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FOREWORD

Welcome to Prague and the Fourth International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT). Although OSPERT is a relatively new work-
shop, it has quickly become an important venue for exchanging ideas about operating-systems
issues related to real-time and embedded systems. This volume contains the nine papers to
be presented at the workshop. This year’s workshop will also feature an invited talk by Peter
Zijlstra of Red Hat, entitled “Linux-rt: Turning a General Purpose OS into a Real-Time OS.”
Peter’s talk will focus on the linux-rt project, its history, current state, and future.

The contributed papers were read and evaluated by the program committee, but were not
formally refereed; it is expected that more polished versions of many of these papers will appear
in conferences and fully refereed scientific journals. The Program Committee would like to thank
all authors who submitted papers for consideration. The efforts of three external reviewers,
Dario Faggioli, Su Fang Hsiao, and Po-Liang Wu, who aided in the review process, are also
acknowledged.

After the workshop, a final workshop proceedings will be published as a technical report at the
University of North Carolina. Authors are encouraged to revise their papers, if needed, to reflect
issues and suggestions raised during the workshop. The final proceedings will be made available
on-line at the conference website (http://www.cs.unc.edu/∼anderson/meetings/ospert08/

OSPERT.html).

Partial funding for the workshop was provided by the ARTIST2 Network of Excellence on
Embedded Systems Design. This support is gratefully acknowledged. The efforts of Alan Burns,
Gerhard Fohler, Zdenek Hanzáek, and Giuseppe Lipari in helping to organize this event are also
appreciated.
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INVITED PRESENTATION

Linux-rt: Turning a General Purpose OS into a Real-Time OS

Peter Zijlstra, Red Hat

Talk Abstract

This talk will be about the linux-rt project, its history, current state and future. It will cover
the design decisions we made and highlight some of the practical techniques like run-time lock
validation and latency tracers that helped us to quickly spot and fix problems.

It will touch upon some of the recent developments in linux-rt such as rwlocks with full priority
inheritance support and adaptive spins for mutexes as well as talk about some of the work that
is currently in progress.

The talk will also focus on current and future challenges and how academic real-time researchers
can help solving those and by doing so bring our two communities closer together.

Speaker Bio

Peter Zijlstra is a professional Linux kernel hacker who has made significant contributions to
various core Linux subsystems including the VM and scheduler. He is one of the maintainers
of the lockdep/lockstat infrastructure and an active contributor to the linux-rt effort. He is
currently employed by Red Hat.
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An efficient implementation of the BandWidth Inheritance protocol
for handling hard and soft real-time applications in the Linux kernel ∗

Dario Faggioli, Giuseppe Lipari and Tommaso Cucinotta
e-mail: d.faggioli@sssup.it, g.lipari@sssup.it, t.cucinotta@sssup.it

Scuola Superiore Sant’Anna, Pisa (Italy)

Abstract

This paper presents an improvement of the Bandwidth
Inheritance Protocol (BWI), the natural extension of the
well-known Priority Inheritance Protocol (PIP) to resource
reservation schedulers. The modified protocol allows for a
better management of nested critical section, removes un-
needed overheads in the management of task block and un-
block events, and introduces a run-time deadlock detection
mechanism at no cost.

Also, an implementation of the new protocol on the Linux
kernel is presented, along with experimental results gath-
ered while running some synthetic application load. Pre-
sented results prove the effectiveness of the proposed solu-
tion in reducing latencies due to concurrent use of resources
and in improving temporal isolation among groups of inde-
pendent tasks. Also, we show that the introduced overhead
is low and negligible for the applications of interest.

1 Introduction

Embedded systems are nowadays part of our everyday
life. As their popularity and pervasiveness increases, these
devices are required to provide more and more functional-
ity, thus their complexity grows higher and higher. In par-
ticular, embedded systems now not only find application in
the domain of self-contained, hard real-time, safety critical
systems, but their applicability is undergoing a tremendous
growth in the range of soft real-time applications, with var-
ious degrees of time-sensitiveness and QoS requirements.

The requirements on the real-time operating system plat-
form on which such applications are implemented increases
in parallel. The RTOS must be robust (also to timing faults),
secure (also to denial of service attacks) and dependable.
Finally, it must support open and dynamic applications with
QoS requirements.

For these reasons, Linux is becoming the preferred
choice for a certain class of embedded systems. In fact,

∗This work has been partially supported supported by the European
FRESCOR FP6/2005/IST/5-034026 project.

it already provides many of the needed services: it has an
open source license and an huge base of enthusiastic pro-
grammers as well as a lot of software running on it. Fur-
thermore, it presents a standard programming interface.

Due to the increasing interest from the world of embed-
ded applications, Linux is also being enriched with more
and more real-time capabilities [13], usually proposed as
separate patches to the kernel, that are progressively being
integrated into the main branch. For example, a small group
of developers has proposed the PREEMPTRT patch which
greatly reduces the non preemptable sections of code in-
side the kernel, thus reducing the worst-case latencies. The
support for priority inheritance can be extended to in-kernel
locking primitives and a great amount of interrupt handling
code has been moved to schedulable threads. From a pro-
gramming point of view, Linux now supports almost en-
tirely the Real-Time POSIX extensions, but the mainstream
kernel still lacks support for such extensions like sporadic
servers or any Resource Reservation techniques, that would
allow the kernel to provide temporal isolation.

Resource Reservation (RR) is an effective technique to
schedule hard and soft real-time applications and to pro-
vide temporal isolation among them in open and dynamic
systems. According to this technique, the resource band-
width is partitioned between the different applications, and
an overrun in one of them cannot influence the temporal be-
havior of the others.

In standard Resource Reservation theory, tasks are con-
sidered as independent. In practical applications, instead,
tasks may interact due to the concurrent access to a shared
resource, which commonly requires the use of a mutex
semaphore in order to serialize those accesses. For example,
a Linux application may consist of one multi-threaded pro-
cess, and threads may interact and synchronize each other
through pthread mutexes. In this case, it is necessary to
use appropriate resource access protocols in order to bound
the priority inversion phenomenon [20]. While implemen-
tations of scheduling policies for QoS guarantees on Linux
exist [19, 1], they do not provide support for appropriate
management of interactions among threads.
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Contributions of this paper. In a previous work [14], the
Bandwidth Inheritance (BWI) Protocol has been proposed
as the natural extension of the Priority Inheritance Proto-
col [20] in the context of Resource Reservations.

In this paper, we extend that work with three important
contributions: first, we propose a simplification of the BWI
protocol that allows for a much more efficient implemen-
tation, for both memory and computational requirements.
This is particularly relevant in the context of embedded sys-
tems. We also prove that the simplifications do not compro-
mise the original properties of the protocol. Second, we
present an efficient deadlock detection mechanism based
on BWI, that does not add any overhead to the protocol it-
self. Third, we present a real implementation of the protocol
within the Linux operating system, based on the AQuoSA
Framework and the pthread mutex API, that makes the pro-
tocol widely available for soft real-time applications.

Also, we present experimental results that highlight the
effectiveness of our BWI implementation in reducing laten-
cies.

Organization of the paper The remainder of the paper
is organized as follows: Sec. 2 provides some prerequisite
definitions and background concepts. Sec. 3 summarizes
previous and alternative approaches to the problem. Sec. 4
describes our modification to the BWI protocol, focussing
on the achieved improvements. Sec. 5 focusses on details
about the actual implementation of the modified protocol
on Linux, while Sec. 6 reports results gathered from experi-
mental evaluation of the described implementation. Finally,
Sec. 7 draws some conclusions, and quickly discusses pos-
sible future work on the topic.

2 Background
2.1 System Model

A real-time taskτi is a sequence of real-time jobsJi,j ,
each one modeled by an arrival timeai,j , a computation
time ci,j and an absolute deadlinedi,j . A periodic (spo-
radic) task is also associated a relative deadlineDi, such
that ∀j, di,j = ai,j + Di, and a period (minimum inter-
arrival time)Ti such thatai,j+1 ≥ ai,j + Ti.

Given the worst case execution time (WCET) isCi =
maxj{ci,j}, the processor utilization factorUi of τi is de-
fined asUi = Ci

Ti
.

In this paper, we consideropen systems[9], where tasks
can be dynamically activated and killed. In open systems,
tasks belonging to different, independently developed, ap-
plications can coexist. Therefore, it is not possible to ana-
lyze the entire system off-line.

Also, hard real-time tasks must respect all their dead-
lines. Soft real-time tasks can tolerate occasional violations
of their timing constraints, i.e., it could happen that some
job terminates after its absolute deadline. The number of

missed deadlines over a given interval of time is often used
as a valid measure for the QoS experienced by the user.

An effective technique to keep the number of missed
deadlines under control is to use Resource Reservation [18,
2] scheduling algorithms. According to these techniques,
each task is assigned a virtual resource (vres1), with a max-
imum budgetQ and a periodP . Resource Reservations pro-
vide thetemporal isolationproperty to independent tasks: a
task is guaranteed to be scheduled for at leastQ time units
for every period ofP time units, but at the same time, in
order to provide guarantees to all tasks in the system, the
mechanism may not allow the task to execute for more than
that amount.

Many RR algorithms have been proposed in the litera-
ture, for both fixed priority and dynamic priority schedul-
ing, and the work presented in this paper is applicable to all
of them. However, our implementation is based on a variant
of the Constant Bandwidth Server.

2.2 Critical Sections

Real-time systems are often designed as a set of concur-
rent real-time tasks interacting through shared memory data
structures. Using classical mutex semaphores in a real-time
system is prone to the well known problem of unbounded
priority inversion [20]. Dealing correctly with such a phe-
nomenon is very important, since it can jeopardize the real-
time guarantees and cause significant QoS degradation and
waste of resources. Effective solutions have been proposed
in classical real-time scheduling algorithms, such as the Pri-
ority Inheritance Protocol (PIP), the Priority Ceiling Proto-
col (PCP) [20] and the Stack Resource Policy [4].

In particular, PIP is very simple to implement, it can
work on any priority-based scheduling algorithm (both for
fixed and dynamic priority) and does not require the user
to specify additional scheduling parameters. According to
PIP, when a taskτh is blocked trying to access a critical sec-
tion already locked by a lower priority taskτl, τh lends its
priority to τl for the duration of the critical section. When
τl releases the critical section, it is given back its priority. In
this paper we discuss an extension of the PIP for resource
reservations.

2.3 Constant Bandwidth Server

The Constant Bandwidth Server (CBS [2]) is a well-
known RR scheduling algorithm working on top of Earli-
est Deadline First (EDF [15]). As in any RR algorithm,
each task is associated avirtual resourcewith parametersQ
(the maximum budget) andP (the period). Eachvres can
be seen as a sporadic task with worst-case execution time
equal toQ and minimum inter-arrival time equal toP . The

1We use the term virtual resource instead of the classical term server,
to avoid confusion in readers that are not expert of aperiodic servers in
real-time scheduling.
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EDF system scheduler uses thevres parameters to schedule
the associated tasks.

The fundamental idea behind CBS is that each request
for a task execution is converted into a request of the cor-
respondingvres with associated a dynamic deadline, calcu-
lated taking into account the bandwidth of thevres. When
the task tries to execute more than its associatedvres bud-
get, thevres deadline is postponed, so that its EDF priority
decreases and it is slowed down.

The CBS algorithm guarantees that overruns occurring
on taskτi only affectτi itself, so that it canstealno band-
width assigned to any other task. This form of thetemporal
protectionproperty is also called Bandwidth Isolation Prop-
erty (BIP [2]).

2.4 Critical Sections and the CBS algorithm

Unfortunately, when two tasks belonging to different
vres share mutually exclusive resources, the bandwidth iso-
lation property is broken. In fact, one assumption of every
RR algorithm is that thevres with the highest priority should
be executed at each instant. However, when using mutex
semaphores, a task (and its correspondingvres) could be
blocked on the semaphore and not able to execute. Even if
we are able to bound the blocking time of eachvres by using
an appropriate resource access protocol like the PIP, we still
have to perform a careful off-line analysis of all the critical
section code, in order to be able to compute the blocking
time and use it in the admission control policy. Moreover,
using the PIP with resource reservations is not straightfor-
ward, since it is not clear, for example, the budget of which
vres should be depleted and the deadline of which should be
postponed when an inheritance is in place.

Such a limitation is hard to tolerate in modern systems,
since multi-threaded applications are quite common, es-
pecially within multimedia environments, and the various
tasks often need to communicate by means of shared mem-
ory data structures needing mutual exclusive access. For
this reason the BandWidth Inheritance protocol (BWI [14])
has been proposed as an extension of PIP suitable for reser-
vation based systems.

2.5 The BandWidth Inheritance Protocol

The description of BWI in this section is not meant to
be exhaustive, and the interested reader is remanded to [14]
for any further detail. The BWI protocol works according
to the following two rules:

BWI blocking rule when a taskτi blocks trying to access
a shared resourceR already owned by another taskτj ,
thenτj is added to the list of the tasks served by the
vres Si of τi. If τj is also blocked, the chain of blocked
tasks is followed until one that is not blocked is found,
and all the encountered tasks are added to the list of
Si;

BWI unblocking rule when taskτj releases the lock onR
and wakes upτi, thenτj is discarded from the list of
vres Si. If othervres addedτj to their list, they have to
replaceτj with τi.

BWI is considered the natural extension of PIP to re-
source reservations. In fact, when a task is blocked on a
mutex, the lock-owner task inherits its entirevres. In other
words, the owner taskτj can execute on its ownvres and in
the inheritedvres (the one with the highest priority), so that
the blocking time ofτi is shortened. Most importantly, the
BWI protocol preserves the bandwidth isolation properties
between non-interacting tasks.

A blocking chain between two tasksτi andτj is a se-
quenceHi,j = {τ1, R1, τ2, . . . , Rn−1, τn} of alternating
tasks and resources, such that, the first and the last tasks
in the chain areτ1 = τi and τn = τj , and they access,
respectively, resourcesR1 and Rn−1; each taskτk (with
1 < k < n) accesses resourceRk in a critical section nested
inside a critical section onRk−1. For example, the follow-
ing blocking chainH1,3 = {τ1, R1, τ2, R2, τ3} consists of
3 tasks:τ3 accesses resourceR2 with a mutexm2; τ2 ac-
cessesR2 with a critical section nested inside a critical sec-
tion onR1; τ1 accessesR1. At run-time,τ1 can be directly
blocked byτ2 and indirectly blocked byτ3.

Two tasksτi andτj areinteractingif and only if there ex-
ists ablocking chainbetweenτi andτj . The BWI protocol
guarantees bandwidth isolation between pairs of non inter-
acting tasks: ifτi andτj are not interacting, the behavior of
τi cannot influence the behavior ofτj and viceversa.

3 Related Work

Many practical implementations of the RR framework
have been proposed since now. In the context of general-
purpose OSes, the most widely known is probably Lin-
ux/RK [19], developed as a research project at CMU and
later commercialized by TimeSys. More recently, an imple-
mentation of the Pfair [5] scheduling algorithm for reserv-
ing shares of the CPU in a multi-processor environment, in
the Linux kernel, has been developed by H. Anderson et
al. [1] in theLITMUSRT project. However, to the best
of our knowledge, these approaches did not provide support
for mutually exclusive resource sharing.

A quite common approach [12] when dealing with crit-
ical sections and capacity-based servers is to allow a task
to continue executing when thevres exhausts its budget and
the task is inside a critical section. The extra budget the task
has been provided is then subtracted from the next replen-
ishments. Coupling this strategy with the SRP [4] reduces
the priority inversion phenomenon to the minimum. The
technique has been applied to the CBS algorithm in [6]. In
general, this approach is very effective for static systems
where all information on the application structure and on
the tasks is known a-priori. However, it is not adequate to
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open and dynamic systems. In fact, in order to compute
the preemption levelof all the resources, the protocol re-
quires that the programmer declares in advance all the tasks
that will access a certain resource. Moreover, thevres pa-
rameters have to be fixed, and cannot be easily changed at
run-time. Finally, this approach cannot protect the system
from overruns of tasks while inside a critical section.

An approach similar to BWI protocol has been imple-
mented in the L4 microkernel [21]. The Capacity-Reserve
Donation (CREDO) is based on the idea of maintaining a
task state contextand ascheduling contextas two, separated
and independently switchable data structures. According to
the authors, the technique can be applied to either PIP or
Stack-Based PCP. Although being quite effective this mech-
anism is thoroughly biased toward message passing micro-
kernel system architectures, and cannot be easily transposed
to shared memory systems. Furthermore, to enable PIP or
SRP on top of CREDO, it is necessary to carefully assign
the priority of the various tasks in the system, otherwise the
protocol can not work properly.

Also, in the context of micro-kernels, Mercer et al. [16]
presented an implementation of a reservation mechanism
on the real-time Mach OS. Interestingly, the implementa-
tion allowed for accounting the time spent within kernel
services, when activated on behalf of user-level reserved
tasks, to the reserves of the tasks themselves. Kernel ser-
vices might be considered, in such context, as shared re-
sources to which applications concurrently access. How-
ever, the problem of regulating application-level critical
sections managed through explicit synchronization primi-
tives, so to avoid priority inversion, is not addressed.

All this given, we say BWI is a suitable protocol for re-
source sharing in open, dynamic embedded systems, for the
following reasons:

• BWI is completely transparent to applications. As with
the PIP, the user must not specify additional scheduling
parameters, as “ceiling” or “preemption-level”;

• BWI provides bandwidth isolation between non-
interacting tasks, even in the case of tasks that overrun
inside a critical section. Therefore, it is not necessary
to implement any additional budget protection mecha-
nism for the critical section length;

• BWI is neutral to the underlying RR algorithm and
does not require any special property of the scheduler.
This allows us any modification of the scheduling al-
gorithm without the need to reimplement BWI.

4 Improvements to the protocol

In this section, we focus on the limitations of the original
formulation of the BWI protocol, and propose two modifi-
cations to its rules that, without compromising the guaran-
tees, allow for a simplification of the implementation. In

what follows, we assume that each task competing for ac-
cess to shared resources is served by a dedicatedvres.

4.1 Nested Critical Section Improvement

In presence of nested critical sections, the two BWI rules
do not correctly account for all possible situations. Consider
the case of a taskτi that blocks on another taskτj , after hav-
ing been added to somevres Sh, different from its original
one (Si), due to previous inheritance (i.e., another taskτh is
blocked waiting forτi to release some lock). By following
the blocking rule of BWI, taskτj is added only toSi, but,
because alsoτh is blocked waiting forτi, the blocking de-
lays induced onτh may be reduced ifτi would have added
to Sh as well.

In general, we are saying thatτj should be attached to
all the vres to which τi was bound (both directly and by
inheritance due to BWI) before blocking itself.

As an example, consider the situation depicted in Fig-
ure 1, where we have four tasks,τA, τB , τC and τD,
each bound to its ownvres. SA hasUSA

= 6/25 utiliza-
tion, SB hasUSB

= 3/20 utilization, USC
= 3/15 and

USD
= 4/10. τA, τC andτD use mutexm1 andτA andτB

use mutexm2. Also noticeτA acquires the second mutex
while holding the first one (nested critical section).

In this figure, and in all the figures of Sec. 6, symbols
L(i) and U(i) denote wait and signal operations on mu-
tex mi. Light-gray filled rectangles denote tasks executing
inside a critical section, with the number in the rectangle
being the acquired mutex. Vertical dashed arrows denote
the time instants a task is attached (and detached) to avres
different from its own one due to BWI inheritance. White
filled ones denote a task being able to execute inside avres
different from its original one thanks to BWI, with the num-
ber in the rectangle being the mutex that caused the inheri-
tance.

At time t = 7 τC blocks on mutexm1, owned byτA,
andτA is added to thevres of τC . Then, at timet = 11,
τD blocks on mutexm1 too. Again,τA is attached to the
vres of τD, and it can now run inside any of the threevres
exhausting their budget on time instantst = 9 (for τC ) and
t = 13 (for τD).

Suppose that at timet = 15 τA blocks on mutexm2:
honoring the original BWI rule,τB is added only to thevres
of τA, whereasτA remains attached to thevres of τD and
τC , although being blocked. In this way,τB can not take
advantage of the bandwidth assigned toτC andτD, delaying
their own unblocking. Notice this behavior is incidental: if
τC and τD would start executingafter τA blocks onm2,
thenτB would have been added to all thevres of the three
tasks.

4.2 Simplified BWI blocking rule

In order to face with the just shown issue, we propose a
rewrite of the BWI blocking rule as follows:

4
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Figure 1: example of nested blocking situation not correctly han-
dled by the original BWI protocol

new BWI blocking rule when a taskτi blocks while try-
ing to access a shared resourceR already owned by
another task, the chain of blocked tasks is followed un-
til one that is not blocked is found, let it beτj . Then,
τj is added to thevres τi belongs to. Furthermore,τi

is replaced withτj in all vres that previously addedτi

to their task list due to this rule, if any.

Basically, the difference between the original and the
new BWI formulation may be highlighted in terms of the
invariant property of the algorithms. To this purpose, con-
sider the wait-for-graph at an arbitrary point in time, where
nodes represent tasks and an edge from nodeτA to node
τB denotes that some resource is held byτB and requested
by τA. Now, consider any ready-to-run taskτj , and letGj

denote the set of tasks directly or indirectly blocked on mu-
texes held byτj . Well, the new BWI formulation has the
invariant property that the running task is bound to all the
vres of the tasks inGj , so that eachvres of any such task
needs to bound dynamically (due to BWI) at most one task
(the ready-to-run one,τj ), in addition to the one (blocked)
explicitly bound to it. Furthermore, the original BWI for-
mulation also required each of thesevres to be dynami-
cally bound (due to BWI) to all (blocked) tasks found in
the blocking chain: from the task explicitly bound to it up
to τj .

Therefore, the following property holds for the new BWI
formulation:

BWI one-blocked-task property Given avres Si, at each
time instant it can have in its list of tasks only one other
task in addition to its original taskτi.

This is achieved because, according to the new block-
ing rule, every time a taskτi blocks, if its mutex-owner is
blocked too, we need to follow the blocking chain until a
ready taskτj is found, and add it toSi. Obviously a mech-
anism which make it possible to traverse such a chain of
blocked task has to be provided by the operating system (as
the Linux kernel does). Furthermore, ifτi was on its own
already bound to other servers due to BWI, we need to re-
placeτi with τj in those servers, keeping at1 the number of

additionally bound tasks in those servers. Since each task
τi can, at timet, be blocked at most by only one other task
τj , the just stated property always holds.

As an example if we have:

• taskτA owningm1 and running;

• taskτB owningm2 and blocked onm1 (owned byτA);

• taskτC owningm3 and blocked onm2 (owned byτB);

when a fourth task, taskτD, tries to lockm3, it blocks.
According to original BWI protocol, we have to bindτC ,
τB andτA to the vres of τD. In the new formulation we
only bindτA (the sole running task).

The main consequence of the new blocking rule on
the implementation is lower memory occupation of the
data structure needed by BWI, what is particularly rele-
vant mainly in the context of embedded systems, especially
when the task set is characterized by tight interactions and
nested critical sections would cause the run-time creation of
non-trivial blocking trees. In fact, even this is not necessar-
ily of practical relevance (in a well-designed system inter-
actions should be kept at the bare minimum), the memory
overhead complexity of the new BWI formulation islinear
in the number of interacting tasks, while in the original BWI
formulation it wasquadratic.

4.3 Correctness

The original description of the BWI protocol [14] was
accompanied by a proof of correctness in the domain of
hard real-time systems. The proof aimed at showing that, if
the maximum interferences of the interacting tasks is prop-
erly accounted for in the admission control test, then the
system scheduled with BWI allows all tasks to respect their
deadlines. The following result constitutes the basis for the
proof:

Lemma 1. Each activevres always has exactly one ready
task in its list.

Proof. The lemma is clearly valid before any task blocks.
Assume that the lemma holds true until timet, when taskτi

blocks on a resource, and, following the chain of blocked
tasks,τj is selected. Our modified version of the BWI
blocking rule only differs from the original one in stating
that the running taskτj replacesτi in all the lists of thevres
where taskτi has been bound (as opposed to only the last
one). Notice thatτi has been added to thesevres because of
one running task in each of them blocked on a resource di-
rectly or indirectly shared withτi. Thus, just before block-
ing, if the lemma is true,τi was the only ready task in all
of them. Sinceτi is blocking,τj becomes on its turn the
only runnable task in everyvres, so the lemma continues to
hold.
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Although this result may be used to prove that the new
protocol is still correct, further details are omitted for the
sake of brevity.

4.4 Lightweight Deadlock Detection

Finally, we improved the BWI protocol by adding the
ability to detect deadlocks at run-time2:

Deadlock detection rule when applying the new BWI
blocking rule to a taskτi that blocks, for each taskτk

encountered while iterating the blocking chain ofτi, if
τk = τi, then a deadlock attempt is detected.

This is a lightweight yet effective approach for deadlock
detection and below is a proof of correctness of it.

Theorem 1. If there is a deadlock situation, the protocol
detects it at run-time.

Proof. As stated by Coffman et al. [7], necessary condition
for deadlock is that there is a cycle in the wait-for-graph
of the system. To detect a deadlock, every time a taskτi

blocks on another taskτj , we have to add an edge fromτi

to τj in the graph and check if a cycle has been created.
Suppose that just before timet there are no cycles, and so
no deadlock is in place, and that at timet task τi blocks.
Also consider the fact that, from any task, at most one edge
can exit, directed toward the task’s lock-owner. Therefore,
if a cycle has been created by the blocking of taskτi, then
τi must be part of the cycle. Hence, following the block-
ing chain fromτi, if a deadlock has been created, we will
come back toτi itself, and so our algorithm can detect all
deadlocks.

It is noteworthy that the deadlock detection rule may be
realized with practically zero overhead, adding a compari-
son in the search for a ready-to-run task, while we are fol-
lowing the chain of blocked tasks, according with the block-
ing rule.

5 BandWidth Inheritance Implementation
5.1 The Linux Kernel

Although not being a real-time system, the 2.6 Linux
kernel includes a set of features making it particularly suit-
able for soft real-time applications. First, it is a fully-
preemptable kernel, like most of the existing real-time op-
erating systems, and a lot of effort has been spent on re-
ducing the length of non-preemptable sections (the major
source of kernel latencies). It is noteworthy that the 2.6
kernel series introduced a new scheduler with a bounded
execution time, resulting in a highly decreased schedul-
ing latency. Also, in the latest kernel series, a modular
framework has been introduced that will possibly allow

2The method proposed here differs from the method proposed in [14],
as it is much more efficient.

for an easier integration of other scheduling policies. Sec-
ond, although being a general-purpose time-sharing kernel,
it includes the POSIX priority-based scheduling policies
SCHED FIFO andSCHED RR, that may result useful for
real-time systems. Third, the recently introduced support
in the kernel mainstream of the support for high-resolution
timers is of paramount importance for the realization of
high-precision customized scheduling mechanisms, and for
the general performance of soft real-time applications.

Unfortunately, the Linux kernel has also some character-
istics that make it impossible to realize hard real-time ap-
plications on it: the monolithic structure of the kernel and
the wide variety of drivers that may be loaded within, the
impossibility to keep under control all the non-preemptable
sections possibly added by such drivers, the general struc-
ture of the interrupt management core framework that privi-
leges portability with respect to latencies, and others. How-
ever, the wide availability of kernel drivers and user-space
libraries for devices used in the multimedia field constitutes
also a point in favor of the adoption of Linux in such ap-
plication area. Furthermore, recent patches proposed by
the group of Ingo Molnar to the interrupt-management core
framework, aimed at encapsulating device drivers within
kernel threads, are particularly relevant as such approaches
would highly increase predictability of the kernel behaviour.

At the kernel level, mutual exclusive access to critical
code sections is managed in Linux through classical spin-
locks, RCU primitives, mutexes and rt-mutexes, a variant
of mutexes with support for priority inheritance. The lat-
ter ones are particularly worth to cite, because they allow
for the availability of the PIP in user-level synchronization
primitives. This is not only beneficial for time-sensitive
applications, since thanks to the rt-mutex run-time sup-
port, we have been able to implement the BandWidth In-
heritance protocol without any modification to the kernel
mutex-related logics.

At the user/application level, locking and synchroniza-
tion may be achieved by means of futexes (Fast Uerspace
muTEX [11]) or of standard POSIX mutexes, provided by
the GNU C Library [10] and, on their turn, implemented
through futexes. One remarkable peculiarity of futexes and
POSIX mutexes, is that their implementation on Linux in-
volves the kernel (thus a relatively expensive system call)
only when there is a contention that requires arbitration.

5.2 The AQuoSA Framework

The CPU scheduling strategies available in the standard
Linux kernel are not designed to provide temporal protec-
tion among applications, therefore they are not suitable for
time-sensitive workloads. The AQuoSA framework [17]
(available at http://aquosa.sourceforge.net) aims at filling
this gap, enhancing a standard GNU/Linux system with
scheduling strategies based on the RR techniques described
in Sec. 2.3.
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AQuoSA is designed with a layered architecture. At
the lowest level3 there is a small patch (Generic Scheduler
Patch, GSP) to the Linux kernel that allows dynamically
loaded modules to customize the CPU scheduler behaviour,
by intercepting and reacting to scheduling-related events
such as: creation and destruction of tasks, blocking and
unblocking of tasks on synchronization primitives, receive
by tasks of the specialSIGSTOP andSIGCONT signals).
A Kernel Abstraction Layer (KAL) aims at abstracting the
higher layers from the very low-level details of the Linux
kernel, by providing a set of C functions and macros that
abstract the needed kernel functionalities. The Resource
Reservation layer (RRES) implements a variant of the CBS
scheduling policy on top of an internal EDF scheduler. The
QoS Manager layer allows applications to take advantage
of Adaptive Reservations, and includes a set of bandwidth
controllers that can be used to continuously adapt the budget
of a vres according to what an application needs. An user-
space library layer allows to extend standard Linux applica-
tions to use the AQuoSA functionality without any further
restriction imposed on them by the architecture.

Thanks to an appropriately designed access control
model [8], AQuoSA is available not only to theroot user (as
it happens for other real-time extensions to Linux), but also
to non-privileged users, under a security policy that may be
configured by the system administrator.

An interesting feature of the AQuoSA architecture is that
it does not replace the default Linux scheduler, but coexists
with it, giving to soft real-time tasks a higher priority than
any non-real-time Linux task. Furthermore, the AQuoSA
architecture follows a non-intrusive approach [3] by keep-
ing at the bare minimum (the GSP patch) the modifications
needed to the Linux kernel.

5.3 Bandwidth Inheritance Implementation
Design goals and choices The implementation of the
BWI protocol for AQuoSA has been carried out with the
following design objectives:

• to provide a full implementation of BWI;

• to allow for compile-time disabling of BWI;

• to allow the use of BWI on a per-mutex basis;

• to impact as low as possible on the AQuoSA code;

• to have as little as possible run-time overheads.

In order to achieve such goals, our implementation:

• uses the C pre-processor in order to allow compile-
time inclusion or exclusion of the BWI support within
AQuoSA;

• does not modify the Linux kernel patch (i.e., BWI is
entirely implemented inside the kernel modules);

3For a more detailed description, the interested reader may refer to [17].

• does not modify the libraries and the APIs;

• does not remove or alter the core algorithms inside the
framework, especially with respect to:

– scheduling: it is not necessary to modify the
implementation of various scheduling algorithms
available inside AQuoSA;

– vres queues: we do not modify the task queues
handling, so that the old routines continue to
work seamlessly;

– blocking/unblocking: when BWI is not re-
quired/enabled the standard behaviour of AQu-
oSA is not modified by any means.

Using BWI Since BWI is the natural extension of PIP
for RR-based systems, in our implementation the pro-
tocol is enforced every time two or more tasks, with
scheduling guarantees provided through AQuoSA RRvres,
also share a POSIX mutex that has been initialized with
PTHREAD PRIO INHERIT as its protocol. This way the
application is able to choose to use BWI or not on a
per-mutex basis. Furthermore, all the code already using
the Priority Inheritance Protocol automatically benefits of
BandWidth Inheritance, if the tasks are attached to some
vres.

Deadlock detection Once a deadlock situation is de-
tected, the current implementation may be configured for
realizing one of the following behaviors: 1) the system for-
bids the blocking task from blocking on the mutex, and re-
turns an error (EDEADLK); 2) the system logs a warning
message notifying that a deadlock took place.

5.4 Implementation Details
The BWI code is completely integrated inside the AQu-

oSA architecture and only entails very little modification to
the following software components:

• the KAL layer, where the KAL API has been extended
with macros and functions exploiting the in-kernel rt-
mutexes functionality, for the purpose of providing, for
each task blocked on an rt-mutex4, the rt-mutex on
which it is blocked on, and the task that owns such an
rt-mutex;

• the RRES: where the two BWI rules are implemented.

The core of the BWI implementation is made up of a few
changes to the AQuoSA data structures, and of only four
main functions (plus a couple of utility ones):

1. rres bwi attach(), called when a task is at-
tached to avres;

4Note that such information is available inside the kernel only for rt-
mutexes, for the purpose of implementing PIP.
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2. rres bwi block(), called when a task blocks on
an rt-mutex, that enforces the new BWI blocking rule
(Sec. 4.1);

3. rres bwi unblock(), called when a task un-
blocks from an rt-mutex, that enforces the BWI un-
blocking rule;

4. rres bwi detach(), called when a task is de-
tached from avres.

The produced code can be found on the AQuoSA CVS
repository, temporarily residing in a separate development
branch. It will be merged soon in the very next releases of
AQuoSA. It has been realized on top of the 2.6.21 kernel
release and tested up to the 2.6.22 release.

In Tab. 1 the impact of the implementation on the source
code of AQuoSA is briefly summarized.

added modified removed

source files 2 0 0

lines of code 260 6 0

Table 1: Impact of our modification on AQuoSA sources.

6 Experimental evaluation

In this section we present some results of the experi-
ments we ran on a real Linux system, with our modified ver-
sion of AQuoSA installed and running, and with a synthetic
workload provided by ad-hoc designed programs. These ex-
periments are mainly aimed at highlighting features of the
BWI protocol under particular blocking patterns, and gath-
ering the corresponding overhead measurements.

6.1 Examples of execution

In the first example we have two tasks,τA andτB, shar-
ing a mutex. τA has a computation time of2 msec and a
period of5 msec, and is given a reservation of2 msec ev-
ery 5 msec. τB has a computation time of6 msec and a
period of15 msec, and is given a reservation of2 msec ev-
ery 5 msec. In Fig. 2 we show the two schedules obtained
with (bottom schedule) and without (top schedule) BWI.
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Figure 2: BWI effectiveness in reducing the tardiness

Notice that the use of BWI notably reduces the tardi-
ness of both tasks, improving the system performance. This
comes from the fact thatτB always arrives first and grabs
the lock on the shared mutex. If BWI is not used, thenτA is
able to lock the mutex and run only afterτB ran for2 msec
each5 msec time interval and completed its6 msec execu-
tion (at which instant it releases the lock). Thus,τA skips
repeatedly the opportunity to run every twovres instances
out of three: quite an outstanding waste of bandwidth. If
BWI is in place, as soon asτA arrives and blocks on the mu-
tex,τB is attached to itsvres and completes execution much
earlier, so thatτA is now able to exploit twovres instances
out of three, and the system does not waste any reserved
bandwidth at all.

In Fig. 3 we show how the protocol is able to effectively
enforce bandwidth isolation, by means of an example con-
sisting of 5 tasks:τA andτC sharingm1, τD andτE sharing
m2, andτB. Notice thatτA does not share any mutex with
τE . Also, τB has an earlier deadline thanτC andτE , but a
later one thanτA, and this is a possible cause of priority in-
version. When BWI is not used (top schedule), afterτC and
τE having lockedm1 andm2 (respectively), they are both
preempted byτB , and the inversion occurs. Furthermore,
as a consequence ofτE succeeding in lockingm2, since it
has earlier deadline thanτC , τA misses its deadline, which
means bandwidth isolation is not preserved.
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Figure 3: Example of BWI enforcing bandwidth isolation

On the other hand, when using BWI (bottom schedule),
priority inversion is bounded, sinceτB is no longer able to
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preemptτC nor τE . Moreover, the behaviour ofτE andτD

can only affect themselves, between each others, and can no
longer causeτA to miss its deadline, and this is the correct
behaviour. Indeed,τD andτE are interacting tasks, and it is
not possible to provide reciprocal isolation between them.

In the last example, in Fig. 5, we demonstrate the ef-
fect of BWI on bandwidth and throughput. We see (with
no reclamation policy enabled) the protocol removes the
waste of bandwidth due to blocking. In fact, while a task
is blocked the bandwidth reserved for itsvres can not be
exploited by anyone else, if BWI is not in place. This is
not the case if we use BWI, since when a task blocks its
lock-owner is bound to such avres and can consume the
reserved bandwidth. Furthermore, thanks to our modifica-
tion to the blocking rule (Sec. 4.1), this is also true in case
of nested critical sections. For this example we used eight
tasks,τA, τB, . . . , τH . The mutexes are five withτA using
m0, m1 andm2; τB usingm2, m3 andm4; τC usingm1

andm4; τD usingm1; τE usingm4; τF usingm2; τG using
m0; τH usingm0 too. Each taskτi is bound to avres with
Ui = 10/100 (10% of CPU). The locking scheme is choose
to be quite complex, in order to allow blocking on nested
critical sections to occur. As an example of this in Fig. 4 the
wait for graph at timet = 40 sec, when all the tasks butτA

are blocked, is depicted.

Figure 4: Wait-for graph for the example in Fig. 5. The numbers
beside each task are the mutex(es) it owns. The number next to
each edge is the mutex the task is waiting for.

Coming back to Fig. 5, the thick black line is the total
bandwidth reserved, for each time instantt, for all the ac-
tive vres. The thin black horizontal line represents the av-
erage value of the bandwidth. The thick gray line, instead,
is the CPU the various running tasks are actually using and
the thin gray line is its mean value. The thick black curve
stepping down means a task terminated and itsvres being
destroyed, and so time values on the graphs are finishing
times.

Comparing the two graphs it is evident that, when BWI
is used (left part),100% of the reservedCPU bandwidth is
exploited by the running tasks, both instantaneously and on
average. On the contrary, without BWI (right part) there
exist many time instants during which the bandwidth that
the running tasks are able to exploit is much less than what it
has been reserved at that time, and the mean value is notably
lower than the reserved one too. This means some reserved
bandwidth is wasted. Finally, notice finishing times are are

Event Max. exec. (µsec) Avg. exec. (µsec)

blocking
BWI unused 0

used 1

BWI unused 0.01
used 0.169

unblocking
unused 0

used 3

unused 0.052
used 0.116

Table 2: Max and mean execution times, with and without BWI

much smaller with BWI enabled.

6.2 Overhead evaluation
We also evaluated the computational overhead intro-

duced by our implementation. We ran the experiments de-
scribed in the previous section on a desktop PC with 800
MHz Intel(R) Centrino(TM)CPU and 1GB RAM and mea-
sured mean and maximum times spent by AQuoSA in corre-
spondence of task block and unblock event handlers, either
whenPTHREAD PRIO INHERIT was used and not.

BWI context switches #

unused
taskτA 26
taskτB 34

used
taskτA 25
taskτB 34

Table 3: context switch number with and without BWI using pe-
riodic sleeping tasks

Tab. 2 shows the difference between the measured values
with respect to the ones obtained when running the original,
unmodified version of AQuoSA (average values of all the
different runs)5.

BWI context switches #

unused
taskτA 607
taskτB 414
taskτC 405

used
taskτA 343
taskτB 316
taskτC 405

Table 4: Context switch number with and without BWI using
greedy tasks.

As we can easily see, the introduced overhead is negli-
gible for tasks not using the protocol. Anyway, also when
BWI is used, the overhead is in the order of one tenth of
microsecond, and this is definitely an acceptable result.

With respect to context switches, we see in Tab. 3 that the
protocol has practically no effect if typical real-time tasks,
with periodic behaviour, are considered.

On the contrary, if “greedy” tasks (i.e., tasks always run-
ning without periodic blocks) are used, Tab. 4 shows that
the number of context switches they experience is dramat-
ically smaller when using BWI. This is due to the bonus
bandwidth each task gets thanks to the protocol.

7 Conclusions and Future Work

In this paper, we presented an improved version of the
BWI protocol, an effective solution for handling critical sec-

5Note that, in the latter case, the use ofPTHREAD PRIO INHERIT by
tasks implies the use of the original PIP protocol, not the BWI one.
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Figure 5: Resource usage with BWI

tions in resource reservation based systems. We also pro-
posed an implementation of the protocol inside AQuoSA, a
reservation framework working on Linux. Finally, we ran
some experiments in order to evaluate the overhead the pro-
tocol introduces when used on such a concrete system.

Our modifications improve correctness and predictabil-
ity of BWI, enable deadlock detection capabilities and en-
force better handling of nested critical sections. The im-
plementation is lean, simple and compact, with practically
no need of modifying the framework core algorithms and
structures. The experimental results show this implemen-
tation of BWI is effective in allowing resource sharing and
task synchronization in a real reservation based system, and
also has negligible overhead.

Regarding future works, we are investigating how to in-
tegrate ceiling like mechanisms inside the protocol and the
implementation, in order to better deal with the problem of
deadlock, so that we can prevent instead of only check for
it. Work is also in progress to modify a real multimedia
application so that it will use the AQuoSA framework and
the BWI protocol. This way we will be able to show if our
implementation is useful also inside real world applications
with their own blocking schemes.

Other possible future works include the investigation
of more general theoretical formulation to extend the RR
methodologies and the BWI protocol to multiprocessor sys-
tems. Also, it would be interesting to adapt the AQuoSA
framework to thePREEMPT RT kernel source tree, so to
benefit from its interesting real-time features, especially the
general replacement, within the kernel, of classical mutexes
with rt-enabled ones.
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ABSTRACT
This paper introduces a methodology for modeling power
and energy consumption of embedded systems running op-
erating systems. We notice that internal services of the oper-
ating system such as interprocess communications, schedul-
ing, context switches are not the major cause of power and
energy consumption in an embedded system.

Based on this observation, we have applied our methodology
to embedded peripheral devices managed by the operating
system. The proposed model is general. In this paper, it is
illustrated by the Ethernet standard peripheral device. We
analyze the key parameters affecting its power and energy
consumption and focus on the relationship between energy
consumption and software and hardware parameters like the
transmission protocol and the frequency of the processor.
Then, we propose a power and energy consumption model,
the parameters of which are set after real measurements.

Experimental results are presented for Montavista Linux,
an RTOS ported and executed on the XUP Virtex-II pro
development board embedding a powerpc processor.

General Terms
Keywords
1. INTRODUCTION
Energy and power consumption are significant constraints
in the design of embedded systems. To reduce the power
and energy consumption of these systems, it is necessary to
estimate the energy consumption of the system components
at the first design phases, when implementation decisions
have not been made yet. This requires high level power and
energy models.
The increasing complexity of embedded system applications
has led to the use of operating systems which have hard
and/or soft real time constraints. They are considered as
a software layer between the system resources (processor,
memory and peripheral devices) and the applicative tasks.

Limited power budgets of embedded systems have made it
necessary to consider the OS influence on power and energy
dissipation. The OS sources of consumption could be either
the internal services (scheduling, context switch, IPC,...) or
device management services.
In a previous study [6], we introduced high level power mod-
els for embedded processors. OS routines consumption has
been estimated this way. Now, we propose a methodology to
model consumption of peripheral devices managed by em-
bedded operating systems.
The methodology is based on physical measurements re-
alized on a standard reconfigurable board, namely, Xilinx
Virtex II board that contains a RTOS, Montavista Linux,
running on a PowerPC processor. The trend for variable-
frequency designed processors has led us to consider the fre-
quency of the processor as one of the model parameters. We
have selected a standard peripheral device as a case study:
the Ethernet interface.
The remainder of the paper is organized as follows. Section
2 gives an overview of related work. Section 3 describes our
methodology. Section 4 describes the hardware and soft-
ware frameworks for experiments. Section 5 presents the
energy and power consumption model of the Ethernet inter-
face managed by the RTOS routines and drivers. Finally,
we summarize our solution and conclude in section 6.

2. RELATED WORK
Much of the work on energy and power consumption mod-
eling and estimation of real time operating systems [3, 4, 7]
only considers the internal services of the OS.

Analysis and/or Modeling of power consumption due to pe-
ripheral devices management was treated by few research
works [1], even though it corresponds to the most important
part.

Tan et al. [7] were the first authors who dealt with modeling
the energy consumption of operating systems at the kernel
level. They derived energy consumption macro models for
two embedded OS’s, µC/OS and Linux OS. However, they
did not develop models for I/O driver energy consumption.

Dick et al. [4] analyzed the energy consumption of the
µC/OS RTOS when running several embedded applications.
They targeted a Fujitsi SPARClite processor based embed-
ded system. This work represents only an analysis of RTOS
policies on embedded system power consumption. The au-
thors did not develop an energy consumption model.
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Acquaviva et al. [1] characterized the energy consumption
of the eCos Real Time Operating System running on a pro-
totype wearable computer, HP’s SmartBadgeIII. They an-
alyzed the energy impact of the RTOS both at the kernel
and the Audio Driver Level. This work focused on the re-
lationship between energy consumption and processor fre-
quency. The authors analyzed but did not model the energy
consumption of internal services and I/O drivers of the op-
erating system.

Vahdat et al. [8] conducted a general study on aspects of
Operating System design and implementation to improve
energy efficiency. They investigated low power modes of
embedded devices and proposed energy efficient techniques
to use operating system functionalities.
A comparative study of different approaches is exposed in
table 1. From this table, we can see that almost no en-
ergy consumption models address memory and peripheral
device management. Since energy consumption of OS inter-
nal services is insignificant in comparison with the energy
consumption of I/O devices access [9], we are interested in
analyzing and modeling Embedded Operating System man-
agement of I/O devices access by applicative tasks.

3. RTOS ENERGY AND POWER CONSUMP-
TION MODELING AND ESTIMATION

The purpose of our approach is to model the energy and
power consumption of an embedded operating system man-
aging several embedded devices such as Ethernet interface,
flash memory. Interactions between applicative tasks, em-
bedded OS and Hardware Architecture are showed in Fig.1.

3.1 Microblaze and µC/OSII case study
We conducted a study on the energy consumption of RTOS
internal services using a Microblaze core processor and the

Table 2: Energy and power dissipation of µC/OSII
services

RTOS service Average
Power con-
sumption

Average
Energy con-
sumption

Task creation 454mW 100µJ

Mailbox creation 439mW 1,2µJ

Message queue cre-
ation

435mW 1,74µJ

Mutex creation 438mW 1,35µJ

Semaphore creation 441mW 1,25µJ

Memory partition
creation

430mW 1,88µJ

Scheduler 461mW 5,34µJ

(tick period=10ms)

Scheduler 459mW 11,17µJ

(tick period=20ms)

Scheduler 458mW 17,72µJ

(tick period=30ms)

µC/OSII RTOS. The target FPGA is embedded in the Xil-
inx Virtex II pro development board. We measured the
average power and energy dissipation of the RTOS primi-
tives by repeatedly calling them in test programs. Further-
more, we characterized the energy dissipation of the sched-
uler. The experimental results, presented in Table 2, showed
that power consumption does not vary so much with RTOS
primitives. Actually, power consumption is usually observed
constant with any application executing on a scalar proces-
sor [2]. Energy dissipation varies with Texec of basic services.
The most important source of dissipation is task creation
primitive which only occurs at start time (no dynamic task
creation with µC/OSII). In the case of scheduler, we no-
tice that energy dissipation is increasing due to idle times
introduced by longer scheduling period.

3.2 Rational for energy consumption model-
ing of RTOS management of peripheral
devices

We make power consumption and performance studies on
a typical image processing application using the µC/OSII
and the Microblaze soft core. The application contains 7
tasks, calls semaphores, mailboxes and generates 14 context
switches per application period. We measured the RTOS
temporal overhead, it represents 0,2% of the total execution
time. Consequently the energy overhead is the same.
Furthermore, in a study performed by A. Weissel [9], power
measures realized on an iPAQ3970 handheld have shown
that the processor and memory consumption part is 23%
of the whole system power dissipation, LCD part is 18%,
wireless interface is 31% and hard disk is 26%. From those
results, we can see that peripheral devices contribute signif-
icantly to total power consumption.
We can conclude that the energy consumption of the inter-
nal services of the RTOS is not significant, especially in the
case of data flow applications. On the other hand, periph-
eral devices managed by the OS are a significant source of
power and energy dissipation.
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Table 1: Comparison between embedded OS’s Energy Consumption Models

OS Services Energy Consumption
Analysis

Model System
Calls

Inter
Process
Communi-
cations

Context
Switch

Scheduling Memory
Manage-
ment

Peripheral
Device
Manage-
ment

Analysis OS/Processor

A. Acquaviva
et al. [1]

characterized not charac-
terized

characterized not charac-
terized

not charac-
terized

characterized
(audio
driver)

physical
measures

eCos / Stron-
gARM 1100

K. Baynes et
al. [3]

characterized characterized characterized characterized not charac-
terized

not charac-
terized

Simulation µC/OS Echidna
NOS / Motorola
MCORE

R.P. Dick et
al. [4]

characterized characterized characterized characterized not charac-
terized

not charac-
terized

physical
measures

µC/OS / Spar-
clite

Tan et al. [7] modeled modeled modeled modeled not modeled not modeled Simulation µC/OS / Spar-
clite

A. Weissel [9] modeled with Processor/Memory events modeled physical
measures

Linux / Intel
XScale

Application
Parameters
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Parameters

Architectural
Parameters
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Figure 2: Model Definition Steps

3.3 Methodology
Power and energy estimation methodology is divided into
two parts, model definition and the estimation process.

3.3.1 Model Definition
We perform model building for each hardware component
related to the execution of applications using an operating
system on an embedded architecture. Model Definition is
composed of three steps (cf. Fig.2).

The first step is a functional-level power analysis of the
target architecture components. This analysis provides us
with a set of parameters that could impact the power and

Application
Parameters

OS
Parameters

Architectural
Parameters

P
T
E

Estimation

Model
Library

OS
Code

Application
Code

Architecture
Description

Parameters
Extraction

Power  Model

Energy Model

Performance Model

Figure 3: Estimation Process

energy consumption. At the characterization step, we deter-
mine, by using physical measures, consumption laws describ-
ing the average supply current’s evolution relative to these
parameters. We also carry out performance analysis of the
OS based application execution and discern relevant param-
eters that influence the performance execution. Then, we
determine performance laws describing the execution time
evolution relative to these parameters. At the final step, we
merge power consumption and performance models to com-
pute energy consumption laws.

3.3.2 Estimation Process
The model definition results in a model of the embedded
target component, such as processor, memory and periph-
eral devices. Software parameters are extracted from the
application code. Hardware parameters are extracted from
hardware description files. The model uses the selected pa-
rameter values as inputs and accounts for all power and
energy consumption sources. Software parameters are ex-
tracted from the application code. The estimation process
is explained in Fig.3.

4. SYSTEM OVERVIEW
In this section we describe the target system for our exper-
imental measurements. The Hardware is a XUP Virtex-II
pro development board, while the OS is Montavista Linux, a
real time embedded operating system from Montavista Soft-
ware that we ported to the target platform.
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4.1 The Hardware Platform
Our power and energy consumption modeling methodology
has been conducted on an experimental framework com-
posed of an XUP Virtex-II pro development board, a 256MB
SDRAM memory, a 512 MB compact Flash and an Ether-
net interface. The Virtex-II pro implements PowerPC 405,
which is a simplified version of IBM PowerPC processor.
Two PowerPC cores, memory management unit and data
and instruction cache are integrated in the same chip.
Many I/O controllers are integrated in the FPGA, such as
audio, Ethernet, UART, compact flash and SDRAM.

4.2 The Software Platform
The operating system that we analyze in this study is the
Montavista embedded Linux 3.1. It is based on the 2.4.6
linux kernel, is preemptive and integrates a fixed priority
low overhead real time scheduler. Montavista is considered
a real time operating system because it introduces High res-
olution Timers, offering developers increased control over
real-time applications.
To analyze the dynamic behavior and to retrieve perfor-
mance information, we have extended Montavista kernel
with the Linux Trace Toolkit. LTT provides a modular way
of recording and analyzing all significant OS events related
to any subset of running processes. The LTT time and mem-
ory overhead is minimal (< 2.5% when observing core kernel
events) [10].

5. ETHERNET COMMUNICATIONS ENERGY
AND POWER CONSUMPTION MODEL

We select a standard peripheral device, the Ethernet inter-
face, as a representative example implemented in most of
embedded systems. As a first step, we identified the key pa-
rameters that can influence the power and energy consump-
tion of Ethernet communications. Then we conducted physi-
cal power measures on the XUP pro development board, and
took execution time values from the traces obtained by LTT.
Measures were realized when running different testbenches
that contain RTOS routines stimulating the Ethernet inter-
face. Once we obtained all measures, we built the power and
energy consumption model of the Ethernet interface.

5.1 Analysis of Relevant Parameters
Our study is focused on the effect of the operating system
on power and energy consumption of embedded system com-
ponents. In the case of the Ethernet interface component,
we identified hardware and software parameters influencing
energy consumption.

5.1.1 Hardware Parameters
When sending data from the applicative tasks to the Eth-
ernet controller, the OS encapsulates data to form packets
conforming to the TCP or the UDP protocol. As shown in
Fig.4, the encapsulation process is performed by the kernel
services and the device driver. The OS sends all computing
tasks to the processor. These tasks require clock cycles, so
processor frequency should be a parameter of models. The
Ethernet Controller is connected with the processor and the
main memory through the system bus, so the frequency of
the bus is also a parameter of the model.
The effects of processor cache misses on the power and en-
ergy consumption also should be considered. In our case,

two configurations can be used. In the first configuration,
when there are cache misses, the processor fetches data from
the FPGA block RAM, and for the second configuration,
from the external SDRAM. In conclusion, hardware param-
eters for our models are processor frequency, bus frequency
and primary memory type (BRAM or.

5.1.2 Software Parameters
Software parameters are related to the applicative tasks and
the operating system services. At the application level, the
significant parameter is the IP packets data size. The max-
imum data size corresponds to the maximum IP packet size
(64 kb) minus the packet header size.
At the operating system level, we tested two different trans-
mission protocols: the User Datagram Protocol (UDP) and
the Transmission Control Protocol (TCP) [5]. TCP is a
reliable stream delivery service. This means that the infor-
mation is guaranteed to arrive, or an error will be returned.
UDP is connectionless and unreliable which means that it
does not establish a virtual circuit like TCP, nor does it
demand acknowledgement. UDP prioritizes speed over reli-
ability.

5.2 Power and Energy Characterization
We performed power consumption characterization for three
components of the XUP board as shown in Fig.5.
The first component is the core processor which is powered
by a 1.5 V power supply. The second corresponds to the
FPGA I/O which are powered by a 2.5 V power supply such
as the MAC Ethernet controller. The third component is
the physical Ethernet controller which is powered by a 3.3 V
power supply.
We used test programs that only stimulate the OS network-
ing services. Therefore, only the processor, RAM and Ether-
net Interface are solicited. We measured the average supply
current of the processor core, the MAC Ethernet Controller
and the physical Ethernet controller in relation to the vari-
ation of each software and hardware parameter. Curves fit-
ting this data yields the consumption laws.
Using the program execution time Texe given by LTT traces,
we also compute average energy (E = Itotal ∗ VDD ∗ Texe).

5.3 Models
5.3.1 Power consumption laws
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Figure 7: Current variation according to processor frequency

Figure 5: Embedded System Components Charac-
terized

Table 3: Power laws

Processor Pproc(mW ) = 0.45 ∗ Fproc(MHz) + 315

MAC controller PMAC(mW ) = 0.65∗Fproc(MHz)+2100

PHY controller PP HY (mW ) = 1096.22

To determine the power consumption variation, we realized
current measures when sending data from the XUP board
to a machine on the local network. We tuned the IP packet
data size from 8b to 64kb and used TCP and UDP protocols.
We fixed the bus frequency to the maximum (100MHz), and
we took measures for three processor frequencies (100, 200,
300 MHz). Fig.6 shows the evolution of the current when
varying the IP packet data size. From the curves, we can
notice that for each processor frequency and each transmis-
sion protocol, the current is approximately constant even if
the IP packet data size is variable. In this case, the most
significant parameter of the processor power consumption is
its frequency. In fact, Fig.7 shows, for each power supply,
the evolution of the current for different processor frequen-
cies. The curve init corresponds to the initial state when the
RTOS is running and no data is sent on the Ethernet. Power
dissipation can be considered linear with the processor fre-
quency for the processor and MAC controller component.
For the PHY controller, power dissipation can be consid-
ered constant. The power consumption mathematic laws
of the processor, MAC controller and PHY controller are
represented by the equations in Table 3. For the three laws,
the average error between power consumption measured and
values estimated by the models is 3,5%, the maximum error
is 9%.

5.3.2 Energy consumption laws
Following the methodology defined in section 3.3, we made
performance analysis of the whole system. Then, we calcu-
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Table 4: Mac Controller Energy Consumption (µJ) per byte transmitted

UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP

8 57,915 40,532 37,252 20,672 41,280 16,612 57,938 35,615 40,781 19,641 27,713 18,000

100 4,906 4,443 2,968 2,298 2,749 2,811 5,229 4,066 3,137 2,520 2,496 2,167

500 1,146 2,349 0,772 1,096 0,789 1,047 1,270 1,360 0,864 0,900 0,641 0,806

1500 0,651 0,932 0,441 0,648 0,404 0,618 0,707 0,891 0,481 0,643 0,415 0,598

16384 0,386 0,594 0,280 0,423 0,264 0,432 0,400 0,576 0,288 0,423 0,234 0,410

32768 0,372 0,583 0,295 0,404 0,250 0,409 0,379 0,577 0,274 0,410 0,233 0,402

65536 0,365 0,543 0,278 0,434 0,237 0,388 0,438 0,531 0,280 0,383 0,237 0,394
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Figure 8: Energy variation per byte transmitted according to IP packet data size

late energy dissipation values in relation to the variation of
all the model parameters, i.e., bus frequency, processor fre-
quency, primary memory, IP packet data size and transmis-
sion protocol. We obtained energy values for the processor,
MAC controller and PHY controller. Energy consumption
per byte transmitted for the MAC controller are exposed in
Table 4, which indicates a complex relation among the pa-
rameters.
The evolution of energy consumption per byte according to
IP packet data size is shown in Fig.8.
We infer from the analysis of Fig.8 that using BRAM or
SDRAM as a principal memory does not influence energy
consumption. In the other hand, processor frequency, trans-
mission protocol and IP packet data size are significant pa-
rameters. We studied the influence of the two software pa-
rameters, and then developed the energy model laws. For
each power supply, processor frequency and transmission
protocol, we obtained a law functions of IP packet data size
parameter. Then the energy model is composed of several
laws that depend on hardware and software parameters.
Fig.9 shows the evolution of the MAC controller energy con-
sumption for 200MHz processor frequency and functions of
IP Packet data size. We have divided the graphic in two
parts: the first part corresponds to IP packet data size vary-
ing from 8b to 1500b, the second corresponds to IP packet
data size from 1500b to 64kb. We can see that UDP proto-
col consumes less energy than TCP except for small packets
(<=100byte). From this experimental observation, which is
applicable to all the curves of Fig.8, we remark that contrary
to received ideas, TCP generates less energy overhead than
UDP for small packets data size .
In Table 5, we give energy laws related to the MAC and
physical controllers. For each transmission protocol and
each processor frequency, there are two laws. The first is
for IP packet data size less than 1500 byte, the second is
for IP packet data size greater than 1500 bytes. Since the
maximum transmission unit (MTU) of the Ethernet network
is 1500 byte, the Internet layer fragments IP packets larger

than MTU. On the other hand, there is more encapsulation
and no fragmentation for IP packets smaller than MTU. We
can see from the table 5, that encapsulation yields more en-
ergy dissipation than fragmentation.
The model we propose has some fitting error with respect to
the measured energy values it is based on. We use the fol-

lowing average error metric: 1

n

∑n

i=1

|Ẽi−Ei|
Ei

where Ẽi’s are

energy values given by the model and Ei’s are energy val-
ues based on power and performance measures. We observe
that average error for energy is larger than power estima-
tion error, this is due to performance estimates. Actually,
performance variations are caused by the OS background
activities. For example, for a 500 byte IP packet data size,
TCP protocol and 200 Mhz processor frequency, time neces-
sary to send the packet through Ethernet varies from 23µs

to 24632µs.

6. CONCLUSIONS
The first part of this work demonstrates why is it important
to model energy dissipation of RTOSs, especially peripheral
devices management. Then, we presented a methodology for
modeling power and energy consumption of embedded sys-
tems running operating systems. The methodology is com-
posed of two parts: model definition and estimation process.
We focused our study on operating system peripheral device
management and we took, as a case study, a standard pe-
ripheral, namely the Ethernet Interface. Such models are
necessary to take power/energy efficient decisions at first
design phases. The approach is generic and can be applied
to any peripheral (e.g. flash memory, audio, video, etc.)
This work is a part of a global project aiming a system level
design framework in which our models will be implemented.
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characterization of embedded real-time operating
systems. In Proceedings of the Workshop on Compilers

16



Energy Consumption per byte of The MAC Controller 

Proc Freq = 200 Mhz

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

1 10 100 1000 10000

IP packet data size(byte)

E
n
e
rg

y 
(µ

J/
b
yt

e
)

UDP

TCP

Energy Consumption per byte of The MAC Controller 

Proc Freq = 200 Mhz

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1500 5120 16384 32768 65536

IP packet data size(byte)

E
ne

rg
y 

(µ
J/

by
te

)

TCP

UDP

Figure 9: Energy variation per byte transmitted ac-
cording to IP packet data size, Fproc = 200Mhz

Table 5: Energy model

Proc
Freq

Model Error

E(µJ/byte) = a ∗ Packetb
size

MAC Controller(2.5V)

100MHz

EUDP = 304, 87 ∗ Psize
−0,88, ifPsize < 1500b

6,28%
EUDP = 1, 47 ∗ Psize

−0,13, ifPsize ≥ 1500b

ET CP = 126, 29 ∗ Psize
−0,68, ifPsize < 1500b

10,16%
ET CP = 1, 80 ∗ Psize

−0,107, ifPsize ≥ 1500b

200MHz

EUDP = 181, 26 ∗ Psize
−0,86, ifPsize < 1500b

7,14%
EUDP = 0, 85 ∗ Psize

−0,11, ifPsize ≥ 1500b

ET CP = 60, 73 ∗ Psize
−0,65, ifPsize < 1500b

8,26%
ET CP = 1, 17 ∗ Psize

−0,1, ifPsize ≥ 1500b

300MHz

EUDP = 144, 11 ∗ Psize
−0,84, ifPsize < 1500b

8,59%
EUDP = 0, 79 ∗ Psize

−0,11, ifPsize ≥ 1500b

ET CP = 63, 44 ∗ Psize
−0,65, ifPsize < 1500b

8,68%
ET CP = 1, 09 ∗ Psize

−0,09, ifPsize ≥ 1500b

PHY Controller(3.3V)

100MHz

EUDP = 140, 45 ∗ Psize
−0,86, ifPsize ≤ 1500b

7,4%
EUDP = 0, 72 ∗ Psize

−0,13, ifPsize ≥ 1500b

ET CP = 61, 14 ∗ Psize
−0,68, ifPsize < 1500b

9,92%
ET CP = 0, 89 ∗ Psize

−0,106, ifPsize ≥ 1500b

200MHz

EUDP = 88, 005 ∗ Psize
−0,85, ifPsize ≤ 1500b

7,53%
EUDP = 0, 41 ∗ Psize

−0,108, ifPsize ≥ 1500b

ET CP = 31, 9 ∗ Psize
−0,657, ifPsize < 1500b

8,91%
ET CP = 0, 71 ∗ Psize

−0,117, ifPsize ≥ 1500b

300MHz

EUDP = 88 ∗ Psize
−0,856, ifPsize ≤ 1500b

14,5%
EUDP = 0, 454 ∗ Psize

−0,126, ifPsize ≥ 1500b

ET CP = 31, 9 ∗ Psize
−0,657, ifPsize < 1500b

10,15%
ET CP = 0, 58 ∗ Psize

−0,105, ifPsize ≥ 1500b

and Operating Systems for Low Power (COLP’01),
sep 2001.

[2] A. C. Amit Sinha. Jouletrack - a web based tool for
software energy profiling. In Design Automation
Conference, pages 220–225, 2001.

[3] K. Baynes, C. Collins, E. Fiterman, B. Ganesh,
P. Kohout, C. Smit, T. Zhang, and B. Jacob. The
performance and energy consumption of embedded
real-time operating systems. IEEE Transactions on
Computers, 52(11):1454–1469, Nov. 2003.

[4] R. P. Dick, G. Lakshminarayana, A. Raghunathan,
and N. K. Jha. Power analysis of embedded operating
systems. In Proceedings of the 37th Conference on
Design Automation (DAC-00), pages 312–315, NY,
jun 2000. ACM/IEEE.

[5] C. Hunt. TCP/ IP Network Administration (2nd ed).
O’Reilly, 1998.

[6] E. Senn, J. Laurent, E. Juin, and J. Diguet. Refining
power consumption estimations in the component
based aadl design flow. In FDL’08, ECSI Forum on
specification and Design Languages, 2008.

[7] T. K. Tan, A. Raghunathan, and N. K. Jha.
Embedded operating system energy analysis and
macro-modeling. In Proceedings of the 2002 IEEE
International Conference on Computer Design
(ICCD’02), 2002.

[8] A. Vahdat, A. Lebeck, and C. Ellis. Every joule is
precious: A case for revisiting operating system design
for energy efficiency. In Proceedings of the Ninth ACM
SIGOPS European Workshop 2000, Sept. 2000.

[9] A. Weissel. OS Services for Task Specific Power
Management. PhD thesis, Erlangen University, 2006.

[10] K. Yaghmour and M. R. Dagenais. Measuring and
characterizing system behavior using kernel-level event
logging. In USENIX, editor, 2000 USENIX Annual
Technical Conference: San Diego, CA, USA, June
18–23, 2000. USENIX.

17



Evaluation of a Minimal POSIX Tracing Service Profile for Real Time
Embedded Systems∗

P. Parra M. Knoblauch C. Rodrı́guez
O. Rodrı́guez S. Sánchez

Department of Computer Engineering
University of Alcala

Alcala de Henares, Spain

A. Viana
ESA/ESTEC - TEC/EDD

Noordwijk, The Netherlands

Abstract

In this paper we propose the definition of a minimal trac-
ing service profile for the POSIX trace standard, suitable
for embedded platforms, that comprises the most impor-
tant primitives of the whole POSIX standard and covers two
more key points. The first point is introduced to overcome
the limitation of the current POSIX trace system that does
not address the need for eventually peeking at the trace in
LIFO mode, which could facilitate the remote maintenance
of embedded systems that lack, among other resources, of a
file system. The second point is the definition of a mecha-
nism for managing different levels of trace information that
are not included in the standard. The proposal is completed
with the specification of a set of implementation require-
ments to ensure that the tracing system, with a minimal
and deterministic intrusion, is capable of covering both the
continuous tracing required during testing and validation
phases and also the remote diagnosis during system life-
time. Finally, we present the results obtained with the im-
plementation of this proposal over ERCOS-RT, a minimal
real-time operating system developed for space systems and
applications.

1 Introduction

In the field of real-time systems, tracing support is gener-
ally considered to be a useful tool during testing processes
but it is usually removed when the system is deployed. It is
worth considering, however, that this support should be an
integral part of the whole system, maintained during the op-
erational phase. The benefits of this approach are twofold.
First, it avoids the fact, paradoxically accepted by many de-
velopers, that the deployed system is different from the one

∗This work has been supported byComisión Interministerial de Cien-
cia y Tecnologı́a (CICYT)of Spain, grant ESP2005-07290-C02-02

that was validated.

Second, the evolution of the system during all its life
time can be retrieved from the trace information, aiding in
the diagnosis of any possible fault and opening the possibil-
ity of taking action remotely. Moreover, it is striking that,
although the trace information of a generic system can be
generated by different service levels (e.g. operating system
level, middleware, applications, etc.), none of the tracing
mechanisms allow that kind of classification, which would
ease, during recovery and analysis of the system traces,
routing every event to a suitable tool according to its level
of abstraction.

The development of these kinds of applications needs
some tracing mechanism in order to ensure correct system
behaviour. System monitoring provides a lot of information
that is very handy when one is validating a system’s func-
tionality and performance. It is also useful for certifying
real-time system constraints. On embedded systems capa-
ble of communicating with an external outpost or control
centre, like those integrated in a satellite, trace information
can be viewed as an integral part of the system. This in-
formation is a key source of knowledge, not only during
validation and testing, but also across the life cycle of the
system.

This approach allows the diagnosis of any possible fault
and opens the possibility of taking action remotely to en-
sure the product maintenance. In recent research works
tracing has been proposed as a mechanism to develop dy-
namic systems where adaptation is the key for success. This
adaptation is performed by a reflexion level that requires
full knowledge of the system state [12]. It is important to
emphasize that it is unrealistic to assume that all contin-
gencies can be foreseen during validation phases. Doing it
only leads to a false sense of security [13, 14]. As Edsger
Dijkstra noted, “program testing can be quite effective for
showing the presence of bugs, but is hopelessly inadequate
for showing their absence” [7].
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It is feasible to perform validation process analyzing
trace information obtained by non-intrusive techniques (e.g.
using on-chip emulators or logical analyzers). Though, in
very few cases is it acceptable in terms of cost to integrate
these kinds of solutions as part of the final deployed system.
Therefore, in these cases it is necessary to have a tracing
support provided by the real-time operating system which
allows two tracing mechanisms: one capable of tracing in
continuous mode, used in system validation; and other, used
sporadically, which allows remote monitoring at certain in-
stants of the lifetime of the system.

Moreover, provided that during validation process a soft-
ware trace support is used, it is essential to maintain it on the
final system to ensure that the validated system is identical
to the one which is deployed.

Paradoxically, this fact is not always accepted by devel-
opers, which is a misconception. Even though sometimes it
only slightly alters the response time of the system, it can
lead to a more serious error when the platform incorporates
a cache mechanism. In this case, a minor code change could
modify the memory layout and thus, the sets of code frag-
ments that share every cache line. These kinds of problems
are referred in [6].

Another relevant aspect in the validation process is the
ability of the tracing support to aid in the analysis of the
traced information. In embedded systems, this information
is often generated in different service levels. During the
recovery and analysis phases, it is desirable to redirect the
traced events to the corresponding tool depending on the
level of abstraction of the service.

The current POSIX trace support, defined by the stan-
dard 1003.1q, is designed mainly to provide support for the
system validation processes, but it does not address the need
for eventually peeking at the trace in LIFO mode which
would facilitate the remote maintenance of embedded sys-
tems. An example of this use could be to recover the latest
events ocurred in the system at some crucial instants, such
as, after an unexpected system reset. Furthermore, the stan-
dard does not define any mechanism for managing different
levels of trace information.

Here we propose the definition of a minimal tracing ser-
vice profile for the POSIX trace standard, suitable for em-
bedded platforms. It comprises the most important primi-
tives of the whole POSIX standard. Apart from these orig-
inal primitives, we propose an extension to the standard to
cover these two key points: recovery of the trace in LIFO
mode and the definition of different levels of trace infor-
mation. The definition of such a tracing support is an open
topic [11]. The work we present here is intended to comple-
ment the current proposals in order to solve the problems
raised by the tracing support in the development of these
kinds of systems.

This work is completed with the specification of a set

of requirements that any implementation of the profile must
meet to ensure that, maintaining a minimal and determin-
istic intrusion, it is possible to cover both the continuous
mode tracing (required during validation phases) and the
remote diagnosis after the deployment and during the life-
time of the system. Finally, we present the results obtained
from the implementation of this proposal over ERCOS-RT,
a minimal real-time operating system developed for space
systems and applications.

2 POSIX trace standard overview

The POSIX trace standard has been developed to pro-
vide tracing facilities to the systems. It defines two main
data types, calledeventsandtrace streams. The former in-
cludes events, occurred on the system, that must be traced.
The latter is the buffer stream where the information of each
event will be stored in order to be eventually analysed.

2.1 Trace events

When a specific application or program needs to be
traced, all the required traceable events are defined. In
POSIX trace terminology, the points where the information
must be generated are calledtrace points, and the informa-
tion itself is calledtrace events. Each event belongs to a
certainevent typeand is also associated with anevent name.
When an instrumented application wants to register a new
event, it must invoke theposix trace eventid open
routine, which returns the event identifier. If the event had
been previously defined, the function call returns its former
event identifier. The event trace mechanism is performed
by calling theposix trace event routine. The stan-
dard specifies the information that must be saved with every
trace, namely:

• The trace event type identifier

• A time-stamp

• The process identifier of the traced process

• The thread identifier of the traced process, if the oper-
ating system supports threads

• The program address where the trace is being per-
formed

• Any extra data associated with the event and previ-
ously defined by the user

• The extra data size
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2.2 Stream buffers

When any system application traces an event, its infor-
mation is stored in the stream buffer. The POSIX trace stan-
dard specifies that streams must be created by processes.
The relationship between streams and processes is many-
to-many, i.e. all events associated with a process are traced
in all stream buffers belonging to that process. Thus, it is
possible to trace events from a single process into many
streams. The POSIX standard supports also event filter-
ing. This means that it is possible to filter some specified
events in order not to store them in the stream buffer. By
doing this, events corresponding to one thread can be asso-
ciated with a single stream. It also allows tracing the events
of various processes into one single stream. This situation
occurs when a process creates some buffer streams before
creating the rest of the processes by using the corresponding
fork system calls. In the case of one single process com-
pounded by many threads, all events of the different threads
are traced into all the streams belonging to the process.

The standard defines two types of streams: active
streams and pre-recorded streams. An active stream is cre-
ated to trace events during system execution. It can also be
associated with a log file in order to store the information on
a persistent object when a flush operation is performed. A
pre-recorded stream is designed to retrieve events that have
been previously recorded in a log file. They are frequently
used to carry out off-line analysis of the tracing activity.

2.3 Tracing roles

The POSIX trace standard defines three types of roles
called trace processes: the trace controller process, the
traced process and the analyser process.

Controller process. The controller process is in charge
of the stream buffer creation and, in most cases, of the
trace system start up. It must carry out the following
operations: (1) creating the trace stream with its at-
tributes; (2) starting and stopping the trace system; (3)
filtering the events that are being traced in the corre-
sponding streams; and (4) shutting down the stream.

Traced process. The traced process is the one that
is being traced. The standard defines only two
operations that must be carried out by this kind
of process: (1) registering a new user event by
calling theposix trace eventid open routine;
and (2) tracing the appropriate event by calling the
posix trace event routine.

Analyzer process. The analyser process is in charge of
retrieving the traced events from the stream buffer in
order to analyse the system behaviour. This process

can perform on-line or off-line analysis, depending on
the type of the stream.

It is not mandatory that every role is performed by a dif-
ferent process. In the next sections we will see that, in our
implementation, controller and the traced processes are the
same process. The analyser, on the contrary, is to be imple-
mented separately.

2.4 Implementation options

The standard defines different layers in the implementa-
tion which can be fulfilled or not, depending on the particu-
lar system trace functionality. These layers are:

Trace layer. This layer is mandatory. It includes the trac-
ing mechanism in charge of tracing the different events
and their storage in the streams.

Trace log layer.This layer comprises facilities to perform
a system trace by using logs, allowing off-line analysis.

Trace inheritance layer. This layer allows storing trace
information of several processes into a unique stream.
This option is activated in the moment when a process
creates a stream and, after that, forks several processes
which will inherit the stream. By this way it is, thus,
possible to associate one stream to several processes.

Trace filtering layer. This layer allows filtering events to
prevent their tracing into a specific stream.

3 Minimal POSIX tracing services

Real-time embedded systems have certain characteris-
tics that complicate the development of software applica-
tions for these environments. As a general basis, these sys-
tems have strong limitations on the available development
resources: they normally lack of storage devices, memory
protection or virtual memory mechanisms, etc. Focusing on
these systems, the POSIX minimal real-time system profile
was proposed. This profile is a set of POSIX API primitives
intended for small real-time embedded systems that elimi-
nates most of the services that are only meaningful on the
general purpose systems.

Currently, none of the POSIX tracing services [5] is in-
cluded on the Minimal Real-Time Systems Profile. Though
recently there have been proposals in this regard [11], an
identification of the services to be provided is still under
discussion.

Here we propose a minimal POSIX tracing service pro-
file that covers the basic tracing services of the original
POSIX standard and also adds, as an extension, a pair of
new services intended to allow the proposal to meet the
needs of real-time embedded systems.
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The first of these new services is designed to facilitate
the remote tracking and control at certain instants of time
during the lifetime of the system. We call this kind of ser-
vice sporadic tracing, to differentiate it from the continuous
tracing, used solely during testing processes.

The main difference between them is that continuous
tracing is aimed at analyzing all the tracing information gen-
erated by the system on every test case and thus, it is nec-
essary to recover on FIFO mode, all the events sent to the
trace stream buffer. In sporadic tracing, instead, the goal is
reading on LIFO mode, at a certain given time, the contents
of the stream buffer. This buffer snapshot can then be send
to a remote control centre, which will establish a diagnosis
of the current situation.

The second proposal of amendment to the standard is re-
lated to the analyzing process of the tracing information.
On real-time systems, this tracing information is generated
in different service levels. A simplified approach to this
reality would force us to distinguish at least two levels: op-
erating system and application level. The POSIX trace stan-
dard imposes a single trace stream per process so that it be-
comes too expensive to classify at recovery time the events
belonging to the different levels and thus, it is not feasible
to redirect every event towards the right tool depending on
the level of abstraction. The new proposed primitive solves
this drawback introducing the possibility of specifying the
service level of every traced event.

The following subsections explain the different parts of
the proposal: the set of POSIX primitives belonging the
standard that are added to the minimal profile, the new set of
primitives for sporadic and continuous tracing and the ones
that allow multilevel tracing. Furthermore, a last subsection
shows the requirements that an implementation of this pro-
posal must follow to guarantee all services, minimizing the
overhead.

3.1 POSIX trace standard primitives

The POSIX trace system suffers from the same excess
of weight as the whole standard. The vast majority of the
interfaces it provides are neither not suitable nor necessary
for embedded platforms.

From the original set of primitives, we propose the fol-
lowing subset to be a part of the minimal POSIX tracing
services:

• posix trace eventid open. Used by the traced
thread to obtain an identifier for a certain event that is
to be traced.

• posix trace event. Traced thread calls this
primitive to trace a certain event.

• posix trace create. Instantiates and initializes
the trace stream. Used by the controller thread.

• posix trace shutdown. Disables the trace
stream. Used by the controller thread.

This subset does not include any primitive for retrieving
events from the stream buffer. This is due to the fact that the
analyser process will run on the setup host, not in the target.

However, a low priority thread (the idle thread) will re-
trieve the events directly from the stream buffer. The events
will then be sended to the analyzer process1 running in the
control centre.

3.2 Sporadic tracing

We propose a modification to the original standard to al-
low sporadic tracing. With this method, the goal is reading
on LIFO mode, at a certain given time, the contents of the
stream buffer. This buffer snapshot can then be send to a re-
mote control centre, which will establish a diagnosis of the
current situation.

The primitive that supports the sporadic tracing is the
following:

• posix trace get stream buffer. It can be
used to retrieve a certain number of events commenc-
ing from the last one stored in the stream buffer.

To be able to implement this mechanism, some consid-
erations have to be addressed.

3.3 Multilevel tracing

We propose a modification to the original standard to al-
low the possibility of assigning a level identifier to the dif-
ferent traced events. The level is used to build the event
identifier and it can be used to select the events belonging
to a certain level of abstraction. When recovering the trac-
ing information, the analyzer thread can demultiplex the in-
formation and route it to different tools or applications that
will perform the analysis of the data depending on the level
to which they belong.

To support multilevel tracing, a new primitive is defined:

• posix trace eventid open with level.
It has a similar semantic to the original
posix trace eventid open, with the dif-
ference that it can associate to the requested event, an
additional identifier to determine the level to which it
belongs.

This original primitive is maintained only for compati-
bility but it does not make sense to use in a system. If any
event is requested with the original primitive, it will be as-
signed to level zero.

1By means of any kind of communication link, usually a serial line.
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3.4 Implementation considerations

To make the controller thread as less intrusive as possible
it must have the lowest priority. This implies that it limits
its execution to the amount of time the system remains idle.
The stream buffer implementation must allow the storage of
events produced by the traced threads and their recovery by
the controller thread in mutual exclusion. It must be imple-
mented as a circular buffer as shown in Figure 1. Keeping
low the overhead introduced by the controller thread access
to the stream buffer will lead to a low overhead in the trace
generating primitives. This is a key point in the implemen-
tation of the controller thread.

Header EventID CRCData

Header EventID CRCData

Header EventID CRCData

Header EventID CRCData

Header EventID CRCData
Head

Tail

Stream Buffer

Host PC

Figure 1. Stream buffer implementation.

In order to minimize the amount of overhead introduced
by the mutual exclusion access, the stream buffer works
with fixed-size fragments of event information.

The posix trace event primitive thus divides the
traced event information in fixed-size fragments and adds
some header to let the analyzer reconstruct it. The primitive,
then, invokes an internal system call to store the fragments,
one by one, in the stream buffer.

Fragmentation of the trace events allows the trace sys-
tem call latency to be keept under a given threshold (directly
proportional to the fragment size). In most Real-Time Oper-
ating Systems (RTOS), the context switch latency is related
to the system call latency. The fragmentation scheme that
we propouse avoids, in most cases, the context switch la-
tency to have an indeterminated latency.

The size of the tracing buffer is defined statically. When
the buffer is full and a new fragment is inserted, the old-
est fragment is overwritten, and a flag on the header of the
new fragment is set in order to signal the loss of fragments
for the analyzer. The size of the buffer must be chosen ac-
cording to two fundamental parameters: (1) the remaining
physical memory available for the tracing mechanism and
(2) the ratio between the arrival frequency of the differ-
ent traced events and the output package transmission fre-
quency. Since the controller thread is only executed when
the system is idle, the amount of time available to retrieve

a package from the stream buffer (and thus the output fre-
quency) depends on the system load and can be calculated.
The only way to avoid data loss during continuous tracing
mode is keeping the output frequency higher than the trac-
ing frequency and appropriately choosing the size of the
buffer in order to handle the tracing bursts arisen between
the executions of the controller thread.

The amount of information that the
posix_trace_get_stream_buffer primitive
can retreive is obviously limited by the size of the buffer.
In addition, if new events occur during the execution of
the primitive, these will not be retrieved in the current
execution or, in case of overflow, some might appear out
of order. Sequence numbers allow the events reordering
and/or filtering in the external outpost.

4 Profile evaluation

The proposed Minimal Trace POSIX Service Profile has
been evaluated over ERCOS-RT. ERCOS-RT is a real-time
operating system developed over the standard platform of
the European Space Agency (ESA) in space missions: the
ERC32 processor [4, 10]. ERCOS-RT has been also ported
to the next ERC32 evolution, called LEON, in its differ-
ent versions, LEON, LEON2 and LEON3 [1]. ERCOS-RT
was specifically designed to be compliant with the Minimal
Real-Time System Profile (POSIX.13) for embedded sys-
tems. Therefore, modifying it in order to incorporate the
proposed Trace Service Extension was perfectly affordable.

The ERCOS-RT design has included, also, the capabil-
ity of adding the following RTOS events to the Trace Stream
Buffer: (1) schedule entry and schedule exit; (2) semaphore
wait and semaphore signal; (3) thread creation and thread
termination; (4) thread block; and (5) interrupt trigger. This
capability allows, amongst other things, to collect during
analysis all the information required for measuring task ex-
ecution times, compute the operating system overhead, de-
tect deadlocks, etc. A tool, called Kiwi [2], can be also
used to analyse in a graphical way the most relevant RTOS
events retrieved in a session. Figure 2 shows an example of
this analysis tool.

The implementation has passed a twofold evaluation. On
one side we verified, on a real system, the correctness of the
support for continuous, sporadic and multilevel tracing. On
the other side, we measured the overload introduced by the
new service in terms of execution time and code size.

The real-time system selected as test bench is an on-
board satellite software. This system has been developed
using the EDROOM tool [8]. This tool is inspired on
ROOM [9] and UML2 [3] methodologies and it provides
graphical design and automatically code generation under
the component based paradigm. EDROOM incorporates a
service library (edroomsl) to support the communication,
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Figure 2. Kernel tracing using Kiwi.

scheduling and timing services that real-time requires. The
edroomsl library provides also the capability to incorpo-
rate trace information in the generated system code. The
trace information can be analysed using the same graphi-
cal notation that EDROOM uses during design. The trace
analysis of this level is shown in Figure 3.

Figure 3. EDROOM level behaviour tracing.

For the on-board satellite application level we have also
the facility of tracing the events associated with the on-
board software behaviour. These events are sent to the Elec-
trical Ground Support Equipment (EGSE) to monitor sys-
tem aspects such as subsystem configuration, power con-
sumptions, communication and experiment programs, etc.
Figure 4 shows a snapshot of the EGSE application.

Figure 5 depicts how the continuous ERCOS-RT
trace service works. System threads invoke the
posix trace event primitive to trace the different
events. This trace mechanism is depicted as “T” in the fig-
ure. The idle thread sends the stream buffer information,
via serial line, through the interface depicted as “A” in the

Figure 4. Application level tracing.

figure. The destiny of this information is a remote PC where
the information can be analysed off-line or on-line.

Figure 5. Tracing system.

The sporadic ERCOS-RT trace service, al-
though, gets the trace information from the stream
buffer information, in a LIFO way, only when the
posix trace get stream buffer primitive is
invoked. The information retrieved can be used to build
a telemetry that will be sent to the mission centre. The
telemetry can then be analysed in an off-line mode using
the same tools as in continuous mode.

The multilevel tracing support allows, with both contin-
uous and sporadic tracing, to treat the trace events of the
unique stream buffer, trivially classifying them according
to their corresponding level. Once classified, events are
routed to the adequate tools for their analysis. In the on-
board satellite software system employed, the three distin-
guished levels are (1) the level corresponding to the RTOS;
(2) the level of EDROOM services; and (3) the application
level. As it has been mentioned, a separate analysis tool ex-
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ists for every one of these three levels. This capability has
shown to be of great help as much for system validation, as
for possible diagnosis, from the control centre, in case of
eventualities of the flight system.

The code size overhead due to the new services is 3% of
the 7500 lines of code of ERCOS-RT. The measurements
have been taken over ERC32 working at 16MHz clock
speed. The main result is that our RTOS event tracing sup-
port shows about 30 microseconds execution time overhead
in every system call. Taking into account the improvements
arisen in the validation and support processes, we believe
that these outcomes can be considered acceptable.

5 Conclusions

The tracing support can be considered to be useful not
only during testing processes but also during the lifetime
of the system. In this paper, we have presented a minimal
tracing service profile for the POSIX trace standard that in-
cludes the most important primitives. We have also added
an extension to cover the need for eventually peeking at the
trace in LIFO mode. This support could facilitate the re-
mote maintenance of embedded systems. Along with this
extension, we have also defined a mechanism for manag-
ing different levels of trace information in order to analyze
the events with a suitable tool according to its level of ab-
straction. The proposal is completed with the specification
of a set of implementation requirements to ensure that the
tracing system is capable of covering both the continuous
tracing and the remote diagnosis. These requirements as-
sure that a minimal and deterministic intrusion is performed
during the testing and validation phases, and also during the
life time of the system.

The proposal has been implemented over an RTOS
called ERCOS-RT and evaluated over an on-board satellite
software system. Some results of performance tests have
been also presented.
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Abstract

Real-time systems are growing in size and complexity
and must often manage multiple competing tasks in environ-
ments where CPU is not the only limited shared resource.
Memory, network, and other devices may also be shared
and system-wide performance guarantees may require the
allocation and scheduling of many diverse resources. We
present our on-going work on performance management in
a representative distributed real-time system—a distributed
storage system with performance requirements—and dis-
cuss our integrated model for managing diverse resources
to provide end-to-end performance guarantees.

1 Introduction

Many computer systems ranging from small, embedded
computers to large distributed systems have Quality of Ser-
vice (QoS) requirements. Examples include flight control
systems, defense systems, automotive systems, multimedia
systems, transaction processing systems, virtual machines
on shared hardware, and many others. Even traditional best-
effort systems have hidden QoS requirements that are fre-
quently expressed in terms of responsiveness.

Addressing the QoS requirements in all but the most triv-
ial of systems may require the management of many re-
sources: CPU, memory, network, cache, storage, power,
and others. While a large amount of research has been
conducted on how to provide QoS for individual resources,
relatively few approaches—notably those of Lee [6] and
Hawkins [3]—address overall system QoS or end-to-end
QoS in distributed systems. We focus on end-to-end QoS
in a distributed system using commodity hardware.

Interaction and dependencies between resources in com-
plex/distributed systems require integrated solutions to pro-
vide overall performance guarantees. For example, com-
pression algorithms may save network bandwidth and/or
storage space, but at the cost of higher CPU utilization.
Overall, the guarantees provided by a chain of resources
can be no stronger than in the weakest link of that chain and
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Figure 1: Classification of performance requirements in terms of
Resource Allocation and Dispatching (RAD).

incompatible strategies for enforcing guarantees in differ-
ent components may violate the overall QoS requirements,
even if both components meet all of their individual require-
ments. For example, a network may provide a specified QoS
by transferring a desired amount of data to a networked stor-
age device, but in smoothing the network traffic to meet its
QoS requirements, it may destroy the burstiness in the orig-
inal workload that enables sequential accesses required for
the disk to meet its I/O performance requirements.

Our goal is to develop a unified model for end-to-end
QoS in complex and distributed systems that enables overall
performance guarantees via the integrated management of
all of the resources in the system. Our solution should sup-
port all types of processing guarantees ranging from best-
effort to hard real-time. It should also allow the composition
of guarantees on the individual resources for system-level
performance guarantees independent of workloads, whether
known or unknowna priori.

Our solution is based on the RAD scheduling model [1],
originally developed in the context of CPU scheduling and
subsequently extended to include other resources (e.g.,disk
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I/O [11]). In the RAD model, resources are allocated in
terms ofResource AllocationandDispatchingor, alterna-
tively, RateandPeriod. Resource allocation determines the
amount of resources provided to a process over time,e.g.,
percentage of CPU usage, network utilization, or disk head
time. Dispatching determines the times at which the (re-
served) resources must be delivered, effectively determin-
ing the granularity of the reservation. We have shown these
two parameters to be sufficient to describe and support a
wide range of scheduling policies ranging from best-effort
to hard real-time [7], depicted conceptually in Figure 1.

In the RAD model, rate and period specify the desired
performance, which must be enforced by the scheduler for
the particular resource. The details of the scheduler depend
upon the characteristics of the resource. We have devel-
oped schedulers for several resources, including CPU [1]
and disk [11]. Our current work extends our disk schedul-
ing research and adapts the RAD model to include network
and I/O buffer cache management and begins to examine
the interdependencies among those guarantees.

Our current focus is on managing the performance of dis-
tributed storage systems. Distributed storage shares many
of the important properties of other distributed systems of
interest to the embedded real-time community, such as sen-
sor networks. In a distributed storage system, there are
many independent I/O initiators operating on results in lo-
cal memories and transferring data over a shared network to
common targets. Where real-time data capture is important,
sensor networks must also deal with local and distributed
storage performance management (as well as power man-
agement).

Distributed storage performance management is chal-
lenging for a variety of reasons:

• End-to-end performance guarantees require the inte-
grated management of at least four resources: the
client buffer cache, the network, the storage server
buffer cache, and the disk.

• Disk I/O is workload-dependent and individual re-
quests are stateful and non-preemptible with response
times that are only partially deterministic, varying by
3–4 orders of magnitude between best and worst-case
performance.

• Independently-acting storage clients transfer data via
a shared network. Rate enforcement ensures that the
overall traffic is feasible, but traffic shaping must be
used to avoid network congestion leading to packet
loss [5, 10].

• Client and server I/O buffer caches must manage vari-
ance in the application I/O patterns and present the re-
quests to each device so as to maximize its predictabil-
ity and optimize its performance.

We discuss the RAD resource management model and
explain its application to each of the system resources, pro-
viding results from our proof-of-concept implementations
where available.

2 Architecture

Our target system is a distributed storage system con-
sisting of clients accessing common storage devices over a
shared network. The system is closed—we control all of
the relevant resources in the system, including the clients’
CPUs, buffer cache, and network access, and the servers’
network access, buffer cache, and storage devices. No
non-compliant traffic exists on the network and no non-
compliant clients may access the storage. Although we con-
trol the resources, we do not control the applications, which
may issue requests at any time.

Aside from the scale of our system, which may include
up to many thousands of nodes and petabytes of storage, it
is also representative of distributed embedded systems such
as sensor networks or distributed satellite communications
systems1.

Our goal is to provide I/O performance guarantees to
applications running on the client nodes. Application re-
quirements have many forms: guaranteed throughput for a
multimedia application; a guaranteed share of the raw disk
performance for a virtual machine; and guaranteed latency
for a transaction processing system. Regardless of the form
of the requirements, our goal is a unified resource manage-
ment system that ensures the performance of each workload
through all of the resources, independent of other work-
loads.

Making and keeping I/O guarantees in a distributed stor-
age system requires the integrated management of a number
of resources, as shown in Figure 2, including the disk, the
storage server buffer cache memory, the network, and the
client buffer cache memory. The overall guarantees can be
no stronger than can be provided in any individual com-
ponent and the guarantees must be composable in order to
provide an end-to-end guarantee.

We base our work on the RAD integrated scheduling
model [1]. Originally developed for CPU scheduling, RAD
separates scheduling into two distinct questions:Resource
Allocation, or how much resources to allocate to each task,
andDispatching, or when to allocate the resources a task
has been allocated. These two questions are independent
and separately managing them allows a scheduler to simul-
taneously handle tasks with diverse real-time processing re-
quirements ranging from best-effort to hard real-time [7].

1Although most satellite communication systems are monolithic cus-
tom (single) satellites, we are working with researchers at IBM Almaden
on a DARPA-funded distributed communication satellite architecture that
has many properties in common with our (ground-based) distributed stor-
age system and which will use similar RAD-based resource management.
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Figure 2: Components in the I/O path.

In the RAD model, feasibility of a task set is trivially
verifiable by summing up the resource usage of each of the
tasks sharing a resource; if the sum is less than 100% of the
available resource(s), the task set is feasible. Scheduling is
done at run-time and may be accomplished with any rate-
enforcing optimal real-time scheduler2. For CPU schedul-
ing we use a version of EDF with timers to interrupt jobs
that have used up their allocated budget for the current pe-
riod.

A resource brokeris responsible for translating varied
application requirements into a uniform representation of
application needs and for performing the feasibility verifi-
cation required for robust admission control. This depends
upon the existence of a uniform resource allocation and
scheduling model for all managed resources.

In order to manage the diverse resources in our system,
we have had to extend the RAD model in a number of differ-
ent ways. Achieving good disk performance requires both
a guaranteeable metric of performance as well as careful
management of the workload to ensure and maintain the
physical and temporal contiguity of related requests. We
manage disk performance in terms of disk head time, which
is reservable and guaranteeable up to 100% of the available
time [4]. We also add a third layer to the model allowing
the reordering of disk requests [11]. Disk requests are dis-
patched according to both deadline requirements and per-
formance heuristics.

Our simple storage network behaves somewhat like a
single CPU in that each transmit port may only serve one
client’s data at a time. Unlike a CPU, the control of the net-
work is decentralized; each client must independently de-
cide when it will start and stop transmitting data. The RAD
model remains relatively intact for network scheduling, but

2A sub-optimal scheduler may also be used, with a suitably modified
feasibility test

the scheduler is quite different. We introduce a novel net-
work scheduler called Less Laxity More that is intended to
approximate the behavior of Least Laxity First without cen-
tralized control.

Our work on buffer cache management currently focuses
primarily on the storage server. Although cache memory
can be relatively trivially partitioned according to the mem-
ory needs of each process, the RAD model determines the
partition by indicating exactly how much cache is needed
for each process. Each task must be able to store a multiple
of the amount of data that may be transferred per period. In-
terestingly, this means that the best case for the disk is also
the worst case for the cache, as described in Section 5. The
cache may also be used for rate and period transformation
between the client and the disk, allowing the client to tem-
porarily transfer data at a higher rate than the disk allows,
and to transfer data with a smaller period than is feasible for
our disk scheduler.

Because each of the resources is managed via the RAD
model, the guarantees are easily composable. Although the
utilization of different resources vary for a given task, the
deadlines will be the same, allowing for simple synchro-
nization of the use of the different resources. Overall, if the
reservation for a given I/O stream is satisfiable on each of
the resources, the stream can be admitted and its I/O perfor-
mance can be guaranteed.

The following sections discuss our management of each
of the resources in more detail.

3 Guaranteed disk request scheduling

Our real-time disk scheduler is designed to meet three
goals. First, the scheduler must provide guaranteed, inte-
grated real-time scheduling of application request streams
with a wide range of different timeliness requirements. The
mechanical nature of disks adds an additional set of require-
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ments. Sequential accesses experience orders of magnitude
lower latencies than random accesses, and good disk sched-
uler can significantly improve performance by reordering
requests to increase sequentiality. Thus, as a second goal,
our disk scheduler must provide not just guaranteed perfor-
mance but good performance. Finally, in a shared storage
system, performance of an I/O stream may be affected by
seeks introduced by competing I/O streams. Therefore, the
scheduler must also isolate I/O streams from the behavior of
others so that none of the streams cause another to violate
its requirements.

Traditional real-time disk schedulers guarantee reserva-
tions on throughput [2, 13, 12]. However, due to the or-
ders of magnitude difference between best-, average-, and
worst-case response times, hard throughput guarantees on
general workloads require worst-case assumptions about re-
quest times allowing reservations of less than 0.01% of
the achievable bandwidth. Our Fahrrad real-time disk I/O
scheduler [11] uses a different approach based ondisk time
utilization reservations [4]. A reservation consists of the
disk time utilization uand theperiod p. Disk time utiliza-
tion specifies an amount of time a disk will make avail-
able for a given request stream to service its I/O requests.
The period specifies the granularity with which the request
stream must receive its reserved utilization. Reservations
are associated with I/O request streams, which represent re-
lated sets of requests that may come from a single user, pro-
cess, application, or a set of these.

Fahrrad implements the RAD model and adapts it to disk
scheduling. Since the basic goal of our scheduler is to pro-
vide a full range of timeliness guarantees, Fahrrad imple-
ments the two layers of the RAD model: resource allocation
and dispatching. Resource allocation is done via the broker,
which ensures feasible resource allocation and maps appli-
cation requirements into disk time utilization and period.
I/O request dispatching, which chooses which I/O stream
requests to process, is based loosely on EDF. Because disk
I/O is stateful, adapting the RAD model to disk schedul-
ing requires the addition of a third layer concerned with I/O
requestordering. Fahrrad allows request ordering by logi-
cally gathering as many requests as possible into a set with
a property that the requests in the set can be executed in any
order without violating any guarantees. We now describe
each layer in greater detail.

Resource allocation is made via the broker and con-
sists of two parts: translation of application requirements
into a common representation—disk time utilization and
period—and admission control on the basis of this repre-
sentation. Most applications express their I/O performance
requirements in terms of throughput and latency3. In order
to make utilization reservations, applications specify their
desired throughput and/or latency and their expected I/O

3An exception to this is virtual machines, which want a share of the
disk performance with latency bounds.

behavior to the broker. Given knowledge about disk per-
formance characteristics, the broker translates throughput
and I/O behavior into utilization. When nothing is known
about I/O behavior, the broker assumes worst-case request
response time, resulting in no worse performance than with
throughput-based schedulers.

Applications with no real-time requirements are associ-
ated with a best-effort I/O request stream that receives a
minimum or remaining unreserved utilization. Latency re-
quirements translate directly to the period reservation. If an
application sends I/O requests according to its reservation,
its requests will be queued no longer than one period. Since
the reservation is guaranteed by the end of each period, the
latency is bounded by that period.

Once translated into the utilization and period, the broker
decides that the reservation is feasible as long as the total
sum of the utilizations on a given disk (plus a little extra) are
less than or equal to 100%. The extra reservation is needed
to account for blocking due to the non-preemptibility of
I/O requests. In our task model, preemptible jobs are di-
vided into non-preemptible I/O requests analogous to non-
preemptible portions of CPU jobs. We have shown previ-
ously that a task set is feasible as long as we reserve enough
extra time for one worst-case request in the task with the
shortest period [11].

In order to guarantee the reserved budgetb = u∗ p for
a given stream, the broker has to make an additional reser-
vation. Since service times of I/O requests are not known
a priori and I/O requests are non-preemptible with a large
potential worst-case request time (WCRT), the scheduler
cannot issue a request unless there is a worst-case request
time left in the current period. Thus, in order to guaran-
tee the desired budgetb, the broker must actually budget
b+WCRT[11].

Fahrrad guarantees the reserved utilization for each re-
quest stream by correctly measuring and accounting for all
I/O requests issued and seeks occurred. Fahrrad temporar-
ily assumes that each request takes worst-case time, and al-
lows ⌊bi/WCRT⌋ requests from streami in the current pe-
riod into the reordering set. Each time a request completes,
the scheduler measures its execution time and updates the
budget based on actual execution times. If there is enough
budget left to issue one or more worst-case requests, the
scheduler continues to dispatch additional requests until the
reservation is met. I/O streams whose reservation has been
met must wait until their next period to receive more ser-
vice.

The architecture of Fahrrad is shown in Figure 3, which
implements the dispatching and ordering layers of the RAD
model. The architecture consists ofrequest stream queues,
theDisk Scheduling Set(DSS), the requestdispatching pol-
icy, and the requestordering policy. Each request queue
contains the requests from a single I/O stream and requests
are ordered by their arrival times. The request dispatching
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Figure 4: Behavior of mixed workload during 500 seconds, with and without Fahrrad. Points are the average for 5-second intervals.

Figure 3: Fahrrad architecture.

policy takes requests from request queues and sends them
to the DSS such that DSS always contains the largest set
of requests that can be executed in any order without vio-
lating any utilization reservations. All requests in the DSS
are assumed to take the worst-case time and the number of
requests in the DSS is dictated by the earliest deadline in
the system. The request dispatching policy moves all re-
quests that have to be executed in the current period from
the stream with the earliest deadline. Any remaining time
is filled with requests from other stream queues. In order to
minimize inter-stream seeking, the dispatching policy tries
to maximize the number of requests from the same stream in
the DSS (from streams with later deadlines and thus looser
scheduling constraints). Since requests are assumed to take
worst-case time, the scheduler always guarantees that the

stream with the earliest deadline will meet its reservation
regardless of the order in which the requests are sent from
the DSS to the disk. If requests take less than worst-case
time, the dispatcher allows more worst-case requests to the
DSS if there is enough space left. The ordering policy takes
requests from the DSS and sends them to the disk in an or-
der that optimizes head movement.

While Fahrrad tries to minimize the interference be-
tween I/O streams by minimizing inter-stream seeking,
some seeks between streams are unavoidable. In order to
guarantee isolation between streams, we account for extra
seeks caused by inter-stream seeking by reserving "over-
head" utilization. We account for these seeks in the reser-
vations of streams responsible for inter-stream seeking and
bill these streams for the additional seeking. In this way,
the I/O performance achieved from the reserved utilization
depends only upon the workload behavior.

Figure 4 shows the performance obtained with Fahrrad.
It compares a mixed-application workload running on a
standard Linux system (a) and one with Fahrrad (b). The
workload combines two “media” streams, a transaction pro-
cessing workload with highly bursty request arrivals, and a
random background stream simulating backup or rebuild.
Fahrrad meets both the utilization guarantees and through-
put requirements of the I/O streams and its throughput ex-
ceeds that of Linux by about 200 I/Os per second.

4 Guaranteeing storage network
performance

Most general-purpose networks provide a best-effort ser-
vice, striving for good overall performance while offering
no guarantees. Network hardware with built-in QoS fea-
tures exists, but is relatively expensive and is usually limited
to static configurations that distinguish between classes of
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Figure 5: Fat tree network

traffic rather than individual streams. We are interested in a
more general cooperative end-to-end protocol that does not
rely on specialized network hardware. Adapting the RAD
model to the Network (RAD on the Network, or Radon)
allows for flexible, general, and fine-grained performance
guarantees using commodity network hardware.

We distinguish three major classes of networked stor-
age: Network Attached Storage (NAS), Storage Area Net-
works (SAN), and distributed file systems. NAS is the most
common and least expensive storage network, where one
or more servers individually provide a file system interface
over a commodity networks. More expensive SANs are
composed of storage arrays connected with a high perfor-
mance network, e.g. Fibre Channel, addressed as a local
device. Distributed file systems come in two flavors, for
Wide Area and Local Area Networks. Wide area systems
generally serve large numbers of users, operate over a large
variety of technologies, and are generally grown rather than
designed. On the other hand, local area systems are usually
designed to provide a high performance parallel file system
for a defined clientele. We focus on local area distributed
file system.

Figure 5 is our canonical storage network–a closed, full
bisection bandwidth, fat tree network of standard Giga-
bit Ethernet switches. Each of the switches have a set of
ports connected via a switch fabric and shared memory for
queuing requests, as shown in Figure 6. Packets contend-
ing for the same destination port are queued. Continuous
contention (congestion) may cause once isolated streams
to interfere with each other. In the worst case, the queue
will overflow and packets will be lost. Distributed file sys-
tems experience a particular case of congestion called in-
cast [5, 10] where a file spread among many servers is sent
in simultaneous bursts to a client, which can overflow a
switch buffer with little or no warning signs.

Given the theoretical capabilities and limitations of com-
modity storage networks, the question, “How much of the
resource is actually reservable?" has to be answered. We
performed a simple characterization with a commodity Gi-
gabit Ethernet switch supporting jumbo frames. Figure 7
shows that one to seven nuttcp UDP clients communicating
with the same host achieve linear scaling for aggregate load

Figure 6: Simple model of a standard Ethernet switch

up to 900 Mbps while experiencing packet loss of under
3% averaged over 10 seconds. Achieved load leveled off
with an offered load greater than 900 Mbps while packet
loss increased dramatically. The performance of a single
connection appears to be limited by a host’s NIC, as a sin-
gle client reaches a maximum throughput of approximately
600 Mbps over the network and above 1000 Mbps using the
host’s loopback device.

These results show that well paced, short burst, fixed rate
streams are able to achieve good individual performance
with low packet loss while achieving 80% utilization of the
network resource. With accurate congestion detection and
bounded responses, we expect to be able to further increase
overall utilization and decrease packet loss.

Before introducing our model for network resource man-
agement, we will briefly describe the most widely de-
ployed end-to-end network protocol, TCP/IP. Network per-
formance is determined by the flow control mechanism,
which manages the rate at which data is injected into the
network in the absence of congestion. Congestion con-
trol mechanisms, adapt the rate and timing of transmissions
when congestion is detected. TCP/IP is one of most suc-
cessful protocols ever developed, but its congestion control
algorithms do not allow for any performance guarantees. It
continuously tries to increase throughput at the sender by
increasing the window (burst) size and uses packet loss as
a congestion signal to throttle the sender drastically. Even
for a single connection, this results in a sawtooth pattern for
throughput over time and a large variance in packet delays,
as a the queue continually overflows and drains.

4.1 RAD on Networks (Radon)

The RAD model was originally developed to manage a
single resource with a centralized dispatcher. In the case
of networks, the RAD model has to accommodate multi-
ple dispatchers for a single resource, where the resource
is a transmit port on a switch. The admission process en-
sures that the aggregate utilization of each switch port is
not greater than one. Ideally, dispatchers should be able
to cooperatively manage flow control and congestion con-
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Figure 7: One to seven nuttcp UDP clients offering aggregate loads ranging from 100 to 1000 Mbps

trol based on individual resource allocations, minimizing
the use of the queue on a switch. The definitions for the
RAD model on networks are as follows:

Resource Allocation A taskTi ’s reservation(ui , pi), where
ui is network time utilization andpi is the length of the
period for whichui is guaranteed.

Dispatching A taskTi has a budgetei = ui · pi , and consists
of a sequence of jobsJi, j , each having a release time
r i, j and a deadlinedi, j = r i, j + pi .

The major challenge in guaranteeing network resources
is to avoid dispatching synchronized bursts of packets while
minimizing communication and synchronization overhead.
Ideally this means that a host does not require external infor-
mation to determine when to dispatch its requests. Schedul-
ing algorithms like Earliest Deadline First (EDF) require all
dispatchers contending for the same resource to know the
release times of all jobs so that they can agree on the ear-
liest deadline. Furthermore, the clocks of the dispatchers
must be synchronized at a granularity corresponding to the
smallest possible difference between deadlines. Thus, when
a resource is scheduled by multiple dispatchers, a different
algorithm is required.

The Least Laxity First (LLF) [8] scheduling algorithm
defines the laxity of a jobl i, j as the time remaining be-
fore the job must be scheduled in order to meet its deadline,
l i, j = di, j − t −e′i , wheret is the current time ande′i is the
budget remaining in the period. EDF schedules based on
the deadline by which a job must be finished, while LLF
schedules based on the deadline by which a job must be
started. LLF is optimal for scheduling a single resource
in the same sense that EDF is, if a feasible schedule ex-
ists, then both will find one [8]. Implementing LLF across
multiple dispatchers would require just as much communi-
cation and synchronization as EDF, but it lends itself to an
approximation suitable for distributed dispatchers because

the measure of laxity is relative while deadlines are abso-
lute.

Thus, we propose an approximation to LLF is called
Less Laxity More (LLM). As long as no congestion is de-
tected, streams of packets are transmitted as fast as possible
up to the allocated budget. When congestion is detected,
each sender will use a normalized notion of a job’s laxity–
percent laxity–the ratio of laxity to the total remaining time
until the deadline. More formally:

%laxity=
l i, j

di, j − t

This definition of urgency can equivalently be expressed
in terms of budget since

%budget= (1−%laxity)

4.2 Flow Control and Congestion Control

Before developing LLM, we simulated different flow
control mechanisms based on the queuing model shown in
Figure 8. One mechanism was to implicitly drive flow con-
trol by the disk performance reservation. This simulation
uses a token bucket model where clients are allowed to sub-
mit a storage request to the system when tokens are avail-
able. Tokens are managed by the server, which is constantly
monitoring the current performance of each client. How-
ever, in the most promising simulation, clients replenish to-
kens required to achieve the reserved performance them-
selves based on server-assigned rates and periods, while the
server directly manages tokens for unused resources. This
shows that flow control fits well with the RAD model.

Congestion can be detected by observing packet loss or
by measuring changes in transmission delay. The response
to congestion is traditionally a multiplicative decrease in
window size. We suggest bounding the change in window
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Figure 8: Queuing-theoretic model of Radon

size, making it proportional to percent laxity. Furthermore,
we propose explicitly dealing with incast by postponing the
dispatch time of the next window based on a model of the
current queue depth of the bottleneck switch. Congestion
can be detected in its early stages using the measure of rela-
tive forward delay as proposed in TCP Santa Cruz [9]. Rela-
tive forward delay allows hosts to model the queue depth of
a bottleneck switch and allows congestion on the forward
and reverse paths to be differentiated. This capability can
become crucial on storage networks, where read and write
patterns create asymmetric flows.

Flow Control Budget (in packets)mi = ei/pktS, where
pktSis the worst case packet service time

Congestion Control Windows adjusted in size and dis-
patch time

Window Target wop = (1−%laxity)·wmax

Size Change wchange=
−|wi −wop|

2

Dispatch Offset wo f f set=
Nobs

pktS
· rand

Wherewi is the current window size andNobs is the
observed depth of the bottleneck switch’s queue. The
resulting window size is also obviously bound by the
minimum window size and the remaining budget.

Even if individual hosts do not know who among them
has the least laxity, they can cooperatively control conges-
tion using the relative measure of their own laxity.

5 Buffer management for I/O guarantees

The goals for our buffer-cache in the context of perfor-
mance management are two-fold. First, the buffer-cache
must provide a single solution that addresses a continuous
spectrum of performance guarantees, ranging from best-
effort to hard real-time. The buffer-cache must guarantee
capture and retention of data as long as needed, but not any
longer, before forwarding it to a device. The second goal of
the buffer-cache is to enhance the performance of devices,
allowing performance reservations for rates and periods that
the devices may not be able to provide by themselves.

Buffering serves three main functions. First, buffers are
used to stage and de-stage data, decoupling components and
introducing asynchronous access to the devices. The sec-
ond function of the buffers are speed matching between
different devices allowing fast transfers to/from slow de-
vices. Finally, they are used to shape traffic between de-
vices, increasing or decreasing burstiness in the workload.
The ability to decouple components is driven by the amount
of buffers available to the system. Speed matching is de-
pendent upon the transformation of one component’s rate to
another and vice versa. Finally, the shape of the workload is
influenced by the length of the period, among other factors.

Buffering can also be used for caching by placing a
small, fast storage device in front of larger, slower device.
Distributed storage systems use buffering on a number of
system components such as storage clients, storage servers,
network switches, and disks. Storage clients, for example,
use caching to capture working sets in order to consolidate
reads and writes. Storage servers employ caches to stage
and de-stage data, capture request bursts, and prefetch data
based on sequential access patterns.

In this section we will focus on buffering in storage
servers but we believe that many of the principles apply
to buffering in general. For the rest of the section we re-
fer to buffering applied to storage servers as buffer caching.
For now we also assume that the buffer cache is also non-
volatile, as is standard in storage servers.

Figure 9: Cache Architecture.

Decoupling components, such as the disk and the net-
work, requires enough buffer space to be allocated. Each
application receives a dedicated partition as shown in Fig-
ure 9. The amount of buffer space assigned to each stream is
a product of the guaranteed rate and period, and also influ-
enced by workload characteristics and performance goals.
Streams with performance requirements receive a mini-
mum amount of dedicated buffer space based on worst case
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request times on the device, whereas streams with soft-
performance requirements might receive buffer space ac-
cording to average case request times. Streams with no per-
formance requirements are aggregated into a single reser-
vation and may receive any uncommitted resources from
streams with performance needs.

Maximizing the utilization of a resource requires worst-
case buffer space allocation. We allocate space for as many
requests as can be served by a device during a period based
on the best case request time for the device. Thus the best-
case on the device represents the worst case buffer alloca-
tion. This amount represents an upper bound on the buffer
space needed within a period for read-only streams. In the
case of streams involving writes, allocating extra buffers en-
ables delayed write-back to the disk.

Embedding an application’s behavior into the perfor-
mance reservation (e.g.,sequential/random ratio, read/write
ratio) allows efficient allocation of resources, for example
by allocating less buffers for random streams. Efficient re-
source allocation can be achieved to the extent an applica-
tion’s workload can be characterized. If such characteriza-
tion is missing, default worst-case assumptions are made.

An application’s reservation is transformed into a re-
source reservation by means of rate and period transforma-
tions. Rate transformationandperiod transformationare
mechanisms which allow the buffer-cache to decouple an
application’s reservation from the underlying device’s ca-
pabilities while maintaining performance guarantees. It is
possible to shape bursty workloads, using period transfor-
mations, into uniform accesses over long periods of time
when that results in making better use of the device (e.g.,
network). Similarly, by transforming short periods into long
periods it is possible to introduce burstiness into the work-
load, reducing device utilization and overhead (for example,
extra seeks on disks).

The period length of write-only streams can be elongated
by means ofperiod transformation, provided enough buffer
space is available to hold the additional updates. It is possi-
ble to remove extra seeks in a predictable manner by trans-
forming shorter periods into longer periods. The overhead
previously imposed by short periods is then transformed
into reservable utilization that could be used for admitting
more request streams. Finally, since buffers have no context
switch cost between stream requests, it enables reservations
with very short periods. This turns some unmanageable sce-
narios into feasible situations that can be supported by the
whole system.

Rate transformation is achieved by means of speculative
reads and delayed writes. Rate transformation decouples
an application’s rate from a device’s rate, allowing faster
rates than the device can actually support. Finally, exposing
faster rates to the application results in faster access times
per request, allowing applications to release requests closer
to the end of the period without missing deadlines.

6 Conclusion

End-to-end performance management in a complex, dis-
tributed system requires the integrated management of
many different resources. The RAD integrated scheduling
model provides a basis for that management and is adapt-
able to a variety of different resources. Based on a separa-
tion of the two basic resource management questions—how
much resources to allocate to each process and when to pro-
vide them—RAD supports a wide variety of different types
of processes. Our ongoing work demonstrates the appli-
cability of the model to CPU scheduling, disk scheduling,
network scheduling, and buffer cache management.

Our future work focuses on fully generalizing the RAD
model. The addition of constraints—required processing
characteristics such as deadlines—and heuristics—desired
processing characteristics such as minimizing jitter or task
migrations—give the model sufficient flexibility to describe
a wide variety of existing and hypothetical schedulers with
different properties. We are also extending the model to ap-
ply to additional resources and dimensions, including multi-
processor and multi-disk scheduling.
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Abstract

Deploying dynamic voltage and frequency scaling
(DVFS) techniques in a real-time context has generated
some interest in recent years. However, most of this
work is based on highly simplifying assumptions re-
garding the cost and benefit of frequency scaling. We
have integrated a measurement-based DVFS technique
with an EDF based scheduling framework. This enables
the use of the dynamic slack caused by the variability
of execution time, to reduce energy consumption and
thus extend battery life or reduce thermal load. We have
tested the approach using hardware instrumentation on
a real system. This paper describes not only the theo-
retical basis for the work, but also our experiences with
DVFS when confronted with physical reality.

1 Introduction
Power management in embedded devices may be moti-
vated by several factors: extended battery lifetime, re-
duced need for heat sinks and other thermal dissipation
devices, a limited power supply (e.g. a solar powered
system), or simply improved environmental sustainabil-
ity.

Various policies for energy savings have been widely
deployed in portable devices like laptop computers
without real-time requirements. However, due to their
interactive nature, heuristics, with ill defined impact on
the temporal behaviour of the system are acceptable.
This is obviously not the case for real-time systems
where temporal behaviour is considered a prime sys-
tem property similar in importance to the functional be-
haviour.

In the last ten years a large body of work has been
devoted to the integration of power management poli-

∗NICTA is funded by the Australian Government’s Department of Commu-
nications, Information Technology, and the Arts and the Australian Research
Council through Backing Australia’s Ability and the ICT Research Centre of
Excellence programs

cies combined with real-time scheduling. However,
most approaches assume an inversely proportional re-
lationship between the CPU core frequency and execu-
tion time and ignore issues like a substantial frequency
switching cost, static power consumption or the effect
of a changing memory frequency on performance and
power. All of these issues are evident in real hardware
platforms.

Within this work we attempt to take our experience
with the physical reality of DVFS and develop an in-
tegrated real time and power-management scheduling
framework. In order to perform DVFS in a real-time en-
vironment, tracking of dynamic slack is essential. Dy-
namic slack is encountered thanks to the difference be-
tween the worst case execution time (WCET) and the
actual execution time. For most software the actual ex-
ecution time is subject to substantial variability as the
code is subject to different input parameters at run time.

The RBED work by Brandt et al. [1, 2] is an earli-
est deadline first (EDF) based scheduling framework.
Tracking of system slack is an integral part of this
scheme. Major advantages of the approach are high
utilisation (thanks to EDF), and integrated non-RT and
RT scheduling. It does this by temporal isolation and
thus ensures a graceful degradation in the event of an
overload situation.

We have set out to integrate power management in
an RBED-based scheduling framework. To address
the simplifications of previous work, a good model for
the temporal- and energy-consumption impact at dif-
ferent frequency settings is required. In previous work
we have developed such time [3] and energy [4] mod-
els. Our proposed approach allows for arbitrary and
frequency-dependent cost of a frequency switch in the
time and energy domain. Examples for such require-
ments are XScale-based processors or the Crusoe [5].

Based on these models we have developed a scheme
which makes use of the implicit slack tracking of the
RBED framework. We have implemented this work on
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a XScale-based platform within the OKL4 microkernel.
In this initial paper we have kept a number of assump-
tions made by the original RBED approach about real-
time tasks: we assume periodic, non-communicating
tasks where deadlines are runnability requirements (i.e.
a job must complete before the next job from that task
is released) on a single processor. The relaxation of
these assumptions is subject to ongoing work within our
group.

The next section will cover the most relevant related
work before we revisit our previous modeling work and
an overview of RBED. Section 5 details our extensions
to the RBED model to integrate our power management
work. The implementation and our evaluation of it are
the subject of Section 6 before summing up with the
conclusions.

2 Related work

Strategies for dynamically scaling voltage and fre-
quency (DVFS) to save energy is a wide research area.
A number of groups have developed approaches to-
wards both power management in real-time systems
and performance prediction under frequency scaling.
Within this paper we concentrate on the small repre-
sentative set of these contributions which we consider
most relevant to our work.

Using DVFS when considering timing constraints
raises the need for precise execution-time prediction.
Weissel and Bellosa [6] explored event-counter-based
prediction of performance degradation as part of their
development of a best-effort DVFS scheme. Moni-
toring certain system events allows predictions which
are within a small margin of error compared with the
widespread, but unrealistic, assumption of a linear re-
lationship between core clock frequency and execution
time. Refining this approach, Choi at al. [7,8] described
the effects of on-chip and off-chip cycles towards per-
formance degradation under frequency scaling. Perfor-
mance monitoring counters (PMCs) and an on-line re-
gression technique were used to calculate the balance
between these two. One disadvantage of this technique
was the 100µs processing time required at each fre-
quency switch. While these papers do explicitly eval-
uate timing constraints, they do not target real-time sys-
tems. Ultimately they had a substantial impact on the
development of our previous work [3, 4].

A number of groups [9–12] have integrated DVFS
and real-time scheduling approaches. Pillai and Shin
[9] simulated their RT-DVS algorithm for different task
sets and different hardware configurations. They imple-

mented a kernel extension for the Linux scheduler and
have shown that deadline-based approaches can per-
form better than fixed-priority-based scheduling (since
they have knowledge of the future workload).

The scheduling of sporadic tasksets was addressed by
Qadi et al. [10]. They achieved significant power sav-
ings for their particular problem. This work is closely
related to [9] and uses off-line techniques to determine
a global level of slowdown. Both fall in the category of
inter-task DVS, not exploiting the possibilities of DVS
inside running jobs.

Dudani et al. [11] used system slack time to allow
certain jobs to run at lower CPU core frequencies based
on the two common assumptions of many DVFS pa-
pers: that execution times scales linearly with the CPU
clock frequency and that running jobs slower implies
saving energy. Unfortunately, simulating an ideal real-
time system without taking comparing with the be-
haviour of a real system did not expose the issues with
their proposed solution.

The real-time DVFS approaches above are based on
the assumption that stretching workload maximise util-
isation saves energy in general. Depending on the hard-
ware, this assumption may be misleading (as shown by
Aydin et al. [12], our previous work [4]).

Exploring the possibilities of DVFS for periodic task
sets, Aydin et al. [12] have shown that premature fre-
quency scaling can even lead to increased power con-
sumption. Careful consideration of on-chip and off-
chip workload has to be made to achieve considerable
system wide power savings. However, similarly to the
other approaches, Aydin et al. [12] evaluate their ap-
proach in idealised simulations rather than in a physical
system environment.

The effects of frequency switching overhead which
represent significant, un-interruptible sections, were
largely ignored in recent work. However, our paper
shows how these side effects can be managed in real-
world real-time systems.

3 Prediction of Time and Energy

In our previous work [3, 4] we have developed an accu-
rate method to model time and energy consumption un-
der DVFS. This is now deployed in the implementation
of the DVFS-RBED policy. Here, we briefly introduce
the relevant concepts. Further detail is provided in the
original publications [3, 4].
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3.1 Time

The execution time for a given piece of software can
be described as the sum of the times spent waiting on
different functional units of the system. This can be
time in the CPU core actually executing instructions,
time spent waiting for main memory, time spent waiting
for I/O operations to complete and so on.

All of these operations can be considered as scaling
inverse proportionally with their respective clock fre-
quencies. This allows the execution time C to be ex-
pressed as follows:

C =
ccpu
fcpu

+
cbus
fbus

+
cmem

fmem
+

cio
fio

+ . . . (1)

The coefficients cx can be interpreted as being caused
by a number of events combined with an number of
wait-states associated with each of these events. Ide-
ally there would be a way to observe the events di-
rectly. However, many CPU cores provide us with a
means to observe some events which are correlated with
the events in question. Depending on the architecture
chosen, these have different names; e.g. event ocur-
rence counter for the PowerPC or performance event
counter in AMD chips. In Intel chips these are usu-
ally called performance monitoring counters (PMCs)
and we are going to use this term for the remainder of
the paper. The available events which can be observed
varies widely between architectures, but usually include
beside many others good predictors like cache misses,
TLB misses, or write backs.

Within this paper we focus on events concerning
memory accesses, which in this case involve the bus and
the memory frequency. In our sample platform the I/O
is not subjected to a separate frequency, hence we will
concentrate will only use ccpu , cbus , and cmem respec-
tively. Depending on the number of appropriate PMCs
available (in this case, 2), the equation can be linearly
extended.

cbus = α1PMC 1 + α2PMC 2 + . . .

cmem = β1PMC 1 + β2PMC 2 + . . . (2)

The PMC readings are application specific, while the
coefficients αi and βi are architecture specific. There-
fore, a given hardware platform simply needs to be cal-
ibrated.

Most architectures provide a cycle counter. This ex-
presses the execution time C of an application in terms
of the cycles ctot of the CPU core frequency fcpu . As

such the final parameter ccpu can be computed based on
a single measurement:

ccpu = ctot −
fcpu

fbus
cbus −

fcpu

fmem
cmem (3)

Now that all parameters of the model are instantiated,
we can, from a measured part of the application, reason
about the progress the application would make at the
fastest frequency setpoint and the time required to ex-
ecute the remainder of the task in any given frequency.
This will be further explained in Section 5.2.

3.2 Energy
The energy model follows a similar logic to the time
model: the energy consumed by the system depends on
the properties of the workload. It depends largely on
the number and type of operations performed, as well
as the static power over a given time interval ∆t.

E = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)∆t+ (4)

V 2
cpu(α0PMC 0 + . . . + αmPMCm) +

β0PMC 0 + . . . + βmPMCm +
γ4fmem∆t + Pstatic∆t,

Equation 4 consists of five groups of terms.

1. The first term accounts for the constant event rate
owing to the CPU, memory and bus clocks within
the CPU (in our test system, the memory controller
and processor bus are on-die). The number of cy-
cles executed is proportional to the time. These
are proportional to the the square of the CPU core
voltage.

2. Similarly, the next term associates certain events
described by performance monitoring counters
PMC i with energy consumed within the chip (i.e.
proportional to V 2

cpu ). For these, only the event
count, rather than the frequency are relevant.

3. The PMCs are also used to describe off chip
events, like memory accesses, for which the CPU
core voltage scaling has no impact.

4. The memory bus frequency is seen external to the
CPU, and is therefore accounted for by a term
which is independent from the CPU core voltage.

5. Finally the static power constitutes all of the power
not effected by frequency or workload changes
(and the energy is therefore proportional to the
time spent executing).
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The performance monitoring counter values PMC i

have to be a measure of the events during the time in-
terval ∆t. In turn the time interval at some target fre-
quency can be expressed using Equation 1. For clarity
of the presentation, we have not combined the equations
as the result would become unwieldily.

While Equation 4 is presented with a single scalable
voltage domain (the CPU core voltage) and a constant
voltage domain, it is trivial to extend to multiple scal-
able voltage domains. Currently, the model does not ex-
plicitly take the effects of I/O events into account. The
task model assumes that blocking on I/O will invoke the
scheduler which initiates a switch to a different task. In
this case, I/O is not accounted to the job which actually
initiates the I/O operation, but the one executing dur-
ing the I/O operation. However, as the energy model is
determined offline this effect is not taken into account.
The effects of I/O on the model are subject of ongoing
research in our group. Further details on performance
counter selection, etc, can be found in our prior work.

4 RBED Summary

Since our work is based on the RBED scheduling
framework developed by Brandt et al. [1] we will briefly
introduce the the background and concept of the RBED
approach. Devices with mixed timing requirements rep-
resent the majority of today’s embedded systems. Many
of them allow the installation of arbitrary user software
which may have unknown timing behaviour. Demand-
ing precise worst-case execution-times at installation
time is not feasible. Therefore, other precautions must
be taken to ensure that the behaviour of any given ap-
plication cannot harm the provision of timing require-
ments of other programs. The misbehaviour under over-
load conditions is one of the major shortcomings of
classic earliest deadline first (EDF) scheduling. Brandt
et al. developed a multi-class real-time scheduler for the
seamless support of mixed hard, soft and non real-time
applications. It ensures a timely separation of tasks by
preemptability and a resource allocating governor. Re-
source allocation takes place at run-time where tasks
dynamically request a share of the CPU time. The re-
source allocator can be implemented as a user space ap-
plication that performs an on-line schedulability anal-
ysis. The preemptive scheduler implements EDF but
ensures that only resources granted by the resource al-
locator are used.

One advantage of this approach is that allocation of
resources for soft real-time tasks can be independent of
the actual WCET of its jobs. Thus, for a soft real-time

task, where an application may miss (a small number
of) deadlines, instead of using the worst-case execution
time, a smaller timeslice may be allocated. This allows
over-allocation of the system while keeping single ap-
plications in temporal isolation; i.e. one soft real-time
job exceeding its allocated resources has no impact on
the schedule of other tasks. This allows seamless inte-
gration of hard real-time, soft real-time and best-effort
tasks in one system with a unified scheduling policy.

U utilisation of the entire taskset, U =
∑
∀i

ui

ui utilisation of a given task τi, ui = Ei/Ti at
the top frequency setpoint

ri,n release time of a given job Ji,n

di,n absolute deadline of a given job Ji,n

xi,n current service time ui(t−di,n−1) of a given
job Ji,n

Ci WCET of a given task τi at the top frequency
setpoint

Ei budget allocated to task τi

Di relative deadline of task τi

Ti period/minimal inter arrival time of task τi

C∗
i part of current job of task τi completed

(equivalent at top speed)

Figure 1: Nomenclature Used

For a complete description of the algorithms includ-
ing the proof of correctness, we refer to Brandt’s orig-
inal work [1]. For the relevant nomenclature see Fig-
ure 1.

Given the feasibility of dynamic resource dispatch-
ing, the introduction of per-job budgets allows for a
trivial measurement of resource usage and on-line re-
allocation of slack time. The task model is illustrated in
Figure 2 and can be described as follows:

A task τi consists of multiple subsequent jobs Ji,r.
These jobs cannot overlap (ri,r+1 ≥ ri,r + Ti).

Every job is preemptible at any time and the jobs of
a task have a minimum inter-arrival time (IAT) which is
called the period in the case of periodic tasks. No more
than one job can be released within the period/IAT.
Each job has a deadline relative to its release time. For
the scope of this paper, the relative deadline equal to the
period of the job. (Di = Ti)

Each job has a worst case execution time (WCET)
Ci which can be obtained using well-known techniques
and is very likely to be larger than the actual execution
time xi,r. As part of the RBED scheduling, a budget Ei

is reserved to each job Ji,r representing the timeslice
that must be granted to the job by the scheduler. In case
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of hard real-time requirements, the budget equals the
WCET (Ei = Ci) to guarantee timely completion of all
jobs. For soft real-time requirements, the assigned bud-
get may be smaller than the WCET Ei ≤ Ci to guaran-
tee timely completion of all jobs {Ji,r|xi,r ≤ Ei}.

In most cases, the job will finish in less time than
reserved (xi,r ≤ Ei). The remaining budget Ei − xi is
reserved, but not used and is therefore called slack Si,r.

i

C Si

j

i
*

E

C

i

i

D = T     
i

τ

Figure 2: Parameters of Job Jj

If a per-job budget Ei assigned to a task τi is smaller
than the WCET of a single job Ji,j of τi, the job’s run-
time can potentially exceed the budget. Since this is an
overload situation and would likely have drastic con-
sequences in classic EDF scheduling, precautions are
taken in RBED. The scheduler preempts every job when
it has used up its budget Ej and extends the deadline
Dj of the job by one period Tj . At the same time, the
job’s budget Ej is refilled to the assigned value. Thus,
the remainder of the execution is postponed until it is
scheduled again.

This guarantees a temporal isolation among all tasks
in the system as long as U =

∑
∀i

ui ≤ 1 with ui =

Ei/Ti. To ensure this condition is met, the resource al-
locator (RA) which may be an ordinary user space task
must acknowledge all requests for changing job’s pe-
riods, budgets or deadlines. The idea of dynamic re-
allocation of processing time is based on five theorems.

Theorem 1 The earliest deadline first (EDF) algorithm
will determine a feasible schedule if U ≤ 1 under
the assumption Di = Ti.

Theorem 2 Given a feasible EDF schedule, at any time
a task τi may increase its utilisation ui by an
amount up to 1 − U without causing any task to
miss deadlines in the resulting EDF schedule.

Theorem 3 Given a feasible EDF schedule, at any time
a task τi may increase its period without causing
any task to miss deadlines in the resulting EDF
schedule.

Theorem 4 Given a feasible EDF schedule, if at time t
task τi decreases its utilisation to u′i = ui−∆ such

that ∆ ≤ xi,n/(t− ri,n), the freed utilisation ∆ is
available to other tasks and the schedule remains
feasible.

Theorem 5 Given a feasible EDF schedule, if a cur-
rently released job Ji,n has negative lag at time t
(the task is over-allocated), it may shorten its cur-
rent deadline to at most xi/ui and the resulting
EDF schedule remains feasible.

The resource allocator algorithm can be described as
follows: UKernel describes the worst case utilisation re-
quired by the operating system. UBE,min describes the
minimum reserved utilisation reserved for all best-effort
tasks.

1. Assign desired utilisation UHRT,i to all hard real-
time (HRT) tasks as long as UHRT ≤ 1 −
UKernel−UBE,min where UHRT =

∑
∀iHRT

uiHRT

Reject all other requests for HRT resources.

2. Distribute utilisation not reserved for hard real-
time tasks, best-effort tasks or the operating
system among the soft real-time tasks accord-
ing to their requested resources. In case
USRT = 1 − UKernel − UBE,min − UHRT <∑
∀iSRT

ui,desired each SRT task is assigned ui =

ui,desired/
∑

∀jSRT

uj,desired

3. The total utilisation reserved for best-effort tasks is
the remaining utilisation which can be described as
UBE = 1−UKernel−UHRT−USRT ≥ UBE,min.
UBE is equally distributed among all best-effort
tasks.

5 Model Extension
In order to integrate our DVFS work with the RBED
approach we need to extend the RBED model. Our task
model is based on the idea that each job can be slowed
down, if this has beneficial effects for the total energy
consumed by the system. Jobs are preemptible and after
each preemption the frequency is re-evaluated.

One major issue when performing frequency scaling
on real-world architectures is the lengthy time some-
times required to switch voltage and frequency. A fre-
quency switch can be modelled as a substantial atomic
section. At design time, this must be accounted for ap-
propriately.

The following section describes how this model can
be integrated with the RBED scheduling algorithm.
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5.1 Budget for Switching

 fswitch

C
j

E
j

C

Figure 3: Budget Components

One of the fundamental advantages of RBED
scheduling is the absence of a complex schedulability
test which requires a priori knowledge of all parameters
of the taskset. Allocating time budgets isolates tasks
from one another. To guarantee this isolation, it is nec-
essary to ensure that no job can use more resources than
allocated a priori.

Figure 3 shows, how a time budget must be allocated
in order to guarantee isolation within our DVFS frame-
work. The first frequency switch that needs to be con-
sidered is the initial one, which may be required if the
previous job was scaled to a frequency lower than the
minimum frequency necessary to guarantee timeliness.

Each job Jj,r can potentially preempt another job
Ji,s when it becomes un-blocked due to an interrupt if
Dj < Di. At preemption time, the scheduler deter-
mines the energy optimal frequency setting for job Jj,r

which may differ from the optimal set point for job Ji,s.
In the case where a frequency switch is performed, suf-
ficient time must be allowed such that the preempted job
Ji,s is able to restore its frequency to guarantee timely
completion. Our approach is the automatic donation the
time required for one frequency switch to the preempted
job. A second frequency switch must be accounted for
in each task’s budget. This policy is illustrated in Fig-
ure 4 a) and b). These depict the point in time of the
preemption and the subsequent donation of the switch-
ing cost for the second frequency switch of job Jj,r to
job Ji,s. The dashed boxes indicate as-yet unused time
budget.

When a job becomes ready and the system is in its
idle state, no automatic donation need to be performed
since the idle task does not need to restore its frequency
set point. In this case, the job can use up the additional
budget for further slowdown if beneficial for the sys-
tem’s total energy use.

The key point of this section is this: within a job,
an arbitrary number of frequency changes can be per-
formed as long as the budget accounts for two fre-
quency changes.

Technically, it would be sufficient to perform the au-
tomatic donation only if a frequency switch actually
takes place. However, this requires an unreasonable
amount of house keeping without tangible benefit.
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Figure 4: DVFS-RBED Preemption Behaviour

5.2 Dynamic Slack Management
On top of the RBED scheduling algorithm, Lin and
Brandt [2] have developed a set of slack reclaiming
mechanisms which enhance the temporal behaviour
of soft real-time applications in RBED: SRAND and
SLAD are consistent with our approach as they allo-
cate slack to the highest priority task as soon as possi-
ble. SLASH which attempts to borrow slack from fu-
ture jobs of the same task and BACKSLASH, which
allocates slack to past jobs which have not completed
within their budget, could be integrated with our work
without conflict.

The task model of RBED allows implicit knowledge
of slack time in the schedule. Slack Si,r generated by
job Ji,r represents the amount of scheduled but unused
processing time. This slack time can be pushed forward
to the next runnable task’s budget in the schedule with-
out harming the timely behaviour of any task in the task
set. Such a donation of slack is depicted in Figure 4 c).
A formal proof can be found in [2]. It should be noted,
however, that this implies that slack is only donated to
jobs with a later deadline. When extending the work to
communicating and blocking tasks, this condition needs
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to be revisited and ascertained.
Since the amount of budget allocated for each job

should be sufficient for the job to complete within the
given budget of the job, additional budget allows longer
processing than required.

Reducing the clock frequencies (fcpu , fmem , fbus )
can reduce the total energy consumption for the job’s
execution. To determine feasible frequency setpoints,
the time model in Section 3.1 is used. The set of feasible
setpoints {σ = {fcpu , fmem , fbus}|Cσ

i,r ≤ Ei,r} for
job Ji, r is then investigated for their potential effects on
the job’s energy consumption using the model described
in Section 3.2. If a slower execution saves energy, a
frequency switch is performed.

The algorithm illustrated in Figure 5 shows the ac-
tions to be taken as part of each scheduler invocation.
First, all frequency set points are tested for feasibility.
Therefore, the time for potential frequency switches is
taken into account. Note, the time needed for a fre-
quency switch is not necessarily constant. It is zero in
case the frequency is unchanged and may be substan-
tial for other transitions. We assume, changing from set
point σA to σB is a constant, but the transition from
σA to σC may take a different amount of time. A real
world example for this behaviour is the Crusoe proces-
sor [5]. Xscale processors like the PXA270 or PXA555
have certain frequency combinations which where the
transition is almost instantaneous (turbo mode changes)
and others which require a substantial amount of time.

Second, the energy consumption for the job at all
feasible set points is investigated. The set point which
leads to the lowest energy consumption is then chosen.

After returning from a preemption, the job may have
received a donation of slack time if the preempting job
has not used up its entire reserved budget. Therefore,
the energy optimal frequency is recalculated on each
scheduler invocation.

One related issue is the absence of a precise measure
for the progress of a job. Thus, the progress is esti-
mated using the same time model (Section 3.1). Know-
ing the frequency set point and the number of events
which have occurred during the job’s execution so far,
the time model can be used to determine the remain-
ing processing time. Figure 6 illustrates this idea. The
events depicted represent PMC events. The number of
these events is in reality large, but has been limited for
illustrative purposes.

A job of task τi at maximum frequency σmax is de-
picted in Figure 6 a) the height of the boxes indicates
the power consumption and thus relates to the frequency
setpoint. In the example, five events ε1..5 happen during
execution of this job. Figure 6 b) shows the execution
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Figure 6: DVFS-RBED Progress estimation and dy-
namic slowdown

of the same job at a lower frequency set point σx. The
number of events remains five. The preemption of the
job is depicted in Figure 6 c). This preemption changes
neither the total execution time of the job, nor the num-
ber of events during execution. Figure 6 d) shows the
actual execution of task τj preempting task τi. While
the number of events remains five a further slowdown
is possible due to a donation of slack from task τj .

To perform a further slowdown after a preemption
and donation, the remaining runtime of the job Ji,r

must be determined. A measure for progress is needed.
Since there is no absolute measure for an application’s
progress the scheduler could determine, the estimation
technique in 3.1 is performed in the reverse order. The
job’s execution time so far and number of events can be
mapped to an equivalent progress at σmax . We call this
the absolute progress C∗

i,r(t) of job Ji,r at time t.
The remaining execution time at any frequency can

now be determined in the reverse order, using the dif-
ference between progress and WCET (Ci−C∗

i,r(t)) and
the time model 3.1.
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newEnergy = energyAtCurrentFrequency

newFrequency = currentFrequency

for frequency in frequencySetPoints

if executionTimeAtSwitchedFrequency + switchingCost.Time < remainingBudget

&& switchingCost.Energy + energyAtSwitchedFrequency < newEnergy

newEnergy = switchingCost.Energy + energyAtSwitchedFrequency;

newFrequency = frequency

if newFrequency != currentFrequency

switchFrequency(newFrequency)

Figure 5: Algorithm

In cases for which the performance degradation can
not be estimated safely, the algorithm may use a look-
up table to determine the WCET Ci of hard real-time
tasks. In such a scenario progress estimation can not be
performed safely either, thus a further slowdown is not
possible for hard real-time jobs.

Since our mechanism is based on the fact that slack
time is released at the end of a job, slack time can only
be re-allocated if a job finishes execution. In the case
of sporadic tasks, no jobs may be executed for a long
period of time. This slack time is currently not taken
into account in our algorithm and would be assigned to
best-effort tasks (if available) or the idle task.

5.3 Static Slack Management
To gain maximum possible energy savings, static slack
time must be distributed entirely. Static slack time de-
scribes the amount of time in the schedule which is not
allocated. In other words, it describes the sum of all idle
times in the schedule.

Static slack which is not allocated to any task cannot
be reclaimed or used for power management purposes
using our proposed algorithm. We found two differ-
ent options, to ensure full utilisation of the system. The
reader may recall ui = Ei/Ti where Ei does not neces-
sarily describe the true execution time but the reserved
time slice.

One solution is a distribution of static slack among
all existing tasks in the system which is later forwarded
as dynamic slack since jobs will likely complete earlier
than their budget expires. Dynamic slack is then used
for optimal frequency scaling. The advantage of this
approach is that all tasks benefit from the slack evenly
likely leading to a decreased energy consumption.

The other solution is the introduction of a ghost task.
This task’s sole purpose is freeing up its own budget.
This approach has the benefit of keeping track of static
slack explicitly. This enables easier exploitation of this
slack in a dynamic situation where tasks are added at
runtime.

6 Implementation Issues and
Lessons Learned

6.1 Experimental platform
We implemented the proposed algorithm on an off-the-
shelf Gumstix Connex platform which runs the L4 mi-
crokernel OKL4 v1.5.2 which was the latest release at
the time of implementation and the Iguana operating
system [13].

In particular, we wrote three software modules im-
plementing the proposed algorithms. First is the pre-
emptive EDF scheduler which replaces the fixed prior-
ity scheduling algorithm of the L4 microkernel. Prior-
ity was replaced in the task control block by deadlines,
budget and period. The scheduler preempts running
jobs when the job’s budget is used up. If a job completes
before its budget is entirely used, the remaining budget
which represents the generated slack is enqueued in a
deadline sorted budget queue.

Second, the user space resource allocation was inte-
grated in the iguana root task which has special privi-
leges. One privilege added is the exclusive right to per-
form system calls to the scheduler. This ensures that
no other task can make its way around the mechanism.
Deadlines, budgets and periods can be allocated at build
time or dynamically changed on runtime if the resource
allocator permits the change.

Third, a module for arithmetic evaluation of the time
model 3.1 and the energy model 3.2 was added to the
kernel space scheduler. It evaluates the execution-time
estimation for all possible frequency settings and then
calculates the energy consumption at all feasible set
points. Finally it chooses the set point related to the
lowest energy consumption.

Figure 7 shows the software architecture for our im-
plementation which is partially similar to the RBED im-
plementation we received by courtesy of Brandt et al.

The hardware platform consists of a Gumstix Connex
motherboard, an Etherstix network interface as well as
an Audiostix 2 sound card and a Tweener serial console
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driver. We have chosen this configuration to gener-
ate a typical static and dynamic power consumption of
an embedded device. The XScale PXA255 CPU fre-
quency as well as the bus frequency and the memory
frequency can enter 22 different setpoints in this config-
uration. The Gumstix platform does not support voltage
scaling.

All power consumption was measured with a power-
and energy-measurement device developed within the
group. This device obtained an accuracy of better than
a Milliwatt. The static power consumption of this hard-
ware configuration in idle mode was measured to be
1.13W . The network interface was measured to con-
sume the majority of this (0.8W ). While active, at the
lowest frequency set point, the power consumption of
the device is 1.45W and 1.57W at the fastest.

The CPU deployed in our experiments implements
two types of frequency switches. The standard switch
changes frequencies of CPU, bus and memory to one of
the 22 different modes. These changes take a substan-
tial time between 500µs and 600µs. This time is caused
by a combination of required operations, like putting
the memory in self refresh mode, and the settling time
of the phase-locked loop circuitry. The other switching
operation implemented in the PXA255 is called ”turbo”
mode switching. It allows fast switching between two
different CPU frequencies inside frequency pairs, main-
taining the memory and bus frequencies. Those turbo
frequency changes are intended for peak processing re-
quirements and happen synchronously without disrupt-
ing the memory controller or any peripherals. These
switches require only a small number of nanoseconds.

Furthermore, the PXA255 CPU implements a number
of low power states which may be useful depending on
the maximum acceptable interrupt latency. These low
power states also range from single cycle clock gating
to extremely deep sleep states which requiring a delay
on the order of one millisecond to exit.

6.2 Best effort threads
One of the key points in the RBED scheduling algo-
rithm is the seamless integration of hard real-time, soft
real-time as well as best effort tasks. Best effort tasks
can be described as tasks which do not necessarily have
a periodic or frequent blocking point and do not raise
any real-time requirements. Nevertheless, the goal is a
guaranteed continuous progress regarding their execu-
tion even under high system load to maintain the system
in a responsive state.

To keep the scheduling algorithm simple, periods,
budgets and deadlines are assigned to all best effort
tasks. Thus, these tasks are treated as real-time tasks
with artificial deadlines. Depending on the system pa-
rameters and the priority of power savings over best-
effort performance restricting the execution of best-
effort tasks to a small share can save energy. If the ex-
ecution of best-effort tasks is not restricted, the system
may never go to low-power idle mode.

6.3 Lessons learned
Calculating the energy purely needed by one particular
job shows, that faster execution saves energy because
the execution time decreases faster than the power con-
sumption increases for our particular platform. How-
ever, we believe there is a trend in modern processors,
with static power taking an increasing share of the over-
all system power consumption. Since our experimen-
tal application is a device which is constantly turned
on, the energy required by the device to stay turned on
must be taken into account. Due to the high static power
consumption of the device and compared to the low dy-
namic power consumption, the impact of the idle time
is substantial. For our particular experimental platform
it turned out, that the lowest possible frequency setpoint
is always the most energy saving.

The algorithm in Figure 5 which evaluates the time
model and the energy model must be performed in
fixed point arithmetic because floating point process-
ing would cause too much overhead in general and on
the XScale architecture in particular, since it does not
implement a floating point unit.

Another lesson learned is that a microkernel requires
extremely careful implementation of this approach. The
first microkernels developed gave the kernel design
a bad name because of the large number of context
switches are necessary and which expose deficiencies
in context switching costs as poor system performance.
Years of research and development have lead to the L4
microkernel which was designed for very high inter-
process communication (IPC) performance. This ap-
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proach was successful and L4-based kernels are widely
deployed in modern embedded systems. While the suc-
cess of current L4 microkernels is based on fast context
switches and IPC. This advantage is threatened by the
overhead of Figure 5 on each context switch.

Our choice, the PXA255 processor was based on
its ability to change between run mode frequency and
turbo mode frequency without a substantial switching
time. However, the PXA270 processor implements a
half-turbo mode. This processor would have been the
better choice in hindsight. Finally, the choice of the
Gumstix platform results in the inability to use voltage
scaling. Deploying voltage scaling would lead to better
energy savings, but may add a switching overhead.

7 Conclusion

Within this paper we have shown the integration of real-
world power management with a real-time scheduling
approach and have reported on the lessons learned from
this work.

In the future, we will expand this work beyond the
scope of this paper. Core issue in this area is the ex-
tension to communicating task sets. The modeling of
systems with non rate-based applications (e.g. bursty
workloads), is another requirement for real-world de-
ployment. We will investigate the modeling and inte-
gration of these tasks within our framework. Further-
more we want to study the effects of deadlines which
are shorter than the period on the RBED algorithm in
general and on our DVFS extension in particular.

Modelling sporadic tasks as periodic tasks might not
be the energy optimal solution. Further investigation
is necessary when completely unused reserved time of
sporadic tasks can be freed for power management use.
As mentioned above, our task model assumes that I/O
completions start a job and another blocking operation
marks the end of a job. Depending on the hardware, this
model may not be sufficiently general. Further investi-
gation of the effects of intra-job blocking on our model
remains future work.
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ABSTRACT 
The use of MPSoCs (multiprocessor systems-on-chip) is a clear 
tendency for embedded systems in the current days, especially for 
consumer markets. Applications are growing in complexity, and 
multiprocessor platforms can provide performance and flexibility. 
On the other hand, developers are looking for platforms that help 
to cope with conflicting design demands, such as low energy 
consumption, reduced area, timing requirements, and tight time-
to-market. This paper proposes to move up the abstraction level to 
deal with this challenge, by offering a middleware to encapsulate 
platform details and preserving real-time properties. Task 
migration and allocation services are emphasized in this paper, 
and initial results in task migration are presented and evaluated. 

 

1. INTRODUCTION 
Real-time embedded systems are expanding and 

growing in complexity, imposing multiprocessing 
resources to face high performance and low-energy 
requirements. MPSoC (Multiprocessor System on Chip) is 
becoming a widely adopted design style, to achieve tight 
time-to-market design goals, provide flexibility and 
programmability, and maximize design reuse. The use of a 
multiprocessor platform brings with it the well known 
challenges from parallel and distributed systems [2], related 
to concurrency. Sometimes, these processors may have a 
fixed ISA (Instruction Set Architecture); sometimes a mix 
of processor types is used, like RISC+DSP, for example. 
Additionally, embedded systems impose restrictions to the 
solution, like limitations in CPU performance, memory, 
and power consumption. Therefore, solutions that come 
from the distributed systems context should be customized 
to be used for embedded applications. 

Developing applications for embedded multiprocessor 
architectures requires a higher level programming model to 
reduce software development cost and overall design time 
[3]. Such a model reduces the amount of architecture 
details that need to be handled by application software 
designers and then speeds up the design process. The use 

of a higher level programming model will also allow 
concurrent software/hardware design, thus reducing the 
overall design time. 

On the other hand, improving the performance of the 
overall system requires going through low level 
programming, exposing architectural properties to the 
application level. 

Since applications are partitioned in processes and 
processors, a middleware could be used to provide a high 
level interface, hiding distribution aspects [4]. As a 
consequence, system resources and application components 
can be easily reused, saving time for a better application 
development. In a typical DRE (Distributed Real-time 
Embedded) system, a middleware usually integrates 
reusable software components and decreases the cycle-time 
and effort required to develop high-quality real-time and 
embedded applications and services [5]. The middleware 
support has not been investigated in the context of MPSoC 
applications, but only for DRE systems. Nevertheless, in 
the context of MPSoCs a middleware could also become an 
interesting approach to raise the abstraction level, helping 
to achieve shorter development times. Moreover, energy 
consumption is a key issue for embedded systems and a 
high abstraction level development tools should also take 
such issues into account. 

This paper describes a middleware to deal with 
distributed applications in an MPSoC using a homogeneous 
ISA (Instruction Set Architecture) and abstracting 
interfaces between HW-SW implementations and network 
communication as well. It also includes energy 
management services, which work transparently, integrated 
with high level services. 

Dynamic task allocation and migration has been shown 
to be a promising technique to ensure an adequate load 
balancing among processing units in an MPSoC [6][7], 
allowing the minimization of some metrics, such as 
execution time or power consumption. This work proposes 
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to combine those allocation and migration services with 
energy management in a transparent way. 

The remaining of the paper is organized as follows. 
Section 2 gives an overview about the development 
platform. The proposed middleware is presented in Section 
3. Task allocation and migration services are described in 
Section 4. In Section 5, experimental results are presented. 
Finally, in Section 6 concluding remarks are drawn. 

 

2. Hardware platform 
Figure 1 depicts the overall platform architecture, 

which includes the network and the processor. 
 

Input
Interface

Output 
Interface

ack

data

ack

ack

ack Router

data
data data

Processor
Architecture 

MIDDLEWARE

Application

Input
Interface

Output 
Interface

ack

data

ack

ack

ack Router

data
data data

Processor
Architecture 

Input
Interface

Output 
Interface

ack

data

ack

ack

ack Router

data
data data

Processor
Architecture 

MIDDLEWARE

Application

 

Figure 1: General Platform Architecture 
 

2.1 Configurable processor  
Over the last years, Java has gained popularity as a 

suitable programming language for embedded and real-
time systems development. The definition of the Real-Time 
Specification for Java (RTSJ) standard [1] is the most 
prominent example of such popularization in the real-time 
domain. 

For this work, a customizable Java processor called 
FemtoJava [8] is used, which implements an execution 
engine for Java in hardware, through a stack machine that 
is compatible with the specification of the Java Virtual 
Machine (JVM). Different processor organizations are 
supported, such as multi-cycle, pipeline, and VLIW [9]. 
For the multi-cycle processor, used for the experiments in 
this work, all instructions are executed in 3, 4, 7, or 14 
cycles, because the microcontroller is cacheless and several 
instructions are memory bound. 

A compiler that follows the JVM specification is used. 
An environment called Sashimi [8] generates both 
customized code for the application software and the 
processor description and allows the synthesis of an ASIP 
(application-specific integrated processor). The generated 
code includes the VHDL description of the customized 

processor core (whose ISA contains only instructions used 
by the application software), as well as ROM (programs) 
and RAM (variables) memories and can be used to simulate 
and/or synthesize the target application. Sashimi eliminates 
all unreferenced methods and attributes, as well as the 
unused JVM instructions, automatically customizing and 
optimizing the final hardware and software code. 

 

2.2 Communication infrastructure 
Networks-on-chip [10] have been proposed in recent 

years as a scalable, high-bandwidth, and energy-efficient 
communication infrastructure for MPSoCs containing a 
large number of cores. In this work, the network-on-chip 
(NoC) SoCIN [11] is used to interconnect the processors 
inside the MPSoC. SoCIN is based on a flexible router, 
called RaSoC. 

Communication is based on message passing. 
Messages are sent in packets, which are composed by flits. 
A flit (flow control unit) is the smallest unit over which the 
flow control is performed. A flit also coincides with the 
physical channel word (or phit – physical unit). 

SoCIN utilizes wormhole packet switching, so it uses 
small buffers in the routers, saving size and energy. The 
routing is XY, which is deadlock free. Each router has 5 bi-
directional ports with input buffer size of 4 phits. The phit 
size is 4 bytes. 

The router description provides parameters to perform 
fine adjustment in the NoC properties, aiming at matching 
application requirements as well as possible. The cost-
performance trade-offs can be explored by changing NoC 
parameters. 

SoCIN can support other devices connected to the 
routers, besides processors. In spite of that, this work 
considered only processors connected through the network, 
using homogeneous ISA and private memory. Other 
research efforts in our research group have been conducted 
to use heterogeneous processors and shared memory, but 
they will not be discussed in this paper. 

 

3. Outline of the MPSoC Middleware 
This section presents the middleware proposed to 

fulfill the requirements of a real-time and embedded system 
with energy restrictions. An MPSoC is assumed as the 
target hardware platform. 

Within the context of this work, the middleware aims 
at promoting software and hardware reuse and includes 
mechanisms that help to express real-time requirements and 
constraints. Those properties should be fulfilled having in 
mind limitations in physical resources like energy, 
memory, and processor performance.  

The proposed architecture allows a flexible and broad 
design space exploration, by acting upon issues like 
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hardware or software implementation of services and 
objects and locality of objects in the network. 

Figure 2 shows the proposed architecture, which is 
organized in two abstraction levels: structure and service 
levels. The structure level offers the more elementary 
resources of the middleware, namely network 
communication and multithread management. Using 
classical definitions, this level could be defined as an 
RTOS. However, to offer flexibility and enhance overall 
efficiency, RTOS-like capabilities are included in the 
middleware. The service level offers a higher abstraction 
and uses resources implemented at the structure level. It 
offers basic services, if one considers the complexity of a 
general purpose distributed system. However, these 
services are sufficient to support multiprocessor embedded 
application design, allowing the exploration of different 
arrangements in the allocation of tasks either at design time 
or at execution time. 

It is important to highlight the monitoring and DVS 
(Dynamic Voltage Scaling) services, at the structure level. 
Those services are not part of the original RTSJ standard, 
but they were defined in the middleware to support some 
facilities at the service level. 

This paper discusses the task migration and task 
allocation services in detail. A more generic view will be 
given for the other services. 
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Figure 2: Middleware architecture 
 

3.1 Real-time multithread management 
In the context of this work, a thread is a synonym for a 

schedulable object and is also called task. 
The Real-Time Specification for Java (RTSJ) standard 

[1] defines a set of interfaces and behavioral specifications 
to allow the development of real-time applications using 
the Java programming language. Among its major features 
are: scheduling properties suitable for real-time 
applications with provisions for periodic and sporadic tasks 
and support for deadlines and CPU time budgets. 

RTSJ allows the use of schedulable objects, which are 
instances of classes that implement the so called 
Schedulable interface, such as RealtimeThread. It also 
specifies a set of classes to store parameters that represent a 
particular resource demand from one or more schedulable 
objects. For example, the ReleaseParameters class 
(superclass from AperiodicParameters and 
PeriodicParameters) includes several useful 
parameters for the specification of real-time requirements, 
such as cyclic activation and deadlines. Moreover, it 
supports the expression of the following elements: absolute 
and relative time values, timers, periodic and aperiodic 
tasks, and scheduling policies. 

Along with the Java processor there is an API [13] that 
supports the specification of concurrent tasks and allows 
the specification of timing constraints, implementing a 
subset of the RTSJ standard. 

The scheduling structure consists of an additional 
process that is in charge of allocating the CPU for those 
application-processes that are ready to execute, exactly like 
in an RTOS. Application developers should choose the 
most suitable scheduling algorithm at design time. 
Therefore, a customized scheduler is synthesized with the 
whole application into the embedded target system. 

Currently, four scheduling algorithms are available: 
EDF, RM, Fixed Priority (software and hardware 
implementations), and Time-Triggered. 

 

3.1.1 Additional functions to RTSJ 
The so called function ‘monitoring’ aims at measuring 

resources of the local processor, like available memory and 
processor utilization. This function is offered to the task 
allocation service to help its decision when adding a new 
thread to a processor. 

A DVS (Dynamic Voltage Scaling) functionality is 
added to the schedulers and allows the application to act 
upon the hardware for energy reduction purposes in a 
transparent way. The use of DVS algorithms, like the 
cycle-conserving one [15], opens space for energy 
reduction at execution time. By using a DVS capability, the 
scheduler can manage the local processor frequency to the 
lowest value able to match the deadlines of the threads 
added to the scheduler. From the designer’s point-of-view, 
it is enough to use a scheduler that is able to manage DVS 
resources. 

 

3.2 Network communication 
The communication API (COM-API) encapsulates 

transport and datalink layers, providing an interface to the 
application layer [2]. 

The communication system provides support to 
message exchange among applications running in different 
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processors. The API allows applications to establish a 
communication channel through the network, which can be 
used to send and receive messages. The service allows the 
assignment of different priorities to messages and can run 
in a multithread environment. From the application point-
of-view, the system is able to open and close connections 
as well as to send and receive messages, being accessed by 
different threads simultaneously. 

The COM-API works together with the RTSJ-API, 
using processor features to provide communication via a 
network interface. RTSJ-API provides schedulable objects 
(for real-time threads) and relative time objects. 

In order to offer a larger design space to be explored in 
the development of application-specific systems, a 
hardware implementation of the communication service 
was also developed [18]. It is encapsulated in a class called 
HwTransport and can be used in the same way as the 
software implementation (called Transport). The Java 
processor interacts with this communication block 
implemented in hardware as with any other I/O device. 

The differences when using hardware and software 
implementations are transparent to the developer, since 
they are encapsulated in different classes that implement 
the same interface. 

 

3.3 Locality abstraction 
An important demand for design space exploration in 

an MPSoC system is to allow the allocation of threads 
everywhere in the network, making this locality transparent 
to the application until run-time. This property requires an 
abstract locality mechanism in order to allow access to 
other objects even when their location is unknown at 
development time. Moreover, this mechanism should be 
integrated with the RTSJ-API in order to offer temporal 
guarantees for message delivery. 

A simplified mechanism for remote method invocation 
was proposed and implemented based on RMI from 
standard Java [17]. A conceptual modification was 
introduced in this mechanism using time bounds for its 
operations using RTSJ objects. A specific class to 
encapsulate real-time properties was added 
(RealTimeParameters) both in the client and in the 
server sides. The thread (ConnectionHandler) that 
deals with connections on the server side is another 
component to bring predictability to RMI. This thread has 
real-time properties following RTSJ rules. This means that 
it will be scheduled according to its real-time properties, 
like period and deadline. The RTSJ API allows the 
developer to choose among different scheduling policies, 
as already mentioned. 

Similarly, a maximum execution time is defined for the 
ConnectionHandler thread at development time, 

using an asynchronous event mechanism, as defined by 
RTSJ. Thus, the communication operations will not violate 
the time reserved for the other application threads or tasks. 

 

3.4 Hardware-object implementation 
The boundary of the hardware/software partition plays 

an important role in meeting design constraints. This 
boundary is often decided upon at the early stages of 
development, leading to premature and inadequate design 
decisions. Moreover, it is hard to move this boundary at 
later stages. Better design decisions could be made at later 
stages in the development, when a better understanding of 
impacts of alternative hardware and software 
implementations emerges. This is only possible if the 
design process includes tools that simplify the movement 
of components’ deployment from hardware to software and 
vice-versa, by defining a uniform programming model for 
both implementations. 

Within the context of this work, a real-time thread can 
be implemented in two different ways. A software 
implementation is a Java code executed by the processor, 
as described in [13]. A hardware implementation executes 
autonomously, although controlled by the processor. A 
hardware thread has its own Finite State Machine (FSM) 
and can run in parallel with the processor. 

A hardware component (HwTI – Hardware Thread 
Interface) is defined as an interface between the processor 
and the hardware thread. Another hardware component 
must implement the thread behavior and is called Hardware 
Thread Behavior (HwTB). HwTI is part of the platform, 
available to developers, while HwTB is part of the 
application and must be implemented by developers using a 
hardware description language. The proposed architecture 
is introduced in [14], where it is better described. 

The communication between the application and the 
HwTB component is managed in software, by an RTSJ 
compatible class. 

From the software point-of-view, the hardware thread 
is encapsulated by an object that extends the 
RealtimeThread class from RTSJ. So, the hardware 
thread will be controlled similarly to other threads 
implemented in software, by reusing schedulers already 
available in the RTSJ implementation. 

 

3.5 Energy management 
An important demand for MPSoC platforms is energy 

management, since most of them are powered by batteries. 
Low energy means a smaller battery, lower weight, lower 
cost, and so on. 
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Within the context of this work, low power and low 
energy are provided by hardware implemented objects that 
can be included as services or as application components. 
To reach flexibility, a DVS/DFS (Dynamic Voltage Scaling 
/ Dynamic Frequency Scaling) functionality is included in 
the task schedulers and exposed to be selected by 
application developers. The application can define the 
scheduler to be used in each processor, thus defining if 
DVS should be used or not. 

 

4. Task allocation and migration 
Task allocation and migration are services related to 

load balancing, and a homogeneous ISA is required. A task 
is allocated before it starts running and can be migrated 
during its execution. 

 

4.1 Task migration 
Dynamic task allocation has been shown to be a 

promising technique to obtain load balancing among 
processing units in an MPSoC [6] [7], allowing the 
minimization of some variables, like execution time or 
power consumption. To reach dynamic allocation, a 
migration task mechanism is required. Two cases are 
possible: (1) when a new allocation is required in a set of 
not-empty processors, some tasks could be moved to 
optimize the new distribution; (2) when a set of tasks is 
finished, a new arrangement can be made to optimize the 
overall processors’ utilization. 

Task-migration approaches usually adopt shared-
memory as the communication model in an SMP 
(symmetrical multi-processing) environment. This work 
considers an AMP (asymmetrical multi-processing) model, 
since processors have dedicated local memory resources. 
Although processors can have different organizations, like 
pipelines and multi-cycle ones, they share a common ISA, 
and, thus, tasks can be assigned to different processors. For 
the adopted platform (a NoC), message exchange is a 
natural choice due to its scalability. However, a shared-
memory model is also under investigation as a 
communication strategy, but it is not in the scope of this 
paper. 

To offer task migration as a service in the middleware, 
all communication operations should be submitted to the 
communication API. Moreover, these communications are 
submitted to the discipline of a periodic real-time thread 
with a pre-established maximum cost. These properties 
make the task migration service independent from the 
underlying network and adequate to be used in real-time 
applications. 

In the context of the adopted platform, a task is not 
built at run-time, but it is defined at development time, 
together with its accessed objects. Thus, its address space is 
known a priori. The middleware can only move quite 
independent tasks. Currently, if different tasks share the 
same data, the application is supposed to take care of data 
coherence after migration. Some mechanisms to solve this 
situation are still under investigation, since they introduce 
an important overhead in the communication. 

Figure 3 shows the class diagram of the implemented 
service. The migration service is activated by another 
service, called task allocation, which decides which task to 
move and its destination, based on restrictions, like 
processor or memory utilization, and on objectives, like 
load balancing. 

 

MoveThread
+sendThread( thread : RealtimeThread, destAddress : int ) : boolean
+receiveThread() : boolean

#receiveHandler() : void
#sendHandler() : void

...

AsyncEventsMechanism
(saito.sashimi.realtime)

RealtimeThread
(saito.sashimi.realtime)

AsyncEventHandler
(saito.sashimi.realtime)

AsyncEvent
(saito.sashimi.realtime)

Transport
(saito.sashimi.ApiCom)

ServerNaming
(saito.sashimi.rmiRT)

MvThreadHandler

MvThdEvent

 

Figure 3: Task migration class diagram 
 

The MoveThread class contains the public methods 
sendThread() and receiveThread(). They are 
used to activate task sending and -receiving services. They 
both return FALSE if the service is not available. When the 
sendThread() method is executed, an event handler 
(MvThreadHandler) is executed and configured to 
move the task, which is passed as a parameter. The task is 
sliced into blocks, and the first one is sent. After that, each 
time an ACK is received (from the receiver), an event is 
generated and the next block is sent. The event handler 
follows the asynchronous event management policy, 
defined by AsyncEventMechanism. Although this 
procedure leads to an increase in the latency of a migration, 
it ensures a balanced use of the processor, avoiding any 
interference in other running real-time tasks. 

Task migration means to send code (methods) and 
attributes of the RealtimeThread object as well as the 
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objects referred to in the RealtimeThread. The stack is 
also sent. Being a stack machine, Java preserves task 
variables in the stack, such that the task context is 
replicated when the stack is copied. This property makes 
context copy easy, avoiding the use of checkpoints. In 
other words, the memory used by the task is confined to the 
attributes of its classes and to the stack, which contains 
method variables. 

For the adopted platform, the position of objects (code 
and attributes) in the memory is defined by a post-
compilation tool, which can set appropriate attributes of the 
RealtimeThread class. The stack position and size are 
known by the RealtimeThread. The MoveThread 
class obtains those values at run-time before moving the 
task. 

The migration service should be activated in the 
destination too, as in the origin of the migration, by 
invoking the receiveThread() method. 

 

4.2 Task allocation 
The task allocation service consists in pointing out 

nodes for tasks in the network using a distribution function. 
In [6] and [7] different distribution algorithms were 
investigated and some solutions were proposed. Those 
algorithms have been firstly evaluated in a high abstraction 
level simulator and afterwards implemented as part of the 
middleware. The role of the middleware is to offer an 
interface to the service, thus making easy for the 
application developer the choice of a distribution 
algorithm. 

Each node of the network should have an instance of 
the monitoring service (middleware structure level), which 
is able to inform about the availability of resources 
(memory, processor time). 

Figure 4 shows the class diagram for the task 
allocation service. First of all, the class 
RealtimeThread, from RTSJ, is extended, thus 
creating an XtdRealtimeThread class. This new class 
has the properties the task should inform to the allocation 
service, as memory and processor utilization. In fact, for a 
periodic task, it is possible to obtain the processor 
utilization by referring to RTSJ parameters, since a 
periodic RealtimeThread knows its worst case 
execution time (WCET) and the period as well. The 
utilization is equal to the WCET divided by the period. 

 

Allocator

+findAllocationHost( thread : XtdRealtimeThread )
+alloc( HostAddress : int )

ResourceBroker

+findResource( constraints : AllocRequirements )

XtdRealtimeThread

+getRequirements()

AllocRequirements

RealtimeThread

HostProperties

+getResources()

BP_WorstFitBP_BestFit

 

Figure 4: Task allocation class diagram 
 

Task distribution is implemented by the classes 
Allocator and ResourceBroker. The design pattern 
Strategy is used to offer abstract access to different 
allocation algorithms. In the diagram provided in Figure 4, 
Bin-Packing Best Fit (BP_BestFit) and Bin-Packing Worst 
Fit (BP_WorstFit) are shown to illustrate possible 
algorithms, as proposed in [6]. The findResource() 
method is implemented in the concrete classes to perform a 
search for a node to allocate a task. 

 

5. EXPERIMENTAL RESULTS 
For experimental verification, a SystemC simulator 

uses an RTL description of the FemtoJava processor. The 
network is implemented as a TLM (transaction-level) 
model. 

The example presented in this paper is a demonstration 
of the task migration service. In this example, three 
synthetic tasks are executed in one processor and one task 
in another one. This example represents four different 
applications that do not have communication between 
them. The tasks are periodic and the migration should not 
jeopardize their deadlines. After some time, one task 
(TaskC) migrates from the first processor to the second 
one. 

The AsyncEventMechanism period was chosen 
such that the task that migrates (TaskC) could do it 
between two consecutive execution periods. Figure 5 
shows the activation times for TaskC, where the x-axis 
represents time in milliseconds. The first two executions 
occur at the origin processor, while the remaining ones 
occur at the destination. The third execution experiences 
latency due to the migration time. One can see that the task 
promptly recovers its original period (30 ms), as started in 
the origin. The activation time of a RealtimeThread is 
part of its attributes and is copied in the migration process. 
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Thus, the scheduler in the destination can keep the original 
behavior of the task. 
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Figure 5: Activation time for a migrated task 
 

The time required to migrate a task can be evaluated 
from two different points-of-view, as shown in Table 1. 
The first line shows the computational cost to migrate 
TaskC, it means, the real cost in processing the migration 
service. The cost grows linearly as the task size increases. 
The time values depend on the latencies imposed by the 
communication service, provided by the structure layer. 
This throughput can be optimized using a hardware-
implemented communication service [18] or a processor 
with higher performance [9]. 

The migration does not occur in a continuous flow, 
which could compromise the deadline of other tasks 
running. On the contrary, the transmission is sliced in 
blocks controlled by the AsyncEventMechanism from 
RTSJ. It increases total latency observed by the user of the 
service, as shown in the second line in Table 1. In the 
origin, it is the time elapsed since the sendThread() 
method is invoked until the service finishes. In the 
destination, it is the time elapsed since the first block starts 
to arrive until the start() of the RealtimeThread in 
the destination processor. At both sides (origin and 
destination), the end of the service is transparent to the 
user, i.e., the methods that activate the service do not retain 
the flow of the code that invokes them. The total latency 
grows following the period of the task that implements the 
AsyncEventMechanism. 

Table 1: Time measures for task migration 
 Origin node Destination node 

Effective cost (ms) 3.27 3.93 
Total latency (ms) 53.30 51.42 
 

Using the middleware, developers save development 
time required to implement capabilities already provided as 
services. Code provided to implement HW-SW 
communication, task migration, remote method invocation, 

and so on can be reused in all projects. Table 2 shows the 
amount of memory used by some services of the 
middleware compared with a classical embedded 
application, an MP3 player. The table shows that the total 
memory consumed by the middleware is acceptable for real 
applications. 

Table 2: Memory usage 
Middleware component ROM RAM 
Remote method (server) 2139 Bytes 118 Bytes 
Task migration (origin) 2343 Bytes 81 Bytes 
COM-API (Pack49-Msg500) 4493 Bytes 6345 Bytes 
API-RTSJ + DVS 4849 Bytes 242 Bytes 
TOTAL (middleware) 13824 Bytes 6786 Bytes 
Application ROM RAM 
Mp3Player 48548 Bytes 63702 Bytes 

 

 

6. CONCLUSIONS 
Multiprocessor platforms bring new challenges to the 

development of applications with high quality, matching 
real-time requirements and keeping a low energy usage. 
This paper proposes to face this challenge using a 
middleware to abstract platform details and allowing 
developers to express real-time requirements. 

An MPSoC with homogeneous ISA is considered for 
task migration and allocation services. 

Preliminary results on task migration are presented and 
evaluated. Results show that this service presents an 
acceptable cost and offers an adequate abstraction for the 
application developer. This service runs upon the structure 
level of the middleware, which is similar to an RTOS. 

The next step of this work is to validate and evaluate 
the task allocation service, based on algorithms previously 
evaluated in [6]. 
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Abstract. Scheduling the execution of multiple concurrent tasks on shared re-
sources such as CPUs and network links is essential to ensuring the reliable and
correct operation of real-time systems. For closed hard real-time systems in which
task sets and the dependences among them are known a priori, existing real-
time scheduling techniques can offer rigorous timing and preemption guarantees.
However, for open soft-real-time systems in which task sets and dependences may
vary or may not be known a priori and for which we would still like assurance of
real-time behavior, new scheduling techniques are needed.
Our recent work has shown that modeling non-preemptive resource sharing be-
tween threads as a Markov Decision Process (MDP) produces (1) an analyzable
utilization state space, and (2) a representation of a scheduling decision policy
based on the MDP, even when task execution times are loosened from exact val-
ues to known distributions within which the execution times may vary. However,
if dependences among tasks, or the distributions of their execution times are not
known, then how to obtain the appropriate MDP remains an open problem.
In this paper, we posit that this problem can be addressed by applying focused
reinforcement learning techniques. In doing so, our goal is to overcome a lack
of knowledge about system tasks by observing their states (e.g., task resource
utilizations) and their actions (e.g., which tasks are scheduled), and comparing
the transitions among states under different actions to obtain models of system
behavior through which to analyze and enforce desired system properties.

1 Introduction

Scheduling the execution of multiple concurrent tasks on shared resources such
as CPUs and network links is essential to ensuring the reliable and correct opera-
tion of real-time systems. For closed hard real-time embedded systems in which
the characteristics of the tasks the system must run, and the dependences among
the tasks are well known a priori, existing real-time scheduling techniques can
offer rigorous timing and preemption guarantees.

? This research was supported in part by NSF grant CNS-0716764 (Cybertrust) titled “CT-ISG:
Collaborative Research: Non-bypassable Kernel Services for Execution Security” and NSF
grant CCF-0448562 (CAREER), titled “Time and Event Based System Software Construc-
tion”.
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However, maintaining or even achieving such assurance in open soft real-
time systems that must operate with differing degrees of autonomy in unknown
or unpredictable environments, remains a significant open research problem.
Specifically, in open soft-real-time domains such as semi-autonomous robotics,
the sets of tasks a system needs to run (e.g., in response to features of the envi-
ronment) and the dependences among those tasks (e.g., due to different modes
of operation triggered by a remote human operator) may vary at run-time.

Our recent work [1] has investigated how modeling interleaved resource
utilization by different threads as a Markov Decision Process (MDP) can be used
to analyze utilization properties of a scheduling decision policy based on the
MDP, even when task execution times are loosened from exact values to known
distributions within which their execution times may vary. However, if we do
not know the distributions of task execution times, or any dependences among
tasks that may constrain their inter-leavings, then how to obtain the appropriate
MDP remains an open problem.

In this paper, we discuss that problem in the context of open soft real-time
systems such as semi-autonomous robots. Specifically, we consider how limita-
tions on the observability of system states interacts with other concerns in these
systems, such as how to handle transmission delays in receiving commands from
remote human operators, and other forms of operator neglect. These problems
in turn motivate the use of learning techniques to establish and maintain appro-
priate timing and preemption guarantees in these systems. Section 2 first surveys
other work related to the topics of this paper. Sections 3 and 4 then discuss the
problems of limited state observability and operator neglect, respectively, for
these systems. In Section 5 we postulate that dynamic programming in general,
and focused reinforcement learning based on realistic system limitations in par-
ticular, can be used to identify appropriate MDPs upon which to base system
scheduling policies that enforce appropriate timing and preemption guarantees
for each individual system. Finally, in Section 6 we summarize the topics pre-
sented in this paper, and describe planned future work on those topics.

2 Related Work

A variety of thread scheduling policies can be used to ensure feasible resource
use in closed real-time systems with different kinds of task sets [2]. Most of
those approaches assume that the number of tasks accessing system resources,
and their invocation rates and execution times, are all well characterized. Hier-
archical scheduling techniques [3–6] allow an even wider range of scheduling
policies to be configured and enforced, though additional analysis techniques [1]
may be needed to ensure real-time properties of certain policies.
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Dynamic programming is a well-proven technique for job shop schedul-
ing [7]. However, dynamic programming can only be applied directly when a
complete model of the tasks in the system is known. When a model presumably
exists but is not yet known, reinforcement learning [8] (also known as approxi-
mate dynamic programming) can instead offer iteratively improving approxima-
tions of an optimal solution, as has been shown in several computing problem
domains [9–11]. In this paper we focus on a particular variant of reinforce-
ment learning in which convergence of the approximations towards optimal is
promoted by restricting the space of learning according to realistic constraints
induced by the particular scheduling problem and system model being consid-
ered.

3 Uncertainty, Observability, and Latency

Our previous work on scheduling the kinds of systems that are the focus of this
paper [1] considered only a very basic system model, in which multiple threads
of execution are scheduled non-preemptively on a single CPU, and the durations
of threads execution intervals fall within known, bounded distributions. For such
simple systems, it was possible to exactly characterize uncertainty about the
results of scheduling decisions in order to obtain effective scheduling policies.
As we scale this approach to larger, more complicated systems, such as cyber-
physical systems, we will need to address a number of sources of uncertainty,
including variability in task execution intervals, partial observability of system
state, and communication latency. In this section we define these terms, and
outline the challenges that they present.

3.1 Uncertainty

Our previous work on scheduling the kinds of systems that are the focus of
this paper [1] considered only a very low-level and basic system model. In this
model multiple threads of execution are scheduled non-preemptively on a single
CPU. The durations of the threads’ execution intervals are drawn from known,
bounded probability distributions. However, even in this simple setting, the vari-
ability of execution interval duration for a given thread means that the exact re-
source utilization state of each thread can only be accurately measured after a
scheduling decision is implemented and the thread cedes control of the CPU.
This means that our scheduling decisions must be made based on estimates of
likely resource usage for the threads, informed by our knowledge of the proba-
bility density functions that govern their execution interval lengths.
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This kind of uncertainty is the norm rather than the exception in many semi-
or fully-autonomous real-time systems where responses to the environment trig-
ger different kinds of tasks (e.g., a robot exploring an unfamiliar building may
engage different combinations of sensors during wall following maneuvers).
Our previous work [1] has shown that construction of an MDP over a suitable
abstraction of the system state is an effective way to perform this stochastic
planning. Our knowledge of task duration distributions can be embedded into
an MDP model; we can then use well-established techniques to to formulate
suitable scheduling strategies in which desired properties such as bounded shar-
ing of resources are enforced rigorously.

In order to scale this approach to larger, more complicated systems, it is
necessary to cope with a greater degree of uncertainty about the outcomes of
scheduling decisions. As systems increase in size and complexity, and partic-
ularly when the system interacts with other systems or the real world through
communication or sensors and actuators, uncertainty about system activities’
resource utilization and progress will grow. In conjunction with this increase
in complexity, we are decreasingly likely to be able to provide good models of
this uncertainty in advance. Instead, it will be necessary to discover and model
it empirically during execution. Our current approach can be extended to cover
this situation by iteratively estimating these models, and designing scheduling
policies based on these models. However, explicitly constructing these models
may be unnecessary, as techniques exist for obtaining asymptotically optimal
policies directly from experience [12].

3.2 Partial Observability

Much as variability in execution times limits the ability to predict the conse-
quences of actions, in many important semi-autonomous systems it also may
not be possible to know even current system states exactly. Often, it will be
the case that our measurements of resource utilization are noisy, and the actual
values must be inferred from from other data. A high-level example of this is de-
termining the location of a mobile robot indoors. In such settings, there often is
no “position sensor” that can be used to provide the exact location of the robot.1

Instead, we must use other sensors to measure the distances to objects with
known positions, correlate these with a pre-supplied map, and calculate likely
positions. Because of measurement error in these sensors, imperfect maps, and
self-similarities in the environment, this can often lead to multiple very different
positions being equally likely.

1 Outdoors, GPS receivers may get close to being such sensors, but their signals cannot penetrate
buildings and even some outdoor terrain features reliably.
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In such a situation the system’s state (e.g., location in the robotics example)
is said to be partially observable, and is characterized by the presence of sys-
tem state variables that are not directly observable: there is some process that
makes observations of these state variables, but there may be many different
observations corresponding to any particular value of the state variable.

Partially observable systems are naturally modeled by an extension of MDPs,
called Partially Observable MDPS, or POMDPs [13]. Control policies for POMDPs
can be derived by a reduction to a fully observable MDP by reasoning about be-
lief states. In short, given a POMDP we can construct a continuous-state MDP
in which each state is a probability distribution over the states of the POMDP,
corresponding to the belief that the system is in a particular configuration of
the original POMDP. The state of this new MDP evolves according to models
of state and observation evolution in the POMDP. Since states in this reduced
MDP model correspond to distributions over system states in the original par-
tially observable system, the MDP state space is quite large. It will be necessary
to make extensive abstraction of the original problem in order to efficiently de-
rive effective scheduling policies in such cases.

3.3 Observation Lag

A further complication is that state observations may incur temporal delays. For
example, even if a robot could measure its position exactly, the environment
may transition through a number of states while the robot is making that mea-
surement. The effectiveness and safety of collision avoidance and other essential
activities thus may be limited by delays in state observation and action enact-
ment, and thus must be implemented and scheduled with such delays in mind.
In our previous work, we addressed task execution interval length by explicitly
encoding time into the system state; however, as systems grow larger and more
abstract such an approach is likely to result in intractably large state spaces.

As with the case of partial observability of state, there is an extension to
the theory of Markov decision processes that addresses these situations. The
resulting system is called a Semi-Markov decision process, or SMDP [14]. In
an SMDP the controller observes the current system state and issues a decision
that executes for some stochastic interval. During this execution, the system
state may change a number of times. Once the previous decision terminates, the
control policy may make another decision. In the robotics example above, the
controller decides to poll the position sensor; meanwhile, the system continues
on some trajectory through the state space. Once the system is done polling
the position sensor, it then makes another decision based on its current belief
state. Methods for finding optimal solutions for MDPs have been extended to
the SMDP case.
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4 Neglect Tolerance

Although we are currently focused on thread-scheduling and other low-level
phenomena, the general class of problems in which we are interested extends
up to larger, more integrative systems. In particular, we are interested in prob-
lems involving scheduling of whole system behaviors, where the state space is
much larger and more complex, and where the system is interacting with the
physical world. The canonical example of such a system is an autonomous mo-
bile robot capable of performing several, often conflicting, behaviors. The robot
must schedule these behaviors appropriately to achieve some high-level task,
while keeping itself (and potentially people around it) safe.

Behaviors must be scheduled and sequenced to avoid conflicts while at-
tempting to optimize multiple criteria such as task completion time and battery
life. This is a real-time systems problem, although it is performed at time-scales
much longer than usually considered in the real-time systems research literature.
The robot’s sensors, actuators, and computational resources are shared. Behav-
iors must often complete by some deadline or at a certain frequency to avoid
disaster. For example, to avoid obstacles, the proximity sensors must be polled
at a certain rate, to allow the robot to take actions in time to avoid a collision.
To make matters worse, these deadlines are often state-dependent: the faster a
robot moves, the more frequently it must poll its sensors.

Robot systems also often have (potentially hard) deadlines on the execution
of single actions. For example, consider a robot driving up to an intersection.
There is a critical time period during which it must either stop or make a turn
to avoid crashing into a wall. In the field of Human-Robot Interaction, when
the human directly tele-operates the robot, and essentially acts as the behav-
ior scheduling agent, this problem is closely tied to the idea of neglect toler-
ance [15]. This is a measure of the ill effects of failing to meet a timing deadline.
Systems with a low neglect tolerance must be constantly monitored and guided
by the human operator. Systems with a high neglect tolerance can be ignored
for much of the time without catastrophic effects.

The systems that we describe in this section suffer from all of the prob-
lems we described above: uncertainty, observability, and latency. They also have
much larger state and action spaces, are less well understood, are much harder
to capture with formalized models in any tractable way, and have stochasticity
that is likely hard to model parametrically. In our previous research, schedul-
ing experts and machine learning experts have needed to spend a lot of time
together, crafting the formalization of the problem, and examining the solu-
tions obtained. This interaction between domain experts and machine learning
specialists will become even more important as we scale to larger systems. In
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particular, the large, often ill-defined state spaces of these problems must be
mapped into manageable representations over which optimization and learning
techniques will work well. This often requires deep and specific insights into the
problem domain, coupled with equally deep insights into what representations
are likely to work well in practice.

There is a direct connection between the concepts of neglect tolerance and
real-time scheduling. Both require guarantees of execution time: the latter in the
completion of a task, and the former in the reception of a control input from a
human operator. The time-scale of the robot control problem, however, is several
orders of magnitude larger than those typically considered in many real-time
systems. It is also a dynamic and situational deadline: the appropriate timing of
the input depends critically on the features of the environment in which the robot
finds itself and on its own internal parameters, such as speed limits. This means
that it is extremely hard to model and analyze these concerns using traditional
techniques from real-times systems theory.

Our work thus far has focused on problems in which the scheduling deci-
sion maker is the only active agent. Tasks under scheduler control may behave
stochastically, but their behavior is believed to be consistent with a model that
depends on a small number of parameters. Incorporating a human or other adap-
tive agent into the schedulers environment represents a significant new extension
of that direction, as evidenced by the field of multiagent systems. Formal guar-
antees in the theory of Markov decision processes break down in these settings,
because it is unlikely that a human decision maker will follow a sufficiently con-
sistent (and stationary) policy. For example, if we train an agent to interact with
one operator, the learned policy is unlikely to be optimal for another operator
who may be more or less prone to different kinds and gradations of neglect. For
these reasons, we intend to focus our future work on the issues mentioned in
Section 3 in the single agent case, but with an eye towards extending eventually
into multiagent settings.

5 Learning

Scheduling decisions in our approach are based on a value function, which cap-
tures a notion of long-term utility. Specifically, we use a state-action value func-
tion, Q, of the form

Q (s, a) = R (s, a) + γ
∑

s′

[

P a
s,s′ max

a′
Q

(
s′, a′

)
]

.

Q(s, a) gives the expected long-term value of taking action a from state s, where
R(s, a) is the reward received on taking action a from state s, and P a

s,s′
is the
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probability of transitioning from state s to state s′ on action a. Given this value
function, the control policy is easy to compute: π (s) = arg maxa Q (s, a). If
we know both the transition function and the model, then we can solve for the
value function directly [14], using techniques from dynamic programming.

Identifying complete distributions of task times and inter-task dependencies
in real-world systems is a daunting task to begin with, and in some open real-
time systems doing so a priori may not be possible due to varying modes of
operation at run-time. To address this problem, we are investigating how to use
reinforcement learning (RL) in developing effective thread scheduling policies,
which can be encoded and enforced easily and efficiently.

Whereas dynamic programming assumes all models are provided in ad-
vance, RL is a stochastic variant of dynamic programming in which models are
learned through observation. In RL, control decisions are learned from direct
experiences [16, 8]. Time is divided into discrete steps and at each time step, t,
the system is in one of a discrete set of states, st ∈ S. The scheduler observes
this state, and selects one of a finite set of actions, at ∈ A. Executing this ac-
tion changes the state of the system on the next time step to st+1 ∈ S, and the
scheduler receives a reward rt+1 ∈ R, reflecting how good it was to take the
action at from state st in a very immediate sense. The distribution of possible
next states is specified by the transition function, T : S × A → Π (S), where
Π (S) denotes the space of probability distributions over states. The rewards are
given by the reward function, R : S ×A → R. The resulting model is exactly a
Markov Decision Process (MDP) [14].

If either the transition function or the value function is unknown, we must re-
sort to reinforcement learning techniques to estimate the value function. In par-
ticular, well-known algorithms exist for iteratively calculating the value function
in the case of discrete states and actions, based on observed experiences [17–
19].

6 Conclusions and Future Work

In this paper we have presented an approach that uses focused reinforcement
learning to address important open challenges in scheduling open soft real-
time systems such as semi-autonomous robots. We have discussed how different
forms of state observability limitations and operator neglect can affect how well
the system state can be characterized, and have postulated that reinforcement
learning can obtain approximate but suitable models of system behavior through
which appropriate scheduling can be performed.

Throughout this paper, we have focused mainly on practical problems in
the domain of semi-autonomous real-time systems. In particular, both physi-
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cal limits and policy restrictions help to narrow the space in which learning is
performed, and thus help to focus the learning techniques for more rapid conver-
gence from feasible solutions towards optimal ones. Our near-term future work
will focus on how particular combinations of state observability and different
time scales of operator interaction and neglect induce different concrete prob-
lems to which different configurations of focused reinforcement learning can be
applied. The results of these investigations are likely to have impacts outside
the particular class of systems we are considering (e.g., to open systems more
generally), and to other problem domains (e.g., for protection against denial of
service attacks or quality-of-service failures, which is the domain from which
this research emerged).
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Abstract

Over the years, we have worked on hierarchical schedul-
ing frameworks from a theoretical point of view. In this
paper we present our initial results of the implementation
of our hierarchical scheduling framework in a commercial
operating system VxWorks. The purpose of the implemen-
tation is twofold: (1) we would like to demonstrate feasibil-
ity of its implementation in a commercial operating system,
without having to modify the kernel source code, and (2) we
would like to present detailed figures of various key prop-
erties with respect to the overhead of the implementation.
During the implementation of the hierarchical scheduler,
we have also developed a number of simple task schedulers.
We present details of the implementation of Rate-Monotonic
(RM) and Earliest Deadline First (EDF) schedulers. Fi-
nally, we present the design of our hierarchical scheduling
framework, and we discuss our current status in the project.

1 Introduction

Correctness of today’s embedded software systems gen-
erally relies not only on functional correctness, but also on
extra-functional correctness, such as satisfying timing con-
straints. System development (including software develop-
ment) can be substantially facilitated if (1) the system can
be decomposed into a number of parts such that parts are de-
veloped and validated in isolation and (2) the correctness of
the system can be established by composing the correctness
of the individual parts. For large-scale embedded real-time
systems, in particular, advanced methodologies and tech-

∗The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS.

†Contact author: moris.behnam@mdh.se

niques are required for temporal isolation all through de-
sign, development, and analysis.

Hierarchical scheduling has shown to be a useful mecha-
nism in supporting modularity of real-time software by pro-
viding temporal partitioning among applications. In hier-
archical scheduling, a system can be hierarchically divided
into a number of subsystems that are scheduled by a global
(system-level) scheduler. Each subsystem contains a set of
tasks that are scheduled by a local (subsystem-level) sched-
uler. The Hierarchical Scheduling Framework (HSF) allows
for a subsystem to be developed and analyzed in isolation,
with its own local scheduler, and then at a later stage, us-
ing an arbitrary global scheduler, it allows for the integra-
tion of multiple subsystems without violating the temporal
properties of the individual subsystems analyzed in isola-
tion. The integration involves a system-level schedulability
test, verifying that all extra-functional (including timing) re-
quirements are met. Hence, hierarchical scheduling frame-
works naturally supportconcurrent developmentof subsys-
tems. Our overall goal is to make hierarchical scheduling
a cost-efficient approach applicable for a wide domain of
applications, including automotive, automation, aerospace
and consumer electronics.

Over the years, there has been a growing attention to
HSFs for real-time systems. Since a two-level HSF [9] has
been introduced for open environments, many studies have
been proposed for its schedulability analysis of HSFs [14,
17]. Various processor models, such as bounded-delay [20]
and periodic [23], have been proposed for multi-level HSFs,
and schedulability analysis techniques have been developed
for the proposed processor models [1, 7, 11, 18, 22, 23, 24].
Recent studies have been introduced for supporting logical
resource sharing in HSFs [3, 8, 12].

Up until now, those studies have worked on various as-
pects of HSFs from a theoretical point of view. This paper
presents our work towards a full implementation of a hier-
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archical scheduling framework, and we have chosen to im-
plement it in a commercial operating system already used
by several of our industrial partners. We selected the Vx-
Works operating system, since there is plenty of industrial
embedded software available, which can run in the hierar-
chical scheduling framework.

The outline of this paper is as follows: Section 2 presents
related work on implementations of schedulers. Section 3
present our system model. Section 4 gives an overview of
VxWorks, including how it supports the implementation of
arbitrary schedulers. Section 5 presents our scheduler for
VxWorks, including the implementation of Rate Monotonic
(RM) and Earliest Deadline First (EDF) schedulers. Sec-
tion 6 presents the design, implementation and evaluation
of the hierarchical scheduler, and finally Section 7 summa-
rizes the paper.

2 Related work

Looking at related work, recently a few works have im-
plemented different schedulers in commercial real-time op-
erating systems, where it is not feasible to implement the
scheduler directly inside the kernel (as the kernel source
code is not available). Also, some work related to efficient
implementations of schedulers are outlined.

Buttazzo and Gai [4] present an implementation of the
EDF scheduler for the ERIKA Enterprise kernel [10]. The
paper discusses the effect of time representation on the effi-
ciency of the scheduler and the required storage. They use
the Implicit Circular Timer’s Overflow Handler (ICTOH)
algorithm which allows for an efficient representation of ab-
solute deadlines in a circular time model.

Diederichs and Margull [6] presents an EDF scheduler
plug in for OSEK/VDX based real-time operating systems,
widely used by automotive industry. The EDF scheduling
algorithm is implemented by assigning priorities to tasks
according to their relative deadlines. Then, during the exe-
cution, a task is released only if its absolute deadline is less
than the one of the currently running task. Otherwise, the
task will be delayed until the time when the running task
finishes its execution.

Kim et al.[13] propose the SPIRIT uKernel that is based
on a two-level hierarchical scheduling framework simplify-
ing integration of real-time applications. The SPIRIT uK-
ernel provides a separation between real-time applications
by using partitions. Each partition executes an application,
and uses the Fixed Priority Scheduling (FPS) policy as a lo-
cal scheduler to schedule the application’s tasks. An offline
scheduler (timetable) is used to schedule the partitions (the
applications) on a global level. Each partition provides ker-
nel services for its application and the execution is in user
mode to provide stronger protection.

Parkinson [21] uses the same principle and describes
the VxWorks 653 operating system which was designed to

support ARINC653. The architecture of VxWorks 653 is
based on partitions, where a Module OS provides global re-
source and scheduling for partitions and a Partition OS im-
plemented using VxWorks microkernel provides scheduling
for application tasks.

The work presented in this paper differs from the last
two works in the sense that it implements a hierarchical
scheduling framework in a commercial operating system
without changing the OS kernel. Furthermore, the work
differs from the above approaches in the sense that it im-
plements a hierarchical scheduling framework intended for
open environments [9], where real-time applications may
be developed independently and unaware of each other and
still there should be no problems in the integration of these
applications into one environment. A key here is the use of
well definedinterfacesrepresenting the collective resource
requirements by an application, rich enough to allow for in-
tegration with an arbitrary set of other applications without
having to redo any kind of application internal analysis.

3 System model

In this paper, we only consider a simple periodic task
model τi(Ti, Ci, Di) whereTi is the task period,Ci is a
worst-case execution time requirement, andDi is a relative
deadline (Ci ≤ Di ≤ Ti). We assume that all tasks are in-
dependent of each others, i.e., there is no sharing of logical
resources between tasks.

The HSF schedules subsystemsSs ∈ S, whereS is the
set representing the whole system of subsystems. Each sub-
systemSs consists of a set of tasks and a local scheduler
(RM or EDF), and the global (system) scheduler can also
be either RM or EDF. The collective real-time requirements
of Ss is referred to as atiming-interface. The subsystem in-
terface is defined as(Ps, Qs), wherePs is a period, andQs

is a budgetthat represents an execution time requirement
that will be provided every periodPs.

4 VxWorks

VxWorks is a commercial real-time operating system
that was developed by Wind River with a focus on perfor-
mance, scalability and footprint. Many interesting features
are provided with VxWorks, which make it widely used in
industry, such as; Wind micro-kernel, efficient task man-
agement and multitasking, deterministic context switch-
ing, efficient interrupt and exception handling, POSIX
pipes, counting semaphores, message queues, signals, and
scheduling, pre-emptive and round-robin scheduling etc.
(see [28] for more details).

The VxWorks micro-kernel supports the priority pre-
emptive scheduling policy with up to 256 different priority
levels and a large number of tasks, and it also supports the
round robin scheduling policy.
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VxWorks offers two different modes for application-
tasks to execute; either kernel mode or user mode. In kernel
mode, application-tasks can access the hardware resources
directly. In user mode, on the other hand, tasks can not
directly access hardware resources, which provides greater
protection (e.g., in user mode, tasks can not crash the ker-
nel). Kernel mode is provided in all versions of VxWorks
while user mode was provided as a part of the Real Time
Process (RTP) model, and it has been introduced with Vx-
Works version 6.0 and beyond.

In this paper, we are considering kernel mode tasks since
such a design would be compatible with all versions of Vx-
Works and our application domains include systems with a
large legacy in terms of existing source codes. We are also
considering the fixed priority preemptive scheduling policy
for the kernel scheduler (not the round robin scheduler).
A task’s priority should be set when the task is created,
and the task’s priority can be changed during the execution.
Then, during runtime, the highest priority ready task will al-
ways execute. If a task with priority higher than that of the
running task becomes ready to execute, then the scheduler
stops the execution of the running task and instead executes
the one with higher priority. When the running task finishes
its execution, the task with the highest priority among the
ready tasks will execute.

When a task is created, an associated Task Control Block
(TCB) is created to save the task’s context (e.g., CPU envi-
ronment and system resources, during the context switch).
Then, during the life-cycle of a task the task can be in one
or a combination of the following states [27] (see Figure 1):

• Ready state, the task is waiting for CPU resources.

• Suspended state, the task is unavailable for execution
but not delayed or pending.

• Pending state, the task is blocked waiting for some
resource other than the CPU.

• Delayed state, the task is sleeping for some time.

Note that the kernel scheduler sorts all tasks that are
ready to execute in a queue called theready queue.

4.1 Scheduling of time-triggered periodic
tasks

A periodic task is a task that becomes ready for execu-
tion periodically once everyn-th time unit, i.e., a new in-
stant of the task is executed every constant period of time.
Most commercial operating systems, including VxWorks,
do not directly support the periodic task model [19]. To
implement a periodic task, when a task finishes its execu-
tion, it sleeps until the beginning of its next period. Such
periodic behaviour can be implemented in the task by the

Ready

Delayed

Suspended

Pending

Ready

Delayed

Suspended

Pending

Figure 1. The application task state.

usage of timers. Note that a task typically does not finish its
execution at the same time always, as execution times and
response times vary from one period to another. Hence, us-
ing timers may not be easy and accurate as the task needs to
calculate the absolute time for next period, whenever it fin-
ishes its execution. This is because preemption may happen
between the time measurement and calling the sleep func-
tion.

In this project we need to support periodic activation of
serversin order to implement the hierarchical scheduling
framework. The reason for this is that we base our hierar-
chical scheduling framework around the periodic resource
model [23], and a suitable implementation of this is by the
usage of periodic servers [16, 25] that charge their budget
every constant period, i.e., the servers behave like periodic
tasks.

4.2 Supporting arbitrary schedulers

There are two ways to support arbitrary schedulers in
VxWorks:

1. Using the VxWorks custom kernel scheduler [26].

2. Using the original kernel scheduler and manipulat-
ing the ready queue by changing the priority of tasks
and/or activating and suspending tasks.

In this paper, we are using the second approach since
implementing the custom kernel scheduler is a relatively
complex task compared with manipulating the ready queue.
However, it will be interesting to compare between the two
methods in terms of CPU overhead, and we leave this as a
future work.

In the implementation of the second solution, we have
used an Interrupt Service Routine (ISR) to manipulate the
tasks in the ready queue. The ISR is responsible for adding
tasks in the ready queue as well as changing their priorities
according to the hierarchical scheduling policy in use. In
the remainder of this paper, we refer to the ISR as the User
Scheduling Routine (USR). By using the USR, we can im-
plement any desired scheduling policy, including common
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ones such as Rate Monotonic (RM) and Earliest Deadline
First (EDF).

5 The USR custom VxWorks scheduler

This section presents how to schedule periodic tasks us-
ing our scheduler, the User Scheduling Routine (USR).

5.1 Scheduling periodic tasks

When a periodic task finishes its execution, it changes
its state to suspended by explicitly calling the suspend func-
tion. Then, to implement a periodic task, a timer could be
used to trigger the USR once every new task activation time
to release the task (to put it in the ready queue).

The solution to use a timer triggering the USR once ev-
ery new period can be suitable for systems with a low num-
ber of periodic tasks. However, if we have a system with
n periodic tasks such a solution would require the use ofn
timers, which could be very costly or not even possible. In
this paper we have used a scalable way to solve the problem
of having to use too many timers. By multiplexing a single
timer, we have used a single timer to serven periodic tasks.

The USR stores the next activation time of all tasks (ab-
solute times) in a sorted (according to the closest time event)
queue called Time Event Queue (TEQ). Then, it sets a timer
to invoke the USR at the time equal to the shortest time
among the activation times stored in the TEQ. Also, the
USR checks if a task misses its deadline by inserting the
deadline in the TEQ. When the USR is invoked, it checks all
task states to see if any task has missed its deadline. Hence,
an element in the TEQ contains (1) the absolute time, (2)
the id of task that the time belongs to, and (3) the event type
(task next activation time or absolute deadline). Note that
the size of the TEQ will be2 ∗ n ∗ B bytes (where B is the
size in bytes of one element in the TEQ) since we need to
save the task’s next period time and deadline time.

When the USR is triggered, it checks the caused of the
triggering. There are two causes for the USR to be trig-
gered: (1) a task is released, and (2) the USR will check for
deadline misses. If a task has been released, the USR will
do the following:

• Update the next activation time associated with the
task that cause triggering of the USR in the TEQ and
re-insert it in the TEQ according to the updated times.

• Set the timer equal to the shortest time in the TEQ so
that the USR will be triggered at that time.

• Change the state of the task to Ready and change pri-
orities of tasks if required depending on the scheduler
if it is EDF or RM.

If the USR will check for deadline misses, then it will:

• Update the next absolute deadline time, associated
with the task that caused triggering of the USR, and
re-insert it in the TEQ according to the updated times.

• Set the timer with the shortest time in the TEQ to trig-
ger the USR at that time.

• Check the state of the task to see if it is Ready. If
so, the task missed its deadline, and the deadline miss
function will be activated.

Updating the next activation time and absolute deadline
of a task in the TEQ is done by adding the period of the
task that caused the USR invocation to the previous task ac-
tivation time. The USR does not use the system time as a
time reference. Instead it uses a time variable as a time ref-
erence. The reason for using a time variable is that we can,
in a flexible manner, select the size of variables that save
absolute time in bits. The benefits of such an approach is
that we can control the size of the TEQ since it saves the
absolute times, and it also minimizes the overhead of im-
plementing 64 bits operations on 32 bit microprocessor [4],
as an example. The reference time variablets is initialized
(i.e.,ts = 0) at the first execution of the USR. The value of
ts is updated every time that the USR executes and it will
equal to the time from the TEQ that triggered the USR.

When a taskτi is released for the first time, the abso-
lute next activation time is equal tots + Ti and its absolute
deadline is equal tots + Di.

To avoid time consuming operations, e.g., multiplica-
tions and divisions, that increase the system overhead in-
herent in the execution of the USR, all absolute times (task
periods and relative deadlines) are saved in system tick unit
(system tick is the interval between two consecutive sys-
tem timer interrupts). However, depending on the number
of bits used to store the absolute times, there is a maximum
value that can be saved safely. Hence, saving absolute times
in the TEQ may cause problems related to overrun of time,
i.e., the absolute times become too large such that the value
can not be stored using the available number of bits. To
avoid this problem, we apply a wrapping algorithm.

Evaluating the time at which to trigger the USR again
(next time) is done byTEQ[1] − ts whereTEQ[1] is the
first element in the queue after updating the TEQ as well
as sorting it, i.e., the shortest time in the TEQ. The USR
checks to see if there are more than one task that have the
same current activation time and absolute deadline. If so,
the USR serves all these tasks to minimize the unnecessary
overhead of executing the USR several times.

5.2 RM scheduling policy

Each task will have a fixed priority during run-time when
Rate Monotonic (RM) is used, and the priorities are as-
signed according to the RM scheduling policy. If only RM
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is used in the system, no additional operations are required
to be added to the USR since the kernel scheduler sched-
ule all tasks directly according to their priorities, and the
higher priority tasks can preempt the execution of the lower
priority task. Hence, the implementation overhead for RM
will be limited to the overhead of adding a task in the ready
queue and managing the timer for the next period (saving
the absolute time of the new period and finding the shortest
next time in the TEQ) for periodic tasks.

The schedulability analysis for each task is as follows
[15];

∀τi, 0 < ∃t ≤ Ti dbf(i, t) ≤ t. (1)

And dbf(i, t) is evaluated as follows

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
Ck, (2)

whereHP(i) is the set of tasks with higher-priority than that
of τi.

Eq. (2) can be easily modified to include the effect of us-
ing the USR on the schedulability analysis. Note that the
USR will be triggered at the beginning of each task to re-
lease the task, so it behaves like a periodic task with pri-
ority equal to the maximum possible priority (the USR can
preempt all application tasks). Checking the deadlines for
tasks by using the USR will add more overhead, however,
also this overhead has a periodic nature as the task release
presented previously.

Eq. (3) includes the deadline and task release overhead
caused by the USR in the response time analysis as shown
bellow,

dbf(i, t) = Ci +
∑

k∈HP (i)

⌈ t

Tk

⌉
Ck +

∑

j∈Γ

⌈ t

Tj

⌉
(XR+XD)

(3)
whereXR is the worst-case execution time of the USR
when a task is released andXD is the worst-case execu-
tion time of the USR when it checks for deadline misses
(currently, in case of deadline missing, the USR will only
log this event into a log file).

5.3 EDF scheduling policy

For EDF, the priority of a task changes dynamically dur-
ing run-time. At any timet, the task with shorter deadline
will execute first, i.e., will have the highest priority. To im-
plement EDF in the USR, the USR should update the prior-
ities of all tasks that are in the Ready Queue when a task is
added to the Ready Queue, which can be costly in terms of
overhead. Hence, on one hand, using EDF on top of com-
mercial operating systems may not be efficient depending
on the number of tasks, due to this sorting. However, the

EDF scheduling policy provides, on other hand, better CPU
utilization compared with RM, and it also has a lower num-
ber of context switches which minimizes context switch re-
lated overhead [5].

In the approach presented in this paper, tasks are already
sorted in the TEQ according to their absolute times due to
the timer multiplexing explained earlier. Hence, as the TEQ
is already sorted according to the absolute deadlines, the
USR can easily decide the priorities of the tasks according
to EDF without causing too much extra overhead for evalu-
ating the proper priority for each task.

The schedulability test for a set of tasks that use EDF
is shown in Eq. (4) [2] which includes the case when task
deadlines are allowed to be less than or equal to task peri-
ods.

∀t > 0,

n∑

i

⌊ t + Ti − Di

Ti

⌋
· Ci ≤ t (4)

The overhead of implementing EDF can also be added
to Eq. (4). Hence, Eq. (5) includes the overhead of releas-
ing tasks as well as the overhead of checking for deadline
misses.

∀t > 0,

n∑

i

⌊ t + Ti − Di

Ti

⌋
·Ci+

∑

j∈Γ

⌈ t

Tj

⌉
(XR+XD) ≤ t

(5)

5.4 Implementation and overheads of the
USR

To implement the USR, we have used the following Vx-
Works service functions;

• Q PUT - insert a node into a multi-way queue (ready
queue).

• Q REMOVE - remove a node from a multi-way queue
(ready queue).

• taskCreat - create a task.

• taskPrioritySet - set a tasks priority.

We present our initial results inherent in the implemen-
tation of the USR, implementing both the Rate Monotonic
(RM) scheduler as well as the Earliest Deadline First (EDF)
scheduler. The implementations were performed on ABB
robot controller with a Pentium 200 MHz processor run-
ning the VxWorks operating system version5.2. To trigger
the USR for periodic tasks, we have used watchdog timers
where the next expiration time is given in number of ticks.
The watchdog uses the system clock interrupt routine to
count the time to the next expiration. The platform pro-
vides system clock with resolution equal to4500ticks/s.
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Figure 2. EDF normalized against RM, for av-
erage USR execution time.

The measurement of the execution time of the USR is done
by reading a timestamp value at the start as well as at
the end of the USR’s execution. Note that the timestamp
is connected to a special hardware timer with resolution
12000000ticks/s.

Table 1 shows the execution time of the USR when it
performs RM and EDF scheduling, as well as deadline miss
checking, as a function of the number of tasks in the system.
The worst case execution time for USR will happen when
USR deletes and then inserts all tasks from and to TEQ and
to capture this, we have selected a same period for all tasks.
The table shows the minimum, maximum and average out
of 50 measured values. Comparing between the results of
the three cases (EDF, RM, deadline miss), we can see that
there is no big difference in the execution time of the USR.
The reason for this result is that the execution of the USR
for EDF, RM and deadline miss checking all includes the
overhead of deletion and re-inserting the tasks in the TEQ,
which is the dominating part of the overhead. As expected,
EDF causes the largest overhead because it changes the pri-
ority of all tasks in the ready queue during run-time. Fig-
ures 2-3 show that EDF imposes between6 − 14% extra
overhead compared with RM.

6 Hierarchical scheduling

A Hierarchical Scheduling Framework (HSF) supports
CPU sharing among subsystems under different scheduling
policies. Here, we consider a two-level scheduling frame-
work consisting of a global scheduler and a number of local
schedulers. Under global scheduling, the operating system
(global) scheduler allocates the CPU to subsystems. Under
local scheduling, a local scheduler inside each subsystem
allocates a share of the CPU (given to the subsystem by the
global scheduler) to its own internal tasks (threads).

We consider that each subsystem is capable of exporting
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Figure 3. EDF normalized against RM, for
maximum USR execution time.

its own interface that specifies its collective real-time CPU
requirements. We assume that such a subsystem interface is
in the form of the periodic resource model(Ps, Qs) [23].
Here, Ps represents aperiod, and Qs represents abud-
get, or an execution time requirement within the period
(Qs ≤ Ps). By using the periodic resource model in hi-
erarchical scheduling frameworks, it is guaranteed [23] that
all timing constraints of internal tasks within a subsystem
can be satisfied, if the global scheduler provides the subsys-
tem with CPU resources according to the timing require-
ments imposed by its subsystem interface. We refer inter-
ested readers to [23] for how to derive an interface(Ps, Qs)
of a subsystem, when the subsystem contains a set of inter-
nal independent periodic tasks and the local scheduler fol-
lows the RM or EDF scheduling policy. Note that for the
derivation of the subsystem interface(Ps, Qs), we use the
demand bound functions that take into account the overhead
imposed by the execution of USR (see Eq. (3) and (5)).

6.1 Hierarchical scheduling implementa-
tion

Global scheduler: A subsystem is implemented as a peri-
odic server, and periodic servers can be scheduled in a simi-
lar way as scheduling normal periodic tasks. We can use the
same procedure described in Section 5 with some modifica-
tions in order to schedule servers. Each server should in-
clude the following information to be scheduled: (1) server
period, (2) server budget, (3) remaining budget, (4) pointer
to the tasks that belong to this server, and (5) the type of
the local scheduler (RM or EDF). Moreover, to schedule
servers we need:

• Server Ready Queue to store all servers that have non
zero remaining budget. When a server is released at
the beginning of its period, its budget will be charged
to the maximum budgetQ, and the server will be added
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Number XR (RM) XR (EDF) XD (Deadline miss check)
of tasks Max Average Min Max Average Min Max Average Min

10 71 65 63 74 70 68 70 60 57
20 119 110 106 131 118 115 111 100 95
30 172 158 155 187 172 169 151 141 137
40 214 202 197 241 228 220 192 180 175
50 266 256 249 296 280 275 236 225 219
60 318 305 299 359 338 331 282 268 262
70 367 352 341 415 396 390 324 309 304
80 422 404 397 476 453 444 371 354 349
90 473 459 453 539 523 515 415 398 393
100 527 516 511 600 589 583 459 442 436

Table 1. USR execution time in µs, the maximum, average and minimum execution time of 45 mea-
sured values for each case.

in the Server Ready Queue. When a server execute its
internal tasks for some timex, then the remaining bud-
get of the server will be deceased withx, i.e., reduced
by the time that the server execute. If the remaining
budget becomes zero, then the server will hand over
the control to the global scheduler to select and remove
the highest priority server from Server Ready Queue.

• Server TEQ to release the server at its next absolute
periodic time since we are using periodic servers and
also track their remaining budgets.

The Server Ready Queue is managed by the routine that
is responsible for scheduling the servers. Tracking the re-
maining budget of a server is solved as follows; whenever a
server starts running, it sets a deadline equal to the current
time plus its remaining budget. When a server is preempted
by another server, it updates the remaining budget by sub-
tracting the time that has passed since the last release. When
the server executes its internal tasks until the time when the
server deadline event triggers, it will set its remaining bud-
get to zero, and the scheduling routine removes the server
from the Server Ready Queue.

Local scheduler: When a server is given the CPU re-
sources, the ready tasks that belong to the server will be
able to execute. We have investigated two approaches to
deal with the tasks in the Ready Queue when a server is
given CPU resources:

• All tasks that belong to the server that was previously
running will be removed from the Ready Queue, and
all ready tasks that belong to the new running server
will be added to the Ready Queue, i.e., swapping of
the servers’ task sets.

• The priority of all tasks that belong to the preempted
server will be set to a lower (the lowest) priority, and

the priority of all tasks that belong to the new running
server will be raised as if they were executing exclu-
sively on the CPU, scheduled according to the local
scheduling policy in use by the subsystem.

The advantage of the second approach is that it can give
the unused CPU resources to tasks that belong to other
servers. However, the disadvantage of this approach is that
the kernel scheduler always sorts the tasks in the Ready
Queue and the number of tasks inside Ready Queue using
the second approach will be higher which may impose more
overhead for sorting tasks. In this paper, we consider the
first approach since we support only periodic tasks. When
a server is running, all interrupts that are caused by the lo-
cal TEQ, e.g., releasing tasks and checking deadline misses,
can be served without problem. However, if a task is re-
leased or its deadline occurs during the execution of another
server, the server that includes the task, may miss this event.
To solve this problem, whenever a server is preempted or
finishes its budget, it disables the timer from the local TEQ.
Then, when the server starts running again, it will check for
all past events in the local TEQ and serve them.

Note that the time wrapping algorithm described in sec-
tion 5.1 should take into account all local TEQ’s for all
servers and the server event queue, because all these event
queues share the same absolute time.

Figure (4) illustrates the implementation of hierarchi-
cal scheduling framework which includes an example with
three serversS1, S2, S3 with global and local RM sched-
ulers, the priority ofS1 is the highest and the priority ofS3

is the lowest. Suppose a new period ofS3 starts at timet0
with a budget equal toQ3. Then, the USR will change the
state ofS3 to Ready, and since it is the only server that is
ready to execute, the USR will;

• add the time that the budget will expire which equals
to t0 + Q3 into the server event queue and also add the
next period event in the server event queue.
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Figure 4. Simple servers execution example.

• check all previous events that have been occurred
while the server was not active(by checking if there is
task release or deadline check even in the time interval
[t∗, t0] wheret∗ is the latest time at which the budget
of S3 has been expired).

• start the local scheduler.

At time intervalt1 the serverS2 becomes Ready and it
has higher priority thanS3. SoS2 will preemptS3 and in
addition to the previously explained action, the USR will
remove all tasks that belongs toS3 from ready queue and
save the remaining budget which equals toQ3 − (t1 − t0)
and then remove the budget expiration event from the server
event queue. Note that whenS3 executes next time it will
use the remaining budget to calculate the budget expiration
event.

The USR execution time depends on the number of the
servers, and the worst case happens when all servers are re-
leased at the same time. In addition, the execution time of
USR also depends on the number of the ready tasks in both
the currently running server to be preempted and the server
to preempt. The USR removes all ready tasks that belong to
the preempted server from ready queue and adds all ready
tasks that belong to the preempting server with highest pri-
ority into the ready queue. Here, the worst case scenario is
that all tasks of both servers are ready at that time. Table
2 shows the execution time of USR (when a server is re-
leased) as a function of the number of servers using RM as
a global scheduler at the worst case, where all the servers
are released at the same time, just like the case shown in the
previous section. Here, we consider each server has a single
task in order to purely investigate the effect of the number
of servers on the execution time of USR.

6.2 Example

In this section, we will show the overall effect of imple-
menting HSF using simple example, however, the results

Number of servers Max Average Min
10 91 89 85
20 149 146 139
30 212 205 189
40 274 267 243
50 344 333 318
60 412 400 388
70 483 466 417
80 548 543 509
90 630 604 525
100 689 667 570

Table 2. Maximum, average and minimum ex-
ecution time of USR with 100 measured val-
ues as a function of the number of servers.

from the following example are specific for this example
because as we showed in the previous section that the over-
head is a function of many parameters such as number of
servers, number of tasks, servers periods and budgets (af-
fect the number of preemptions). In this example we use
RM as a local and global scheduler, the servers and associ-
ated tasks parameters are shown in Table 3 assuming for all
tasksTi = Di.

The measured overhead utilization is about2.85% and
the measured release jitter for taskτ3 in serverS3 (which
is the lowest priority task in the lowest priority server) is
about49ms and the measured worst case response time is
208.5ms and the finishing time jitter is60ms.

7 Summary

This paper has presented our work on the implementa-
tion of our hierarchical scheduling framework in a commer-
cial operating system, VxWorks. We have chosen to im-
plement it in VxWorks so that it can easily be tested in an
industrial setting, as we have a number of industrial part-
ners with applications running on VxWorks and we intend
to use them as case studies for an industrial deployment of
the hierarchical scheduling framework.

This paper demonstrates the efficacy of hierarchical
scheduling framework through its implementation over Vx-
Works. In particular, it presents several measurements of
overheads that its implementation imposes. It shows that a
hierarchical scheduling framework can effectively achieve
the clean separation of subsystems in terms of timing in-
terference (i.e., without requiring any temporal parameters
of other subsystems) with reasonable implementation over-
heads.

In the next stage of this implementation project, we in-
tend to implement synchronization protocols in hierarchical
scheduling frameworks [3]. In addition, our future work

70



S1(P1 = 5, Q1 = 1) S2(P2 = 6 ,Q2 = 1) S3(P3 = 70 , Q3 = 20)
τi Ti Ci τi Ti Ci τi Ti Ci

τ1 20 1 τ1 25 1 τ1 140 7
τ2 25 1 τ2 35 1 τ2 150 7
τ3 30 1 τ3 45 1 τ3 300 30
τ4 35 1 τ4 50 1
τ5 40 7 τ5 55 7
- - - τ6 60 7

Table 3. System parameters in µs.

includes supporting sporadic tasks in response to specific
events such as external interrupts. Instead of allowing them
to directly add their tasks into the ready queue, we consider
triggering the USR to take care of such additions. We also
plan to support aperiodic tasks while bounding their inter-
ference to periodic tasks by the use of some server-based
mechanisms. Moreover, we intend to extend the implemen-
tation to make it suitable for more advanced architectures
including multicore processors.
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Abstract

Context switch cost is a limiting factor for many real-
time systems: In order to improve desired properties such
as quick response or low jitter, a system should support high
switch rates, but the resulting switch overheads become pro-
hibitive at a certain point. In order to find a favourable
tradeoff between real-time properties and the amount of
CPU resources that have to be sacrificed to achieve them,
it would be necessary to determine the expected context
switch cost for a given application and system configura-
tion. This problem, however, is intractable in most practical
situations.

In this work, we attempt a practitioner’s approach to
quantifying context switch cost: Based on a simple model
of system behaviour, we present methods to estimate the ex-
pected overheads. To validate our methods we compare the
behaviour of real systems against that of our model. These
experiments also yield parameters along the way which are
then used to configure our methods so they reflect realistic
scenarios. The overheads can be attributed to individual
tasks in the system, so, if there are tasks with different tim-
ing requirements, each of them can use its own, specifically
adapted estimation. As a demonstration, we integrate our
method into a simulation of two different proportional share
scheduling algorithms and use it to compute the estimated
system overhead as a function of the scheduler’s minimal
time allocation.

1 Introduction

This work is motivated by our research on the appli-
cability of virtualisation to real-time computing: Virtual
machine monitors (VMMs) such as Xen ([1]) or VMWare
([14]), besides their other responsibilities, also act as sched-
ulers, switching the physical CPU between multiple clients
(which are referred to as virtual machines in the context of
virtualisation). The goal of the scheduler is to give each
client the notion of having continuous access to a portion

of the physical CPU’s computational resources. There-
fore, VMMs typically use some form of proportional share
scheduling ([15, 5, 4]). However, since a CPU can only be
allocated to one activity at a time, real proportional share
schedulers can only approximate the continuous CPU avail-
ability that the idealised model ([11]) postulates by switch-
ing the CPU between clients in a round robin fashion. The
quality of the approximation improves as the time slice
length is made smaller. Also, if any of the virtual machines
host real-time tasks that have to provide service while their
enclosing virtual machine is inactive, these service requests
must wait until the next virtual machine time slice. The
resulting delay is also proportional to the time slice length
([7]). These are reasons to make time slices as small as
possible. But the system overhead that is caused by the
increased switch rate rises as well, reaching unacceptable
levels at some point. From a system design perspective, it
would be desirable to be able to quantify this tradeoff, i.e.
given an application and a certain loss of performance that is
deemed to be acceptable, what would be the smallest possi-
ble time slice length, and what would be the corresponding
longest possible delay that a real-time task might have to
wait for the CPU?

To answer these questions, it is necessary to under-
stand the mechanisms that contribute to the performance
loss, namely the cost of on-line scheduling and the cost
of context switching. Especially the latter is hard to for-
malise, which is why it has often been neglected. In
this contribution, we present methods to estimate the over-
head of context switches using empirical data. Obviously,
this approach has the drawback being imprecise and we
can only resort to experimentation to support our claims.
Therefore, applying our methods to hard real-time prob-
lems which need to formally prove that no deadline can
possibly be missed, would be inappropriate. The advan-
tage, however, is that the estimations can be computed with
little effort and that only superficial knowledge about the
client is required. The computations are simple enough to
allow inclusion into on-line schedulers, which could then
dynamically take into account the estimated switch cost
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when making scheduling decisions.
Besides our own use case (i.e. virtual machine mon-

itors), our approach could also prove useful when com-
paring scheduling approaches which differ in the amount
of context switches they tend to require (e.g. [3]). Also,
for scheduling approaches which are based on proportional
sharing and assume applicability of the idealised model of
continuous CPU availability (e.g. [12]), our approach could
indicate the range of scheduling frequencies for which this
assumption is actually valid. Furthermore, schedulers for
symmetric multiprocessor (and multicore) systems could
benefit: The same effects that contribute to the system over-
head in a uniprocessor system are also responsible for the
cost of migrating tasks between cores in a multicore system.
Thus, a multicore scheduler could make a better judgement
wether or not a possible task migration would be worth the
effort.

2 Background

We denote processing capacities or “amounts of service”
as a potential of a CPU to perform a certain amount of work
by executing program code. If a CPU progresses through
program code at a constant rate r, the capacity correspond-
ing to a time interval [t1, t2], t2 ≥ t1 would be r·(t2−t1). In
reality, though, the progress rate of a processor may change
over time due to pipeline stalls, varying cache locality or
changing clock frequencies. Thus, with r(t) denoting the
CPU progress rate as a function of time, a more general def-
inition of the processing capacity of a CPU corresponding
to time interval [t1, t2] is:

Wcpu(t1, t2) =

t2∫
t1

r(τ)dτ (1)

We can also specify an equivalent constant average
progress rate r̄(t1, t2) such that during the same time in-
terval [t1, t2], the same amount of progress is made:

r̄(t1, t2) =
Wcpu(t1, t2)
t2 − t1

=

t2∫
t1

r(τ)dτ

t2 − t1
(2)

A program will make the fastest progress if it runs alone
on a machine without interruptions. If, instead, it has to
share the CPU with other tasks, its progress rate will de-
grade to some extent, not only because of the other tasks us-
ing the CPU, but also because of the additional cost of main-
taining the multi-tasking environment. The system over-
head is the latter part of the degradation. Two major causes
contribute to this overhead:

1. Scheduling overhead: The scheduler must be invoked
from time to time to decide wether or not to switch to

another task. This is usually implemented by means
of a timer interrupt which triggers when the current
task’s time slice expires. Processing of this interrupt
entails direct cost. i.e. the time taken by the CPU to
enter/leave the operating system, to save/restore pro-
cessor context, and –last but not least– to execute the
scheduling algorithm. Note that this overhead does
not depend on the outcome of the scheduler’s decision:
The task’s context is stored upon entry into the oper-
ating system kernel and is restored upon kernel exit.
Wether it is the previous task that is being resumed or
another one, the effort of restoring the processor con-
text after interrupt processing is the same.

2. Context switch overhead: In contrast to the scheduling
overhead, context switch overhead occurs only in con-
junction with a task switch. It is caused by the instruc-
tion, data and TLB caches that exist in all modern CPU
architectures: Whenever a task is switched to, it will
usually find these caches in a more or less “polluted”
state, i.e. they will contain entries which were loaded
by previous tasks and which are not useful (or not ac-
cessible) to the new task. As the new task references
new program code and data objects, the CPU loads
them into the respective caches, which requires addi-
tional effort. The newly loaded objects evict objects
from the caches that were previously loaded by other
tasks. For data objects that were modified while in the
cache, this means that they must now be stored back
to main memory, which leads to even more additional
CPU effort. Moreover, in some systems1, each task
has its own, MMU-protected address space. There-
fore, switching between them also involves an address
space switch, which, for some popular machine archi-
tectures, requires that the CPU’s translation lookaside
buffer (TLB) be flushed. Thus, as the new task exe-
cutes, the processor must perform expensive page table
walks whenever a new page of memory is referenced
([9]).

While a task switch is always preceded by a scheduler in-
vocation, not every scheduler invocation is necessarily fol-
lowed by a task switch. Therefore, we consider the cost
of scheduler invocation and the cost of task switches sepa-
rately.

2.1 Scheduling overhead

Scheduling overhead is perceived by the clients as a win-
dow of time during which none of them makes any progress.
For off-line schedulers, the execution time of the scheduler
is constant (the next task to be activated is simply taken

1Virtual machine monitors being a prime example
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from a table). Also, many on-line scheduling algorithms
exist which are able to determine the next task in constant
run-time. The code which the CPU executes to enter or
leave the scheduler is typically of limited complexity and
well-known length for any given operating system and plat-
form. Therefore, we assume that all scheduler invocations
are of uniform length. In the following, we denote this time
window length as s. To attribute this overhead to individual
tasks, we make a convention that each scheduler invocation
is entirely at the cost of the task that was active before the
scheduler was invoked.

If a task is able to use a CPU exclusively during a time
interval [t1, t2], the amount of service it thus consumes is
Wcpu(t1, t2) as defined in equation (1). If, however, during
that interval, there is a sub-interval of length s (i.e. a sched-
uler invocation) during which it does not progress, the task
will take s time units longer for the same amount of service.
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Figure 1. Service vs. scheduling overhead.

We consider a task that is activated at time t = 0 and then
run for the duration of a time slice (or quantum) of length q
(See figure 1). When the quantum expires, i.e. at time t = q,
the task is preempted and the scheduler is invoked. At time
t = q + s, either the same task or another task is executed.
If there had not been a scheduler invocation, the task would
have been able to proceed at its current rate also during the
time interval [q, q+ s]. Thus, the loss of service suffered by
the task and thus the cost of the scheduler invocation is the
CPU capacity corresponding to this time interval:

Wsched = s · r̄(0, q)

The relative overhead, i.e. the ratio between the amount
of lost service and the total amount of service delivered by
the CPU during the time interval [0, q + s] is:

Osched =
Wsched

Wcpu(0, q) +Wsched
=

s

s+ q
(3)

Most proportional share schedulers use time slices of
fixed length. For these, the overhead is constant. Other,
variable quantum schedulers (for example WRR, see sec-
tion 4) use different quantum lengths for their tasks. For
each individual task though, the quantum is fixed, so each
task has an individual but constant overhead in this case.

2.2 Estimating context switch overhead

Unlike scheduling overhead, context switch overhead
does not manifest itself as a distinct time window. Instead,
the CPU appears to be “slowed down” following a con-
text switch, i.e. the currently active task progresses slower
than it would if there had not been a context switch because
cache load, cache write-back and TLB refill operations are
taking place in parallel to program execution. The extent
of the slowdown depends on the state of the CPU, the state
of the task, and on its program code. If all of this detailed
information were available, a model of the system could
predict the cache behaviour. But such an approach is sel-
dom feasible: the scheduler usually does not have sufficient
knowledge about its clients. Moreover (considering the use
case of a VMM), the activities of the clients and those of
the scheduler are generally not correlated. Thus, a con-
text switch may interrupt a client at arbitrary points, and the
cache behaviour would have to be evaluated for every con-
ceivable state of each client. Even for small sets of client
programs this problem is intractable.

Therefore, in this work, an empirical approach is at-
tempted: we start by reasoning about the behaviour of the
caches during a context switch, defining formal models to
approximate the expected behaviour. Then, by experimen-
tally measuring the actual progress rate over time for a num-
ber of test scenarios, we derive parameters that are subse-
quently used to calibrate the models so they can reproduce
the real-world dynamic behaviour. These findings are then
used in a simulation of proportional share scheduling to esti-
mate the expected system overheads. Of course, this heuris-
tic approach can not be expected to deliver exact or even
provably correct results. Nevertheless, pursuing this path is
considered worthwhile, since its results will likely be closer
to reality than those of otherwise correct approaches which
are based on the neglection of system overheads.

Model of cache behaviour

Figure 2 shows a possible development of a task’s progress
rate following a context switch. The task is being switched
to at time t = 0. Clearly, the worst case situation with
respect to cache effectiveness is the case known as “cache
thrashing”: A program accesses its memory resident objects
in such an unfortunate pattern, that every object gets evicted
from the cache before being used a second time. Thus, ev-
ery access to a memory object causes a cache miss. The
program does not gain any speed from the cache: it never
finds any useful contents in it. Its progress rate is therefore
minimal (rmin) 2. Conversely, the best case situation oc-

2However, because of the on-demand nature of caches, this progress
rate must be greater than zero: cache loading only takes place as a side-
effect of code execution, i.e. there is no cache loading activity without
program progress.
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Figure 2. Progress rate after a context switch.

curs when a program either (a) finds all of its objects read-
ily loaded in the cache (e.g. because other tasks have not
evicted them), or (b) does not use any memory resident ob-
jects at all. In both cases, the program executes at a the
same progress rate r(t) that it would also have had if there
had not been a context switch at all. In between those two
extremes, a realistic case would be that a task executes at
a low rate (r0) initially. This initial progress rate depends
on the amount of useable contents already in the cache at
time t = 0, so, in the worst case, the situation is equal to
that of “cache thrashing” and the minimum possible initial
progress rate is r0 = rmin. As the program executes and
more and more of its memory-resident objects are being
loaded into the cache, the progress rate will gradually in-
crease until, at time t = ts, the original progress rate r(t)
is reached. At time t = q, the scheduler is invoked again.
If the quantum is short (q < ts), the original progress rate
can not be reached within the time slice. In this case, if
the scheduler switches to another task, the cache contents
loaded so far are lost again. However, if the task is contin-
ued, the cache loading continues where it left off.

The amount of work that the task would have had
done during a time interval [0, t] if not interrupted, is
Wcpu(0, t) = t · r̄(0, t) according to equation (1). With
rsw(t) describing the task’s actual progress rate after a con-
text switch as a function of time, the amount of service that
the task actually has received at time t since the context
switch at time t = 0 is:

Wtask(t) =

t∫
0

rsw(τ)dτ (4)

Thus, the amount of service that is lost as a result of the

context switch, is the difference:

Wsw(t) = t · r̄(0, t)−
t∫

0

rsw(τ)dτ (5)

This amount of lost service corresponds to the area be-
tween the curves in figure 2. The relative context switch
overhead is the ratio between this lost service and the to-
tal amount of service that the CPU has delivered during the
time interval [0, t]:

Osw(t) =
Wsw(t)
Wcpu(0, t)

= 1− 1
t

t∫
0

rsw(τ)
r̄(0, t)

dτ

The CPU can be thought of as being shared between two
activities: The actual payload task that it executes and an
imaginary cache task maintaining the caches. We define
the payload share, f(t) as the ratio between a task’s cur-
rent progress rate and the average progress rate over interval
[0, t] that it assumes when not interrupted:

f(τ) :=
rsw(τ)
r̄(0, t)

(6)

With this, we get:

Osw(t) = 1− 1
t

t∫
0

f(τ)dτ (7)

Equation (7) yields the context switch overhead of a task
at time t after a single context switch at time t = 0. For
t ≥ ts, that is, when all needed objects have been loaded
into the cache, the progress rate is the same as if there had
not been a task switch. Assuming that f(t) ≈ 1 in this case,
if the task is run for one quantum q ≥ ts, the context switch
overhead is:

Osw =
ts
q
− 1
q

ts∫
0

f(τ)dτ =
1
q

ts∫
0

1− f(τ)dτ (8)

Note that for large values of q, the overhead becomes
negligible. Note also that in both the best case (i.e. no cache
loading at all) as well as the worst case (i.e. permanent
cache thrashing), f(t) = 1 ∀ t. Thus, in both cases, the cor-
responding context switch loss is zero. While this may seem
confusing, especially for the cache thrashing case, it does
make sense: a cache thrashing program does not draw any
benefit from the cache, so it does not lose anything when the
cache contents are lost in a context switch. Thus, regarding
context switch cost, cache thrashing is in fact not a worst
case.
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Generally, in order to exactly quantify the context switch
overhead, the development of the payload share as a func-
tion of time, f(t), would be needed. If such a function were
known for a given configuration, equations (7) or (8) could
be used to compute the overhead per quantum allocation,
which could then be used, e.g. in a scheduler simulation,
to compute the overall average overhead for the simulated
scheduler. However, f(t) depends heavily on the actions
taken by the particular program that is executed, so there is
no generic case. Nevertheless, it is possible to identify best
and worst case situations. Also, a sensible average case ap-
proximation lying in between can be suggested. Of course,
this average case can never be guaranteed, but it is still use-
ful to estimate the overhead that a system is likely to exhibit.

Since equations (7) and (8) deliver the overhead per
quantum (where each individual quantum is associated with
a particular task), the overheads can also be attributed to
tasks, and different payload share functions can be applied
to reflect each task’s individual time criticality. A VMM,
for instance, may have to schedule several virtual machines
hosting subsystems with differing timing requirements (e.g.
soft/hard real-time, non-real-time). In this situation, the
scheduler can adapt its assumptions to each client individu-
ally: For a hard real-time client, it would assume a worst
case scenario to be on the safe side, whereas for soft or
non-real-time clients, it would use a less pessimistic aver-
age case function to compute the expected overhead.

As mentioned, in figure 2, the overhead corresponds to
the area between the curves of r(t) and rsw(t). The area
between rsw(t) and the average progress rate r̄(0, t) has the
same size. To construct a situation that yields the worst
context switch cost, this area must be maximised, which
is achieved for a rectangular shape: rsw(t) would have to
be constantly minimal for some time, and then jump to the
maximum rate. This is achieved by a “cache flooding” pro-
gram that permanently accesses a limited set of memory res-
ident objects small enough to fit entirely into the cache. If
none of the task’s objects are in the cache, such a program
runs at the same minimal progress rate as a thrashing pro-
gram until all objects have been cached. From that point on,
it runs at the maximum sustained progress rate:

fflood(t) =
{
f0, 0 ≤ t < ts
1, t ≥ ts

(9)

Inserting fflood(t) into equation (8) yields:

Oflood =
ts
q
· (1− f0) (10)

Thus, the relationship between context switching over-
head and the quantum in this worst case scenario is char-
acterised by just two parameters, which can be obtained by
experimentation:

• ts: The time by which the task has loaded all of its
memory objects into the cache. This time should be
related (e.g. proportional) to the total size of these ob-
jects. In the rest of this paper we refer to this amount
as the the task’s “work space size”3.

• f0: The ratio between the lowest and the average
progress rate of the program. This will depend heavily
on the code of the program itself (relative frequency of
memory accesses within the program code).

The assumption of a cache flooding task will generally
deliver pessimistic results. It is useful for estimating the
scheduling overhead for hard real-time tasks, but for soft
real-time problems where the occasional deadline miss is
acceptable or for tasks that are not subject to any timing re-
strictions, a less pessimistic assumption would deliver bet-
ter results. In natural sciences there are many examples of
processes which show an exponential decay behaviour (e.g.
radioactive decay, or the transfer of thermal energy between
bodies of different temperature). Thus, using an exponential
decay function to describe the temporal behaviour of cache
overhead seems reasonable:

favg(t) = 1 + (f0 − 1) · e−kt (11)

where:

k =
1
ts
· ln

(
1− f0
ε

)
This function converges towards the average progress

rate (i.e. lim
t→∞

favg(t) = 1), but does not reach it in finite

time. Thus, ts is defined here as the time by which favg(t)
approximates the average progress rate by an error of ε, i.e.
favg(ts) = 1 − ε. Inserting favg(t) into equation (7) for
t = q yields:

Oavg =
f0 − 1
k · q

· e−kq (12)

This relationship between context switching overhead
and the quantum is characterised by similar parameters as
the worst case scenario of the cache flooding task: Again,
ts can be assumed to be related to the task’s work space
size, while f0 will -in the worst case- be the same as in the
case of cache flooding, or higher, if the task can be expected
to find useable contents in the cache.

3 Measurements

A series of measurements was made which were de-
signed to reproduce the worst case behaviour with respect

3We explicitly avoid the term “working set” here as it is often used to
refer to the set of pages actively used by a program.
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to context switch cost (i.e. “cache flooding”) as described
in the previous section. The goal of these measurements is
twofold: Firstly, it needs to be shown that the introduced
model is actually applicable to reality, secondly, some real-
istic values for the parameters in equations (10) and (12) are
to be collected.

3.1 Methodology

A method is needed to determine the development of a
task’s progress rate over time. A straightforward way to
state “progress” would be to measure the average number
of machine instructions executed by the processor per time
unit. This is problematic, though, because instructions are
neither uniform in the amount of “useful work” they do,
nor in the amount of time (or number of machine cycles)
that they take to execute. There is no such thing as an “av-
erage instruction” for any given machine architecture, let
alone one that would allow comparisons across different ar-
chitectures. However, to quantify switch overhead, it is not
really necessary to measure absolute progress: The over-
head depends on the payload share function, i.e. the ratio
between a task’s slowest progress rate and its average (sus-
tained) progress rate.

Thus, rather than single instructions, short sequences of
test code are measured which are designed to perform com-
parable uniform amounts of work, such as to store or to load
a certain amount of data to or from memory. The test code
sequences are executed in tight loops, so, the smallest unit
of progress that can be measured in this way is one exe-
cution of the loop. Also, because of the limited resolution
of the available timer hardware and because of the addi-
tional CPU effort involved in reading the timer value, the
measurement works by executing a programmable number
of loops and then measuring the time taken for this num-
ber. The result of each such measurement is thus not the
rate of progress, but the amount of service accumulated over
the measured time interval (i.e. the integral over the rate).
From, this, the desired progress rate can be computed as the
derivative with respect to time.

The applied measurement method is a simplified variant
of the one used by John and Baumgartl ([6]): Prior to exe-
cuting the test code, the CPU’s caches are prepared: They
can be left untouched, invalidated, or filled with irrelevant
data, either by reading or by writing4. After conditioning
the caches in this way, a selectable test code is executed
for a programmable number of loops. The time taken to
execute the test code is then returned as result. This se-
quence is repeated for different loop counts. The selectable

4The additional method of cache “flooding” used by John and Baum-
gartl was not implemented here: Flooding can be used to produce an abso-
lute (but not very realistic) worst case situation that is specific to the IA-32
architecture’s two-level cache structure.

test codes either read or write a region of (not previously
cached) scratch memory, the size of which can be config-
ured. This size is thus the total amount of data that the pro-
gram loads into the cache, i.e. the program’s “work space
size”. The sequence of the addresses that are read or written
can be chosen to be either random or to access consecutive
cache lines. The latter is intended to reproduce worst case
behaviour (i.e. cache misses until all of the work space are
in the cache).

Two different IA-32 machines running Linux were used
as test platforms. To prevent unwanted interruptions of the
test codes, they had to be run in privileged mode with dis-
abled interrupts, which is why the test code was imple-
mented as a kernel module in Linux.
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Figure 3. Program progress after a cache fill.

Figure 3 shows the exemplary results of five measure-
ments made with different work space sizes. In the first case
(labelled “Cache untouched”), the cache was not changed
prior to the test. In the other four cases, the caches were
write-filled initially. Then, consecutive addresses were writ-
ten to, up to the indicated work space sizes. The curves
measured for 16k, 32k and 64k work space size follow a
similar pattern: The number of executed loops increases
slowly at first, until reaching a point where all of the se-
lected work space has been loaded into the cache. At this
point, speed increases drastically. The time when this tran-
sition occurs, depends on the selected work space size. In
the case of 128k work space size, the transition does not oc-
cur within the shown measurement range. In the “Cache un-
touched” case, no transition occurs: the speed is constantly
high from the beginning.

The curves shown in figure 4 have been computed from
those in figure 3 as the derivative with respect to time. Thus,
since figure 3 shows the progress made by the programs
over time, this figure now shows the progress rate as a func-
tion of time.
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Figure 4. Progress rate after a cache fill.

3.2 Discussion of results

All measured curves follow similar patterns: Execution
speed is low at first, then it jumps abruptly and continues
at a higher, sustained progress rate. In all cases (except for
the 128k work space case), the average sustained execution
range that is assumed after the jump, is the same. These
measurements have been repeated on different machines,
for different work space sizes, cache preparation methods
and memory access patterns.
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Figure 5. Normalised progress rates.

Figure 5 shows all curves that where measured with the
“consecutive cache lines” addressing pattern. In this pic-
ture, all progress rate values have been normalised by the
average sustained progress rates. Thus, the vertical axis
in figure 5 indicates the payload share as per definition in
equation (6). Also, the horizontal (time) axis is normalised
by the individual times at which the transition to the higher

Machine Access WSS Cache f0 ts
A cw 16k fill 0.11 22µs
A cw 32k fill 0.11 43µs
A cw 64k fill 0.09 85µs
A cw 16k invd 0.17 12µs
A cw 32k invd 0.18 20µs
A cw 64k invd 0.20 35µs
A rw 16k fill 0.26 30µs
A rw 32k fill 0.36 38µs
B cw 16k fill 0.09 25µs
B cw 32k fill 0.08 38µs
B cw 64k fill 0.12 91µs
B cw 16k invd 0.17 16µs
B cw 32k invd 0.12 29µs
B cw 64k invd 0.21 55µs
B rw 16k fill 0.26 30µs
B rw 32k fill 0.36 38µs

A = Celeron @ 2.5 GHz, B = Pentium M @ 1.5 GHz
cw = consecutive write, rw = random write

Table 1. Results of measurements.

progress rate was observed. The figure demonstrates that
the behaviour in all measured cases is similar: The pay-
load share is low initially and stays low until all of the work
space are in the cache. At this point it jumps (more or less
abruptly) to assume a (roughly) constant high value. This
is the behaviour that is to be approximated by a function
like fflood(t) as per equation (9). The initial (low) progress
rate varies between the measured cases. It depends on the
method of cache preparation that was applied: if the cache
is write-filled, the progress rate is lower, because the “dirty”
cache entries have to stored back in memory.

Table 1 shows values for the ratio between the minimum
and average observed progress rates, f0 and the time ts at
which the sustained execution rate is reached. These val-
ues have been computed from the measured progress rate
curves. There is a clear dependency between ts and the
work space size. On the Celeron machine, it is approxi-
mately proportional as one would have expected. On the
Pentium M, however, it also increases with work space size,
but not proportionally. Also, the progress rate ratio is not
constant for measurements which used identical code and
cache preparation methods. This is because the absolute av-
erage progress rates measured on the Pentium M are much
higher for small work space sizes. These unexpected ob-
servations are suspected to be related to the IA-32 archi-
tecture’s complex two-level cache structure: the Pentium M
has larger caches than the Celeron, and, if the work space of
a test is small enough to fit entirely into the level 1 cache, the
program runs faster than if it only fits into the larger level
2 cache. This assertion, however, will have to be cross-
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checked by performing the tests on a different architecture
with a less complex cache structure.

In summary, although some of the experimentally ob-
tained values clearly need a more thorough investigation, it
can be said that the behaviour of the “cache flooding” case
introduced in section 2.2 has been reproduced in the exper-
iment. The values shown in table 1 can thus be used as
parameters to the cache flooding model given by equation
(10) to approximate real-world behaviour.

4 Computing overheads by simulation

As mentioned in the introduction, proportional share
schedulers are a particularly interesting target for study-
ing the effects of switching overheads on their performance.
From the large number of proportional share scheduling al-
gorithms that have been proposed in the literature, two spe-
cific ones have been selected for simulation. The reason for
choosing these two algorithms was mainly because of their
property of constant run-time scheduling cost5:

Weighted round robin (WRR) scheduling is probably the
simplest known proportional share scheduling algorithm: It
executes its tasks cyclically for the duration of individual
quanta in a round-robin fashion. Each task’s quantum is
scaled according to its weight:

qi = Q · wi∑
j

wj
(13)

Where Q is the sum of all quanta
∑
i

qi. Tasks are ar-

ranged in a circular queue. Each time the scheduler is in-
voked, it selects the next task from the queue and executes
it for the duration of its quantum qi. Thus, every scheduler
call leads to a task switch. The schedule is periodic with the
period being equal to the sum of all task’s individual quanta,
Q, plus the time spent for scheduling in between the quanta.

In contrast to WRR, most other proportional share sched-
ulers use a fixed quantum. When the scheduler is invoked,
it evaluates the status of all tasks and decides which of them
should receive the next quantum. Several practical algo-
rithms have been proposed (e.g. [2, 13, 10]) which differ
in their methods of collecting task status data and the way
they make their scheduling decisions. For this simulation,
the Virtual Time Round-Robin (VTRR) scheduler [10] was
chosen as example.

VTRR works by sorting all tasks by their individual
weights and executing them in a round-robin fashion, each
for the duration of a quantum. Whenever a task is found to
have accumulated more than its ideal share of service, the
scheduler jumps back to the beginning of the run queue,

5Note that, since we only consider static systems, the cost of run-time
insertions/removals of clients need not be considered

skipping the remaining tasks. The task selected by the
scheduler may be the same that was active before, so un-
like WRR, a scheduler invocation does not always lead to a
task switch.

For fixed-quantum schedulers, the quantum, q, is the pa-
rameter defining the time scale for the system. The equiv-
alent parameter for a variable-quantum scheduler would be
the sum of all individual quanta,Q. When comparing fixed-
quantum schedulers with variable-quantum schedulers, a
provision must be made how to map a given q to an equiv-
alent Q (and vice versa). An obvious choice would be
to define Q = N · q, where N is the number of tasks.
However, for uneven weight distributions (i.e. large range
of weights), this leads to minimal quantum values for the
variable-quantum scheduler which may be unrealistically
small with respect to the (fixed) time needed to execute the
scheduler: When considering scheduling overheads, the re-
lation between the smallest of quanta and the scheduling
time plays a central role. Therefore, for all comparisons
made in this work, a mapping between q and Q was chosen
such that the smallest of the individual quanta qi used by the
WRR scheduler equals the fixed quantum q used by VTRR.

A program was implemented to simulate two selected
scheduling algorithms (WRR and VTRR). Input to this pro-
gram are the number of tasks, their individual weights, the
quantum duration (q), the time taken for a scheduler invo-
cation (s) and a payload share function. The two payload
share functions fflood(t) and favg(t) given by equations
(9) and (11) are built into the simulator, but it also allows
arbitrary functions to be specified as a list of value pairs.
Thus, experimentally obtained functions can be fed into the
simulator as well. The simulator runs the specified system
(virtually) for a given amount of time. While running, it
collects data about the various accumulated overheads.
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Figure 6. Simulated VTRR service allocation
with and without overheads.
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As an example, figure 6 shows the amount of ser-
vice allocated to a task by a VTRR scheduler. The line
marked “No overheads” indicates the service when neither
scheduling nor task switching cost are accounted for. The
line marked “Perfect fairness” shows the idealised continu-
ous assignment of service that the scheduler approximates.
The lines marked “Sched. and cache overhead favg” and
“Sched. and cache overhead fflood” show the amount of
service that is actually available to the task after subtract-
ing the overheads of scheduling and task switches. For this
example, a scheduler execution time of s = 10µs, and a
quantum duration of q = 50µs were chosen. The figure
shows how the actual resource allocation is significantly
lower than the idealised one 6. At t = 350µs, the figure
shows a case where the scheduler is invoked but does not
switch tasks: The task stalls while the scheduler executes,
but when resumed, it continues at the same rate as it did just
before the interruption. Either the average function favg(t)
or the cache flooding function fflood(t) 7 was used as pay-
load share function. The curves show how the resource al-
location increases linearly for the cache flood case and how
it converges towards linear increase in the average case.
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Figure 7. System overhead and worst case
task latency as a function of quantum.

Figure 7 shows the overall system overhead computed
for a system with three tasks (weights: 3, 5 and 7) for the
WRR and the VTRR scheduling algorithms. For the two
lines marked “fflood”, the cache flooding function and the
parameters measured on the Celeron machine for a 64K
work space (i.e. third line in table 1) were used to com-

6Admittedly, the quantum chosen for this example is extremely short.
This was done to show the detailed progression of the allocated resources
over time. With a less extreme quantum setting (and the appropriate scal-
ing), all curves would appear as lines with different slopes.

7See equations (11) and (9)

Wi Sch q[µs] WSS/f() O1[%] O2[%] O3[%]

2/5/8 wrr 10 16k/avg 76.48 48.51 34.43
2/5/8 vtrr 10 16k/avg 76.48 76.48 67.27
1/1/1 n/a 10 16k/avg 76.47 76.48 76.48
2/5/8 wrr 10 64k/flood 95.50 93.57 92.80
2/5/8 vtrr 10 64k/flood 95.50 95.50 95.50
1/1/1 n/a 10 64k/flood 95.50 95.50 95.50
2/5/8 wrr 100 16k/avg 15.66 6.64 4.22
2/5/8 vtrr 100 16k/avg 15.69 15.70 13.21
1/1/1 n/a 100 16k/avg 15.67 15.70 15.69
2/5/8 wrr 100 64k/flood 79.40 33.60 21.31
2/5/8 vtrr 100 64k/flood 79.41 79.41 53.09
1/1/1 n/a 100 64k/flood 79.41 79.41 79.41
2/5/8 wrr 1000 16k/avg 1.71 0.69 0.43
2/5/8 vtrr 1000 16k/avg 1.71 1.72 1.44
1/1/1 n/a 1000 16k/avg 1.69 1.72 1.71
2/5/8 wrr 1000 64k/flood 8.65 3.48 2.18
2/5/8 vtrr 1000 64k/flood 8.65 8.66 5.82
1/1/1 n/a 1000 64k/flood 8.64 8.66 8.65

Table 2. Per task overheads.

pute the cache overhead. For the other two lines, marked
“favg”, the average function with the Celeron parameters
for a 16K work space (first line in table 1) was used. The
quantum ranges from 10 µs to 10 ms (note the logarith-
mic scale). The picture indicates that for quantum sizes in
the range typically used by contemporary general purpose
operating systems (i.e. one to ten milliseconds), the sys-
tem overhead is well below 10%, even under worst case as-
sumptions. Thus, it may in fact be considered negligible for
these systems. For sub-millisecond quantum sizes, though,
the overhead increases significantly, especially under worst
case assumptions. Figure 7 also shows the maximum laten-
cies, i.e. the time intervals for which a task may not have
access to the CPU. Remember, that for a real-time program
hosted by a virtual machine, this value defines the jitter that
such a program will exhibit. It does not depend on the pay-
load share function, therefore, only two curves (for WRR
and VTRR) are shown. The latency increases proportion-
ally with the quantum size and the number of tasks. To
achieve a low jitter for real-time programs, a small quan-
tum has to be chosen which inevitably leads to high system
overhead. In the shown example, if a real-time client can
accept a 5 millisecond jitter, the quantum must be chosen
no larger than 1 millisecond, resulting in a worst case over-
head of 7.6%.

Table 2 lists per-task overheads for a number of param-
eter combinations. This demonstrates that the overheads
are not necessarily distributed according to the weights of
the tasks. In this example, identical payload share func-
tions where used for all tasks, however, our simulator would
also allow to use different functions for each individual

81



task. Note that for uniform weight distributions (i.e. Wi =
1/1/1), VTRR and WRR deliver the same schedule and
thus identical results. Therefore, they are not listed sepa-
rately in the table.

5 Conclusion and further work

In this work, we described a method to estimate schedul-
ing and switch overheads for multi-tasking systems. The
method is based on a combination of simulation and exper-
imentation. For two selected proportional share schedul-
ing algorithms, our simulator can estimate the overall sys-
tem overhead as well as separate context switch and sched-
uler overheads associated to individual tasks. The results
indicate that with contemporary hardware, sub-millisecond
quantum size, which would enable acceptably low jitter for
real-time programs, can only be achieved by sacrificing a
significant portion of the system’s computational resources.
For our use case of real-time programs hosted by virtual
machines, this means that, as long as proportional share
scheduling is used to switch between VMs, we can not ob-
tain competitive real-time performance. Thus, VMMs will
have to adopt different scheduling strategies if they are to
support real-time applications (Some suggestions are pre-
sented in [8]).

Measurements, so far, have only been made for two dif-
ferent IA-32 platforms, thus, a future activity will be to ap-
ply these measurements to a broader selection of architec-
tures featuring different cache structures.

While the scenario of the worst case payload share func-
tion has been reproduced experimentally, the same can not
be said about the “average” payload share function: At this
time, this function is purely artificial. To construct an ex-
periment that will allow to measure cache overheads under
real-world computational loads will be more difficult than
to reproduce the worst case as we have done. A possible
approach could be to integrate a configurable fixed times-
lice scheduler into an already existing VMM (e.g. Xen)
and perform similar measurements while the system runs a
selection of characteristic benchmarks. Any payload share
functions derived in this way can then be integrated into our
simulator to improve its estimations.
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