m (& r t t) ;

4 r t t . e x e c c o s t = 1 ;

5 r t t . p e r i o d = par−>i n t e r v a l * 1000 ;

6 r t t . r e l a t i v e d e a d l i n e = par−>i n t e r v a l * 1000 ;

7 r t t . b u d g e t p o l i c y = NO ENFORCEMENT;

8 r t t . p r i o r i t y = LITMUS HIGHEST PRIORITY ;

9

10 i n i t r t t h r e a d () ;

11

12 i f (par−>cpu != −1) {
13 r t t . cpu = par−>cpu ;

14 i f (b e m i g r a t e t o (par−>cpu) < 0)

15 f a t a l (” Could n o t s e t CPU a f f i n i t y ”) ;

16 }
17

18 i f (s e t r t t a s k p a r a m (g e t t i d () , & r t t) < 0)

19 f a t a l (” F a i l e d t o s e t r t p a r a m . ”) ;

20

21 i f (t a sk mode (LITMUS RT TASK) != 0)

22 f a t a l (” f a i l e d t o change t a s k mode .\ n ”) ;

23

24 / * measurement phase * /

25

26 ta sk mode (BACKGROUND TASK) ;

Figure 2: Task admission in LITMUSRT (modified cyclictest).

ters are stored in the process control block (and validated

by the kernel) with the system call set rt task param() in

line 18. Finally, task mode(LITMUS RT TASK) is called

in line 21, which causes the thread to be admitted to

the set of real-time tasks. After the measurement phase,

task mode(BACKGROUND TASK) is used to give up real-

time privileges and return to SCHED OTHER status.

With these changes in place, cyclictest is provisioned

under LITMUSRT equivalently to the configuration exe-

cuted under Linux (both with and without the PREEMPT RT

patch). This ensures a fair and unbiased comparison.

2.4 The Effect of Timer Resolution on nanosleep()

Despite our efforts to establish a level playing field, we ini-

tially observed unexpectedly large scheduling latencies under

LITMUSRT in comparison with SCHED FIFO, even in an

otherwise idle system. This was eventually tracked down to a

systematic 50µs delay of timer interrupts, which was caused

by the fact that Linux subjects nanosleep() system calls to

timer coalescing to reduce the frequency of wake-ups. As

this feature is undesirable for real-time tasks, it is circum-

vented for SCHED FIFO and SCHED RR tasks. A similar

exception was introduced for LITMUSRT, which resolved

the discrepancy in expected and observed latencies.

It should be noted that LITMUSRT provides its own API

for periodic job activations, and that this API has never been

subject to timer coalescing, as it does not use the nanosleep

functionality. The issue arose in our experiments only be-

cause we chose to not modify the way in which cyclictest

triggers its periodic activations (since we did not want to

change the actual measuring code in any way).

3 Experiments

We conducted experiments with cyclictest to evaluate the

scheduling latency experienced by real-time tasks under

LITMUSRT in comparison with an unmodified Linux ker-

nel. The results were further compared with latencies as

observed under Linux with the PREEMPT RT patch. Our

testing environment consisted of a 16-core Intel Xeon X7550

2.0GHz platform with 1 TiB RAM. Features that lead to un-

predictability such as hardware multithreading, frequency

scaling, and deep sleep states were disabled for all kernels,

along with every kernel configuration option associated with

tracing or debugging. Background services such as cron

were disabled to the extent possible, with the notable excep-

tion of the remote login server sshd for obvious reasons.

We used cyclictest to sample scheduling latency under six

different kernel and scheduling policy combinations. Under

LITMUSRT, which is currently still based on Linux 3.0,

we focused our analysis on a subset of the event-driven

scheduler plugins: the partitioned EDF plugin (PSN-EDF),

the global EDF plugin (GSN-EDF), and the partitioned fixed-

priority plugin (P-FP).6 We did not evaluate LITMUSRT’s

Pfair [4] plugin, which implements the PD2 [3] scheduling

policy, since PD2 is a quantum-driven policy and hence not

optimized to achieve low scheduling latency.7

We further evaluated SCHED FIFO in three Linux ker-

nels: in Linux 3.0 (the stock version, without any patches),

Linux 3.8.13 (again, without patches), and Linux 3.8.13

with the PREEMPT RT patch. Though we compare schedul-

ing latencies of two different underlying versions of Linux,

both considered versions exhibit a similar latency profile (for

which we provide supporting data in Sec. 3.5), so our com-

parison of LITMUSRT and PREEMPT RT is valid despite

the difference in base kernel versions.

For each scheduling policy and kernel, we varied the set of

background tasks to assess scheduling latency in three scenar-

ios: (i) a system with no background workload, (ii) a system

with a cache-intensive, CPU-bound background workload,

and (iii) a system with an interrupt-intensive, I/O-bound

background workload. Of these three scenarios, scenario (i)

is clearly the best-case scenario, whereas scenario (iii) puts

severe stress onto the system. Scenario (ii) matches the back-

ground workload that has been used in prior LITMUSRT

studies (e.g., see [5, 6, 10, 12]).

cyclictest was executed with standard SMP parameters

(one thread per processor), with periods in the range of

I ∈ {1000µs, 1500µs, 2000µs, . . .} and the -m flag enabled,

which locks memory pages with mlockall() to prevent page

faults. The result of each execution is a histogram of ob-

served scheduling latencies, where the x-axis represents the

6The “S” and “N” in the plugin names PSN-EDF and GSN-EDF refer

to support for predictable suspensions and non-preemptive sections; see

[8, 10]. These algorithmic details are irrelevant in the context of this paper.
7Under a quantum-driven scheduler, worst-case scheduling latencies

cannot be lower than the quantum length, which in the current version of

LITMUSRT is tied to Linux’s scheduler tick and thus is at least 1ms .

23

measured delay and the y-axis the absolute frequency of the

corresponding value plotted on a log scale. Samples were

grouped in buckets of size 1 µs. Each test ran for 20 minutes,

generating around 5.85 million samples per configuration.

The outcome of the experiments is depicted in Figs. 3–7

and analyzed in the following sections. In Secs. 3.1–3.3, we

first discuss the differences and similarities in scheduling

latency incurred under LITMUSRT’s P-FP plugin, Linux 3.0,

and Linux 3.8.13 (both with and without the PREEMPT RT

patch), and then in Sec. 3.4 we compare the results of the

three considered LITMUSRT scheduler plugins with each

other. Finally, Sec. 3.5 compares Linux 3.0 and Linux 3.8.13.

3.1 Idle System

As a first step, we evaluated the latency of the system with-

out background tasks under P-FP and PREEMPT RT, both

running on Linux 3.0, and Linux 3.8.13 with and without the

PREEMPT RT patch. An idle system represents a best-case

scenario as non-timer-related interrupts are rare, because

kernel code and data is likely to remain cached between

scheduler activations, and since code segments within the

kernel that disable interrupts have only few inputs to process.

As can be seen in Fig. 3, the maximum observed schedul-

ing latency was below 20µs under each of the four sched-

ulers (insets (a)-(d)), and even below 12µs under the

PREEMPT RT configuration. The maximum observed

scheduling latency under stock Linux 3.8.13 is somewhat

higher than under both LITMUSRT and stock Linux 3.0. As

high-latency samples occur only rarely, we ascribe this dif-

ference to random chance; with a longer sampling duration,

latencies of this magnitude would likely be detected under

LITMUSRT and Linux 3.0, too. All three Linux variants

exhibited comparable average and median latencies, close to

2.8µs and 2.6µs, respectively. Scheduling latencies under

LITMUSRT’s P-FP scheduler were slightly higher with a me-

dian and average of roughly 3.4µs and 3.1µs, respectively.

Considering the overall shape of the histograms, all four

schedulers exhibit similar trends. Slight differences are vis-

ible in PREEMPT RT’s histogram, which resembles the

results for the other Linux versions in the initial 0-5µs in-

terval, but lacks higher latency samples. This suggests that

PREEMPT RT avoids outliers even in best-case scenarios.

Overall, as there are not many sources of latency in the

absence of a background workload (such as the disabling of

interrupts and contention at the hardware level), the observed

scheduling latencies are suitably low under each tested ker-

nel. While the LITMUSRT patch does appear to increase la-

tencies slightly on average, it does not substantially alter the

underlying latency profile of Linux as other factors dominate.

From this, we conclude that the LITMUSRT framework does

not inherently introduce undue complexity and overheads.

Next, we discuss the effects of increased processor and

cache contention.

3.2 CPU-bound Background Workload

Kernel overheads in general, and thus also the scheduling

latency experienced by real-time tasks, vary depending on

the contention for limited hardware resources such as mem-

ory bandwidth and shared caches. A cache-intensive, CPU-

bound background workload can thus be expected to result

in worsened latencies, as cache misses and contention in the

memory hierarchy are more likely to occur. To evaluate such

a scenario, we executed cyclictest along with CPU-bound

background tasks. For each processor, we instantiated a task

consisting of a tight loop accessing random memory loca-

tions to generate cache misses and contention. Each such task

was configured to have a working set of 20 MiB, to exceed

the size of each processor’s exclusive L2 cache, which has a

capacity of 18 MiB. This causes significant cache pressure.

Fig. 4 shows the recorded latencies for PSN-EDF, Linux 3.0,

and Linux 3.8.13 (with and without PREEMPT RT).

A pairwise comparison between the same policies in

Fig. 3 and Fig. 4 illustrates how scheduling latencies are

impacted by cache and memory issues. As expected, the aver-

age and maximum latencies under P-FP, Linux 3.0 and stock

Linux 3.8.13, depicted in insets (a), (b), and (c), respectively,

increased noticeably. While average and median scheduling

latencies increased by only one to two microseconds in ab-

solute terms, the increase in relative terms is significantly

higher, exceeding 45 percent in the case of average latency

under both LITMUSRT and Linux 3.0. Most significant is

the increase in observed maximum latency, which reached

roughly 48µs, 73µs, and 65µs under LITMUSRT, Linux 3.0,

and Linux 3.8.13, respectively. This shows that even a mod-

est, compute-only background workload can significantly

impact observable latencies in mainline Linux.

Interestingly, the advantages of PREEMPT RT (inset

(d)) become more apparent in this scenario: with the

PREEMPT RT patch, Linux was able to maintain low laten-

cies despite the increased load, both in terms of average as

well as maximum latency (3.4µs and 17.42µs, respectively).

The corresponding stock kernel incurred significantly worse

latencies (see the longer tail in Fig. 4(c)).

Comparing the distribution of samples, it can be seen

that the observed scheduling latency under LITMUSRT’s

P-FP plugin follows a slightly different pattern than either

Linux 3.0 or Linux 3.8.13. In particular, LITMUSRT’s dis-

tribution appears to be “wider” and “heavier,” with a less

rapid decrease in the frequency of samples in the range of

1µs–40µs. This explains LITMUSRT’s slightly higher aver-

age and median scheduling latencies, which are about 1µs

higher than under either Linux 3.0 or Linux 3.8.13. However,

note that LITMUSRT, Linux 3.0, and Linux 3.8.13 are all

similarly subject to long tails, which indicates that the ob-

served maximum latencies are caused by factors unrelated to

LITMUSRT (i.e., they are caused by issues in the underlying

Linux kernel, which the PREEMPT RT patch addresses).

Nonetheless, the histograms reveal that, in the average

case, LITMUSRT adds measurable (but not excessive) ad-

24

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (no bg tasks)

min=1.96us max=15.13us avg=3.45us median=3.10us stdev=1.03us

samples: total=5854818

(a) LITMUSRT with the P-FP scheduler plugin

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (no bg tasks)

min=1.87us max=13.89us avg=2.89us median=2.77us stdev=0.51us

samples: total=5854779

(b) Linux 3.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (no bg tasks)

min=1.52us max=19.73us avg=2.89us median=2.58us stdev=0.69us

samples: total=5854801

(c) Linux 3.8.13 without the PREEMPT RT patch

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13 w/ PREEMPT-RT: scheduling latency (no bg tasks)

min=1.55us max=11.20us avg=2.74us median=2.57us stdev=0.42us

samples: total=5854801

(d) Linux 3.8.13 with the PREEMPT RT patch

Figure 3: Histograms of observed scheduling latency in an otherwise idle system.

ditional overhead. We suspect two primary sources for this

additional overhead. First, LITMUSRT’s scheduling path

needs to acquire (at least) one additional spin lock com-

pared to stock Linux, which is especially costly in the pres-

ence of high cache and memory-bandwidth contention. This

additional spin lock acquisition stems from the fact that

LITMUSRT’s scheduling state is not protected by Linux’s

runqueue locks; however, Linux’s runqueue locks must

still be acquired prior to invoking LITMUSRT’s schedul-

ing framework. And second, the increased average-case

overheads might be due to a lack of low-level optimizations

in LITMUSRT (in comparison with the mature codebase

of Linux). Given that LITMUSRT is primarily a research-

oriented project focused on algorithmic real-time scheduling

issues, a certain lack of low-level tuning is not surprising.

As was already briefly mentioned, the CPU-bound back-

ground workload matches the setup that has been used in

prior LITMUSRT-based studies (e.g., [5, 6, 10, 12]). As

is apparent when comparing Fig. 3(a) with Fig. 4(a), our

data confirms that the CPU-bound workload generates suf-

ficient memory and cache pressure to magnify kernel over-

heads. Conversely, conducting overhead experiments with-

out a cache-intensive background workload does not yield

an accurate picture of kernel overheads. Next, we discuss

the impact of interrupt-intensive background workloads.

3.3 I/O-bound Background Workload

Interrupts are challenging from a latency point of view since

interrupt handlers typically disable interrupts temporarily

and may carry out significant processing, which both directly

affects scheduling latency. It should be noted that Linux

has long supported split interrupt handling (e.g., see [9]),

wherein interrupt handlers are split into a (short) top half

and a (typically longer) bottom half, and only the top half

is executed in the (hard) interrupt context, and the bottom

half is queued for later processing. However, in stock Linux,

bottom halves still effectively have “higher priority” than

regular real-time tasks, in the sense that the execution of bot-

tom halves is not under control of the regular SCHED FIFO

process scheduler8 and thus may negatively affect scheduling

latencies. Further, bottom halves may still disable interrupts

and preemptions for prolonged times.

Considerable effort has been invested by the developers of

the PREEMPT RT patch to address these very issues. This

is accomplished by forcing bottom half processing to take

place in kernel threads (which can be scheduled such that

they do not delay high-priority real-time tasks), and by iden-

tifying and breaking up code segments that disable interrupts

and preemptions for prolonged durations. In contrast, since

LITMUSRT is currently based on stock Linux, and since

the focus of LITMUSRT is the exploration and evaluation

of new scheduling policies (and not the reengineering of the

underlying Linux kernel), no such improvements are present

in LITMUSRT. A key motivation for our experiments was

to determine to which extent LITMUSRT is penalized by the

8Bottom halves are processed by so-called softirqs, which in stock Linux

are invoked from interrupt and exception return paths.

25

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (CPU-bound bg tasks)

min=2.10us max=47.59us avg=5.17us median=4.37us stdev=2.75us

samples: total=5854719

(a) LITMUSRT with the P-FP scheduler plugin

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (CPU-bound bg tasks)

min=2.04us max=72.73us avg=4.22us median=3.86us stdev=1.37us

samples: total=5854711

(b) Linux 3.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (CPU-bound bg tasks)

min=2.14us max=64.47us avg=4.02us median=3.67us stdev=1.20us

samples: total=5854707

(c) Linux 3.8.13 without the PREEMPT RT patch

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13 w/ PREEMPT-RT: scheduling latency (CPU-bound bg tasks)

min=1.73us max=17.42us avg=3.40us median=3.02us stdev=1.12us

samples: total=5854640

(d) Linux 3.8.13 with the PREEMPT RT patch

Figure 4: Histograms of observed scheduling latency in the presence of a CPU-bound background workload.

absence of such improvements.

We explored the impact of interrupt-intensive workloads

on scheduling latency with I/O-bound background tasks that

generate a large number of interrupts, system calls, and

scheduler invocations. To simulate such workloads, we used

a combination of the following three tools.

1. hackbench, a standard stress test for the Linux sched-

uler [30]. Under the employed default settings, it cre-

ates 400 processes that exchange tokens via (local) sock-

ets, thus causing frequent system calls and scheduler

invocations (due to blocking reads).

2. Bonnie++, a standard file system and hard disk stress

test [17]. Bonnie++ tests file creation, random and se-

quential file access, and file system metadata access.

We configured Bonnie++ to use direct I/O, which cir-

cumvents Linux’s page cache (and thus results in in-

creased disk activity). This workload results in a large

number of system calls, disk interrupts, and scheduler

invocations (due to blocking reads and writes).

3. wget, a common utility to download files via HTTP. We

used wget to download a 600 MiB file from a web server

on the local network in a loop. The downloaded file was

immediately discarded by writing it to /dev/null to avoid

stalling on disk I/O. One such download-and-discard

loop was launched for each of the 16 cores. This work-

load generates a large number of network interrupts

as Ethernet packets are received at the maximum rate

sustained by the network (with 1 Gib links in our lab).

In combination, these three workloads cause considerable

stress for the entire kernel, and can be expected to frequently

trigger code paths that inherently have to disable interrupts

and preemptions. While the three tools may not reflect any

particular real-world application, the chosen combination

of stress sources is useful to consider because it approaches

a worst-case scenario with regard to background activity.

The resulting distributions of observed scheduling latency

under P-FP, Linux 3.0, and Linux 3.8.13 with and without

the PREEMPT RT patch are depicted in Fig. 5.

Scheduling latencies are severely affected by the I/O-

bound background workload under LITMUSRT, Linux 3.0,

and stock Linux 3.8.13 alike. The corresponding histograms,

shown in insets (a)–(c) of Fig. 5, respectively, exhibit a long,

dense tail. Note that the x-axis in Fig. 5 uses a different

scale than Fig. 3 and 4: scheduling latencies in excess of

5ms were observed in this scenario, two orders of magnitude

worse than in the previous ones. Scheduling latencies in this

range clearly limit these kernels to hosting applications that

are not particularly latency-sensitive.

In contrast, Linux 3.8.13 with the PREEMPT RT patch

maintained much lower scheduling latencies, in the order

of tens of microseconds, despite the stress placed upon

the system, which can be seen in Fig. 5(d). Nonetheless,

the maximum observed scheduling latency did increase to

44µs, which shows that, even with the PREEMPT RT patch,

non-negligible latencies arise given harsh workloads. How-

ever, this maximum was still significantly lower than the

maximum latency previously observed under Linux 3.8.13

26

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u

m
b

e
r

o
f

s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (IO-bound bg tasks)

min=1.89us max=3956.48us avg=6.60us median=5.17us stdev=12.76us

samples: total=5854660

(a) LITMUSRT with the P-FP scheduler plugin

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u

m
b

e
r

o
f

s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (IO-bound bg tasks)

min=1.85us max=4300.43us avg=6.39us median=4.98us stdev=13.25us

samples: total=5854674

(b) Linux 3.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u

m
b

e
r

o
f

s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (IO-bound bg tasks)

min=1.85us max=5464.07us avg=6.23us median=4.60us stdev=15.91us

samples: total=5854773

(c) Linux 3.8.13 without the PREEMPT RT patch

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u

m
b

e
r

o
f

s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13 w/ PREEMPT-RT: scheduling latency (IO-bound bg tasks)

min=1.47us max=44.16us avg=4.12us median=4.07us stdev=0.99us

samples: total=5854748

(d) Linux 3.8.13 with the PREEMPT RT patch

Figure 5: Histograms of observed scheduling latency in the presence of an I/O-bound background workload.

without the PREEMPT RT patch in the presence of only

CPU-bound workloads, which is apparent when comparing

Fig. 4(c) with Fig. 5(d). Remarkably, the average and median

scheduling latency under PREEMPT RT worsened by less

than 0.7µs with the introduction of the I/O-bound workload.

Finally, we also ran two variations of the I/O-bound work-

load with varying degrees of disk activity. First, we disabled

bonnie++ altogether, which brought down the maximum

observed latencies under Linux 3.0, Linux 3.8.13 (without

the PREEMPT RT patch), and LITMUSRT to around 550µs,

which is still too high for practical purposes, but shows that

the extreme outliers are caused by disk-related code. And

second, we tried launching an instance of bonnie++ on each

core, which brought the disk I/O subsystem to its knees and

caused latency spikes in the range of 80–200 milliseconds (!)

under the three non-PREEMPT RT kernels. Remarkably, the

maximum observed scheduling latency under PREEMPT RT

remained below 50µs even in this case.

Overall, our experiment asserts the importance of

PREEMPT RT in turning Linux into a viable real-time plat-

form. Given the huge differences in maximum observed

latency, LITMUSRT would be substantially improved if it

incorporated PREEMPT RT. Though this will require con-

siderable engineering effort (both patches modify in part the

same code regions), there are no fundamental obstacles to

rebasing LITMUSRT on top of the PREEMPT RT patch.

3.4 Scheduling Latency of LITMUSRT Plugins

In the preceding sections, we have focused on LITMUSRT’s

P-FP plugin, since it implements the same scheduling policy

as SCHED FIFO (albeit with a larger number of priorities

and support for additional real-time locking protocols) and

thus allows for the most direct comparison. We also in-

vestigated how scheduling latency varies among the three

evaluated LITMUSRT scheduler plugins. Fig. 6 compares

the P-FP, PSN-EDF and GSN-EDF plugins in LITMUSRT,

under each of the three considered background workloads.

Comparing insets (g), (h), and (i), it is apparent that the

three plugins are equally subject to high scheduling latencies

(approaching 4ms) in the case of the I/O-bound background

workload. This is not surprising, since the long tail of high

scheduling latencies is caused by the design of the underlying

Linux kernel, and thus independent of the choice of plugin.

Further, comparing Fig. 6(a) with Fig. 6(b), and Fig. 6(d)

with Fig. 6(e), it is apparent that the PSN-EDF and P-FP plu-

gins yield near-identical scheduling latency distributions,

despite the difference in implemented scheduling policy.

This, however, is expected since the tests run only one real-

time task per processor; the real-time scheduler is hence not

stressed and the cost of the scheduling operation is so small

compared to other sources of latency that any differences

between fixed-priority and EDF scheduling disappear in the

noise. Differences emerge only for higher task counts [10].

However, looking at Fig. 6(f) and Fig. 6(i), it is apparent

that the scheduling latency is noticeably higher under GSN-

27

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-EDF: scheduling latency (no bg tasks)

min=1.76us max=26.17us avg=3.45us median=2.87us stdev=1.24us

samples: total=5854783

(a) PSN-EDF (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (no bg tasks)

min=1.96us max=15.13us avg=3.45us median=3.10us stdev=1.03us

samples: total=5854818

(b) P-FP (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT G-EDF: scheduling latency (no bg tasks)

min=1.59us max=14.34us avg=3.06us median=2.56us stdev=1.18us

samples: total=5854797

(c) GSN-EDF (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-EDF: scheduling latency (CPU-bound bg tasks)

min=2.40us max=73.27us avg=5.14us median=4.21us stdev=2.95us

samples: total=5854739

(d) PSN-EDF (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (CPU-bound bg tasks)

min=2.10us max=47.59us avg=5.17us median=4.37us stdev=2.75us

samples: total=5854719

(e) P-FP (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT G-EDF: scheduling latency (CPU-bound bg tasks)

min=1.91us max=60.20us avg=5.81us median=5.39us stdev=2.51us

samples: total=5854728

(f) GSN-EDF (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u
m

b
e
r

o
f
s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-EDF: scheduling latency (IO-bound bg tasks)

min=1.98us max=3874.99us avg=6.56us median=5.11us stdev=12.66us

samples: total=5854606

(g) PSN-EDF (I/O-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u
m

b
e
r

o
f
s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (IO-bound bg tasks)

min=1.89us max=3956.48us avg=6.60us median=5.17us stdev=12.76us

samples: total=5854660

(h) P-FP (I/O-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u
m

b
e
r

o
f
s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

LITMUS^RT G-EDF: scheduling latency (IO-bound bg tasks)

min=2.26us max=3905.79us avg=10.95us median=7.38us stdev=14.11us

samples: total=5854793

(i) GSN-EDF (I/O-bound)

Figure 6: Histograms of observed scheduling latency under LITMUSRT with the PSN-EDF, P-FP, and GSN-EDF plugins, under each of the

three considered background workloads.

EDF in the average case, which is due to its more complex

implementation. Issues such as contention caused by coarse-

grained locking, extra bookkeeping, and cache-coherence

delays when accessing shared structures increase both the

median and average observed scheduling latencies.

While this shows that LITMUSRT’s implementation of

global scheduling incurs higher overheads, there is little

reason to employ global scheduling when the number of

tasks does not exceed the number of available cores (which

is the case in the considered cyclictest setup). If the number

of tasks actually exceeds the number of available cores—that

is, if the scheduling problem is not entirely trivial—then

other factors such as the impact of interference from higher-

priority tasks or a need for bounded tardiness [18] can make

minor differences in scheduling latency a secondary concern,

with only little impact on overall temporal correctness.

3.5 Linux 3.0 vs. Linux 3.8

In this paper, we compared the latency of LITMUSRT and

Linux with the PREEMPT RT patch using the latest ver-

sions of each patch, which are based on Linux 3.0 and Linux

3.8.13, respectively. As already discussed in the preceding

sections, to verify that comparing the two patches is valid

despite the difference in the underlying kernel version, we

also measured the scheduling latencies exhibited by the two

underlying (unpatched) Linux versions. For ease of compari-

son, the results are repeated in Fig. 7.

A comparison of inset (a)-(c) with insets (d)-(f) shows

that, though the observed maxima vary (for example, from

13.89µs to 19.73µs in the scenario without background

tasks), the shapes of the distributions are largely similar. Fur-

ther, there are no substantial differences in the average and

median latencies of the two kernel versions. This indicates

that no significant improvements concerning latency and pre-

emptivity have been incorporated since Linux 3.0. Therefore,

a direct comparison between the LITMUSRT patch and the

PREEMPT RT patch is valid.

This concludes the discussion of our experimental results.

Next, we briefly discuss how the presented cyclictest experi-

ments differ from the overhead and latency tracing typically

used to evaluate LITMUSRT.

4 Limitations of cyclictest

As discussed in Sec. 1, LITMUSRT is normally evaluated

using Feather-Trace, not cyclictest. While cyclictest is a very

useful tool to assess and compare different kernel versions

(e.g., it can be used to test whether a proposed patch has

a negative impact on scheduling latency), it also has some

limitations if used as the sole metric for estimating a system’s

28

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (no bg tasks)

min=1.87us max=13.89us avg=2.89us median=2.77us stdev=0.51us

samples: total=5854779

(a) Linux 3.0 (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (CPU-bound bg tasks)

min=2.04us max=72.73us avg=4.22us median=3.86us stdev=1.37us

samples: total=5854711

(b) Linux 3.0 (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u
m

b
e
r

o
f
s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (IO-bound bg tasks)

min=1.85us max=4300.43us avg=6.39us median=4.98us stdev=13.25us

samples: total=5854674

(c) Linux 3.0 (I/O-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (no bg tasks)

min=1.52us max=19.73us avg=2.89us median=2.58us stdev=0.69us

samples: total=5854801

(d) Linux 3.8.13 (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

n
u
m
b
e
r
o
f
s
a
m
p
le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (CPU-bound bg tasks)

min=2.14us max=64.47us avg=4.02us median=3.67us stdev=1.20us

samples: total=5854707

(e) Linux 3.8.13 (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

n
u
m

b
e
r

o
f
s
a

m
p

le
s

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (IO-bound bg tasks)

min=1.85us max=5464.07us avg=6.23us median=4.60us stdev=15.91us

samples: total=5854773

(f) Linux 3.8.13 (I/O-bound)

Figure 7: Histograms of observed scheduling latency under Linux 3.0 and 3.8.13, under each of the three considered background workloads.

capability to provide temporal guarantees.

The primary advantage of cyclictest is that it provides

an easy-to-interpret metric that reflects various sources of

unpredictability as a single, opaque measure. That is, it treats

the kernel and the underlying hardware as a black box and

reports the actual cumulative impact of system overheads

and hardware capabilities on real-time tasks. For application

developers, this is convenient as it requires neither post-

tracing analysis nor a detailed understanding of the kernel.

In contrast, Feather-Trace yields a large number of (non-

human-readable) event timestamps that require matching,

filtering, post-processing, and a statistical evaluation. The

resulting overhead profile is primarily intended for integra-

tion into schedulability analysis and is less suitable to direct

interpretation. However, while cyclictest is arguably more

convenient, LITMUSRT’s Feather-Trace approach provides

a more complete picture since it yields the data required to

assess the impact of kernel overheads on tasks other than the

highest-priority task, as we explain next.

The main feature of Feather-Trace is that it integrates

many tracepoints in the kernel, which can be used to collect

fine-grained overheads. By measuring and considering the

various sources of delay individually, a detailed analysis of

the worst-case cumulative delay can be carried out.

For example, for a task other than the highest-priority

task, the cumulative delay incurred depends on the worst-

case scheduling latency and the delays due to preemptions

by higher-priority tasks, which in turn depends on context-

switching overheads, scheduling overheads in the presence of

potentially many ready tasks, and so on. With Feather-Trace

in LITMUSRT, it is possible to measure all these aspects

individually, and then account for them during schedulability

analysis (see [10, Ch. 3] for a comprehensive introduction

to overhead accounting), such that the observed worst-case

overheads are fully reflected in the derived temporal guaran-

tees for all tasks (and not just the highest-priority task).

As another example, consider how tasks are resumed

under partitioned schedulers such as the P-FP plugin (or

SCHED FIFO with appropriate processor affinity masks). If

a real-time task resumes on a remote processor (i.e., any pro-

cessor other than its assigned partition), an inter-processor in-

terrupt (IPI) must be sent to its assigned processor to trigger

the scheduler. IPIs are of course not delivered and processed

instantaneously in a real system and thus affect scheduling

latency if they arise. When scheduling cyclictest on hard-

ware platforms with processor-local timers (such as local

APIC timers in modern x86 systems), however, such IPIs

are not required because the interrupt signaling the expiry of

cyclictest’s one-shot timer is handled locally. If we simply

execute cyclictest under PSN-EDF, P-FP, or SCHED FIFO

with appropriate processor affinity masks to determine “the

worst-case latency,” it will never trace the impact of such

IPIs, even though an actual real-time application that is trig-

gered by interrupts from devices other than timers (e.g., such

as a sensor) would actually be subject to IPI delays. In con-

trast, in the methodology used to evaluate LITMUSRT (see

[10, Ch. 4]), Feather-Trace is used to measure IPI latencies,

which are then correctly accounted for in the schedulability

analysis to reflect the worst-case task-activation delay.

In summary, it is impossible to derive how real-time tasks

other than the highest-priority task are affected by overheads

from cyclictest-based experiments, because overhead-aware

schedulability analysis is fundamentally required to make

temporal guarantees for all tasks. Such an analysis is made

possible by Feather-Trace’s ability to extract specific over-

heads. While obtaining measurements in a fine-grained man-

ner is more involved than simply running cyclictest, Feather-

Trace’s fine-grained measurement approach provides a flexi-

29

bility that is not achievable with coarse-grained approaches

such as cyclictest. This, of course, does not diminish

cyclictest’s value as a quick assessment and debugging aid,

but it should not be mistaken to provide a general measure of

a system’s “real-time capability”; it can only show the lack

of such capability under certain circumstances—for instance,

by exposing scheduling latencies in excess of 5ms in the

presence of I/O-bound background tasks.

5 Conclusion and Future Work

We presented an empirical evaluation of scheduling latency

under LITMUSRT using cyclictest. We ported cyclictest to

LITMUSRT’s native API and collected samples of schedul-

ing latency under several of its event-driven scheduler plu-

gins, in three system configurations (an idle system, a sys-

tem with CPU-bound background tasks, and a system with

I/O-bound background tasks). For the purpose of compari-

son, we repeated the same measurements under Linux 3.0,

Linux 3.8.13, and Linux 3.8.13 with the PREEMPT RT

patch using the original, unmodified cyclictest version.

The results obtained from an idle system and in the pres-

ence of CPU-bound background tasks showed that while

LITMUSRT introduces some additional overheads, the dif-

ference is minor in absolute terms and manifests only

in the average and median scheduling latencies. Impor-

tantly, LITMUSRT was not observed to affect the maximum

scheduling latencies negatively, which is due to the fact that

other factors in mainline Linux have a much larger impact on

worst-case delays. We conclude from these observations that

LITMUSRT does not impose inherently impractical over-

heads. Further, we believe that the observed minor increase

in average and median scheduling latency is not fundamental,

but caused by a lack of low-level optimizations that could be

rectified with additional engineering effort.

However, our data also documents that LITMUSRT inher-

its mainline Linux’s weaknesses in the presence of I/O-bound

background tasks. Again, LITMUSRT did not increase the

observed maximum scheduling latency, but the latency pro-

file of the underlying Linux 3.0 kernel renders it unfit for se-

rious (hard) real-time applications. Further, our experiments

confirmed that this is still the case with the more recent

mainline Linux version 3.8.13. It would thus be highly de-

sirable to combine LITMUSRT’s algorithmic improvements

with the increased responsiveness under load achieved by

the PREEMPT RT patch, which remains as future work.

References

[1] The LITMUSRT project. http://www.litmus-rt.org.
[2] Real-time linux wiki. cyclictest - RTwiki. https://rt.wiki.

kernel.org/index.php/Cyclictest.
[3] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of

synchronous periodic tasks. In Proc. of the 13th Euromicro Conference
on Real-Time Systems, pages 76–85. IEEE, 2001.

[4] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate
progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[5] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical compari-
son of global, partitioned, and clustered multiprocessor EDF sched-
ulers. In Proc. of the 31st Real-Time Systems Symposium, pages 14–24,
2010.

[6] A. Bastoni, B. Brandenburg, and J. Anderson. Is semi-partitioned
scheduling practical? In Proc. of the 23rd Euromicro Conference on
Real-Time Systems, pages 125–135, 2011.

[7] A. Block. Adaptive multiprocessor real-time systems. PhD thesis,
University of North Carolina at Chapel Hill, 2008.

[8] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In Proc. of the 13th
IEEE Conference on Embedded and Real-Time Computing Systems
and Applications, pages 47–57, 2007.

[9] D. Bovet and M. Cesati. Understanding The Linux Kernel. O’Reilly
& Associates Inc, third edition, 2005.

[10] B. Brandenburg. Scheduling and locking in multiprocessor real-time
operating systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011.

[11] B. Brandenburg and J. Anderson. Feather-trace: A light-weight event
tracing toolkit. In Proc. of the Workshop on Operating Systems Plat-
forms for Embedded Real-Time applications, pages 61–70, 2007.

[12] B. Brandenburg and J. Anderson. A comparison of the M-PCP, D-

PCP, and FMLP on LITMUSRT. In Proc. of the 12th Intl. Conference
on Principles of Distributed Systems, pages 105–124, 2008.

[13] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev, and

J. Anderson. LITMUSRT: a status report. 9th Real-Time Linux
Workshop, 2007.

[14] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.

LITMUSRT: A testbed for empirically comparing real-time multi-
processor schedulers. In Proc. of the 27th IEEE Real-Time Systems
Symposium, pages 111–123, 2006.

[15] G. Chanteperdrix and R. Cochran. The ARM fast context switch
extension for Linux. Real Time Linux Workshop, 2009.

[16] R. Cochran, C. Marinescu, and C. Riesch. Synchronizing the Linux
system time to a PTP hardware clock. In Proc. of the 2011 Intl. IEEE
Symposium on Precision Clock Synchronization for Measurement
Control and Communication, pages 87–92, 2011.

[17] R. Coker. bonnie++ — program to test hard drive performance. Linux
manual page.

[18] U. Devi. Soft real-time scheduling on multiprocessors. PhD thesis,
Chapel Hill, NC, USA, 2006.

[19] G. Elliott and J. Anderson. Globally scheduled real-time multiproces-
sor systems with GPUs. Real-Time Systems, 48(1):34–74, 2012.

[20] C. Emde. Long-term monitoring of apparent latency in PREEMPT RT
Linux real-time systems. 12th Real-Time Linux Workshop, 2010.

[21] L. Fu and R. Schwebel. Real-time linux wiki. RT PREEMPT
HOWTO. https://rt.wiki.kernel.org/index.php/
RT_PREEMPT_HOWTO.

[22] L. Henriques. Threaded IRQs on Linux PREEMPT-RT. In Proc. of
the 5th Intl. Workshop on Operating Systems Platforms for Embedded
Real-Time Applications, pages 23–32, 2009.

[23] C. Kenna, J. Herman, B. Brandenburg, A. Mills, and J. Anderson. Soft
real-time on multiprocessors: are analysis-based schedulers really
worth it? In Proc. of the 32nd Real-Time Systems Symposium, pages
93–103, 2011.

[24] J. Kiszka. Towards Linux as a real-time hypervisor. In Proc. of the
11th Real-Time Linux Workshop, pages 205–214, 2009.

[25] K. Koolwal. Investigating latency effects of the linux real-time pre-
emption patches (PREEMPT RT) on AMD’s GEODE LX platform.
In Proc. of the 11th Real-Time Linux Workshop, pages 131–146, 2009.

[26] A. Lackorzynski, J. Danisevskis, J. Nordholz, and M. Peter. Real-
time performance of L4Linux. In Proc. of the 13th Real-Time Linux
Workshop, pages 117–124, 2011.

[27] P. McKenney. A realtime preemption overview. 2005. LWN.
http://lwn.net/Articles/146861/.

[28] A. Mok. Fundamental design problems of distributed systems for the
hard-real-time environment. PhD thesis, 1983.

[29] M. Traut. Real-time CORBA performance on Linux-RT PREEMPT.
9th Real-Time Linux Workshop, 2007.

[30] C. Williams and D. Sommerseth. hackbench — scheduler bench-
mark/stress test. Linux manual page.

[31] B. Zuo, K. Chen, A. Liang, H. Guan, J. Zhang, R. Ma, and H. Yang.
Performance tuning towards a KVM-based low latency virtualization
system. In Proc. of the 2nd Internation Conference on Information
Engineering and Computer Science, pages 1–4. IEEE, 2010.

30

Towards power-efficient mixed-critical systems

Florian Broekaert, Agnes Fritsch, Laurent San

AAL Advanced Architecture Lab – EDS service

Thales Communications & Security SA (TCS)

Gennevilliers, France

{florian.broekaert, agnes.fritsch,

laurent.san}@thalesgroup.com

Sergey Tverdyshev

R&D Department

SYSGO AG

Klei-Winternheim, Germany

{sergey.tverdyshev}@sysgo.com

Abstract—Critical systems performance compliancy and

predictability is an utmost priority. However, these systems also

face power issues and could benefit of smart power management

policies. Standard OS power management policies do not fulfill

the requirements of critical systems. In this paper we explore

architectures integrating power-management techniques into a

RTOS designed for safety and security critical systems. These

architectures treat the power efficiency as one of the fine-tuning

knobs in the designs of mixed-critical systems.

Keywords—low-power; power-aware real-time scheduling;

safety; security; mixed-critical;

I. INTRODUCTION

Over the last years, power consumption has become a major

concern for the worldwide electronics’ systems industry.

Interest in energy management has grown for reasons such as

to cut down power consumption, to maximize autonomy of

battery powered devices, and to decrease thermal dissipation.

Power management policies are now wide spread on standard

operating systems but are dedicated to general purpose

applications, and therefore, usually do not fit into critical or

real-time systems. To overcome this limitation and to fulfill

needs of applications with real-time constrains, TCS has

developed a solution consisting in a framework with a portable

power management runtime environment based on a low-

power scheduler. Evaluations have already been conducted on

soft real-time applications and have shown promising results.

However, implementation has never been experimented on

RTOS with critical applications.

The aim of this paper is to explore integration of reliable

power-management policies into a RTOS. To ensure a quick

feedback on our ideas in mixed-critical domain we have

selected SYSGO PikeOS [5] [6]) real-time operating system,

which is widely used in mixed-critical systems.

The paper is organized as follows. Section II exposes general

topics in power management. Section III presents a solution

developed by TCS based on a low-power scheduler that

performs power management at task level. Section IV details

safety and security scheduling and its implementation in

PikeOS. We conclude in section V by presenting some

possible integration perspectives of low-power scheduler

concepts through PikeOS extensions.

II. POWER MANAGEMENT FOR CRITICAL SYSTEMS

In this section, general topics related to power management

are introduced.

A. HW knobs to reduce energy consumption

In digital systems, power consumption mainly comes from:

• Static power that is related to the leakage current and

depends on transistor technology and impacted by

temperature. As CMOS technology is scaling down, this

problem of static leakage power is becoming worse.

• Dynamic power represented by fCVPdynamuc

2
α∝ , [1]

with α the activity factor, C the switching capacitance,

V the supply voltage and f the frequency.

Modern HW designs provide several means to reduce system

overall power consumption, e.g. power/clock gating, multiple

power domains. The two most popular techniques taking

benefit of these knobs are:

• Dynamic Voltage and Frequency Scaling (DVFS).

It consists in changing the processor speed by scaling

down/up the Voltage/Frequency couple depending on the

workload. Reducing frequency implies longer processing

time, but the overall impact on dynamic power is drastic.

• Dynamic Power Management (DPM).

It consists in shutting down power supplies associated to

specific areas of the chip or peripherals during period of

inactivity. Usually, several levels sleep modes are

available. The deeper we go in these low-power modes,

the less energy is consumed but the more time is required

to go in/out the modes.

From a SW point of view, both techniques abstract the HW

resources as a set of modes with characteristics such as

performance, power consumption, and switching time between

modes. The Advanced Configuration and Power Interface

(ACPI [2]) specifies platform independent interfaces for

hardware power management to implement such modes.

B. DVFS or DPM?

The common goal of DVFS and DPM is to decrease processor

power consumption by reducing time spent in idle mode.

Figure 1 details the benefits of DVFS and DPM techniques on

energy consumption savings when a task finishes before its

deadline and generates slack time.

31

Fig. 1. DVFS and DPM strategies

An advantage of DVFS compared to DPM is the fast

switching time between modes (hundreds of microseconds

range versus millisecond range due to context saving). DVFS

allows keeping processor active (idle mode) even if there is no

instruction to be executed whereas for DPM the processor is

put into a sleep mode, and thus, requires wake-up mechanism

(timer, event) with extra timing overhead. DVFS also enables

decreasing the peak power by using a lower voltage/frequency

operating point. DPM allows reaching lower power

consumption for the processor than the lowest DVFS mode

when processor is idle.

The choice between DPM and DVFS depends on the

application idle/activity time ratio. The bigger this ratio is, the

better the power savings gains with a DPM strategy will be

compared to DVFS. However, when DPM is used, the

developer needs mechanisms to return from sleep (e.g timer,

interruption) and switching time must be taken into account.

C. OS Power Management policies

Power management policies taking benefit of DVFS and DPM

can be implemented at:

• Application level:

Directives are directly inserted in the application and rely

on an explicit and proper exploitation by the developer.

Problem may occur in a multi-applications context

because then decisions should require to be coordinated to

avoid possible functional disorder.

• Operating System level:

Integration is done as service of the OS to scale down

power only when the system performance can be relaxed

by monitoring HW and SW events. This layer identifies

or predicts time intervals where resources are not being

used and then adapts power the power modes depending

on workload.

However, existing solutions are not suitable for mixed critical

systems [9]. On one side, commercial RTOS power

management solutions are not commonly available. On the

other side, traditional OS power management do trade-offs

between power saving gains and the system

performance/reactivity. As example, Linux power

management relies on the ACPI CPUfreq and CPUidle

framework and implements decision heuristics that rely on the

past activities. The consequence of this a-posteriori scheme is

that future events might be missed if performance level has

been lowered too much. Thus, it is wise to disable standard OS

power management to guarantee system determinism. These

limitations come from the fact that these policies do not take

into account some of the key requirements from critical

applications, e.g. timing information, deadlines. The key

challenge to overcome these limitations is to design a reliable

power management layer for real-time systems.

III. IMPLEMENTATION OF A LOW-POWER SCHEDULER

In this chapter, we describe the solution investigated by TCS

to fulfill needs of soft real-time applications and an example

of its implementation in Linux.

A. The Low-Power scheduler

Low-power scheduling consists of power-aware task

allocation algorithms. This topic has been widely studied in

the past. Some strategies dynamically adjust processor modes

at task scheduling level to achieve expected performance level

required for completing a job while still ensuring compliancy

with the application real-time constraints [10]. Figure 2

depicts TCS low-power scheduler solution named

“SCHED_EDF_SMP_DVFS” (similar to [11]) which follows

an intra-task approach and combines a classical Earliest

Deadline First (EDF) scheduling with DVFS and slack time

recuperation and compares it to a regular EDF scheduling

This scheduler relies on the concept of task’s Actual

Execution Time (AET). The task’s AET is monitored and

compared to the Worst Case Execution Times (WCET). The

observed slack time is used as an extra time for the next

scheduled task. In order to reduce power consumption, the

scheduler minimizes application idle time by spreading tasks

over as many active cores as possible within the SMP and

selects the lowest voltage/frequency mode still complying

with the WCET.

Fig. 2. Principle of DVFS scheduling on a monocore system

Energy savings results depend on how often and how long idle

periods are. These periods may be large if WCET differs

widely from the AET and are, thus, very application-specific.

To reach an efficient usage of the platform resources, the most

recent task scheduling techniques propose a mixed design-

time exploration and run-time approach, where the power-

performance trade-off is explored at the system level [3] [4].

To integrate such kind of DVFS/DPM algorithms into

common OS such as Linux, TCS developed a framework

described in the next section.

B. The Low-Power framework

Few works describe the integration of low-power algorithms

for real-time systems into OS. To tackle drawbacks of

standard OS power management policies, TCS started to

develop a workflow (patent filed), named “lp_framework”, to

32

enable application with timings constraints to benefit from a

reliable strategy. A solution easily portable on various OS and

HW platforms has been proposed. Objective of such

infrastructure is to be able to host low-power scheduling

algorithms (e.g. SCHED_EDF_SMP_DVFS) and to have

minimal impacts on the user application integration. The

solution is constituted by a runtime and a set of user APIs.

Three main components are needed to host this runtime on top

of an OS:

• FIFO fixed priority scheduler and POSIX thread support

• High resolution timer to count the elapsed time

• DVFS driver

During task execution, modifications of the core state may

occur at specific points, termed “segment” boundaries. A

segment is a section of code under timing constraint, which

exports timing information at runtime. This decomposition

enables the scheduler to identify and monitor the different

execution paths taken by a task. It maintains an accurate vision

of the work already accomplished and the work that remains

to be done in a given task. This reporting is achieved through a

specific API, in conjunction with an extension of POSIX

threads, allowing timing annotations (WCET, deadlines) on

thread-based tasks. The efforts made in standardizing dynamic

scheduling interfaces [8][8] have been used as background.

Splitting a task into segments constitutes a trade-off. More

segments help the scheduler track progression better, but

incurs more timing overhead. In addition to these API hooks,

the low-power scheduler requires a user-supplied segment

table, which maps the name of all the segments in the

application to their associated WCET, at the different core

modes (filled at design time), as well as their deadlines.

Fig. 3. Low-Power runtime architecture

As depicted in Fig. 3, the infrastructure is constituted by:

• The low-power scheduler: It holds scheduling strategies

and is responsible for thread creation and synchronization.

• The CPU state manager & power model. This component

is used to store an abstraction of processor in terms of

power states, frequency and switch time duration.

• The POSIX thread extended lib. It is used to interpret the

extended attributes related to the POSIX threads.

• The POSIX execution manager. This component is used

to make the translation between the tasks formalism

handled by the low-power scheduler and the Linux

POSIX threads kernel scheduler.

• The segments timings table.

In the framework of the EU FP7-288307 funded project

PHARAON, TCS has developed and implemented this

runtime as a user space library on Linux for a quad core cortex

A9 platform. This choice has been made for portability

reasons but introduces overheads and could be thus limited for

hard real-time systems. To ensure more determinism,

implementation must be done in kernel space or on RTOS.

IV. SCHEDULING FOR SAFETY AND SECURITY CRITICAL

SYSTEMS

A. Pike OS

PikeOS is a real-time operating system for safety and security

critical applications [5] [6]. PikeOS is certified according

standards DO-178B for avionics, IEC 61508 for railway and

EN 50128 for safety in general. The PikeOS origin lies in the

avionic area (e.g. Airbus A350, A400M), which is well-known

for requiring highly robust components. Currently, PikeOS is

used in different critical domains, it has highly modular and

runs on a variety of hardware platforms.

Architecturally PikeOS consists of two major components: a

micro-kernel and a virtualisation layer (see Figure 4). The

micro-kernel is very compact and provides the very basic

functionality inspired by the ideas of Liedtke [7]. The

virtualisation layer is implemented on the top of the micro-

kernel and provides separated execution partitions, also known

as virtual machines, for user applications. User applications

run in the isolated partitions which can be “personalised” with

APIs, e.g. POSIX, OSEK, Linux etc.

The scheduler of PikeOS is a multi-core real-time time-

triggered scheduling with support of integration events-

triggered threads. In the rest of this section we focus on the

scheduling algorithm implemented in PikeOS.

Fig. 4. PikeOS architecture

B. Pike OS scheduling with time partionning

Time triggered scheduling means that all relevant events are

processed at predefined points. Usually, time-triggered

33

scheduling is defined before the system is deployed, i.e. the

scheduler configuration is made offline. Such a scheduler is

executed periodically, which guarantees predictable and

repetitive scheduling of system processes.

The main part of such a scheduler is the configuration. In a

configuration one splits some amount of time (e.g. 1 second)

into slots (also known as time windows, time frames, etc.) and

assigns processes/threads to be active at specific slots. The

result of the splitting and assignment is one period of the time-

triggered scheduling. In this document we call this period

major time frame (MTF) and a set of consequent slots

logically combined together a time partition (we denote a time

partition as tau). The major time frame is repeatedly executed

all over again during the whole lifetime of a system. During

runtime the scheduler makes lookups in the configuration to

decide if the next time partition has to be activated. The main

goal of such time partitioning [5] is to ensure that activities in

one time partition do not affect the timing of the activities in

other time partitions. Time Partitioning allows the system

integrator:

• Allocate a certain amount of CPU time to each virtual

machine.

• One time partition can consist of more than one time slot.

• Multiple virtual machines can belong to the same time

partition.

• Privileged processes are allowed to create and move

threads to time partitions different from the time partition

configured for their virtual machine.

• Independent scheduling inside every time partition.

• Support for different priorities inside every time partition.

Time partitioning is very important in the context of mixing

safety, security, and real-time requirements. The best example

is a safety critical application, which has to be able to work

without interference (in this case the corresponding safety

requirement “do the job”) and at the same time it should not

be possible to exploit scheduling algorithms as a timing covert

channel. Time partitioning can also help system integrators to

setup a safe access (i.e. access for safety-critical applications)

or safe scheduling of accesses.

C. Background Time Partition

When all threads in a given VM and/or a given time slot have

finished all their jobs, in a purely time-triggered partitioning

the rest of the time has to be “burned”. If a hypervisor forces

switch of time slots, it can destroy the planned scheduling, e.g.

next VMs will be scheduled earlier and could finish earlier

than the expected arrival of some events.

We suggest the usage of a background time partition (we also

called it tau0) to extend the time-triggered nature of time

partitioning with event-triggered and priority-based features.

In a scheduler with a background partition there are always

two active time partitions: the current one (according to the

static time partitioning) and the background one. The next task

is the one with the highest priority from these two time

partitions. If priority of tasks is equal, then the background

partition has precedence. Figure 5 depicts the scheduling

decision in PikeOS.

Fig. 5. Scheduling with Background Partition

Background partition allows system integrator to implement

the following scenarios:

Utilisation of free time

System integrator assigns to the background partition a VM

(or threads from a VM) with low priorities. In such

configuration if there are not any active threads in current time

partition, the threads from background partition will be

automatically scheduled. Thus, the available resources will be

utilised.

Shortening latency for processing real-time/critical events

System integrators assign to the background partition a VM

with a thread, which should process some real-time event (or

event with the shortest possible reaction time). In a default

configuration this thread has the lowest priority, and thus,

excluded from scheduling. Once a high-priority events (which

is implemented as interrupt) arrives, the interrupt processing

routine should rise the priority of the corresponding thread.

For example, if it sets the priority of the thread in background

partition to the maximum, it will be the next one to schedule.

V. CONCEPT FOR LOW POWER SCHEDULING FOR MIXED

CRITICAL SYSTEMS

In this section we present three candidate algorithms for the
implementation phase of our project. The goal is to propose
extensions to systems using multiple software partitions with
different criticalities. The first one introduces “power budget”
for VM, second exploits background time-partition, and the
third benefits of multi-core system with homogeneous or
heterogeneous processing cores.

A. Power Budgeting VM

We introduce to the VM configuration a new parameter

“power budget”. This parameter defines how much power a

VM is allowed to consume during its time partition.

• If a low critical VM has overpassed a predefined limit,

PikeOS scheduler cuts off this VM from the assigned

CPUs and applies a power management strategy to either

reduce CPU frequency or even to put CPU in sleep mode

depending on the remaining time before next VM slot.

• If a critical VM has overpassed its power budget during

its time partition, the extra power consumed will be

removed from the initial power budget of the next low

critical VM scheduled.

• For battery powered devices, when power depletion

becomes critical (e.g. low-level battery signal event),

power budget of less critical VMs could be scaled down

to extend autonomy in favor of critical VM.

34

These strategies will allow system integrator to configure a
system where less critical VMs do not interfere with high-
critical VM on the power resource. A strategy similar to the
SCHED_EDF_SMP_DVFS policy (described in section III.A)
at task level could have been considered as well. However, for
safety and security reasons, we do not plan to schedule the next
VM after current VM reached its power limit to guarantee
predefined behavior of the major time frame and complete
isolation of VM in space (e.g. memory) and time.

B. Power management of the background time-partition

We propose to allocate low-priority VMs to the background

time-partition and exploit its ability to consume available CPU

time after a critical VM in the foreground time-partition

finishes its job (see IV.B for details). Thus, this designs allows

to fine-tune CPU frequency when the low priority VMs are

scheduled and the system integrator can selects the power

management service to be applied to the VM, either:

• The standard OS power management service

• The low-power scheduler and its infrastructure such as

described in III.B

This design requires a new parameter “CPU frequency” that

must be controlled by the PikeOS scheduler. This is because

when a critical VM is scheduled after a low priority VM, the

CPU frequency status must be checked (and modified if

needed) to ensure that VM execution will comply with the

task performance as requested by the system integrator. The

additional switching time overhead must also be taken into

account for the switch between VMs.

C. Heterogeneous HW architectures

Multicore hardware platforms with heterogeneous cores such

as ARM big.LITTLE architectures provide a great

environment for mixed-critical systems power management.

At task level, power management is transparently handled by

the CPUfreq framework (compatible with the low power

scheduler). When a high power mode is applied, tasks are

mapped onto the “big” cores whereas when low power mode

is applied, tasks are mapped onto the “LITTLE” cores.

In our approach, for heterogeneous architectures, we propose

to reserve some CPUs for critical VMs to guarantee

deterministic behavior. The system integrator must select at

the design time such cores (or the frequency in case of

big.LITTLE architectures). From a power consumption point

of view, low performance CPUs can be allocated to the low

priority VM to reduce power consumption and be managed via

power-aware extension of the PikeOS scheduler.

VI. CONCLUSION

Non-functional aspects such as power or thermal management

are becoming important features even for critical systems.

DVFS and DPM are typical mechanisms used to limit power

consumption. However, for critical systems, power

management strategies available on standard OS are not suited

because these knobs must obey to determinism, safety, and

security requirements.

We presented TCS lp_framework solution with the

SCHED_EDF_SMP_DVFS strategy implemented at the level

of task scheduler. In mixed-critical use-cases a similar strategy

can only be applied on low priority tasks, to satisfy

requirements of high priority tasks and keep required security

aspects. Integration of such power management into RTOS (in

our case SYSGO PikeOS) can overcome this limitation and

provide a base to treat power management on mixed-critical

system designs.

Three algorithms have been presented and we believe that they

provide great flexibility to choose the depth of integration of

the power management functionality into RTOS PikeOS. This

will also allows us to keep the size of the trusted base (or the

source code which has to be certified) under full control. We

see the following integration possibilities:

• Extension of PikeOS scheduler (e.g. V.A)
• Integration of power management policies at the level of

user VM (V.B)

• Integration of power management policies at the level of

PikeOS extensions (V.C)

Reaching optimal power savings is a challenge. Thus, in

addition to the runtime algorithms proposed in this paper, a

design methodology shall be also proposed to the system

integrator to retrieve parameters that will help the runtime

configuration taking better decisions during execution. For

instance, schedulability analysis must be conducted to define

the lowest VM’s frequency affinity sill matching the system

integrator performances in worst-case scenario. We also plan

to enrich our algorithms with inputs from such methodologies.

REFERENCES

[1] T. Burd and R. Brodersen. Energy efficient CMOS microprocessor
design. In Proceedings of the the 28th Hawaii International Conference
on System Sciences, pages 288–297. IEEE Comput. Soc. Press, 1995,

[2] ACPICA website, http://www.acpica.org/community/

[3] Ch. Ykman-Couvreur, V. Nollet, Th. Marescaux, E. Brockmeyer, Fr.
Catthoor, and H. Corporaal. Design-Time Application Mapping and
Platform Exploration for MP-SoC Customized Run-Time Management.
IET Comput. Digit. Tech. vol. 1(2), pp. 120-128 (2007)

[4] S. Gheorghita, M. Palkovic, J. Hamers, A.Vandecappelle, S.
Mamagkakis, T. Basten and L. Eeckhout. System-Scenario-Based
Design of Dynamic Embedded Systems. ACM Trans. on Design
Automation of Electronic Systems, vol. 14(1), (2009)

[5] Kaiser, R., Wagner, S.: Evolution of the PikeOS microkernel. In: Kuz,
I., Petters, S.M. (eds.) MIKES: 1st International Workshop on
Microkernels for Embedded Systems (2007),
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf

[6] SYSGO AG: PikeOS RTOS technology embedded system software for
safety critical real-time systems. http://www.sysgo.com (2013)

[7] Liedtke, J.: On micro-kernel construction. In: Proceedings 15th ACM
Symp Operating systems principles. pp. 237–250. ACM Press (1995)

[8] OMG Real-time CORBA scheduling, available at
http://www.omg.org/technology/documents/formal/realtime_CORBA

[9] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns, G.
Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspective, 28(2-3):101–155, 2004

[10] D. Zhu, R. Melhem, and B. Childers, "Scheduling with dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-Processor
Real-Time Systems", IEEE Trans. on Parallel & Distributed Systems,
vol. 14, no. 7, pp. 686 - 700, 2003.

[11] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-
energy hard real-time applications. IEEE Design & Test of Computers,
18(2):20–30, 2001

35

Reverse engineering power management on NVIDIA

GPUs - Anatomy of an autonomic-ready system

Martin Peres
Ph.D. student at LaBRI

University of Bordeaux

Hobbyist Linux/Nouveau Developer

Email: martin.peres@labri.fr

Abstract—Research in power management is currently limited
by the fact that companies do not release enough documentation
or interfaces to fully exploit the potential found in modern
processors. This problem is even more present in GPUs despite
having the highest performance-per-Watt ratio found in today’s
processors. This paper presents an overview of the power manage-
ment features of modern NVIDIA GPUs that have been found
through reverse engineering. The paper finally discusses about
the possibility of achieving self-management on NVIDIA GPUs
and also discusses the future challenges that will be faced by
researchers to study and improve on autonomic systems.

I. INTRODUCTION

Historically, CPU and GPU manufacturers were aiming
to increase performance as it was the usual metrics used by
consumers to select what to buy. However with the rise of
laptops and smartphones, consumers started preferring higher
battery-life, slimmer, more silent and cooler devices. Noise
was also a concern among some desktop users who started
using water cooling in place of fans. This led CPU/GPU man-
ufacturer to not only take performance into account, but also
performance-per-Watt. A higher performance-per-Watt means
a lower heat dissipation for the same amount of computing
power which in turn allows shrinking the radiator/fan to keep
the processor cool. This results in slimmer and/or more silent
devices. Decreasing power usage is also a major concern
of datacenters and supercomputers as they already consumed
1.5% of the electricity production in the USA in 2007 [1].

As power management (PM) is a non-functional/auxiliary
feature, it is usually non-standard, poorly documented and/or
kept secret. As some PM features require the intervention of
the host system, a driver is often needed to obtain the best
performance-per-Watt. This is not a problem for closed-source
OS such as Microsoft WindowsTMor Mac OSTMas the manu-
facturer usually supplies a binary driver for these platforms. It
is however a major problem for Open Source operating systems
like Linux as those features are not documented and cannot
be re-implemented easily in an Open Source manner.

The absence of documentation and the lack of open hard-
ware also sets back research as researchers are limited to using
the documented PM features. This lack of documentation is
most present in the GPU world, especially with the company
called NVIDIA which has been publicly shamed for that reason
by Linus Torvalds [2], creator of Linux. With the exception of
the ARM-based Tegra, NVIDIA has never released enough
documentation to provide 3D acceleration to a single GPU
after the Geforce 4 (2002). Power management was never

supported nor documented by NVIDIA. As GPUs are leading
the market in terms of performance-per-Watt [3], they are
a good candidate for a reverse engineering effort of their
power management features. The choice of reverse engineering
NVIDIA’s power management features makes sense as they
are usually preferred in supercomputers such as Titan [4], the
current fastest supercomputer. As a bonus, it would allow many
laptops to increase their battery life when using the Linux
community driver for NVIDIA GPUs called Nouveau [5].

Nouveau is a fork of NVIDIA’s limited Open Source driver,
xf86-video-nv [6] by Stephane Marchesin aimed at delivering
Open Source 3D acceleration along with a port to the new
graphics Open Source architecture DRI [7]. As almost no
documentation from NVIDIA is available, this driver mostly
relies on reverse engineering to produce enough knowledge
and documentation to implement the driver. The Nouveau
driver was merged into Linux 2.6.33, released in 2009, even
though 3D acceleration for most cards have been considered
experimental until 2012. I personally joined the team in 2010
after publishing [8] a very experimental version of power man-
agement features such as temperature reading and reclocking,
which are essential to perform Dynamic Voltage/Frequency
Scaling (DVFS). Since then, power management is being
investigated and implemented in the driver whenever a feature
is well understood.

This paper is an attempt at documenting some of the
features that have been reverse engineered by the Nouveau
team and compare them to the state of the art. Some of the doc-
umented features have also been prototyped and implemented
in Nouveau. A brief evaluation of the GPU power consumption
has also been carried out.

Section II presents an overview of the power-related
functionalities needed to make the GPU work. Performance
counters and their usage is detailed in section III. In section IV,
we document the hardware fail-safe feature to lower tempera-
ture and power consumption. Section V introduces NVIDIA’s
RTOS embedded in the GPU. Finally, section VI presents the
vision of autonomic computing and how NVIDIA GPUs can
fit to this model.

II. GENERAL OVERVIEW OF A MODERN GPU

This section is meant to provide the reader with information
that is important to understand the following sections.

36

A. General-Purpose Input/Output (GPIO)

A General-Purpose Input/Output (GPIO) is a pin of a chip
that can be software-selected as a binary input or output at run
time.

Input GPIO pins are used by NVIDIA to sense if the
external power supply or the SLI brige is connected, if the
GPU is overheating (in the case of an external temperature
sensor) or to read the fan rotational speed. Output GPIO pins
are used by NVIDIA to drive a laptop’s backlight, select the
memory and core voltage or adjust the fan speed.

Some GPIO pins can be connected to special features like
hardware pulse-width modulation (PWM) controllers which
allows for instance to vary the amount of power sent to the
fan or the backlight of a laptop’s screen. Some chips also have
a hardware tachometer which calculates the revolution time of
the fan. All these operations could be done in software but they
would require the CPU to wake up at least dozens of times per
second, issue a read/write request through the PCIe [9] port
and then go back to sleep again. Waking up the CPU for such
trivial operations is inefficient and should thus be avoided.

B. Energy sources

A modern desktop GPU draws its power from the PCIe
port or PCIe connectors (6 or 8 pins). The PCIe port and 6-
pin PCIe connectors can each source up to 75W while the
8-pin PCIe connector can source up to 150W.

These power sources all provide different voltages that are
way higher than the operating voltage of the GPU. The DC-
DC voltage conversion is done by the voltage controller which
sources from the PCIe port and connectors and outputs power
to the GPU at its operating voltage. The output voltage is
software-controllable using a GPIO pin. A GPIO pin is also
usually used by cards with PCIe connectors to sense if they
are connected to a power source. This allows NVIDIA’s driver
to disable hardware acceleration when the connectors are not
connected, avoiding the GPU from draining too much current
from the PCIe port. In some cases, a GPIO pin can also control
the emergency shutdown of the voltage controller. It is used
by the GPU to shutdown its power when the card overheats.

There are currently only up to two power domains on
NVIDIA cards, one for the GPU and one for memory. Mem-
ory’s power domain is limited to 2 possible voltages while
the GPU usually has at least 3 and can have up to 32 voltage
possibilities for its power domain.

On some high-end cards, the voltage controller can also
be queried and configured through an I2C interface. Those
expensive controllers can sense the output power along with
the power draw of each of the energy sources.

Figure 1 illustrates a simple view of the power subsystem.

C. Temperature management

Just like modern CPUs, GPUs are prone to overheating.
In order to regulate their temperature, a temperature sensor
needs to be installed. This sensor could be internal to the chip
or be external using an I2C [10] sensor. Usually, external
sensors can also drive a fan’s speed according to the card’s
temperature. When using the internal sensor, the driver is

Chipset

Voltage

ControllerPCIe Port

6 pins

8 pins

I²C

VID (/5)

Power

75W

75W

150W
GPIOs

I²C adapter

PCIe power supply connected

IN
OUT

Therm Shutdown

Figure 1. Overview of the energy sources of the GPU

usually responsible for polling the temperature and updating
the fan speed.

D. Clock tree

Having the possibility to change frequencies on the fly
is another feature of modern GPUs aimed at lowering power
consumption. On NVIDIA GPUs, there are two clock sources,
the PCIe clock (100 MHz) and an on-board crystal (usually 27
MHz). The frequency of the clocks is then increased by using a
Phase-locked loop (PLL). A PLL takes the input frequency Fin

and outputs the frequency Fout. The relation between Fin and
Fout in the simplest PLL is detailed in equ. 1. The parameters
N and M are integers and have a limited range. This range
depends on the PLL and is usually documented in the Video
BIOS (VBIOS). This means that not all output frequencies are
achievable.

Fout = Fin ∗
N

M
(1)

It would be simplistic to think that the GPU uses a single
clock for the whole card. Indeed, a modern GPU has multiple
engines running asynchronously which are clocked by different
clock domains. There are up to 13 clock domains on Fermi [11]
among which we can find the host, video RAM (VRAM),
shader, copy (asynchronous copy engine) and ROP domains.
The number of clock domains varies depending on the chipset
and the chipset family.

The clock tree has been reverse engineered by using the
performance counters (detailed in section III) which can count
every clock cycle of most clock domains. The clocks can
be read through nvatiming, a tool from the envytools reposi-
tory [12]. This tool should be run before and after modifying
the content of a register that is suspected to configure the
clock tree. As a start, it is possible to check all the registers
NVIDIA’s proprietary driver reads from or writes to when
reclocking the GPU. These reads/writes can be logged by
tracing the Memory-Mapped IO (MMIO) accesses of the
proprietary driver using the MMIO-trace feature of the Linux
kernel [13].

E. The role of the video BIOS

On an IBM-PC-compatible computer, the BIOS is re-
sponsible for the Power-On Self Test (POST). During the
POST phase, the BIOS performs some sanity checks and then
initialises VBIOS peripherals by giving them addresses in the

37

linear address space and running their internal BIOS when
applicable.

Similarly, in the case of the video card, the video BIOS
(VBIOS) is responsible for booting up the card enough to
provide the VGA/VESA interface to the host. This interface
is then used by the BIOS and the bootloader to display boot
information on the screen.

In order to bring up this interface, the VBIOS configures
the GPU’s clock tree, configures the memory controllers,
uploads default microcodes to some engines, allocates a frame-
buffer to store the content of the screen and finally performs
graphic mode setting. The VBIOS is then called by the BIOS
when an application on the host requests anything such as
changing the resolution. The VBIOS is written in a 16 bit x86
code and should be considered as being a low-level simple
driver.

As NVIDIA does not select the VRAM chips, the voltage
controller, where the GPIO pins are connected or what graphics
connectors (HDMI, DVI, VGA, DP, etc...) are available, the
card manufacturers need a way to tell the VBIOS how to
set up the card at boot time. This is why NVIDIA stores the
manufacturer-dependent information in tables in the VBIOS.
These tables can be decoded by nvbios, found in the envytools
collection [12]. This collection also contains nvagetbios and
nvafakebios which respectively allow to download the VBIOS
or to upload a new VBIOS non-permanently.

As manufacturers are using the same BIOS for several
cards, some of the tables are indexed by a strap register. This
register’s value is set by the manufacturer by tying some pins
of the GPU to specific voltages.

1) The GPIO & external device tables: They store which
devices or functions are accessible through the chip’s pins
and how to access them. The EXTDEV table references I2C-
accessible devices while the GPIO table only references GPIO-
accessible functions. Both also represent what is accessible by
a number, called a tag or type. In the case of the GPIO table,
each entry contains at least a GPIO pin, the associated tag
(for instance, PANEL PWR), the direction (input or output),
the default state (HIGH or LOW) and if the GPIO is inverted or
not. In the case of the EXTDEV table, each entry contains the
device type/tag, which I2C bus it is accessible on and at which
address. Possible devices could be the ADT7473 which is an
external temperature management unit or the voltage controller
PX3540.

2) The thermal table: Its role is to store temperature-related
parameters, as defined by the OEM. The temperature sensor’s
parameters (offset and slope) can be adjusted. It also de-
fines hysteresis and temperature thresholds such as fan boost,
downclock and shutdown which are respectively defining the
temperature at which the fan should be set to 100%, the
temperature at which the card should be downclocked and
the temperature at which the computer should be shut down.
Finally, the fan response to the temperature can be linear or
trip-point based. The thermal table then stores the parameters
for either method.

3) The performance level table: It specifies up to 4 per-
formance levels. A performance level is defined by a set of
clock speeds, a core voltage, a memory voltage and memory

timings and a PCIe link width speed. The voltage is stored as
an ID that needs to be looked up in the voltage-mapping table.
It is by altering this table that [3] managed to force NVIDIA’s
proprietary driver to set the clocks the way they wanted.

4) The voltage and voltage-mapping tables: The voltage
table contains {Voltage ID, voltage} tuples describing the
various supported voltages and how to configure the volt-
age controller. Those voltages are referenced by the voltage-
mapping table which defines {ID, voltage min, voltage max}
tuples. The voltage min and voltage max parameters of this
table define an acceptable voltage range for the performance
level referencing the ID.

5) The RAM type, timings and timings-mapping tables:
Their role is to tell the driver which memory type and timings
should be set when reclocking memory. The RAM type table
is indexed by the strap. This information is necessary in order
to program the memory controller properly as DDR3, GDDR3
and GDDR5 do not have the same configuration registers. The
timings-mapping table contains several entries, each covering
a memory frequency range. The values of each entry tell how
to configure the memory controllers whenever the driver wants
to use a frequency from within this range. Each entry contains
sub-entries which are indexed by the strap register. Each sub-
entry contains the timing ID of the timings table that should
be used along with some memory-specific parameters. The
timings table contains several entries which are referenced
by the timings-mapping table. Each entry is either the values
that should be written to the memory timings registers or
the aggregation of several parameters that allow the driver to
calculate these values. Unfortunately, the equations to calculate
the values from the parameters greatly varied in the Geforce
8 era and are not completely understood on some GPUs.

F. Reclocking process

Reclocking is the act of changing the frequencies of
the clocks of the GPU. This process drastically affects the
performance and the power consumption of the GPU. The
relation between clocks, power consumption and performance
is very hardware- and task-dependent. There is however a
known relation between the voltage, the frequency of the clock
and the final power consumption for CMOS circuits [14] as
shown by equ. 2 and 3.

P = Pdynamic + Pstatic (2)

Pdynamic = CfV 2 (3)

P is the final power consumption of the circuit and results
from both the dynamic (Pdynamic) and the static (Pstatic)
power consumption of the circuit.

The static power consumption comes from the leakage
power of the transistors when they are not being switched
(clock gated). It can only be lowered by shutting down the
power (power gating) of the units of the GPU that are not in
use. On NVIDIA hardware, power gating an engine can be
done by clearing its associated bit in one register. Patents [15]
and [16] on engine-level power gating from NVIDIA are

38

informative about the way power gating may be implemented
on their hardware.

The dynamic power consumption is influenced by the
capacitance of the transistor gates C (which decreases with the
transistor size), the frequency at which the circuit is clocked
f and the voltage at which the circuit operates V . As C
is only dependent on the way transistors where etched, it
cannot be adjusted at run time to lower power consumption.
Only f and V can be adjusted at run time by respectively
reprogramming the clock tree’s PLLs and reprogramming
the voltage controller. While f has an immediate impact on
performance, V has none even though it needs to be increased
with f in order for the chip to be able to meet the needed
switching time. Another way to decrease the dynamic power
consumption is to cut the clock of the parts of the chip that
are not used at the moment to compute something meaningful
(clock gating). The actual implementation by NVIDIA’s has
not been reverse engineered yet but hints of how it works may
be found in patents [17] and [18].

Practical tests showed that reclocking a Geforce GTX
480 can achieve a 28% lower power consumption while only
decreasing performance by 1% for a given task [3].

G. Reclocking a GPU - Rough overview & constraints

Due to the fact that GPUs are almost not documented and
that the driver’s interfaces are mostly closed, DVFS has poorly
been studied in practice on GPUs, contrarily to CPUs. The only
stable open-source implementation of discrete-GPU DVFS that
I know of is available in the Radeon driver [19] and has been
available since 2010. Some insightful comments from one of
the engineer who made this happen are publicly available [20].
Reclocking on NVIDIA GPUs with Open Source software
has been an on-going task since 2010 [8] and I presented
my first experimental DVFS implementation at the X.org
developer conference in 2011 [21]. Since then, Ben Skeggs
has also managed to implement an experimental DVFS support
for some selected cards of the Kepler family which may be
published this year.

The differences found in GPUs compared to CPUs are the
multiple clock domains and the fact that not all clocks can be
adjusted at any time mainly due to the real time constraints
imposed by streaming pixels to the screen. This constraint
is imposed by the CRT Controller (CRTC) which reads the
pixels to be displayed to the screen (framebuffer) from the
video memory and streams it through the VGA/DVI/HDMI/DP
connection. As reclocking memory requires putting the VRAM
in a self-refresh mode which is incompatible with answering
memory requests and as reclocking the PLLs takes a few
microseconds, reclocking cannot be done without disturbing
the output of the screen unless done during the screen’s vertical
blank period. This period was originally introduced to let the
CRT screen move the electron beam from the bottom-right to
the top-left corner. This period lasts about 400 to 500 µs and
is more than enough to reclock memory. However, on a screen
refreshed 60 times per second, vblank only happens every
16.6ms. In the case where the user connects several monitors
to the GPU, the vblank periods are not usually synchronised
which prevents reclocking memory tearlessly on all monitors.
In this case, the NVIDIA binary driver selects the highest
performance level and deactivates DVFS.

Contrarily to memory reclocking, engines reclocking can
be done at any time as long as the GPU is idle. The GPU
can generally be forced to idle by disabling command-fetching
and waiting for the GPU to finish processing. The engine
reclocking process is not fully understood on NVIDIA cards
although I found an empirical solution that managed to reclock
the GPU millions of times without crashing on the Tesla
chipset family. Further investigation is still needed.

III. PCOUNTER : PERFORMANCE COUNTERS

The (hardware) performance counters are a block in mod-
ern microprocessors that count low-level events such as the
number of branch taken or the number of cache hit/miss that
happened while running a 3D or a GPGPU application. On
NVIDIA’s Kepler family, there are 108 different GPGPU-
related monitorable events documented by NVIDIA.

A. Usage

Performance counters provide some insight about how the
hardware is executing its workload. They are a powerful tool
to analyse the bottlenecks of a 3D or a GPGPU application.
They can be accessed through NVIDIA PerfKit [22] for 3D
applications or through Cupti [23] for GPGPU applications.

The performance counters can also be used by the driver
in order to dynamically adjust the performance level based on
the load usage of the GPU and provide DVFS.

Some researchers also proposed to use performance coun-
ters as an indication of the power consumption with an average
accuracy of 4.7% [24].

B. How does it work

The performance counter engine (PCOUNTER) is fairly
well understood thanks to the work of Marcin Kościelnicki.
Here is a short description on how this block works in the
Tesla family (Geforce 8).

PCOUNTER receives hardware events through internal
connections encoded as a 1-bit value which we call signal.
This signal is sampled by PCOUNTER at the rate of clock
of the engine that generated the event. An event counter is
incremented every time its corresponding signal is sampled at
1 while a cycles counter is incremented at every clock cycle.
This simplistic counter is represented by figure 2.

Cycles

Events

Signal

Clock 4

1

Figure 2. Example of a simple performance counter

However, it is expensive to have a counter for all possible
signals. The signals are thus multiplexed. Signals are grouped
into domains which are each clocked by one clock domain.

39

There are up to 8 domains which hold 4 separate counters
and up to 256 signals. Counters do not sample one signal,
they sample a macro signal. A macro signal is the aggregation
of 4 signals which have been combined using a function. An
overview of this logic is represented by figure 3.

Cycles

Events

Macro

signal

Clock X

XTruth

Table

Multi-

plexer

S0

S1

S3

S4

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

Signals

Events

Macro

signal X
Truth

Table

Multi-

plexer

S0

S1

S3

S4

/
256

/
256

/
256

/
256

/
256

Figure 3. Schematic view of a domain from PCOUNTER

The aggregation function allows to specify which combina-
tion of the 4 signals will generate a 1 in the macro signal. The
function is stored as a 16 bit number with each bit representing
a combination of the signals. With sx(t) being the state of
selected signal x (out of 4) at time t, the macro signal will be
set to 1 if the bit s3(t) ∗ 2

3 + s2(t) ∗ 2
2 + s1(t) ∗ 2

1 + s0(t)
of the function number is set.

As an example, to monitor signal s0 only, the aggregation
function should be programmed so as no matter the state of
signals 1, 2 and 3, whenever signal 0 is high, the output of
aggregation function should be high too. As can be seen in
table I, the function number should have all the odd bits set
and all the even bits cleared. The function number is thus
1010101010101010(2).

Table I. TRUTH TABLE TO MONITOR s0 ONLY

s3 s2 s1 s0 Decimal Selection

0 0 0 0 0
0 0 0 1 1 X
0 0 1 0 2
0 0 1 1 3 X
0 1 0 0 4
0 1 0 1 5 X
0 1 1 0 6
0 1 1 1 7 X
1 0 0 0 8
1 0 0 1 9 X
1 0 1 0 10
1 0 1 1 11 X
1 1 0 0 12
1 1 0 1 13 X
1 1 1 0 14
1 1 1 1 15 X

The 4 counters of the domain can be used independently
(quad-event mode) or used together (single-event mode). The
single-event mode allows counting more complex events but
it is not discussed here. PCOUNTER also has a record mode
which allows saving the content of the counters in a buffer in
VRAM periodically so as the driver does not have to poll the
counters as often. The full documentation can be found of at
hwdocs/pcounter.txt in envytools [12]. Most signals are still

unknown although some compute-related signals are already
available on nve4 (Kepler) thanks to the work of Christoph
Bumiller and Ben Skeggs. More signals are currently being
reverse engineered by Samuel Pitoiset [25] as part of his
Google Summer of Code 2013 project.

IV. PTHERM : THERMAL & POWER BUDGET

PTHERM is a piece of hardware that monitors the GPU
in order to make sure it does not overheat or exceed its power
budget.

A. Thermal management

The primary function of PTHERM is to make sure the
GPU does not exceed its temperature budget. PTHERM can
react to some thermal events by automatically set the fan speed
to 100%, by lowering some frequencies of the GPU, or by
shutting down the power to the card.

Reading the temperature from the internal sensor can be
done simply by reading a register which stores the temperature
in degrees Celsius. The sensor’s calibration was performed in
factory and is stored in fuses which allows the GPU to monitor
its temperature at boot time.

PTHERM generates thermal events on reaching several
temperature thresholds. Whenever the temperature reaches a
threshold, an interruption request (IRQ) can be sent to the
host for it to take actions to lower the temperature. The IRQ
can be sent conditionally, depending on the direction of the
temperature (rising, falling or both). The hardware can also
take actions to lower the temperature by forcing the fan to
100% or by automatically lowering the clock frequency. The
latter feature will be explained in the following subsections.
However, only 3 thresholds can generate automatic hardware
response. The others are meant to be used by the driver.

In the case where the GPU is using an external temperature
sensor, hardware events are gathered through the chip’s GPIO
pins which are connected to the external sensor. The external
chip is then responsible for monitoring the temperature and
compare it to certain thresholds. These threshold are pro-
grammable via I2C and are set at boot time during the POST
procedure and again when the driver is loaded by the host
computer.

B. Power reading

Estimating the power consumption can be done in real time
using two different methods.

The first one is to read the power consumption by measur-
ing the voltage drop across a shunt resistor mounted in series
with the chip’s power line. This voltage drop is linear with the
current flowing through this power line with a factor of Rshunt.
The instantaneous power consumption of the chip is then equal
to the voltage delivered by the voltage controller times the
measured current. This method is explained in figure 4.

However, this technique requires an Analog-to-Digital-
Converter and some dedicated circuitry The cost of this solu-
tion is quite high as it requires dedicated hardware on the PCB
of the GPU and a fast communication channel between the
ADC and the chip. Also, fast ADCs are expensive. Therefore, it

40

Shunt resistor

R

I

UR = R * I

ADC

Chipset
Voltage

Controller
Vdd

Power = Vdd * I

 = Vdd * UR / R
UR

Figure 4. Measuring the power consumption of a chip

explains why only the voltage controllers from high-end cards
can output this information.

Another solution is to monitor power consumption by mon-
itoring the block-level activity inside the chip. As explained
by one of NVIDIA’s patents [26], power consumption can be
estimated by monitoring the activity of the different blocks
of the chip, give them a weight according to the number of
gates they contain, sum all the values, low-pass filter them
then integrate over the refresh period of the power estimator.
This is very much alike the approach explained in [24],
where performance counters were used to compute the power
consumption, except that it is done by the hardware itself. This
solution was introduced by NVIDIA in 2006, is explained in
patent [26] and is told to produce a power estimation every 512
clock cycles of an unspecified clock. In our case, it seems to be
the host clock, sourced by the PCIE port and usually running
at 277 MHz. Polling the power estimation register seems to
validate this theory as the refresh rate seems to be around 540
kHz.

NVIDIA’s method is thus very fast and cheap as it only
needs a small increase of gate count on the GPU. Moreover,
the output of this method can be used internally to dynamically
adjust the clock of some engines to stay inside the power bud-
get. This technique is explained in the following subsection.

Unfortunately, on GPU families Fermi and newer, NVIDIA
stopped specifying the activity block weights which disables
power readings. It is still possible to specify them manually
to get the power reading functionality back. However, those
weights would have to be calculated experimentally.

C. FSRM: Dynamic clock frequency modulation

PTHERM’s role is to keep the GPU in its power and
thermal budget. When the GPU exceeds any of its budget, it
needs to react by lowering its power consumption. Lowering
the power consumption is usually done by reclocking the
GPU but full reclocking cannot be done automatically by the
hardware because it cannot calculate all the parameters and
follow the reclocking process.

Letting the driver reclock the GPU when getting close to
overheating is acceptable and PTHERM can assist by sending
an IRQ to the driver when the temperature reaches some
thresholds. However, in the case where the driver is not doing
its job, because it is locked up or because the driver is not
loaded, the chip should be able to regulate its temperature
without being forced to cut the power of the GPU.

In the case of meeting the power budget, reacting fast to
an over current is paramount to guarantee the safety of the
power supply and the stability of the system in general. It is
thus very important to be able to reclock often.

It is not possible to reprogram the clock tree and adjust the
voltage fast-enough to meet the 540 kHz update rate needed
for the power capping. However, the clock of some engines can
be slowed down. This will linearly affect the dynamic part of
the power consumption albeit not as power efficient as a full
reclocking of the GPU because the voltage is not changed.

A simple way to lower the frequency of a clock is to divide
it by a power of two although the granularity is too coarse to
be used directly for the power capping capability. It is however
possible to lower the average clock frequency by sometimes
selecting the divided clock and then selecting the original clock
the rest of the time. For the lack of a better name, I decided
to call this technique Frequency-Selection Ratio Modulation
(FSRM). FSRM can be implemented by using the output of a
Pulse-Width Modulator (PWM) to a one bit multiplexer. When
the output of the PWM is high, the original clock is being used
while the divided clock is used when the output is low. Any
average clock frequency between the divided clock and the
original clock is thus achievable by varying the duty cycle of
the PWM.

0 50 100 150 200 250
0

1

2

3

4

·108

Obtained

Expected

FSRM’s PWM duty cycle (8 bit)

C
o
re

fr
eq

u
en

cy
(H

z)

Figure 5. Frequency of the core clock (@408MHz, 16-divider) when varying
the FSRM

Figure 5 presents the expected frequency response of the
above system along with what has actually been measured
through the performance counters when tested on NVIDIA’s
hardware implementation. Judging by the differences, it seems
like NVIDIA also added a system to smooth the change
between the slowed and the normal clock. The difference
is also likely explained by the fact that the clock selection
may only happen only when both the original and the divided
clock are rising. This also raises the problem of synchronising
the original and the divided clock as the divided clock has
to go through more gates than the original one. In order to
synchronise them, the original clock would have to be shifted
in time by adding redundant gates. This issue is known as
clock skew [27].

41

D. FSRM usage & configuration

The FSRM is used to lower PGRAPH clock’s frequency.
PGRAPH is the main engine behind 2D/3D acceleration and
GPGPU, and probably responsible for most of the power
consumption.

There are several events that can trigger use of the FSRM:

• PGRAPH idling;

• Temperature reaching one of the several thresholds;

• Power usage reaching its cap;

• Driver forcing the FSRM.

Whenever one of these events happen, the divided clock
and the FSRM get updated following to their associated
configuration. The clock divisor can be set to 1, 2, 4, 8 or 16
while the FSRM can range from 0 (use the divided clock all the
time) to 255 (use the normal clock all the time). However, even
though each temperature threshold can specify an independent
clock divisor, they have to share the same FSRM.

Some preliminary tests have been performed on an nv84 to
lower the clock to the maximum when PGRAPH is idle and
this resulted in a about 20% power reduction of the computer
while the impact on the framerate of a video game was not
measurable. Some cards do not enable this feature by default,
possibly suggesting that it may lead to some instabilities. This
is however really promising and will be further investigated.

In the case of the power limiter, another mode can be
selected to dynamically update the FSRM. This allows to lower
the frequency of PGRAPH as little as possible in order to
stay in the power budget. This mode uses 2 windows, one
including the other entirely. Each window will increase the
FSRM whenever the power reading is lower than the lowest
threshold of the window and decrease the FSRM when the
reading is above the highest threshold of the window. The
increase and decrease values are independent for both windows
and can be set arbitrarily. However, the outer window is
supposed to increase or decrease the FSRM rapidly while the
inner window is supposed to make finer adjustments.

0 5 10 15 20 25

80

100

120

140

up 2

up 1

low 1

low 2

Refresh cycles

In
st

an
ta

n
eo

u
s

p
o
w

er
(W

)

100

150

200

250

F
S

R
M

’s
P

W
M

d
u

ty
cy

cl
e

(8
b

it
)

Power

FSRM

Figure 6. Example of the power limiter in the dual window mode

An example can be seen in figure 6 where the outer window
is set to [130W, 100W] while the inner window is set to [120W,
110W]. The outer window will increase the FSRM by 20 when
the power is lower than 100W and will decrease it by 30 when
the power is above 130W. The inner window will increase the
FSRM by 5 when the power is between 120 and 130W and
will decrease it by 10 when the power is between 100 and
110W. The FSRM is limited to the range [0, 255].

E. Power limiter on Fermi and newer

As no power reading is possible by default on GPUs of
the Fermi family and newer, the power limiter cannot be used.
This came to me as a surprise as NVIDIA started advertising
the power limitation on Fermi. This suggests that they may
have implemented another way to read and lower the power
consumption of their GPUs. I unfortunately do not have access
to a card with such feature but the independent and proprietary
tool GPU-Z [28] proposes a way to disable this power cap, as
can be seen on figure 7.

Figure 7. Effect of disabling the power limiter on the Geforce GTX 580.
Copyrights to W1zzard from techpowerup.com.

The first spike would seem to suggest a very slow response
to exceeding the power budget. It is thus possible that NVIDIA
would use its driver to poll the voltage controller’s power
reading and decide to reclock the card to a lower performance
level. Since GPU-Z is proprietary, more reverse engineering
will be needed to understand and document this feature.

V. PDAEMON : AN RTOS EMBEDDED IN YOUR GPU

PDAEMON is an engine introduced on nva3, a late GPU
from the Tesla family. This engine is fully programmable using
the instruction set (ISA) FµC (Flexible MicroCode).

FµC was introduced in nv98 for PCRYPT, an engine meant
to offload some cryptographic operations. FµC was then reused
for PDAEMON and many more engines of the Fermi family.
This feature-rich ISA is now being used to implement some
of the interface between the host and the hardware of some
engines thus bringing a lot more flexibility to the hardware’s
interfaces with the host. An assembler has been written for this
ISA and is available under the name envyas in the envytools
repository [12]. A FµC LLVM backend project was also started
but never gained traction and was later deleted.

42

PDAEMON is an engine meant to offload some operations
usually performed by the host driver. It is clocked at 200 MHz,
has a memory management unit (MMU), has access to all the
registers of the GPU and direct access to PTHERM. It also
supports timers, interrupts and can redirect the interrupts from
the GPU to itself instead of the host. Several independent
communication channels with the host are also available.
Surprisingly, it also has performance counters to monitor
some engines’ activity along with its own. In other words,
PDAEMON is a fully-programmable “computer” with low-
latency access to the GPU that can perform more efficiently
whatever operation the host can do. However, it cannot perform
heavy calculations in a timely fashion because of its limited
clock frequency.

For more information about PDAEMON’s capabilities,
please read hwdocs/pdaemon.txt and all the files from hw-
docs/fuc/ found in the envytools repository [12].

A. Usages of PDAEMON

PDAEMON’s usage by NVIDIA has not been fully reverse-
engineered yet. However, the uploaded microcode contains the
list of the processes executed by the RTOS developed by or
for NVIDIA. Here are some of the interesting processes:

• Fan management;

• Power gating;

• Hardware scheduling (for memory reclocking);

• Power budget enforcement;

• Performance and system monitoring.

Its usage list could also be extended to cover:

• Parsing the VBIOS;

• Implementing full DVFS support;

• Generating power-usage graphs.

B. Benefits of using PDAEMON

PDAEMON has clearly been developed with the idea that
it should be able to do whatever the host system can do. One
of the practical advantage of using PDAEMON to implement
power management is that the CPU does not need to be awoken
as often. This lowers the power consumption as the longer the
CPU is allowed to sleep, the greater the power savings are.

Another benefit of using PDAEMON for power manage-
ment is that, even when the host system has crashed, full power
management is still available. This has the benefit of checking
the thermal and power budget of the GPU while also lowering
the power consumption of crashed system.

VI. THE GPU AS AN AUTONOMIC-READY SYSTEM

In 2001, IBM proposed the concept of autonomic com-
puting [29] to aim for the creation of self-managing systems
as a way to reduce their usage complexity. The idea was
that systems are getting more and more complex and, as
such, require more knowledge from the technicians trying to
maintain them. By having self-managing systems, the user

could write a high-level policy that would be enforced by the
system itself, thus hiding complexity.

As an example, a modern NVIDIA GPU could perform the
following self-functions:

self-configuration: The GPU is responsible for finding the
optimal configuration to fill the user-requested tasks.

self-optimization: Using performance counters, the GPU
can optimise performance and also lower its power consump-
tion by using DVFS.

self-healing: As the GPU can monitor its power consump-
tion and temperature, it can also react to destructive behaviours
by lowering the frequency of the clocks.

self-protection: Isolation between users can be provided
by the GPU (integrity and confidentiality) while availability
can be achieved by killing long-running jobs ran by users.
The GPU can also store secrets like HDCP [30] keys or even
encrypt/decrypt data on the fly using PCRYPT.

Although the aim of autonomic computing is primarily
oriented towards lowering human maintenance cost, it can also
be extended to lower the development cost. By having self-
managing subsystems for non-functional features, integration
cost is lowered because of the reduced amount of development
needed to make it work on a new platform. Ideally, a complete
system could be assembled easily by using unmodified auto-
nomic subsystems and only a limited amount of development
would be needed to make their interfaces match.

This approach does not make sense in the IBM-PC-
compatible personal computer market as the platform has
barely evolved since its introduction in the way components
interact (POST procedure, x86 processors and high speed
busses). This renders the development of drivers executed on
the CPU cheaper than having a dedicated processor for the
driver’s operations. However, in the System-On-Chip (SoC)
world where manufacturers buy IPs (intellectual property
blocks) and assemble them in a single-chip system, the
dedicated-processor approach makes a lot of sense as there are
no single processor ISA and operating system (OS) that the IP
manufacturer can depend on. In this context, the slimmer the
necessary driver for the processor and operating system, the
wider the processor and OS choice for the SoC manufacturer.

This is the approach that have chosen Broadcom for his
Videocore technology which is fully controllable by a clearly-
documented Remote Procedure Calls (RPC) interface. This
allowed the Raspberry Pi foundation to provide a binary-driver-
free Linux-based OS on their products [31]. However, the
Open Source driver only uses this RPC interface is thus not a
real driver as it is just some glue code. This led the graphics
maintainer of Linux to refuse including this driver in Linux
as the code running in Videocore is still proprietary and bugs
there are unfixable by the community [32].

Broadcom’s Videocore is a good example of both the
advantage and the drawbacks of autonomic systems. Adding
support for it required very limited work by the Raspberry Pi
foundation but it also means the real driver is now a black
box running on another processor which cannot be traced,
debugged, or modified easily. From a research perspective,
it also means it will become harder to study the hardware

43

and propose improvements to the software. In the case of
NVIDIA, this situation could happen if PDAEMON’s code
was not readable and writable by the host system.

VII. CONCLUSION

In this paper, innovative power management features of
NVIDIA GPUs have been partially documented through re-
verse engineering. Even though the reverse engineering work is
incomplete, it is already clear that what has been implemented
in NVIDIA GPUs enhances the state of the art and that a GPU
can be a great test bed for doing power management research.
Moreover, it is already known that these features can be
combined in order to create a self-managed system, following
IBM’s vision on autonomic computing. It is my hope that this
article will spur more interest in the research community to
study, document and improve GPU power management.

Future work will focus on creating a stable reclocking
process across all the modern NVIDIA GPUs in order to create
a testbed for experimenting with DVFS algorithms. More work
will also be done on power and clock gating which are the
two main power management features which have not been
documented yet.

ACKNOWLEDGMENT

The author would like to thank everyone involved in
graphics on Linux or other FLOSS operating systems for
laying out the foundations fors the work done in Nouveau. I
would however like to thank in particular Marcin Kościelnicki
for reverse engineering and writing most of the documentation
and tools found in envytools. I would also like to thank
the Nouveau maintainer, Ben Skeggs, for figuring out many
VBIOS tables along with the clock tree on most cards and
reviewing the code I wrote for Nouveau DRM. I should also
thank Roy Spliet for working with me on figuring out how to
calculate the memory timings based on the parameters found
in the memory timings table for the nv50 family and proof-
reading this paper. Finally, I would like to thank my Ph.D.
supervisor Francine Krief for funding me and letting me work
on this project.

REFERENCES

[1] EPA, “EPA report to congress on server and data center
energy efficiency,” Tech. Rep., 2007. [Online]. Available:
http://hightech.lbl.gov/documents/data centers/epa-datacenters.pdf

[2] aaltouniversityace, “Aalto talk with linus tor-
valds [full-length],” Jun. 2012. [Online]. Available:
https://www.youtube.com/watch?v=MShbP3OpASA&t=2894s

[3] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and
S. Kato, “Power and performance analysis of GPU-accelerated
systems,” in Proceedings of the 2012 USENIX conference on Power-

Aware Computing and Systems, ser. HotPower’12. Berkeley, CA,
USA: USENIX Association, 2012, p. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387869.2387879

[4] “Titan, world’s #1 open science supercomputer.” [Online]. Available:
http://www.olcf.ornl.gov/titan/

[5] Nouveau Community, “Nouveau, the community-driven
open source NVIDIA driver,” 2006. [Online]. Available:
http://nouveau.freedesktop.org/wiki/

[6] NVIDIA, “xf86-video-nv : NVIDIA’s open source driver,” 2003.
[Online]. Available: http://cgit.freedesktop.org/xorg/driver/xf86-video-
nv/

[7] X.org, “Direct rendering infrastructure.” [Online]. Available:
http://dri.freedesktop.org/wiki/

[8] M. Peres, “[nouveau] [RFC] initial power management vbios
parsing, voltage & clock setting to nouveau.” Sep. 2010.
[Online]. Available: http://lists.freedesktop.org/archives/nouveau/2010-
September/006499.html

[9] PCI-SIG, “PCI express,” 2013. [Online]. Available:
http://www.pcisig.com/specifications/pciexpress/resources/

[10] NXP, “I2C-Bus: what’s that?” [Online]. Available: http://www.i2c-
bus.org/

[11] C. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU
architecture,” IEEE Micro, vol. 31, no. 2, pp. 50–59, 2011.

[12] “Envytools - tools for people envious of nvidia’s blob driver.” [Online].
Available: https://github.com/pathscale/envytools

[13] Pekka Paalanen, “MMIO-trace,” 2008. [Online]. Available:
http://nouveau.freedesktop.org/wiki/MmioTrace/

[14] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: the
laws of diminishing returns,” in Proceedings of the 2010 international

conference on Power aware computing and systems, ser. HotPower’10.
Berkeley, CA, USA: USENIX Association, 2010, p. 1–8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924920.1924921

[15] R. Singhal, “POWER GATING TECHNIQUE TO RE-
DUCE POWER IN FUNCTIONAL AND TEST MODES,”
U.S. Patent 20 100 153 759, Jun., 2010. [Online]. Available:
http://www.freepatentsonline.com/y2010/0153759.html

[16] Z. Y. Zheng, O. Rubinstein, Y. Tan, S. A. Jamkar, and
Y. Kulkarni, “ENGINE LEVEL POWER GATING ARBITRATION
TECHNIQUES,” U.S. Patent 20 120 146 706, Jun., 2012. [Online].
Available: http://www.freepatentsonline.com/y2012/0146706.html

[17] S. C. LIM, “CLOCK GATED PIPELINE STAGES,”
Patent WO/2007/038 532, Apr., 2007. [Online]. Available:
http://www.freepatentsonline.com/WO2007038532A2.html

[18] K. M. Abdalla and R. J. Hasslen III, “Functional block level clock-
gating within a graphics processor,” U.S. Patent 7 802 118, Sep., 2010.
[Online]. Available: http://www.freepatentsonline.com/7802118.html

[19] Radeon Community, “Radeon - an open source ATI/AMD driver.”
[Online]. Available: http://xorg.freedesktop.org/wiki/radeon

[20] Matthew Garrett, “Radeon reclocking,” Apr. 2010. [Online]. Available:
http://mjg59.livejournal.com/122010.html

[21] X.org, “X.org developer conference 2011,” Sep. 2011. [Online].
Available: http://www.x.org/wiki/Events/XDC2011

[22] NVIDIA, “PerfKit.” [Online]. Available:
https://developer.nvidia.com/nvidia-perfkit

[23] ——, “CUDA profiling tools interface.” [Online]. Available:
https://developer.nvidia.com/cuda-profiling-tools-interface

[24] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of GPU kernels using performance coun-
ters,” in Green Computing Conference, 2010 International, 2010, pp.
115–122.

[25] Samuel Pitoiset, “Samuel pitoiset’s open source blog,” 2013. [Online].
Available: https://hakzsam.wordpress.com/

[26] H. Cha, R. J. Hasslen III, J. A. Robinson, S. J.
Treichler, and A. U. Diril, “Power estimation based on block
activity,” U.S. Patent 8 060 765, Nov., 2011. [Online]. Available:
http://www.freepatentsonline.com/8060765.html

[27] J. Fishburn, “Clock skew optimization,” IEEE Transactions on Com-

puters, vol. 39, no. 7, pp. 945–951, 1990.

[28] W1zzard, “TechPowerUp GPU-Z v0.7.1,” 2013. [Online].
Available: http://www.techpowerup.com/downloads/2244/techpowerup-
gpu-z-v0-7-1/

[29] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[30] Digital Content Protection, LLC, “High-bandwidth digital content
protection (HDCP).” [Online]. Available: http://www.digital-cp.com/

[31] Alex Bradbury, “Open source ARM userland,” Oct. 2012. [Online].
Available: http://www.raspberrypi.org/archives/2221

[32] Dave Airlie, “raspberry pi drivers are NOT useful,” Oct. 2012.
[Online]. Available: http://airlied.livejournal.com/76383.html

44

The State of COMPOSITE
∗

Jiguo Song, Qi Wang, Gabriel Parmer

The George Washington University

{jiguos,interwq,gparmer}@gwu.edu

I. THE TAO OF COMPOSITE.
COMPOSITE is a component-based operating system that has

been under development since 2006 with design goals including

configurability, predictability, and reliability. Unlike many pre-

vious component-based operating systems that focus on kernel-

based configurability, COMPOSITE implements most system

policies, mechanisms and abstractions as user-level, hardware-

protected, fine-grained units of functionality that are harnessed

through well-defined interfaces. COMPOSITE’s structure is most

similar to µ-kernels: “A concept is tolerated inside the mi-

crokernel only if moving it outside the kernel, i.e., permitting

competing implementations, would prevent the implementation

of the system’s required functionality”[1]. COMPOSITE philo-

sophically expands on this in two ways:

1) Component-based policy definition. We strive to eliminate

policies from the kernel, thus including only mechanisms. This

enables for both customized resource management, and for de-

signers to trade between complexity and TCB size, for flexibility

and capability. Though the line between policy and mechanism

is not clean [2], functionality common to most modern micro-

kernels including scheduling and structured memory mapping

is moved to user-level components where it can be redefined.

Unlike exokernels [3] we avoid distributed management of

resources, instead centralizing the policy into specific manager

components. To enable flexibility of resource management (di-

versity of policy), resource managment abstraction is enabled

via inter-component protocols to hierarchically control schedul-

ing, manage memory, or perform I/O [4]. This support enables

concurrent execution of multiple virtual environments that trade

between heightened isolation with customized resource manage-

ment, and resource sharing.

2) System behavior via composition of fine-grained components.

One of the most successful component-based systems is the

UNIX command line, based on the composition of simple

programs into pipelines of complex functionality. COMPOSITE

emphasizes the composition of complex systems from fine-

grained components. The structure of this composition is a

general DAG, and the functional protocols between components

are encoded in explicit interfaces. Though a pervasive separa-

tion of concerns, and extensive interface-level polymorphism,

developers have significant leeway in programming a system

all the way down to resource management policies at the

composition-level.

Mutable Protection Domains enables protection boundaries

between components to be dynamically raised and lowered [5]

to trade protection and performance. Collections of components

can be collapsed into the same protection domain to mimic the

structure of µ-kernels, monolithic systems, or exokernels. This

This material is based upon work supported by the National Science Foun-
dation under Grants No. CNS 1137973, CNS 1149675, and CNS 1117243.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

fine-grained control over protection domains enables the generic

study of system structure.

COMPOSITE’s focus. COMPOSITE provides unique opportuni-

ties due to its component-based structure. These include:

• Configurability. Supports concurrent execution of divergent

virtual environments ranging from a separation-kernel envi-

ronment emphasizing strong barriers between high- and low-

criticality tasks, to a simple web-server that serves both static

and dynamic content composed of 25 components. In the server,

different communication protocols, altering the data source, or

even changing the interrupt scheduling to more aggressively

avoid livelock, can all be done by changing the composition

of components. Though extensively decoupled, this web-server

performs at least as well as Apache.

• Predictability. All aspects of the system are designed around

the goal of bounded-latency. Notably, COMPOSITE places an

emphasis on the end-to-end bounded latency of invocations

across a possibly long chain of components. This solves by

design the dependency problem that complicates scheduling in

many component-coordination systems. This end-to-end pre-

dictability is currently being extended to multi-core systems.

• Reliability. By pervasively memory isolating components,

fault propagation is significantly constrained in COMPOSITE.

COMPOSITE enables even the lowest-level system components

to fail, and will predictably reconstitute their state with overhead

on the order of 10s of µ-seconds.

II. CURRENT STATE OF COMPOSITE

COMPOSITE is a research OS, and current goals do not

include executing existing applications. Including external li-

braries, COMPOSITE is 160K lines of code (LOC) including a

7K LOC kernel, and 30K in components (minus third-party

libraries). The system includes some POSIX support, some

scripting language support (via LUA), and networking via LWIP.

Who should use COMPOSITE? COMPOSITE is in a state of

constant development, and is not yet appropriate for production

environments. Researchers investigating some combination of

OS structure, resource management, parallelism, and real-time

execution could benefit from the system. Developers interested

in expanding the corpus of components are always welcome.

Online presence. The development mailing list, and more

information can be found at http://composite.seas.gwu.edu/. The

source is available at https://github.com/gparmer/Composite.
REFERENCES

[1] J. Liedtke, “On micro-kernel construction,” in Proceedings of the 15th ACM

Symposium on Operating System Principles. ACM, December 1995.
[2] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf, “Policy/mecha-

nism separation in hydra,” in Proceedings of SOSP, 1975.
[3] D. R. Engler, F. Kaashoek, and J. O’Toole, “Exokernel: An operating

system architecture for application-level resource management,” in Pro-

ceedings of SOSP, 1995.
[4] G. Parmer and R. West, “HiRes: A system for predictable hierarchical

resource management,” in Proceedings of RTAS, 2011.
[5] ——, “Mutable protection domains: Adapting system fault isolation for

reliability and efficiency,” in ACM Transactions on Software Engineering

(TSE), July/August 2012.

45

Priority Inheritance on Condition Variables

Tommaso Cucinotta
Bell Laboratories, Alcatel-Lucent Ireland

Email: tommaso.cucinotta@alcatel-lucent.com

Abstract—In this paper, a mechanism is presented to deal
with priority inversion in real-time systems when multiple threads
of execution synchronize with each other by means of mutual
exclusion semaphores coupled with the programming abstraction
of condition variables. Traditional priority inheritance solutions
focus on addressing priority or deadline inversion as due to the
attempt to lock mutual exclusion semaphores, or deal exclusively
with specific interaction patterns such as client-server ones. The
mechanism proposed in this paper allows the programmer to
explicitly declare to the run-time environment what tasks are able
to perform a notify operation on a condition over which other
tasks may be suspended through a wait operation. This enables
developers of custom interaction models for real-time tasks to
exploit their knowledge of the application-specific interaction so
as to potentially reduce priority inversion. The paper discusses
issues in the realization of the technique, and its integration with
existing priority inheritance mechanisms on current operating
systems. Also, the paper briefly presents the prototyping of
the technique within the open-source RTSim real-time systems
simulator, which is used to highlight the potential advantages of
the exposed technique through a simple simulated scenario.

I. INTRODUCTION AND PROBLEM PRESENTATION

Priority inversion is a well-known problem in the literature

of real-time systems occurring every time a task execution is

delayed due to the interference of lower priority tasks. This

problem is well-known to happen whenever a higher-priority

task tries to acquire a lock on a mutual-exclusion semaphore

(shortly, a mutex) already locked by a lower-priority task.

Clearly, the lock owner task needs to release the lock before

the more urgent one can proceed and this delay is unavoidable.

However, if a third task with a middle priority between these

two is allowed to preempt the lower-priority task holding the

lock, then the release of the lock is delayed even further,

adding an unnecessary delay to the execution of the higher-

priority task, waiting for the lock to be released.

For example, Figure 1 shows a sequence in which three

tasks, A, B and C are scheduled on the same processor by

using a fixed-priority scheduler, and A and C synchronize on

a mutex M for the access to some common data structure.

Task C runs while no other higher-priority task is ready to

run. Then, it locks the mutex (operation L(M) in the picture)

but, before being able to release it (operation U(M) in the

picture), it is preempted by the higher-priority task A that just

woke up. Task A executes for a while, then it tries to lock the

same mutex already locked by C, thus it suspends allowing

C to continue execution. Unfortunately, C cannot execute for

much time, because the middle-priority task B wakes up at

this point, preempting C as due to its higher-priority. Even

though B has a higher-priority than C, we know that C holds

Figure 1. Sample priority inversion scenario. Task A has the highest priority,
task C the lowest, and task B has a middle priority between them.

a lock for which the highest-priority task A is waiting, thus B

should not be allowed to preempt C in such a case. Therefore,

the time for which B keeps executing, delaying the release of

the lock by C, constitutes an avoidable additional delay for

the task A.

This problem has been addressed in a number of ways in

the literature, for example by the well-known Basic Priority

Inheritance and Priority Ceiling mechanisms [1], [2]. The

related literature is discussed in Section II later.

A mutex is commonly used for synchronization of tasks

in conjunction with the condition variables programming

abstraction, a mechanism that allows a task to suspend its

execution waiting for a condition to be satisfied on certain

variables. The typical example is the one of a reader from

a queue of messages waiting for someone to write into

the queue when it is empty. When the reader tries to read

an element from the queue but finds it empty, it suspends

itself till the number of elements in the queue becomes

greater than zero (as a consequence of a writer task pushing

one element). In such a case, the reader typically blocks

on a condition variable with an operation that atomically

suspends the task and releases the mutex (e.g., by using

the POSIX [3], [4] pthread_cond_wait() call) used for

critical sections operating on the queue. The writer, on the

other hand, after insertion of an element in the queue, notifies

possible readers through a notify operation (e.g., the POSIX

pthread_cond_notify() call).

In such cases, a form of unnecessary priority inversion

may still occur. Consider for example the scenario depicted

in Figure 2. Task A communicates with a set of other tasks

C, D and E via a message queue Q, through which it expects

to receive some message from them. Now, imagine that, for

whatever reason, in the set of tasks potentially producing

messages for A, there is also a task C with a priority lower than

46

the one of A. In the shown scenario, A tries to read atomically

from the queue (operation R(Q) in the picture), thus it locks

the queue mutex, but releases it immediately after detecting

that the queue is empty, blocking on a condition variable. Task

C then executes, but, before it finishes its computations for

writing into the message queue Q, it gets preempted by a third

unrelated task B with a priority level higher than B but lower

than A. The time for which B runs constitutes an unnecessary

delay for the execution of the higher-priority task A, which is

waiting for B to write something into the shared queue.

With the Priority Inheritance protocol, whenever a task

blocks trying to acquire a lock on a mutex that is already

locked by another task, the former task can temporarily donate

its priority to the latter task, in order to let it progress

quicker (avoiding unneeded preemptions) towards releasing

the lock. However, for the scenario depicted in Figure 2,

even if concurrent access to the queue Q is protected by a

mutex exhibiting Priority Inheritance, the mechanism cannot

help. Indeed, in this case Task C is not holding the lock of

the Q mutex while it is progressing towards completing the

computations that will lead to the production of a data item

to be pushed into the message queue Q. Only as part of the

atomic push and pop operations into and from the queue, does

a task acquire the mutex lock protecting access to the queue.

Therefore, Priority Inversion can merely fire in the short time

instants of execution of the atomic operations, but not during

the generally longer execution of the tasks.

Abstracting away from the specific example of shared

message queues, generally speaking, consider a set of real-time

tasks synchronizing through the use of mutex and condition

variables. Then, if a task that needs to wait for a condition to

become true may be unnecessarily delayed by lower-priority

tasks, then a form of priority inversion can occur. Indeed, if the

task(s) responsible for letting the mentioned condition become

true run(s) at a lower-priority in the system, and a third task

with a middle priority level wakes up, said third task may

preempt the execution of those lower-priority tasks, thus de-

laying the achievement of the condition for which the higher-

priority task is waiting. In this case, the traditional mechanism

of Basic Priority Inheritance cannot help, because the higher-

priority task waiting for the condition to become true drops

the mutex lock before suspending through a wait operation on

the condition variable, and the lower-priority task(s) that need

to progress in their computations so as to perform the notify

operation on the condition variable do not hold any mutex

lock while they are computing. Furthermore, the run-time

has generally no information about the (application-specific)

interaction among the tasks, so it cannot infer automatically

the needed task dependency information.

In some cases, real-time tasks might interact through higher-

level mechanisms that allow the run-time to actually know,

when a task suspends, which other tasks may actually cause

the resume of the suspended task. For example, this is the

case of the client-server interaction model of the Ada language

run-time, in which a client task invokes explicitly an Entry

of a server task, i.e., it pushes an element into the server

Figure 2. Priority inversion scenario with task A receiving data from a lower-
priority task C through a shared message-queue Q realized with a mutex and
a condition variable. Task B has middle-priority between A and C.

input queue and suspends till it receives a response. In such

a case, the run-time knows which particular server has to

perform work on behalf of which client(s), so it can correctly

apply Priority Inheritance, as shown in the seminal work on

the topic by Sha et al. [5]. However, in the general case

of tasks interacting by application-specific synchronization

protocols realized through mutex and condition variables, such

information is not readily available to the run-time.

A. Paper contribution

In this paper, a mechanism is proposed to let the run-

time be aware of the possible dependencies among tasks

within a real-time system, expanding the functionality of the

programming abstraction of condition variables. With the new

mechanism, called PI-CV, the programmer may declare what

are the tasks that may help a condition become true, over

which other tasks may be waiting. Exploiting such dependency

information, the run-time can trigger the necessary priority

inheritance that is needed to avoid priority inversion. PI-CV

alleviates the problem of priority inversion in cases in which

developers code into the system custom, application-specific

communication and synchronization logic through mutex and

condition variables.

There are various scenarios in which the introduced mech-

anism may be useful and indeed improve responsiveness of

real-time software components. For example, in the literature

of real-time systems, it is very common to see real-time

applications modeled as Directed Acyclic Graphs (DAGs) of

computations which are triggered periodically or as a result of

external events. Each node in the DAG can start its computa-

tions once its inputs are available (see Figure 3), which in turn

are produced as output of the computations of other nodes.

The mechanism is particularly useful in contexts in which

producers and consumers of data share common data structures

in shared memory (serializing the operations on it by means of

semaphores and synchronizing among each other by means of

condition variables), but at the same time they possess different

47

priority or criticality. This situation is very common in real-

time systems. For example, we can easily find co-existence

of both the main real-time code, characterized by stringent

timing constraints, and other side software components that

are needed for monitoring or configuration purposes. Often

it happens that some (often bidirectional) information flow is

needed between these two worlds (e.g., the monitoring code

needs to retrieve information about the status of the real-

time code, and the real-time code needs to reconfigure itself

according to the configuration passed by reconfiguration code).

II. RELATED WORK

The literature on the management of shared resources for

real-time systems is huge. In this section, the main works

related to the problem of priority inversion are shortly recalled.

During the International Workshop on Real-Time Ada Is-

sues, back in 1987, Cornhill and Sha reported [6] various

limitations of the Ada language when dealing with priority-

based real-time systems. Specifically, a high-priority task

could be delayed indefinitely by lower priority tasks under

certain conditions. Shortly afterward, the same authors formal-

ized [7] what are the correct interactions between client and

server tasks in form of assertions on the program execution.

The Ada run-time was not respecting those assertions, thus

allowing tasks to undergo unnecessary priority inversion. In

the same work, Priority Inheritance was informally introduced

as a general mechanism for bounding priority inversion. Later,

Sha et al. [2], [1] described better their idea formalizing

the two well-known Basic Priority Inheritance (BPI) and

Priority Ceiling (PCP) protocols. While BPI allows a task

to be blocked multiple times by lower priority tasks, with

PCP a task can be blocked at most once by lower-priority

tasks, so priority inversion is bounded by the execution time

of the longest critical-section of lower-priority tasks; also,

PCP prevents deadlock. A possible realization of PCP for

the Ada language has been described by Goodenough and

Sha [8], and by Borger and Rajkumar [9]. Also, Locke and

Goodenough discussed [10] some practical issues in applying

PCP to concrete real-time systems.

Various extensions to PCP have been proposed, for ex-

ample to deal with reader-writer locks [11], multi-processor

systems [12], [13], [14] and dynamically recomputed priority

ceilings [15]. Furthermore, Baker introduced [16] Stack Re-

source Policy (SRP), extending PCP so as to handle multi-

unit resources, dynamic priority schemes (e.g., EDF), and

task groups sharing a single stack (“featherweight” processes),

treated on its own as a resource with a zero ceiling. Also,

Gai et al. investigated [17] on minimizing memory utiliza-

tion when sharing resources in multiprocessor systems. More

recently, Lakshmanan et al. [18] further extended PCP for

multi-processors grouping tasks that access a common shared

resource and co-locating them on the same processor.

Schmidt et al. investigated [19] on various priority inversion

issues in CORBA middleware, and proposed an architecture

(TAO) not suffering of such problem. Priority inversion has

also been considered by Di Natale et al. in a proposal [20]

for schedulability analysis of real-time distributed applica-

tions, where, despite the use of PCP for scheduling tasks on

the CPUs, non-preemptability of packet transmissions causes

unavoidable priority inversion when a higher-priority packet

reaches the transmission queue while a low-priority packet is

being transmitted.

When scheduling under the Constant Bandwidth Server

(CBS) [21], Lamastra et al. proposed [22], [23] the BandWidth

Inheritance (BWI) protocol, allowing a task owning a lock

on a mutex not only to inherit the (dynamic) priority of the

highest priority waiting task (if higher than its own), but

also to account for its execution within the reservation of

the task whose priority is being inherited. This allows to

keep the temporal isolation property ensured by the CBS,

in the sense that non-interacting task groups cannot interfere

on each other’s ability to meet their timing constraints. Later,

Faggioli et al. [24] discussed various issues and optimizations

in the implementation of the protocol in the Linux kernel,

and specifically as an add-on to the AQuoSA scheduler [25].

An extension of BWI to multi-processor systems has been

proposed again by Faggioli et al. [26], where the implemen-

tation of the technique [27] was prototyped this time on the

LITMUS-RT [28] real-time test-bed.

Block et al. proposed FMLP [29], a resource locking

protocol for multi-processor systems allowing for unrestricted

critical-section nesting and efficient handling of the common

case of short non-nested accesses.

Guan et al. dealt [30] with real-time task sets where inter-

actions among tasks are only known at run-time depending on

which particular branches are actually executed.

Many other works exist in the literature [31], [32], [33],

[34], [35], [36], [37] on variants of the above resource-sharing

protocols and their analysis. An overview of them can be found

in [27]. Recently, techniques to mitigate priority inversion have

also been applied in the context of scheduling virtual machines

communicating with each other [38]. A very interesting recent

work by Abeni and Manica [39] adapts BWI to trigger

priority inheritance on client-server interactions, and presents

a schedulability analysis for that particular type of scenario.

The mechanism being presented in this paper is more generic

as it can be used with custom inter-thread communications.

Though, the analysis presented by Abeni may constitute a

valuable starting point for the analysis of the generic scenarios

addressed by the present paper.

The above reviewed literature on resource sharing in real-

time systems focuses essentially on dealing with priority

inversion (and applying various types of priority inheritance

mechanisms) in two main scenarios: 1) tasks interacting by the

use of shared memory and critical sections, serialized through

mutexes; 2) tasks interacting in a client-server fashion, where

the server task executes operations on behalf of various clients.

In this paper, a general priority inheritance mechanism is

presented, useful when tasks interact by using condition vari-

ables associated with mutexes. These are generally used in the

implementation of custom shared data types supporting custom

communication and synchronization protocols in concurrent

48

systems. In such a case, when a task, after entering a critical

section, suspends itself through a wait operation on a condition

variable, it also releases the mutex associated with the critical

section. At this point, some other task running in the system

may be the one responsible for the notify operation on the

same condition variable, waking up the task(s) suspended on

it. However, without further information, the run-time cannot

generally know which task(s), among the currently ready-

to-run ones, may perform such a notify operation. If the

interacting tasks have different priorities, then the system may

undergo avoidable priority inversion. With the mechanism

proposed in this paper, the run-time is informed by the tasks

about which other tasks may possibly help and accelerate the

wake-up of a task suspended on a condition variable, thus

enabling the avoidance of this kind of priority inversion. The

mechanism can also be composed with existing priority inher-

itance schemes for lock-based interactions. Furthermore, it can

also be used for realizing priority inheritance in client-server

interactions, in Ada-rendezvous style. However, it can also be

used in arbitrary, application-specific interactions programmed

through mutual exclusion semaphores and condition variables.

Note that Hart and Guniguntala [40] made changes to the

GNU libc pthreads library and kernel in order to support

efficient wake-up of multiple tasks waiting on a condition

variable (as due to a pthreads_cond_broadcast())

used in connection with an rt-mutex, so as to avoid the

“thundering herd” effect, and guaranteeing the correct wake-

up order (considering also priority inheritance). Such changes

relate to the support for priority inheritance in rt-mutexes

and they are not to be confused with the mechanism being

proposed in this paper.

To the best of my knowledge, there are no alternatives

for dealing with the specific type of problem of priority

inversion as described above, in presence of condition vari-

ables. Commonly known alternatives to using semaphores and

locks at all, include recurring to lock-free data structures, and

solutions based on the Transactional Memory programming

paradigm [41]. Lock-free programming is well-known to be

more complex and difficult to master, than traditional lock-

based programming. The advantage of the presented technique

is that it allows applications developers to keep designing

code using traditional synchronization primitives, i.e., mutual

exclusion semaphores and condition variables, but they can

improve the responsiveness of their applications with the

very little additional effort to sort out which are the helper

tasks for the condition variables they use (or, sometimes,

the helper tasks may be automatically identified in proper

libraries, see Section IV-B later). On the other hand, the

Transactional Memory programming paradigm is particularly

useful in presence of non-blocking operations on shared data

structures, i.e., operations that would not lead to the suspension

of the calling task in order to wait for a condition to become

true, as it happens with condition variables, thus it does not

constitute an alternative to the presented technique. A thorough

and detailed comparison among these communication and

synchronization techniques is outside the scope of this paper.

III. PRIORITY INHERITANCE ON CONDITION VARIABLES

In what follows, without loss of generality, the term task

will be used to refer to a single thread of execution in a

computing system, being it either a thread in a multi-threaded

application, or a process. Also, without loss of generality, the

term priority will be used to refer to the right of execution

(or “urgency” level) of a task as compared to other tasks

from the CPU(s) scheduler viewpoint. This includes both the

priority of tasks whenever they are scheduled according to a

priority-based discipline and their deadline whenever they are

scheduled according to a deadline-based discipline (and their

time-stamp whenever they are scheduled according to other

policies based for example on virtual times, such as the Linux

CFS [42]). However, the described technique is not specifically

tied to these scheduling disciplines and it can be applied in

presence of other schedulers as well. Furthermore, it should be

clarified that this paper deals with how to dynamically change

the priorities of tasks within a system, which is orthogonal

with respect to how said tasks are scheduled on the available

processors. Specifically, analyzing the consequences of the

introduced technique on schedulability of real-time systems

in presence of multi-core and/or multi-processor systems is

out of the scope of this paper.

The mechanism of priority inheritance on condition vari-

ables (PI-CV) proposed in this paper works as follows:

• it is possible (but not mandatory) to programmatically

associate a condition variable with the set of tasks able to

speed-up the verification of the condition; these tasks will

be called helper tasks; the set of helper tasks associated

with a condition variable can be fixed throughout the life-

time of the condition variable, or be dynamically changed

at run-time, according to the application needs;

• whenever a higher-priority task executes a wait operation

on a condition variable, having a non-null set of helper

tasks, it temporarily donates its priority to all the lower-

priority helper tasks, so as to “speed-up” the verification

of the condition associated with the condition variable;

• as soon as the condition variable is notified, the dynam-

ically inherited priority is revoked, restoring the original

priority of the helper tasks;

• the mechanism can be applied transitively, if one or more

helper tasks suspends on other condition variables;

• the mechanism can be nicely integrated with traditional

(Basic) Priority Inheritance, resulting in priority being

(transitively) inherited from a higher priority task to

a lower priority one either because the former waits

to acquire a lock held by the latter, or because the

former suspended through a wait operation on a condition

variable for which the latter is a helper task.

Whenever a higher-priority task is suspended waiting for

some output produced by lower-priority tasks, PI-CV allows

the lower-priority tasks to temporarily inherit the right of

execution of the higher-priority task with respect to the tasks

scheduler. In order for the mechanism to work, it is necessary

to introduce a few interface modifications to the classical

49

Figure 3. General interaction scenario where priority inheritance on condition
variables may be applied transitively. Task F is waiting on a condition variable
having tasks D and G registered as helpers.

condition variables mechanism as known in the literature, so

that the run-time environment (e.g., the Operating System)

knows which lower-priority tasks should inherit the priority

of a higher-priority task suspending its execution waiting for

a condition to become true. The interface may allow the

mechanism of priority inheritance on condition variables to

be enabled selectively on a case-by-case basis (per-condition

variable and per-semaphore), depending on the application and

system requirements (see below).

Priority inheritance may be applied transitively, when

needed. For example, if Task A blocks on a condition variable

donating temporarily its priority to Task B, and Task B in turn

blocks on another condition variable donating temporarily its

priority to Task C, then Task C should inherit the highest

priority among the one associated with all the 3 tasks. Also,

priority inheritance for condition variables can be integrated

with traditional priority inheritance (or deadline inheritance)

as available on current Operating Systems, letting the priority

transitively propagate either due to an attempt of locking a

locked mutex, or to a suspension on a condition variable with

associated one or more helper tasks.

In other words, consider a blocking chain of tasks

(τ1, τ2, . . . , τn) where each task τi (1 ≤ i ≤ n−1) suspended

on the next one τi+1 either trying to acquire a lock (enhanced

with priority or deadline inheritance) already held by τi+1,

or waiting on a condition variable (enhanced with PI-CV as

described in this document) where τi+1 is registered among

the helper tasks. All the tasks in such a blocking chain are

suspended, except the last one (that is eligible to run). This

last task inherits the priority of any of the tasks in any blocking

chain terminating on it, i.e., any task in the direct acyclic graph

of blocking chains that terminate on it. For example, consider

the scenario shown in Figure 3, where each arrow from a task

to another means that the former is suspended on the latter due

to either a blocking lock operation or a wait on a condition

variable where the latter task is one of the helpers. Task A

inherits the highest priority among tasks B, C, D, E, F, while

G inherits the priority of F, if all of the suspensions happen

through mutex semaphores enriched with priority inheritance

or condition variables enriched with PI-CV. In the depicted

scenario, note that F is waiting on a condition variable where

both D and G are registered as helpers. This allows both of

them to inherit the priority of F, until the condition is notified.

A. Reservation-based scheduling

Also, whenever a task is associated by the scheduler with a

maximum time for which it may execute within certain time

intervals, as in reservation-based scheduling [43], [44] (e.g.,

the POSIX Sporadic Server [3] or the CBS), the inheritance

mechanism may behave in such a way that the helper task

executing as a result of its priority having been boosted by

the described priority inheritance mechanism, will account its

execution towards the execution-time constraints of the task

from which the priority was inherited (i.e., the budget of its

server). For example, referring to the Bandwidth Inheritance

(BWI) protocol [22], it is straightforward to think of the

corresponding extension. In a BWI-CV protocol, whenever a

task inherits the priority of a higher-priority task, the ready-

to-run tasks at the end of the blocking chains (involving both

attempts to acquire locks and wait operations on condition

variables with associated other helper tasks) also execute in the

server of the highest-priority task that is donating its priority to

them, depleting its corresponding budget. Namely, the server

to consider for budget accounting purposes should be the one

associated with the highest-priority task, among the ones in

the Direct Acyclic Graph (DAG) of all the blocking chains

terminating on the said ready-to-run task.

B. Multi-processor systems

Note that PI-CV can be applied to single-processor as well

as to multi-processor and multi-core systems. PI-CV merely

allows the programmer to declare which are the helper tasks

for each given condition variable at each time throughout the

program life-time, and the run-time applies priority inheritance

as described above. The specifics about how exactly tasks are

scheduled in a multi-processor environment are outside the

scope of this paper.

C. Schedulability analysis

PI-CV is presented in this paper without any particular

associated schedulability analysis technique nor formal proof.

As the mechanism allows for reducing priority inversion, it

is expectable that the worst-case and/or average-case interfer-

ence terms in schedulability analysis calculations, as coming

out considering the specifics of the scheduling policy being

employed on a system, have a shorter duration. This is shown

by simulation in a simple scenario later in Section VI.

Similarly to the traditional Priority Inheritance mechanism

available on current Operating Systems, PI-CV may reduce un-

needed priority inversion in certain scenarios, leading to an im-

proved responsiveness of the highest priority activities within a

system. Also, when combined with resource reservations along

the lines of BWI [22], [23], a BWI-CV mechanism should

be capable of guaranteeing temporal isolation among non-

interacting task groups. However, a theoretical analysis would

be useful to provide a strong assessment on the (worst-case)

responsiveness of the various real-time activities, including

understanding whether it will be possible to meet all deadlines

for higher-priority tasks that may benefit from PI-CV, as well

as for lower-priority ones that may worsen their behavior, in

presence of interactions based on condition variables. Further

development of these concepts is left as future work.

50

IV. IMPLEMENTATION NOTES

From an implementation standpoint, the proposed mecha-

nism may be made available to applications via a specialized

library call that can be used by a task to declare which

other tasks are the potential helpers towards the verification

of the condition associated with a condition variable. For

example, in an implementation leveraging the pthreads library

implementation, this can be realized through the following C

library calls:

i n t p t h r e a d c o n d h e l p e r s a d d
(p t h r e a d c o n d t ∗cond , p t h r e a d t ∗ h e l p e r) ;

i n t p t h r e a d c o n d h e l p e r s d e l
(p t h r e a d c o n d t ∗cond , p t h r e a d t ∗ h e l p e r) ;

These two functions add or delete the helper

thread to the pool of threads (empty after a

pthread_cond_init() call) that can potentially

inherit the priority of any thread waiting on the condition

variable cond by means of a pthread_cond_wait()

or pthread_cond_timedwait() call. The condition

variable may be associated with a list of helper threads, and

a kernel-level modification needs to ensure that the highest

priority among the ones of all the waiters blocked on the

condition variable is dynamically inherited by the registered

helper thread(s), whenever higher than their own priority (and

also that this inheritance is transitively propagated across both

condition variables and traditional mutex supporting Priority

Inheritance). Whenever the pthread_cond_notify()

or pthread_cond_broadcast() function is called, the

correspondingly woken-up thread(s) will revoke donation of

their own priority.

A. Message queues

In a possible usage scenario, the proposed mechanism

can be associated with a message queue in shared memory

protected by a mutex for guaranteeing atomic operations on

the queue, and a condition variable used to wait for the

queue to become non-empty (if the queue has a predeter-

mined maximum size, then another condition variable may

similarly be used to wait for the queue to become non-

full). In such a scenario, whenever initializing the condition

variable, a writer task will declare itself as a writer associating

its pthread_t to the condition variable, i.e., declaring

explicitly that its execution will lead to the verification of

the condition associated to that condition variable (non-empty

queue). This can be done with a call to the above introduced

pthread_cond_helpers_add() function after the con-

dition variable initialization. Therefore, whenever a reader task

will suspend its execution via a pthread_cond_wait()

call on the condition variable, the associated writer(s), if

there are any of them ready for execution, will dynamically

inherit the priority of the suspended reader if higher than their

own priority. This will inhibit third unrelated middle-priority

tasks to preempt the low-priority writers, protecting from the

mentioned Priority Inversion problem.

In a possible scenario in which there is a pipeline of multiple

tasks using the just mentioned PI-CV-enhanced message queue

Figure 4. Pipeline interaction model.

implementation, it is possible to see the transitive inheritance

propagation. Consider, for example, the scenario depicted in

Figure 4, where A receives data from B through a message

queue Q2, and B receives data from C through another

message queue Q1. In such a case, when A attempts a read

from Q1 but it suspends because it finds the queue empty, its

priority may be donated to B. However, if B suspends on its

own because it attempts a read from Q2 but it finds it empty,

then C inherits not only the priority of B, but also the one

of A (i.e., C runs with the highest priority – be it priority or

deadline or other type of time-stamp – among A, B and C).

B. Client-server interactions

The described PI-CV mechanism may be leveraged to

realize client-server interactions with the correct management

of priorities whenever a server executes on behalf of a client

with possibly other clients waiting for its service(s). In a

possible implementation, clients and servers interact through

message queues, synchronized through mutexes and condition

variables. A server accepts requests from clients through a

single server request queue. Each client may receive the

desired reply from the server through a dedicated client-server

reply queue. Each client may explicitly declare the server as

the helper task for the condition variable associated to the

client-server reply queue being non-empty. After posting a new

request in the server request queue, a client suspends on the

condition variable of its dedicated client-server reply queue.

This allows the OS to automatically let the server inherit the

maximum priority among (its own priority and) the priorities

of any client waiting for its service(s).

Also, if the mutex protecting the message queues are all

enhanced with traditional priority inheritance (e.g., the POSIX

PTHREAD_PRIO_INHERIT attribute), the two mechanisms

compose with each other towards reducing priority inversion.

Note that, in such scenario, it would be easy to provide a

proper programming abstraction for client-server messaging

that declares implicitly which are the helper tasks for the

condition variables of the dedicated reply message queues.

When dealing with real-time scheduling and the correct set-up

of scheduling parameters, it is often convenient for developers

if the Operating System or middleware services exhibit self-

tuning capabilities [45], [46].

Effectiveness of PI-CV in the context of client-server in-

teractions is further explored in Section VI, reporting a few

simulation results. These have been obtained by means of the

implementation of PI-CV described in what follows.

51

V. SIMULATION

The described PI-CV mechanism has been prototyped

within the open-source RTSim real-time systems simulator1.

RTSim [47] allows for simulation of a multi-processor system

running a set of real-time tasks. Various scheduling mech-

anisms are available within the framework, including fixed

priority, deadline-based scheduling and resource-reservation

mechanisms [43], [44] (e.g., the POSIX Sporadic Server [3]

or the Constant Bandwidth Server [21]). The simulated real-

time tasks can be programmed with a simple language that

includes, among others, instructions for simulating:

• computations for a fixed amount of time units (fixed()

instruction), or for a probabilistically distributed time;

• basic locking instructions (lock(M) and

unlock(M)) allowing for simulations of critical

sections protected by a mutex M, corresponding

to the POSIX pthread_mutex_lock() and

pthread_mutex_unlock() functions.

The simulator also includes simulation of a few protocols for

shared resources, which can be associated with the locking

primitives, such as priority ceiling, traditional priority inheri-

tance on mutexes, BWI [22] and others.

RTSim has been extended with the following modifications:

• condition variables have been supported through a

new CondVar object type that can be referenced

in two new dedicated task statements: wait(M,CV)

and signal(M,CV), which act on the mutex

M and CondVar CV, with semantics correspond-

ing to the POSIX pthread_cond_wait() and

pthread_cond_signal() function calls, respec-

tively (note that, when a task is suspended via wait(),

the mutex M is released, and that signal() wakes up

only the highest-priority task among the waiters);

• a new Counter object type has been added, with the

associated instructions inc(), dec() and set(),

with obvious meaning;

• as RTSim lacks of conditional statements, a new

waitc(M,CV,SZ) instruction has been added which

suspends the calling task performing a wait() only if

the specified counter is zero;

• the support for priority inheritance has been completed

for the case of arbitrarily nested critical sections;

• the PI-CV mechanism as described above has been inte-

grated, in a way that also integrates transitive inheritance

among mutex lock and condition variable wait primitives.

Helper tasks for condition variables must be set-up statically

before the simulation begins. Furthermore, the PI-CV and

traditional priority inheritance mechanisms can be individually

enabled or disabled for the whole simulation.

With such elements, it is possible to simulate for example

the synchronization among two tasks due to one of them

writing onto a shared queue and the other one waiting for

reception of a message, using a counter SZ just to keep track

1More information is available at: http://rtsim.sourceforge.net.

f i x e d(6);
l oc k(M);

f i x e d(2);
i n c(SZ);

unlock(M);
s i g n a l(M,CV);

f i x e d(2);
l oc k(M);

f i x e d(1);

wai tc(M,CV,SZ);
f i x e d(2);

dec(SZ);
unlock(M);

f i x e d(3);

Figure 5. Task code for send (left) and receive (right) via a shared queue.

of the queue size. To simulate a periodic or sporadic writer

that computes for 6 time units, then it pushes a message onto

a queue with an atomic operation lasting for 2 time units,

then it waits for the next cycle, one would use the code in

Figure 5 left. To simulate a reader/waiter that computes for 2

time units, then it waits for a message to be made available

onto the queue, where checking the message availability takes

1 time unit, and extracting it from the queue takes 2 time

units, then it completes the cycle with further 3 time units of

computation, one would use the code in Figure 5 right.

The above scheme can be used, for example, to reproduce

the scenario in Figure 2.

Additional instructions have been introduced to deal with

more dynamic behaviors, as required in a real client-server

interaction, in which the server cannot know in advance what

client it will receive a request from, thus it cannot know in

advance which client queue it will have to push the answer

into. To this purpose, the following further modifications have

been realized in RTSim:

• a new Queue type has been added, abstracting a

message queue functionality, in which no messages

are actually exchanged by tasks, but RTSim remem-

bers how many messages have been posted by means

of the usual push(Q) and pop(Q) operations; also,

the further operations pushptr(Q,RQ,RCV,RM) and

popptr(Q,P_RQ,P_RCV,P_RM) are used for more

complex client-server interactions, where a client can post

into the queue information on which queue the reply

should be directed to (see code below); the Queue type

is purposely non-synchronized, so as to leave freedom

to specify the synchronization by composing the other

primitives as needed;

• a new waitq(M,CV,Q) operation waits for the spec-

ified queue to be non-empty, performing a wait()

operation on the specified CV and releasing the specified

mutex, if needed;

• a new Pointer type has been added, capable of pointing

to mutex, condition variable and queue objects; whenever

RTSim expects the name of any of said objects, the

name of a pointer pointing to an object of the same type

can be used instead, in dereferenced notation (using a

“*” prefix); namely, the operation lock(*pM) unlocks

the mutex that is referenced by the pointer pM; this is

useful in combination with the popptr and pushptr

functions, as clarified in the example below.

As in the original RTSim code base, there are no instructions to

declare mutex, condition variable, queue and pointer objects in

52

f i x e d(1);

l ock(ServerM);

f i x e d(2);

pushptr(ServerQ,ClientQ,

ClientCV,ClientM);

unlock(ServerM);

s i g n a l(ServerM,ServerCV);

f i x e d(1);

l ock(ClientQ);

f i x e d(2);

waitq(ClientCV,ClientM,

ClientQ);

pop(ClientQ);

unlock(ClientM);

f i x e d(1);

l ock(ServerM);

f i x e d(2);

waitq(ServerM,ServerCV,

ServerQ);

popptr(ServerQ,pClientQ,

pClientCV,pClientM);

unlock(ServerM);

f i x e d(5);

f i x e d(1);

l ock(*pClientM);

f i x e d(2);

push(*pClientQ);

unlock(*pClientM);

s i g n a l(*pClientM,*pClientCV);

Figure 6. Task code for client (left) and server (right) using PI-CV.

the tasks code, but these have to be created by using the RTSim

API before adding code to the tasks. The above elements

can be used to code a client-server interaction, as shown in

Figure 6.

As it can be seen, the level of detail for the simulation

may be kept to a minimum, neglecting details related to the

functional aspects of the simulated tasks, but catching the main

behavioral aspects that may impact their response-times.

The presented modifications to the RTSim open-source

simulator have been submitted for clearance to be released

in public and be freely made available to other researchers.

However, at this time it is not clear whether this will be

possible or not.

VI. SIMULATED RESULTS

Using the implementation of PI-CV within RTSim as de-

scribed in the previous section, an evaluation has been done

by simulating a simple scenario with 3 client tasks using the

same server task and running on a single-processor platform.

For example, the server task might be representative of some

OS service available through proper RPC calls, realized in

terms of shared in-memory data structures protected by syn-

chronizing access through mutexes and condition variables. In

the simulated scenario, each client task is periodic, it spends a

fixed time processing (see Table I), then it invokes the server

by pushing a message onto the server receive queue, then

it waits for a response to be placed by the server onto the

client own receive queue. The server, on the other hand, is

not periodic. It has been given the lowest possible priority

within the system. It waits for an incoming message on its

receive queue, then it computes for a fixed amount of time,

then it pushes a message back onto the receive queue of

the caller task, and it repeats forever. Task periods have

been generated randomly. The overall experiment duration

has been set to 200000 simulated time units, amounting to

roughly 300 activations for each task. The overall set of used

parameters for the 3 clients is summarized in Table I. The

parameters have been roughly chosen to create a scenario

in which the advantages of the proposed technique could be

easily highlighted. Other overheads such as context switch

or scheduling overheads have not been simulated. A more

realistic simulation, including a careful tuning of the overheads

Parameter Client1 Client2 Client3

Task period 676 683 687

Overhead of lock()/unlock() 1 1 1

Overhead of wait()/signal() 2 2 2

Overhead of push()/pop() 2 2 2

Overhead of pushptr()/popptr() 2 2 2

Job own computation 50 50 50

Server call computation 20

Experiment duration 200000

Table I
TASK PARAMETERS FOR THE SIMULATED SCENARIO (ALL VALUES ARE

EXPRESSED IN THE SIMULATED TIME UNITS).

and parameters around a real platform and OS and possibly a

real application, is surely valuable future work to be done.

Client-server interactions have been simulated in RTSim fol-

lowing the code structure exemplified in the previous section

making use of the Queue type and of the Pointer type

for the server. Two simulations have been done, one with

only the traditional priority inheritance on all mutexes, and

the other one with also the PI-CV mechanism on all condition

variables (the two mechanisms acted in an integrated fashion

as explained above).

Figure 7.(a) reports the obtained Cumulative Distribution

Functions (CDFs) of the response time (i.e., the difference

between the job finishing and arrival times) of the highest

and lowest priority clients for the experiment, in the two

cases of with and without PI-CV. It is clearly visible that,

when using PI-CV, the highest priority client greatly benefits

of PI-CV, reducing its average and maximum response-times,

at the expense of the lowest priority client for which both

metrics become worse, as expected. As a result, PI-CV allows

for avoiding unnecessary priority inversion. For completeness,

Figures (b) and (c) report the CDFs for all the 3 clients in the

two cases.

Figure 8 reports the cumulative simulated time units for

which each task was assigned each priority value. Note that,

in RTSim, the priority with numeric value 1 corresponds to

the highest priority in the system. As it can be seen, the server

task is assigned, for a significant part of the simulation, one

of the clients priority levels, while it is serving requests on

their behalf. Also, Client3 is assigned for a small time (note

the logarithmic scale on the vertical axis) the boosted priority

levels assigned to Client1 and Client2. This may be due to

two factors. First, Client3 competes on the mutex protecting

access to the server queue, thus whenever Client1 or Client2

wait for it to release the mutex before posting their message,

the Client3 priority is correspondingly boosted to the level

of Client1 or Client2 by the traditional priority inheritance

mechanism. Second, whenever Client1 or Client2 submit a

request to the server and start waiting for the response, but

the server is still serving Client3, and no mutex is being held

by any task, PI-CV boosts the priority of Client3 to the level

of Client1 or Client2, depending on who is actually waiting

on the condition variable.

It has to be noted that the effectiveness of PI-CV and

its quantitative impact on the tasks performance depends

essentially on how much time a task spends wait()-ing on a

53

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220 240 260 280 300

P
ro

b
a

b
ili

ty

Response Time (simulated time units)

Task1 PI-CV
Task1

Task3 PI-CV
Task3

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220 240 260 280 300

P
ro

b
a

b
ili

ty

Response Time (simulated time units)

Task1
Task2
Task3

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200 220 240 260 280 300

P
ro

b
a

b
ili

ty

Response Time (simulated time units)

Task1
Task2
Task3

(c)

Figure 7. Response time CDFs of the response time of: (a) the highest-
priority client (Task1) and the lowest-priority client (Task3) in the two cases
of with and without PI-CV; (b) the 3 clients when executing without PI-CV
and (c) with PI-CV.

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5

S
im

u
la

te
d

 t
im

e
 u

n
it
s

Priority

Server
Client1
Client2
Client3

Figure 8. Cumulative simulated time units spent by each task into each
priority value (1 is the highest priority, 4 is the lowest priority in the system).

condition variable for which helper tasks are defined, i.e., how

much time is needed for the corresponding notify() to occur.

This time is of course very application-specific. Comparing

with traditional priority inheritance on mutex semaphores,

in that case the effectiveness of the mechanism depends on

how much time a task spends in a critical section with a

mutex locked, which is also very application-specific. Though,

the time spent with a mutex locked may be expected to be

lower than the one spent wait()-ing for a notify() by some

other task. Therefore, whenever it is possible to identify

dependency relationships among real-time tasks, the presented

PI-CV mechanism may be exploited to avoid situations of

priority inversion expected to be of longer durations.

VII. CONCLUSIONS

In this paper, a mechanism has been presented for enhancing

real-time systems with priority inheritance in presence of

mutual exclusion semaphores and condition variables. The

new mechanism, called PI-CV, alleviates the problem of

priority inversion in cases in which developers code into the

system custom, application-specific interaction and communi-

cation/synchronization logic by means of mutex and condition

variables. With PI-CV, the programmer may declare what are

the tasks that may help a condition to become true, over which

other tasks may be waiting. Exploiting such dependency infor-

mation, the run-time (Operating System) can correspondingly

trigger the needed priority inheritance among tasks, mixing

with traditional priority inheritance (e.g., as available through

the PTHREAD_PRIO_INHERIT attribute in POSIX).

Whether or not it is meaningful that a higher-priority task

suspends waiting for possible lower-priority tasks to provide

some output, is something belonging to the application logic,

and outside the scope of this paper. Whenever priorities of

tasks can be meaningfully fine-tuned ahead of time, PI-CV

might not be needed at all. However, PI-CV is applicable

and useful in all those situations in which a task might need

interactions with multiple tasks of different priorities (that

go beyond the simple synchronization by mutual exclusion

semaphores but need to recur to condition variables). This is a

situation that might occur frequently in the design of real-time

and embedded systems, for example for OS or middleware

services that are shared across all real-time tasks within the

system, as shown in the simulated scenario of Section VI.

Even though the proposed technique has been prototyped

within the RTSim open-source simulator for real-time sys-

tems, possible future work includes the implementation of the

proposed technique within a real OS (e.g., by extending the

pthreads library and kernel functionality on Linux and inte-

grating the technique with the SCHED DEADLINE deadline-

based scheduler [48]) showing its usefulness in concrete

application contexts. For example, the Jack low-latency audio

development framework allows for realizing arbitrary DAGs of

inter-connected components and filters, in the audio processing

pipeline. As the framework was already modified [49] for

using a deadline-based scheduler, it would be interesting, in a

multi-processor context, to leverage the PI-CV mechanism in

order to let all the resource reservations involved in the audio

processing pipeline automatically synchronize over (inherit)

the common deadline of delivery of the audio frames to the

speakers. Other directions for future work go of course along

the direction of extending existing schedulability analysis

techniques in presence of PI-CV. For example, the analysis

presented in [39] might be extended and generalized for such

purpose.

REFERENCES

[1] L. Sha, R. Rajkumar, and J. P. Lehoczsky, “Priority inheritance protocols,
an approach to real-time synchronization,” Tech. Rep. CMU-CS-87-181,
Carnegie-Mellon University, November 1987.

[2] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an
approach to real-time synchronization,” Computers, IEEE Transactions

on, vol. 39, pp. 1175 –1185, sep 1990.
[3] IEEE Std 1003.1-1990, IEEE Standard for Information Technology -

Portable Operating System Interface (POSIX) - Part 1: System Applica-

tion Program Interface (API) [C Language], 1990.

54

[4] U. Drepper and I. Molnar, “The Native POSIX Thread Library for
Linux,” tech. rep., Red Hat Inc., February 2001.

[5] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Transactions on

Computers, vol. 39, September 1990.
[6] D. Cornhilll, L. Sha, and J. P. Lehoczky, “Limitations of Ada for real-

time scheduling,” in Proceedings of the first international workshop on

Real-time Ada issues, IRTAW ’87, (New York), pp. 33–39, ACM, 1987.
[7] D. Cornhill and L. Sha, “Priority inversion in Ada,” Ada Lett., vol. VII,

pp. 30–32, Nov. 1987.
[8] J. B. Goodenough and L. Sha, “The Priority Ceiling Protocol: A Method

for Minimizing the Blocking of High-Priority Ada Tasks,” Tech. Rep.
CMU/SEI-88-SR-4, Carnegie-Mellon University, March 1988.

[9] M. W. Borger and R. Rajkumar, “Implementing Priority Inheritance
Algorithms in an Ada Runtime System,” Tech. Rep. CMU/SEI-89-TR-
015, Carnegie Mellon University, April 1989.

[10] C. D. Locke and J. B. Goodenough, “A practical application of the
ceiling protocol in a real-time system,” in Proceedings of the second

international workshop on Real-time Ada issues, IRTAW ’88, (NY),
pp. 35–38, ACM, 1988.

[11] L. Sha, R. Rajkumar, and J. Lehoczky, “A priority driven approach to
real-time concurrency control,” tech. rep., CMU, July 1988.

[12] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synchronization
protocols for multiprocessors,” in Real-Time Systems Symposium, 1988.,

Proceedings., pp. 259 –269, dec 1988.
[13] R. Rajkumar, “Real-time synchronization protocols for shared memory

multiprocessors,” in Proceedings of the International Conference on

Distributed Computing Systems, pp. 116–123, 1990.
[14] C.-M. Chen and S. K. Tripathi, “Multiprocessor priority ceiling based

protocols,” tech. rep., College Park, MD, USA, 1994.
[15] M.-I. Chen and K.-J. Lin, “Dynamic priority ceilings: a concurrency

control protocol for rt systems,” RTSJ, vol. 2, pp. 325–346, Oct. 1990.
[16] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time

Syst., vol. 3, pp. 67–99, Apr. 1991.
[17] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory utilization

of real-time task sets in single and multi-processor systems-on-a-chip,”
in Proceedings of the 22nd IEEE Real-Time Systems Symposium, RTSS
’01, (Washington, DC, USA), pp. 73–, IEEE Computer Society, 2001.

[18] K. Lakshmanan, D. d. Niz, and R. Rajkumar, “Coordinated task schedul-
ing, allocation and synchronization on multiprocessors,” in Proceedings

of the 2009 30th IEEE Real-Time Systems Symposium, RTSS ’09,
(Washington, DC, USA), pp. 469–478, IEEE Computer Society, 2009.

[19] D. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Alleviating
Priority Inversion and Non-Determinism in Real-Time CORBA ORB
Core Architectures,” in Proceedings of the Fourth IEEE Real-Time

Technology and Applications Symposium, RTAS ’98, (Washington, DC,
USA), pp. 92–, IEEE Computer Society, 1998.

[20] M. Di Natale and A. Meschi, “Guaranteeing end-to-end deadlines
in distributed client-server applications,” in Real-Time Systems, 1998.

Proceedings. 10th Euromicro Workshop on, pp. 163 –171, jun 1998.
[21] L. Abeni and G. Buttazzo, “Integrating multimedia applications in

hard real-time systems,” in Proc. IEEE Real-Time Systems Symposium,
(Madrid, Spain), pp. 4–13, Dec. 1998.

[22] G. Lamastra, G. Lipari, and L. Abeni, “A bandwidth inheritance al-
gorithm for real-time task synchronization in open systems,” in Real-

Time Systems Symposium, 2001. (RTSS 2001). Proceedings. 22nd IEEE,
pp. 151 – 160, dec. 2001.

[23] G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in
reservation-based real-time systems,” IEEE Trans. Comput., vol. 53,
pp. 1591–1601, Dec. 2004.

[24] D. Faggioli, G. Lipari, and T. Cucinotta, “An efficient implementation of
the bandwidth inheritance protocol for handling hard and soft real-time
applications in the linux kernel,” in Proceedings of the 4

th International

Workshop on Operating Systems Platforms for Embedded Real-Time

Applications (OSPERT 2008), (Prague, Czech Republic), July 2008.
[25] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA –

Adaptive Quality of Service Architecture,” Software: Practice and

Experience, vol. 39, no. 1, pp. 1–31, 2009.
[26] D. Faggioli, G. Lipari, and T. Cucinotta, “The multiprocessor bandwidth

inheritance protocol,” in Proc. of the 22nd Euromicro Conference on

Real-Time Systems (ECRTS 2010), pp. 90–99, 2010.
[27] D. Faggioli, G. Lipari, and T. Cucinotta, “Analysis and implementa-

tion of the multiprocessor bandwidth inheritance protocol,” Real-Time

Systems, vol. 48, pp. 789–825, 2012. 10.1007/s11241-012-9162-0.

[28] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “Litmus-rt: A testbed for empirically comparing real-time
multiprocessor schedulers,” in Proceedings of the 27th IEEE Interna-

tional Real-Time Systems Symposium, RTSS ’06, (Washington, DC,
USA), pp. 111–126, IEEE Computer Society, 2006.

[29] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible
real-time locking protocol for multiprocessors,” in Embedded and Real-

Time Computing Systems and Applications, 2007. RTCSA 2007. 13th

IEEE International Conference on, pp. 47 –56, aug. 2007.
[30] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Resource sharing protocols

for real-time task graph systems,” in Proc. of the 23rd Euromicro

Conference on Real-Time Systems, (Porto, Portugal), July 2011.
[31] B. B. Brandenburg and J. H. Anderson, “Optimality results for multipro-

cessor real-time locking,” in Proceedings of the 2010 31st IEEE Real-

Time Systems Symposium, RTSS ’10, (Washington, DC, USA), pp. 49–
60, IEEE Computer Society, 2010.

[32] M. Bertogna, N. Fisher, and S. Baruah, “Resource-sharing servers
for open environments,” Industrial Informatics, IEEE Transactions on,
vol. 5, pp. 202 –219, aug. 2009.

[33] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Sirap: a synchronization
protocol for hierarchical resource sharing real-time open systems,” in
Proceedings of the 7th ACM and IEEE international conference on

Embedded software, 2007.
[34] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed priority

pre-emptive systems,” in Proceedings of the IEEE Real-time Systems

Symposium, 2006.
[35] A. Easwaran and B. Andersson, “Resource sharing in global fixed-

priority preemptive multiprocessor scheduling,” in Proceedings of IEEE

Real-Time Systems Symposium, 2009.
[36] G. Macariu, “Limited blocking resource sharing for global multiproces-

sor scheduling,” in Proc. of the 23rd Euromicro Conference on Real-Time

Systems (ECRTS 2011), (Porto, Portugal), July 2011.
[37] M. M. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Dependable

Resource Sharing for Compositional Real-Time Systems,” in 2011 IEEE

17th International Conference on Embedded and Real-Time Computing

Systems and Applications, pp. 153–163, IEEE, Aug. 2011.
[38] S. Xi, C. Li, C. Lu, , and C. Gill, “Limitations and solutions for real-time

local inter-domain communication in xen,” tech. rep., Oct 2012.
[39] L. Abeni and N. Manica, “Analysis of client/server interactions in a

reservation-based system,” in Proceedings of the 28th Annual ACM

Symposium on Applied Computing, SAC ’13, (New York, NY, USA),
pp. 1603–1609, ACM, 2013.

[40] D. Hart and D. Guniguntalay, “Requeue-pi: Making glibc condvars
pi-aware,” in Proceedings of the Eleventh Real-Time Linux Workshop,
pp. 215–227, 2009.

[41] A. Dragojević et al., “Why STM can be more than a research toy,”
Commun. ACM, vol. 54, pp. 70–77, Apr. 2011.

[42] J. Corbet, “CFS group scheduling.” http://lwn.net/, July 2007.
[43] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity re-

serves for multimedia operating systems,” Tech. Rep. CMU-CS-93-157,
Carnegie Mellon University, Pittsburgh, May 1993.

[44] C. W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves:
An Abstraction for Managing Processor Usage,” in Proc. 4th Workshop

on Workstation Operating Systems, Oct. 1993.
[45] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli, “Self-tuning

schedulers for legacy real-time applications,” in Proceedings of the

5
th European Conference on Computer Systems (Eurosys 2010), (Paris,

France), European chapter of the ACM SIGOPS, April 2010.
[46] T. Cucinotta, L. Abeni, L. Palopoli, and F. Checconi, “The Wizard of OS:

a Heartbeat for Legacy Multimedia Applications,” in Proceedings of the

7
th IEEE Workshop on Embedded Systems for Real-Time Multimedia

(ESTIMedia 2009), (Grenoble, France), October 2009.
[47] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni, G. Bolognini, and

P. Ancilotti, “An object-oriented tool for simulating distributed real-time
control systems,” Software: Practice and Experience, vol. 32, no. 9,
pp. 907–932, 2002.

[48] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An experimental
comparison of different real-time schedulers on multicore systems,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2405 – 2416,
2012. Automated Software Evolution.

[49] T. Cucinotta, D. Faggioli, and G. Bagnoli, “Low-latency audio on linux
by means of real-time scheduling,” in Proceedings of the Linux Audio

Conference (LAC 2011), (Maynooth, Ireland), May 2011.

55

Deterministic Fast User Space Synchronization

Alexander Züpke
RheinMain University of Applied Sciences, Wiesbaden, Germany

SYSGO AG, Klein-Winternheim, Germany

Email: alexander.zuepke@{hs-rm.de,sysgo.com}

Abstract—The Fast User Space Mutex (Futex) mechanism in
Linux is a lightweight way to implement thread synchronization
objects which handle the uncontended case in user space and rely
on the operating system kernel only for suspension and wakeup
on lock contention. However, the implementation in Linux today
has certain drawbacks that make it unsuitable for use in hard
real-time or mixed-criticality systems.

This paper addresses these issues and presents a novel ap-
proach for a futex implementation that guarantees bounded worst
case execution time (WCET) in all operations and increases the
required level of determinism for safety critical applications. The
presented approach of blocking mutexes and condition variables
for an unbounded number of threads has linear memory usage
and does not require a fine granular in-kernel memory allocator,
thus being suitable for real-time operating systems on hardware
platforms with low memory or partitioning constraints.

I. INTRODUCTION

This paper discusses fast and lightweight user space syn-
chronization objects for systems with real-time constraints. We
describe a robust and deterministic implementation of mutexes
and condition variables. While mutexes are used to enforce
mutual exclusion to guarantee exclusive access in resource
sharing, condition variables provide a concept for suspension
and wakeup-on-notification for producer-consumer problems.
Unlike semaphores, which can handle both aspects by the
same mechanism, mutexes and condition variables have clearly
defined semantics for ordering in the POSIX API [1].

We use a two-tier approach for mutexes and condition
variables: The first stage handles the uncontended case and
relies on atomic operations in user space. The second stage
covers the contended case and uses syscalls (system calls)
into the operating system kernel for suspension and wake
up. The presented approach is optimized for best case usage
by omitting expensive syscalls on mutexes with low con-
tention. Similar approaches where the kernel is entered only
on contention are used by the Futex concept in Linux [2], in
Microsoft Windows Critical Sections [3], and Benaphores in
BeOS [4]. As our approach bases upon the Linux concept, we
compare both concepts and explain the differences required
for determinism.

The novelty and difference of the presented approach in
comparison to other existing approaches lies in the way how
suspension is handled in the operating system kernel: the
kernel does not need to maintain an additional kernel object
accompanying the user space object. Removing the kernel ob-
ject also prevents possible out-of-memory errors on allocation
of such objects, or resource shortage by overallocation.

The intended usage scenario covers real-time kernels,
space- and time-partitioning, and mixed-criticality environ-
ments. A general safety requirement in such systems is, that
an abuse of APIs in one partition must not interfere with a
correct use other partitions, neither in a temporal sense that

the WCET of unrelated partitions becomes indeterminable,
nor in a spatial sense that it is possible to disturb operations
of unrelated partitions, e.g. by exhausting kernel resources.
The intended use case focuses on resource sharing inside a
single partition utilizing one or more processors. The presented
mutexes and condition variables are clearly not designed
for resource sharing across different partitions or criticality
levels in a mixed-criticality system, as they currently cannot
handle priority inversion. Both mutexes and condition variables
provide fair FIFO ordering.

We use the following terminology: a process is an instance
of a computer program executing in an address space. The
process comprises one or more threads, which are known
by the operating system kernel1 and can be independently
scheduled on the processors assigned to the process at the same
time. Multiple processes2 have their own distinct address space
each. Processes can share parts of their address spaces with
others by using shared memory; a shared memory segment is
usually mapped at different virtual addresses in each address
space. A waiting thread suspends execution in the scheduler
until the thread is woken up again on a predefined condition.
In this paper, we do not use the terms job or task which have a
different meaning in the field of real-time scheduling analysis.
Also, we make no further assumption on scheduling algorithms
or thread priorities.

The rest of this paper is organized as follows: Section II
explains the futex mechanism in Linux and identifies problems
that prevent deterministic use in real-time systems, leading to
the requirements described in section III where we present our
approach. Section IV discusses mutex and condition variable
protocols. We discuss our approach in section V and conclude
in VI.

II. FAST USER SPACE MUTEXES

A. Linux Implementation
The futex implementation in Linux [2] [5] came with the

Native POSIX Thread Library (NPTL) [6] and allows to im-
plement various POSIX-compliant high level synchronization
objects such as mutexes, condition variables, semaphores, or
readers/writer locks with low overhead in the system’s C
library in user space. One design goal was to reduce the
syscall overhead for these locking objects when possible, thus
the implementation uses atomic modifications on user space
variables to handle uncontended locking and unlocking solely
in user space, and a generic system call-based mechanism to
suspend and wake threads in the kernel on lock contention.
Basically, a futex is a 32-bit variable in user space, representing
a certain type of lock (mutex, condition variable, semaphore)
and its value is modified by a type-specific locking protocol.

1In contrast to user-level threading.
2In partitioned environments, a partition consists of one or more processes.

56

We give a short example of a simple mutex protocol on
an integer variable representing the futex: let bit 0 represent
the locked state of the mutex, and let bit 1 signal contention.
Both bits cleared represents a free mutex. A thread can lock
the mutex by atomically changing the lock value from 0x0 to
0x1 using a Compare-and-Swap (CAS) or Load-Linked/Store-
Conditional (LL/SC) operation. A lock operation on an already
locked mutex atomically sets bit 1 in the futex to indicate con-
tention, then invokes the FUTEX_WAIT syscall to suspend the
caller until the lock becomes available again. Symmetrically,
when the current lock-holder sees contention during an unlock
operation, it clears the locked bit and calls the FUTEX_WAKE
syscall to wake the first waiting thread that then can acquire
the lock itself by atomically setting bit 0 again.

During suspension, the futex syscall allocates an in-kernel
futex object and stores the object reference in a hash table
indexed by the address of the futex. The futex kernel object
comprises the futex address, type, and a queue of waiting
threads. The syscall enqueues further suspending threads on
the same futex in the existing wait queue that matches the
address and type information stored in the futex object. The
futex kernel object is freed when the last waiting thread was
woken up and the wait queue is empty again.

The third operation on futexes is FUTEX_CMP_REQUEUE.
It is a special wait queue reassignment method which prevents
thundering herd effects [2] on signaling of condition variables:
instead of waking all threads and letting them compete to lock
an associated mutex, the syscall transfers waiting threads from
the condition variable’s wait queue to the mutex’ one. Linux
additionally supports priority inheritance mutexes and condi-
tion variables for threads using POSIX real-time scheduling
[7]. Finally, robust futexes provide a lightweight mean to notify
pending waiters on a crash or deletion of the lock holder.

As futex wait queues are created on demand, Linux im-
poses no restrictions on the number of user space variables
used for futexes. The kernel objects are created on contention
only, and therefore the number of kernel objects is limited by
the number of threads in the system (when all threads wait on
a distinct futex) and by the available kernel memory.

B. Identified Problems and Possible Remedies
The key idea of allowing an unbounded number of futexes

in user space and doing kernel operations only on contention
appears to be reasonable also for real-time systems. However,
the Linux implementation has certain drawbacks that hinder
use in deterministic real-time systems:

1) Memory allocations of futex kernel objects require a fine
granular in-kernel memory allocator. However, such mem-
ory allocations cause fragmentation, which is especially
bad in space-partitioned environments, where kernel mem-
ory resources are limited.

2) Memory allocations can fail due to limited kernel memory.
This leads to an extra burden for user applications to handle
these kind of failures.

3) User space code controls the addresses of the futex vari-
ables which may cause hash collisions.

4) Operations on the wait queue should have deterministic
timing for WCET analysis. This is especially important
for priority-sorted wait queues. The Linux implementation
[8] uses priority-sorted linked lists for priority inheritance
mutexes and distinguishes 100 priority levels.

In all cases, the number of futex kernel objects is limited
by the number of threads that can wait on a futex, which
could be all threads in the system. Possible solutions (or
reasonable compromises) for these issues depend on the usage
scenario: if a fine granular memory allocator is available or
out-of-memory failures are acceptable, issues 1 and 2 pose no
problem. Alternatively, this could be solved by pre-allocation
of the kernel objects, however this pessimistic approach wastes
memory for futexes that never see contention. Also, moving
the problems of memory allocations to other code sections
of an application may not be useful in legacy, non real-time
applications. Issues 3 and 4 can also be solved by limiting the
number of threads that can utilize the futexes, or by limiting the
number of waiting threads at a time, or by limiting the available
priority levels. Removing the in-kernel memory allocations
promises to solve the first three issues.

III. DETERMINISTIC APPROACH

Here, we present a novel approach without the need for a
fine granular in-kernel memory allocator which can handle an
unbounded number of threads. Based upon the previous discus-
sion, we first define requirements for a reliable implementation,
give an explanation of data structures and operations, and show
how to handle wait queues without kernel objects.

A. Requirements
Besides obvious functional requirements regarding correct

operation of mutexes and condition variables, an implementa-
tion must be robust, deterministic and support partitioning:

1) For mutexes, we define the user space operations
mutex_lock and mutex_unlock to acquire and re-
lease a mutex lock of type mutex_t. For condition vari-
ables, cond_wait suspends the calling thread waiting on
a condition variable of type cond_t until another thread
wakes either one or all waiting threads by cond_wake.
While calling a condition variable function, the caller is
required to have a support mutex locked. This support
mutex is released during suspension in cond_wait.

2) Support for an unbounded number of these user space
objects. The number of objects is limited by the amount
of available user memory.

3) No use of an in-kernel memory allocator. All required data
in the kernel must be either kept in static per partition
memory or per thread in TCBs (thread control blocks).

4) For robustness, the kernel must correctly handle invalid,
unaligned, or unmapped address ranges passed in as refer-
ences to user space objects.

5) The kernel must not expose loops with CAS or LL/SC
operations on user space variables. Otherwise user code
could, by updating a variable at the same time, force the
kernel into unbounded retries to complete an operation.

6) Bounded operations on wait queues: enqueue (append at
the end), dequeue (remove first) and requeue (append one
queue to another) operations must be bounded in time, if
possible with constant timing characteristics.

7) The kernel must be able to remove a given arbitrary
thread from its wait queue in bounded time when handling
timeouts, POSIX signals or thread deletion.

8) The lock scope defines the grade of required partitioning.
A lock with process local scope can only be used in its
defining process. Further, such locks must not interfere
with locks of other unrelated processes. Locks with global

57

scope can be shared between processes3.
9) For locks with different scope, internal locking of the wait

queues must not interfere.

Of the listed requirements, Linux fulfills all objectives
except 3 and 9. In the latter case, Linux uses a single hash
for all processes. Due to hash collision, a process can delay
unrelated ones. Additionally, the priority inheritance versions
of Linux mutexes and condition variables violate objectives 5
and 6 by requiring CAS operations in the kernel and using a
potentially long running sorting mechanism for the wait queue.

B. Operations and Data Structures
Without an in-kernel memory allocator, the required data to

support locking objects in user space must be kept in user space
or in the TCB. Wait queues need to be created on demand, so
the key idea is to place a token identifying the associated wait
queue into user space as well. For syscalls and other functions
implemented in the kernel, we use names in capital letters.
These operations and data structures are:

1) We define five basic kernel operations that closely resemble
their Linux counterparts:

• MUTEX_WAIT: suspend the current thread while waiting
to acquire a mutex

• MUTEX_WAKE: wake the next suitable thread from a
mutex wait queue

• COND_WAIT: suspend the current thread while waiting
on a condition variable

• COND_REQUEUE: move one or all threads waiting on a
condition variable to the according mutex wait queue

• DEQUEUE: remove a waiting thread from its mutex or
condition variable wait queue

The first four operations are used by the mutex_lock,
mutex_unlock, cond_wait, cond_wake operations
respectively. The fifth operation (DEQUEUE) is used in-
ternally by the kernel on timeout expiry, thread deletion,
or other waking activities. This limited subset suspends or
wakes a single thread at a time. The operations on wait
queues are similarly restricted to enqueueing and removal
of single threads, or to append complete wait queues to
one another.

2) We place the thread ID of the head of the queue into user
space, next to the futex variable, and a flag indicating if
the thread is a legitimate head of a wait queue into TCB.
The wait queue itself is kept in kernel space as we keep the
internal pointers in the TCB as well. An indexing approach
with an explicit ID identifying the wait queue instead
would have required an allocation mechanism again.

3) In the TCB we further store information describing the
lock object, i.e. the address in user space, type and scope.

4) We use the scope and the hashed address of the user
space object to locate a suitable lock of the wait queue,
as described in the following section.

5) For mutexes, we also encode the thread ID of the current
lock holder in the futex value in user space.

6) For now, we only provide FIFO ordering of the waiters by
using doubly linked lists.

By placing data like this, we do not need dynamic alloca-
tion of kernel objects. We explain the exact encoding of the
current lock holder and wait queue head in section IV.

3For locks shared between processes of a single partition, an additional
partition local scope would be required.

C. Locking of the Wait Queues
The in-kernel wait queues require internal locking during

modifications. Skipping the discussion of trivial approaches
like disabling interrupts on single processor systems or use
of a single global kernel lock on multi processor systems, we
must use a scope specific object and/or the address of a mutex
or condition variable object as key to lock the wait queue.

Depending on the scope of the futex, per-process, per-
partition, or global lock objects can be used to protect the wait
queues. Per-process and per-partition locks ensure that futex
operations of concurrently executed processes do not interfere
with each other. For mixed-criticality systems, access to locks
of higher critical partitions should be privileged.

Using the futex address as key, multiple locks could be
used. The virtual address is sufficient to uniquely identify a
futex in a single process.4 For locking scopes beyond a single
process, the physical address must be used. Eventually, hashing
of the address leads to the right lock in a scope specific array.

We assume that these locks are located in scope specific
data storage, e.g. process descriptor or global data, and exist
during the lifetime of the scope. The actual number of hashed
locks is a trade-off between scalability and memory usage. The
choice depends on the targeted system environment.

IV. LOCKING PROTOCOLS

We now describe the necessary data structures and state
transition protocols of a futex variable representing a mutex
and a condition variable. We omit all error checking except
for the sequences where we must retry an operation. APIs are
reduced to the minimum necessary to describe the concept.

We assume the following scenario: Firstly, the target
architecture has 32-bit atomic CAS or LL/SC instructions.
Secondly, all threads can be referred by unique IDs of less
than 32-bit, with the value zero denoting an invalid thread ID.
Lastly, we limit the scope to a single process only, so that
virtual addresses are used for locking of the wait queues5.

A. Mutex Protocol
A mutex in user space comprises elements 〈T,W,Q〉 in

two consecutive 32-bit integers, see figure 1. Let the lock state
S be the first integer encoding T and W : The waiters bit W is
a single bit indicating whether or not the wait queue is empty.
The lock holder’s thread ID T is encoded in the remaining
bits. The second integer points to the wait queue head and
holds the thread ID Q of the oldest thread in the wait queue
or zero if the wait queue is empty, see step c in figure 2.

We use the notation S = 〈W,T 〉 to describe the state of
the mutex, and Q = {...} to describe the wait queue as FIFO-
ordered set, pointed to by the thread ID of the left-most thread
on the queue. The mutex is free without waiters if both the
values of S and Q are zero: S = 〈0, 0〉 ∧ Q = ∅, which is
also the initial state of a mutex. Further, we let l, l′ and l′′

describe threads attempting to acquire the lock or suspended
waiting on the lock. When used in conjunction with S or Q,
l, l′ and l′′ describe the respective thread IDs. The rules and
invariants to access S, Q, and the internal wait queue are:

1) The user changes only S using CAS.
2) The kernel accesses S, Q, and the wait queue only while

holding the according wait queue lock.

4We neglect the case of mappings of the same physical memory to different
virtual addresses. This will be detected and result in an address mismatch error.

5For shared locks, the lock object’s physical address should be used.

58

Fig. 1: Example of mutex state changes in the uncontended case:
mutex_lock and mutex_unlock change T atomically, 0

denotes a free mutex and 0x2000 refers to a lock holder’s thread ID.

Fig. 2: Example of mutex state changes in the contended case: on
contention, mutex_lock sets W in step b and calls the kernel.
MUTEX_WAIT enqueues the calling thread 0x3000 and updates Q

in step c. A later mutex_unlock by thread 0x2000 sees
contention and let MUTEX_WAKE put in the first waiter as new lock

holder in step d. As 0x3000 was the only waiter, the wait queue
becomes empty, Q and W are set to zero.

3) The user atomically sets T in S the first time on contention.
4) The kernel clears T if the wait queue is empty and there

is no more contention.
5) If Q is zero, the wait queue is empty.
6) If Q is non-zero, it points to the head of the wait queue.
7) If the head of the wait queue changes, the kernel updates

Q to the new head’s thread ID.
8) If the wait queue becomes empty, the kernel sets Q to zero.
9) On suspension, the kernel adds the waiting thread to the

wait queue (or creates a new one if it was empty before).
10) On wake up, the kernel removes the first thread from the

wait queue.

In detail, the operations for mutexes are:

1) On an uncontended lock operation by thread l,
mutex_lock atomically changes S from 〈0, 0〉 to 〈l, 0〉.
An uncontended unlock operation reverses this, see figure
1. The content of Q is ignored.

2) On a contended lock operation (non-zero S) by l′,
mutex_lock atomically sets the W bit in S if it is not
yet set (S = 〈l, 1〉) before suspending in the kernel using
MUTEX_WAIT, see step b in figure 2. It further passes the
current value of S to the kernel as S′.

3) MUTEX_WAIT: After locking the wait queue of the mutex,
the call checks if S′ equals S in user space. This prevents
lost wakeup errors, because the update of S and the syscall
MUTEX_WAIT are not atomic.
Before enqueueing l′, the kernel reads Q first:

• If Q is zero, the wait queue is empty and the kernel sets
Q to l′, creating a new wait queue, see figure 2, step c.

• If Q is non-zero, the kernel tries to find the referenced
thread and compares the mutex attributes to check if
the referenced thread is an eligible wait queue head and
waiting on the same mutex. It then inserts l′ into the
existing wait queue.

Finally, the kernel releases the wait queue lock and sus-
pends the calling thread in the scheduler.

4) On a contended (W set) unlock operation by l,

mutex_unlock() relies on MUTEX_WAKE to wake the
next waiting thread and pass the lock over to it.

5) MUTEX_WAKE locks the wait queue first, then checks Q:

• If Q is zero, the wait queue is empty. Then it sets S
to zero and the operation completes. This describes the
race that leads to the lost wakeup error.

• If Q is not zero, the call checks the wait queue; the
denoted thread must be an eligible wait queue head and
point to the same mutex.

The kernel then removes the first thread from the queue to
become the next lock holder. The call updates Q with the
ID of the next thread in the wait queue, or zero if the queue
is empty. Then it sets T to the ID of the new lock holder,
with W set accordingly, see figure 2, step d. Finally, it
unlocks the wait queue and wakes up the new lock holder.

It is necessary to let the kernel update S and Q consistently
without using CAS, otherwise user code could force the kernel
into endless CAS retries. The parts in user space retry their
operation if either the CAS fails or the comparison of S′ and
S in the kernel fails. The shown implementation is a basic
version only. A non-suspending mutex_trylock operation
can be deduced from the first step. It is possible to busy-wait
in mutex_lock for a certain time before suspending in the
kernel or to add timeouts to the call.

B. Condition Variable Protocol
The condition variable protocol is similar to the mutex

protocol. A condition variable comprises elements 〈C,Q′〉 in
two consecutive integer variables. The condition counter C
in the first integer is a single counter incremented on every
wakeup operation. The second integer Q′ describes a wait
queue head again and identifies the longest waiting thread in
the queue. To describe the mutex associated with the condition
variable, we use 〈S,Q〉 again. The initial state of a condition
variable is C = 0 ∧ Q′ = ∅. For C and Q′, the same rules
apply as described for S and Q. The operations on condition
variables are:

1) cond_wait is used to wait on the condition variable. The
call reads C and provides it to COND_WAIT as C ′ to detect
lost wakeup errors. Before calling the kernel, cond_wait
releases the accompanying mutex.

2) COND_WAIT performs similar steps than MUTEX_WAIT:
it locks the wait queue, compares C ′ with C in user space,
enqueues the calling thread in the wait queue, and suspends
the calling thread. Additionally, the call keeps a reference
to the mutex for later COND_REQUEUE.

3) cond_wake wakes one or all threads. It first increments C
and then calls COND_REQUEUE. As the caller is required
to hold the mutex while calling cond_wake, the update
of C is atomic to others.

4) COND_REQUEUE locks the wait queue of the condition
variable and checks Q′ as shown in figure 3:

• If Q′ is zero, the call bails out, as no threads are waiting.
• Otherwise it removes either one or all threads from the

wait queue (step 3). When all threads are to be migrated,
the syscall keeps the complete queue as is and appends
it at the end of the mutex wait queue later.

After updating Q′ accordingly, COND_REQUEUE unlocks
the first wait queue. Then, by the reference to the mutex
that was kept in the TCB of the waiters, the syscall locks
the mutex wait queue (step 4), checks, appends previously

59

Fig. 3: Example of a COND_REQUEUE migrating all threads: The
call disconnects the condition variable’s wait queue (starting with

thread 0x8000) and sets Q′ to zero. Then it attaches the wait queue
to the one of the mutex with thread 0x3000 as head.

removed waiters (step 5), and updates Q in user space if
necessary. Additionally, the waiters bit S is set if necessary
before unlocking.

It is also possible to design COND_REQUEUE in such a
way that the caller is not required to hold the mutex. Then
the first waiter is made the lock holder of the mutex S if it is
currently free. However, this would require a CAS operation
on S which could be forced into unbounded retries by user
space code.

The wait operation exposes a race condition between the
time it unlocks the mutex in user space and the time the kernel
checks C. Lost wakeup issues are normally handled by the
kernel comparing C and C ′, but if during that time exactly
232 wakeup operations are performed, C overflows to exactly
the same value and the check succeeds. Developers must be
aware of this ABA problem [9].

C. Dequeue Operation
A generic remove from wait queue operation is required

when waiting must be interrupted, for example when a timeout
expires or the thread is going to be deleted. On DEQUEUE, the
kernel does not know if the thread is currently suspended on
a condition variable or mutex wait queue. Therefore it locks
both wait queues at the same time. This can be done safely
when both user space objects refer to different addresses and
locks are taken in order of ascending addresses. After removing
the thread from the lock, DEQUEUE checks if the thread was
referenced in Q or Q′ and updates Q or Q′ accordingly. If Q
becomes zero, the call clears the waiters bit in S as well.

V. DISCUSSION

Here we discuss robustness and determinism aspects of our
approach. Basically, we have to consider that user code may
accidentally or deliberately manipulate either S, C, Q or Q′.

Until now, the encoding of the current lock holder in S is
just of informative nature and has no impact on the operation
of the kernel. More elaborate versions of the mutex user
space implementation may implement deadlock detection or a
recursion counter and may depend on S being correct, but the
problem is solely a problem of user space. The same applies
to C. The values of Q and Q′ are of more importance to the
kernel. If these are changed, the kernel cannot find the wait
queues any more. However, the wait queue itself is kept in
kernel space and therefore its integrity is not affected.

The kernel is robust against the following errors:

1) Q or Q′ are set to zero. Threads can no longer be woken
up on calls to mutex_unlock or cond_wake. But the

kernel always allows to cancel the waiting operation by
other means using DEQUEUE.

2) Q or Q′ are set to another thread currently waiting in the
queue. The kernel detects this by checking if the thread
is an eligible wait queue head. For FIFO queueing, the
check could be omitted, which then just affects the order
in which threads are woken up. Otherwise it would take
an unacceptable time of O(n) to locate the original head.

3) Q or Q′ are set to threads currently waiting in different wait
queues, or threads not in waiting state, or invalid thread
IDs. Again the kernel detects such conditions.

4) Q or Q′ are set to threads out of the scope of the lock.
The kernel can detect such errors by other means (e.g.
communication capabilities, not shown).

We can consider that all these errors have the same impact,
namely than an application may not release a locked mutex.
The fault remains isolated in the application and can not harm
the kernel or violate partitioning.

From a temporal point of view, none of the operations
requires searching or exposes unbounded behavior. All loops
are bounded to O(1) for WCET analysis.

VI. CONCLUSION AND OUTLOOK

We have shown a novel approach to implement an un-
bounded number of mutexes and condition variables using a
two-tier approach, with user space handling the uncontended
case and the kernel handling contention, and described the low
level protocols to be followed. We have also shown how to
implement futexes without a fine granular memory allocator.

The presented approach is a foundation to implement
other synchronizations means like semaphores, reader-writer
locks or barriers on top [5], or to extend the implementations
with a safety net of additional error checking or convenience
functionality like recursive mutexes. It is also possible to
implement timeout handling in all waiting operations or busy-
wait on a mutex for a certain time before suspending in the
kernel.

In future work, we would like to add support for priority
ordered wait queues in fixed-priority scheduling use cases.
Also we like to discuss the practicability of the approach when
using dynamic priority scheduling like EDF. Finally, we would
like to evaluate means to prevent priority inversion. At least,
a priority inheritance protocol seems implementable.

REFERENCES

[1] IEEE, “POSIX.1-2008 / IEEE Std 1003.1-2008 real-time API,” 2008.

[2] H. Franke, R. Russell, and M. Kirkwood, “Fuss, Futexes and Furwocks:
Fast Userlevel Locking in Linux,” in Proceedings of the 2002 Ottawa

Linux Symposium, 2002, pp. 479–495.

[3] “Initializecriticalsection function.” [Online]. Available:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683472%
28v=vs.85%29.aspx

[4] B. Schillings, “Be engineering insights: Benaphores,” Be Newsletters,
vol. 1, no. 26, May 1996.

[5] U. Drepper, “Futexes are tricky,” White Paper, Nov. 2011. [Online].
Available: http://people.redhat.com/drepper/futex.pdf

[6] U. Drepper and I. Molnar, “The native posix thread library for linux,”
Red Hat, Inc, Tech. Rep., Feb. 2003.

[7] D. Hart and D. Guniguntalay, “Requeue-pi: Making glibc condvars pi-
aware,” in Eleventh Real-Time Linux Workshop, 2009, pp. 215–227.

[8] “Lightweight pi-futexes.” [Online]. Available: http://lxr.linux.no/#linux+
v3.8.7/Documentation/pi-futex.txt

[9] M. M. Michael, “ABA prevention using single-word instructions,” IBM
Thomas J. Watson Research Center, Tech. Rep. RC23089, Jan. 2004.

60

