
OSPERT 2005

Workshop on Operating Systems Platforms for
Embedded Real-Time applications

In conjunction with the

17th Euromicro Conference on Real-Time Systems (ECRTS 05)

Palma de Mallorca, Balearic Islands, Spain

July 5, 2005

Sponsored by:

The ARTIST 2 Network of Excellence on Embedded Systems Design

http://www.artist-embedded.org/FP6/

Editor: Giuseppe Lipari, Scuola Superiore Sant'Anna, Italy

Copyright ©2005 by the authors

OSPERT 2005

Workshop on Operating Systems Platforms
for Embedded Real-Time applications

Program Chair:
Giuseppe Lipari

Program Committee:
Giuseppe Lipari
Gerhard Fohler
Steve Goddard

Hermann Härtig
Michael Gonzalez

Scott Brandt
Ismael Ripoll

Reviewers:

Mario Aldea Rivas
Scott Banachowski

Igor Barsanti
Marko Bertogna

Tim Bisson
Scott Brandt

Michele Cirinei
Gerhard Fohler
Steve Goddard

Michael Gonzalez
José Javier Gutiérrez

Hermann Härtig
Caixue Lin

Giuseppe Lipari
Antonio Mancina

Luca Marzario
Ismael Ripoll

Joel Wu

OSPERT 2005

3

OSPERT 2005

4

Preface
Until a few years ago, research on real-time operating systems (RTOS) was considered a

closed and sterile field. Today, a number of commercial operating systems provide support for
fixed priority scheduling and assessed methodologies used in industry are based on the well-
known rate-monotonic scheduling analysis. This was considered enough for most real-time
systems. However, since a few years, an increasing number of developers are looking againg at
the research on RTOS with novel expectations.

On one side, the widespread success of real-time embedded system technology has raised a
number of interesting problems that need to be addressed by RTOS providers. First, novel
hardware architectures, consisting of homogeneous and heterogeneous multiprocessors, or
reconfigurable FPGAs, are now very appealing for their flexibility and cost. Second, the
complexity of current embedded applications is increasing exponentially, requiring quality of
service support, dynamic reconfiguration and adaptation. Third, embedded systems have scarce
computational resources and memory, and most of them are powered by batteries. Hence, the
need for optimizing resource usage to reduce the cost and prolong the autonomy of the system.

On the other side, real-time requirements are now common also in high-end systems and
quality of service is one of the most abused keywords. This means that best-effort approaches are
no longer sufficient and that some sort of guarantee on the provided service is a strong
requirement of any application. Hence, the need to provide (soft) real-time guarantees and
resource reservation approaches also in OS for workstations, servers, desktop PC, etc. It is a
common feeling among researchers and developers that current RTOS technology does not
provide adequate solutions to the above problems.

This workshop is an attempt to bring together researchers, practitioners and developers of
RTOSs to discuss the recent advances in RTOS technology and the challenges that lie ahead.
The program committee selected 11 papers that were deemed interesting to the RTOS
community. These papers are collected here, and will be presented at the workshop. Moreover,
the program includes three invited talks: two are on succesful academic projects on RTOSs; and
one invited talk by Thorbjorn Jemander of ENEA Epact, a provider of commercial RTOSs.

Finally, to foster the discussion among the participants, the program includes two panel
sessions. Session 1, “Kernel Architectures for Embedded Systems” will discuss the problems of
providing support for Embedded systems, especially for novel hardware architectures. Session 3,
“Real-Time in general purpouse OS”, presents the challenges in porting real-time technology on
general purpouse systems. At the end of both sessions, participants will be asked to present their
points of view on a set of interesting questions. The result of the discussion will be available on
the OSPERT web site shortly after the conclusion of the workshop.

I would like to thank the organizers of ECRTS for giving us the opportunity to organize this
workshop; the program committee for their help in the organization and the useful discussions;
all the reviewers for their effort in making a very nice program; the ARTIST 2 Network of
Excellence on Embedded Systems, for supporting this workshop; and all authors that have
submitted, as the success of a workshop is mostly due to the authors!

Have a good time in Palma de Maiorca,

Giuseppe Lipari

PC chair

OSPERT 2005

5

Program
Session 1: Kernel Architectures for Embedded Systems.
Challenges for scheduling media applications on a multiprocessor SoC 07
C. M. Otero Pérez, G. van Doren. Philips Research, Eindhoven.
Impact of Embedded Systems Evolution on RTOS Use and Design. 13
D. Andrews, I. Bate, T. Nolte, C. M. Otero Perez, S. M. Petters. University of York, Philips
Research Lab, Eindhoven, The Netherlands, NICTA, Australia.
Operating Systems and Supporting Architectures for Embedded Real-time Systems. 21
N. Audsley, R. Gao, A. Patil, P. Usher, J. Withman. University of York.

Session 2: RTOS Architectures and APIs – I.
The FIRST API ... 27
Michael Gonzalez Harbour, Universidad de Cantabria, Spain
The need for configurable and flexible scheduling in a RTOS aspiring
to solve contemporary problems. .. 29
Thorbjorn Jemander. ENEA Epact, Sweden.
An overview of the XtratuM nanokernel. .. 31
M. Masmano, I. Ripoll, and A. Crespo. Universitad Politècnica de Valencia. Spain.
Kernel Support for Energy Management in Wireless Mobile Ad-Hoc Networks. 37
M. Marinoni, G. Buttazzo, T. Fachinetti, G. Franchino. University of Pavia. Italy.

Session 3: Real-Time in general purpouse OS.
Variable-Rate QoS in the OS Network Subsystem. .. 47
H. Cheng, X. Liu, and S. Goddard. University of Nebraska-Lincoln, USA.
Developing a Complete Integrated Real-Time System. .. 57
S. A. Brandt, S. Banachowski, C. Lin, and J. Wu., Univ. California, USA.
A Unified Framework for multiple type resource scheduling with QoS guarantees. 67
L. Palopoli, P. Valente, T. Cucinotta, L. Marzario, A. Mancina. Scuola Superiore Sant’Anna.
Italy.

Session 4: RTOS Architectures and APIs – II.
Adding new features to the Open Ravenscar Kernel. ... 77
S. Urueña, J. A. Pulido, J. A. de la Puente, J. Zamorano. Universidad Politécnica de Madrid,
Spain.
The OCERA operating system. ... 85
Alfons Crespo, Universidad Politécnica de Valencia, Spain
Lightweight RTAI for DSPs. ... 87
J. Kretzschmar, R. Baumgartl. Technical University chemnitz. Germany.
Power Measurement as the Basis for Power Management .. 95
D. C. Snowdon and S. M. Petters. NICTA, Australia.

OSPERT 2005

6

Challenges for scheduling media applications on a multiprocessor SoC

Clara M. Otero Pérez, Giel van Doren
Philips Research Laboratories Eindhoven (PRLE)
{ clara.otero.perez, giel.van.doren}@philips.com

Abstract
Systems on chip (SoC) emerge as the chosen solution
to accommodate the flexibility and performance
demands of current media applications such as audio
and video processing. A multiprocessor SoC combines
embedded processors, specialized hardware blocks,
and on-chip memories to meet the requirements of
current and future products.
Providing scheduling analysis and techniques for such
a SoC is a challenge, even more when cost is one of the
driving factors for the design leading to resource
constrained devices. To meet the performance
demands of media applications, SoCs have to be used
efficiently.
In this paper we show that processor sharing, keeping
data on chip and the use of prefetching are solutions
that improve efficiency but raise challenges for future
research on real-time scheduling.

1. Introduction

Consumer multimedia devices are becoming

increasingly flexible, accommodating late changes in
standards or product scope during system design, and
allowing in-the-field upgrades with new or enhanced
features. To fulfill the flexibility and high processing
requirements, consumer electronics vendors
increasingly deploy heterogeneous multiprocessors
Systems on Chip (SoC). An additional drive for
flexibility is the increasing cost of masks and design for
the chips. Designing flexible SoCs that support a wide
range of products can increase volumes, and as a
consequence reduce the mask and design cost per chip.

Within Philips a new multiprocessor SoC is being
developed based on the CAKE architecture [1]. This
SoC, named Wasabi has a number of programmable
DSPs (TriMedia1), general purpose CPUs, and
hardware IP blocks such as a Memory Based Scaler
(MBS), as depicted in Figure 1. The core of this
architecture is a shared level two (L2) cache [2], which

1 TriMedia is a family of Philips DSP cores optimized for A/V
processing

plays a central role in the communication both across
processors as well as between processors and off-chip
memory via a high bandwidth double data rate bus. The
main role of the L2 cache is to reduce latency (increase
processor efficiency) and reduce off-chip bandwidth.

9,3��

4715�

0%6��

49&3�

70�

/��FDFKH

70�

/��FDFKH

70�

/��FDFKH

70�

/��FDFKH

/��FDFKH�

9,3��

&38�

/��FDFKHMemory
controller

Off-Chip Memory

Figure 1 The Wasabi SoC

In this paper we focus on media applications that
execute on the SoC, in particular video processing. A
video processing application consists of a sequence of
processing steps, each of which execute a function on a
video frame. Each processing step can be executed in
an IP block or as a software task running on a
programmable core. High amounts of data (video
frames) stream from a processing step to the next.

4715 5HQGHU9,3 'HLQ10

9,3� 4715 0%6 49&370

)'

0%6

Figure 2 Streaming video application

Figure 2 depicts a processing chain of picture

improvement algorithms for an analogue input stream.
The buffers between processing steps contain the
intermediate data. An analog video frame is collected
by the video input (VIP) IP block; temporal noise
reduction is performed by the Quality Temporal Noise
Reduction (QTNR) IP block. The film detection (FD)

OSPERT 2005

7

is done on the Memory Based Scaler (MBS). The
TriMedia executes the Natural Motion software
algorithm whereas deinterlacing (DEIN) is done by the
MBS. Finally, the Quality Video Coprocessor (QVCP)
renders the frame.

The bandwidth between two communicating video
processing steps is large. For example, for high
definition video (1920x1080), interlaced (30 frames
per second), format YUV using 2 bytes per pixel, the
generated bandwidth is:

30 * 1920 * 1080 *2 = +/- 120 Mbyte/s
The data (buffers) can reside either on-chip, in the

L2 cache, or off-chip. When intermediate buffers are
off chip every frame has to be transferred twice over
the bus, once for writing and once for reading, resulting
in 2*120MB/sec for the above example. This
bandwidth requirement scales linearly with the number
of processing steps. In case of having multiple chains
with multiple processing steps this rapidly reaches the
available bandwidth limit.

However, significantly increasing off-chip memory
bandwidth is undesired for high volume consumer
devices, which are cost-driven. High bandwidth to off-
chip memory is:

- expensive to implement. It requires more pins
and more chips to widen the data path.

- expensive in power consumption.
As a result, the bus to off-chip memory remains a
scarce resource, a potential bottle neck, and has to be
taken into account explicitly when realizing
applications on such a SoC. However, keeping all data
on chip is also not an option due to on-chip memory
cost. As a consequence, the on-chip memory is also a
scarce resource in such a SoC and has to be used
efficiently.

The following section describes how efficient
resource utilization drives the realization of distributed
applications in a SoC. Section 3 discusses the derived
scheduling challenges. Finally, directions for solutions
are presented in Section 4.

2. Efficient resource usage on a SoC

The challenge in realizing a video application on a

resource constrained multiprocessor architecture is to
use the resources cost-efficiently.

For cost reasons, expensive resources such as
processor, memory and bus bandwidth often have to be
shared. Reducing the number of processors on a chip,
decreases the silicon area and as a consequence the cost
of producing the chip. As an example, it is more cost-
efficient in silicon area to have one faster IP block,
such as the MBS, than to have two slower ones.

Therefore, processors are shared among processing
steps on the same chain as well as among different
chains.

In many cases, the sharing of resources introduces
interference reducing efficiency. For example cache
trashing and bus congestion. The work in [3] studies
the efficient use of the shared cache and the bounding
of this interference.

In the case of processing resources, efficiency
depends on the Stalls that occur, relative to the capacity
(C) of the processor, as shown in Equation 1. Stalls
cycles are wasted processor cycles, since the processor
is waiting for instructions or data before it can proceed.

C
StallsCEff −= (1)

As a direct conclusion, the efficiency increases by
reducing the number of stalls. In a processor with a
cache the stalls depend on the number of cache misses
and the latency to get the data in case of a miss, as
shown in Equation 2.

latencymissesStalls ×= (2)
The latency of a miss depends on where in the

architecture the miss occurs. In the Wasabi chip, a miss
can occur in the L1-cache and in the L2-cache. When
data is not in the L1-cache (L1 miss), but it is available
in the L2-cache the latency is small, e.g. 8 cycles. This
latency is relatively constant since the on-chip
interconnect is over dimensioned. A miss in the L2-
cache (L2 miss) results in a latency of at least 30
cycles. The latency varies depending on the bus load
(increasing as the busload increases), as depicted in
Figure 3. The latency seen by a processor is influenced
by other processors behavior, due to bus sharing.

'DWD�VWDOO�F\FOHV�SHU�PLVV

�

��

���

���

���

���

�� ��� ��� ��� ��� ��� ��� ��� ��� ���

%XV�ORDG

6
WD
OO
�F
\F
OH
V

Figure 3 Latency increase with bus load.

Having the right data available at the right time can
decrease the number of misses. A standard approach to
achieve that is to increase the cache-sizes. However, it
does not help much for video data. One HD video
frames is already too large to fit in the L2 cache
completely, and a SoC is typically processing a number
of frames simultaneously.

OSPERT 2005

8

A solution to reduce the number of stalls is to keep
the huge amount of video data that stream between
processing steps on-chip. It both reduces the load on
the bus (and thus the latency for others), and reduces
the L2-misses. These buffers have to be small due to
the limited amount of shared on-chip memory (L2
cache). However, keeping the data on-chip that is
communicated between a producing and consuming
processing step, tightly couples the execution of these
steps due to the small intermediate buffers.

A second solution to decrease the number of stalls is
to prefetch data. Prefetching reduces the number of
misses, by ensuring that the right data is available when
it is needed. One way to realize prefetching is by
predicting which data will be required next, based on
the current memory accesses. Special hardware can
perform this task [4]. Another way is that the
processing step explicitly indicates what data is
currently needed, and what data will be needed next.

Prefetching can be done at the level of the L1-cache
or L2-cache. Since the size of the L1-cache is much
smaller, less data can be prefetched in advance.
Prefetching decreases the number of misses, but it does
not decrease the load on the bus.

A third solution to decrease the number of stall
cycles is to exploit on-chip memory by the algorithms
executed by the processing steps. However, this
optimization is algorithm dependent and falls out of the
scope of this paper.

3. Scheduling challenges

As presented in previous section, efficiency and cost

issues require solutions such as processor sharing,
keeping data on chip and prefetching. In this section we
explore which are the requirements that these solutions
impose on the scheduling.

3.1. Processor sharing

Multiple research studies investigate the scheduling
of applications on homogeneous and heterogeneous
multiprocessor systems as in [5], [6], [7], [8]. These
studies assume traditional task sets and well-behaved
data flow graphs that do not correspond with practical
solutions. For example, tasks are assumed to be ready
to run (not generate idle), buffers do not cause tasks to
block or latency to off-chip memory is independent on
the total bus load. A heterogeneous multiprocessor SoC
contains a wide variety of processing element that
behave very differently. Many IP blocks are not
shareable, as for example the video input unit (VIP)
which can only process one stream at the time, receives

data continuously at a given rate, and is not allowed to
block. Among the shareable processing units we can
distinguish two orthogonal properties to describe their
behavior:

- Pre-emptive vs. non pre-emptive.
- Fine vs. coarse granularity.
For shareable processors the granularity of the

processing plays an important role. The coarser the
granularity, the less scheduling flexibility. For example
a non-preemptive Noise Reduction IP block, has the
granularity of a complete frame. The reason is that in
the beginning of a frame the internal state is reset, and
as a consequence it does not have be able to
save/restore its internal state. Making such an IP block
pre-emptive requires additional hardware to
save/restore the state of the IP block and the generated
overhead for the actual state saving/restoring.

For pre-emptive processors, there is a trade-off
between the low overhead generated by coarse pre-
emption granularities and the flexibility provided by
the fine grain.

4715 5HQGHU9,3 'HLQ10)'

MBS

4715 5HQGHU9,3 'HLQ10)'

MBS

MBS

MBS

47159,3 'HLQ10)'

MBS MBS

Conflict

time
Figure 4 Conflict when sharing processors on

pipelined execution

Furthermore, IP blocks can be fully dedicated to a
single function, like MPEG-2 decoding, or multi
function, as for example the MBS, which can execute
film detection, scaling or de-interlacing functions.
Depending on the processing power of the IP block,
multiple processing steps of a single chain or parallel
chains can be mapped on a single IP block.

 The execution time varies depending on the
function. If two processing steps request the same IP
block to perform a tasks it might make a difference
which one is executed first for the schedulability of the
system. For example, when a long processing step is
ready to run, it might be better to wait a bit for the short
one to be released and executed than to start the
execution of the long one causing the short one to miss
its deadline. Figure 4 depicts such a situation for a
single chain of which the execution is pipelined. The
MBS is needed by two different processing steps from
the same chain. This has to be solved by:

OSPERT 2005

9

- speeding up the MBS clock sufficiently and
schedule the two processing steps sequentially, or

- duplicating the MBS IP blocks, or
- make the MBS IP block pre-emptable.

 The first solution is preferred for cost reasons.
Static scheduling and prediction techniques are needed
in this case to decide on the execution order. However,
there is a trade-off between high processor speeds and
latency on the bus. Temporal high busloads generated
by high processor speeds can increase the latency of all
bus traffic.

3.2. Keeping data on-chip

Figure 5 presents the producer/consumer case of

tasks working on video data. In the ideal case the L2
cache contains the whole frame and the processors are
used efficiently. However this solution is prohibitive as
the L2 cache is a scarce resource. For example for HD
video a frame is almost 4MB, which is larger than the
whole cache. Instead, small buffers are used to keep
data on-chip. This is possible because most data is
produced/consumed in order. Small buffers result a
tight-coupling between processing steps meaning:
- Consumer must check for the availability of data to

read or wait otherwise
- Producer must check for the availability of space to

write the data or wait otherwise.
Depending on the processor type on which the

processing step is executing, waiting results on the
processor idling or selecting another task to execute.

3URGXFHU3URGXFHU &RQVXPHU&RQVXPHU

)UDPH

Fine grain

Figure 5 Tight-coupling synchronization to keep

small buffers on-chip

In case the producer and consumer are scheduled on
the same processor, a large number of context switches
occur due to the tight coupling between them.

In case the producer and consumer are scheduled
concurrently on different processors, the relative
speeds have a considerable impact on the scheduling. If
the speed of the tasks are comparable the buffers can
be small and both tasks can execute smoothly (without
interruptions). If the speeds are different the slowest
task dictates the overall speed and the fast task has to
wait for the next data.

time

Producer executing and idling

Buffering when producer
executes continuously

Buffering when producer is
enforced to idle

Consumer execution

cumulative
execution time

Producer executing continuously

Figure 6 Effect of tight–coupling synchronization
on scheduling.

Figure 6 depicts the situation when the producer is
faster than the consumer. When the producer executes
continuously the required buffering is greater than
when it is enforced to wait for space to be available.
This type of execution introduces inefficiency on the
producer processor. In the case the producer is a non
pre-emptable processor, it idles and this time is wasted.
This property can be used by for example a power
aware scheduler to regulate the speed of the producer
to save power. If the producer is pre-emptable, the
amount of context switches introduces inefficiency by:
- Reducing the overall utilization. The operating

system has to execute the context switch code, save
registers etc…

- Evicting the task data from the cache, so that when
the task is scheduled to run again the data has to be
loaded.
 For example for HD video, which requires

120MB/sec assuming a realistic data size to keep on-
chip of 64KB and double buffering, the context
switching frequency generated would be up to 3840 Hz
(120 Mbyte/s / 32 Kbyte).

In this case the holes generated by the tight coupling
are very small and very frequent. Initial work on taking
the idling into account on the schedulability test has
been done in [9] for fixed priority scheduling. The
main challenge to cope with this behavior is in how to
use the holes efficiently. On the one hand, if the holes
are not filled in, cycles are wasted and efficiency is
low. On the other hand, if the holes are filled by
another task the cache might be trashed and the penalty
when the task is started again is high. There is a trade-
off between reducing stalls by keeping data on chip and
the overhead generated by context switching.

3.3. Prefetching

As mentioned in previous section, prefetching can

be used to have the right data available at the right

OSPERT 2005

10

moment. During integration it should be decided what
to prefetch and what to keep on-chip. This functionality
must not be hardcoded in the algorithm in a way that
makes the algorithm hardware specific. The algorithm
must indicate when the data is required, and a separate
part of the system decides how to react on this info, e.g.
by prefetching. However, two considerations should be
taken into account:

- For effective prefetching, the data prefetched in the
cache should be used before it is replaced. This can
be done by ensuring that it is used shortly after it has
been prefetched, or by preventing it from being
replaced.

- Prefetching can result in peak bandwidths on the bus.
The prefetch requests should be separated from other
requests on the bus to prevent that the other requests
get higher latencies due to the temporarily increased
busload. Such a separation might even result in lower
latencies for the other requests.

In the first case, the challenge for the scheduling

would be to take into account prefetching before pre-
empting a task that just got all its data. The second case
does not impose requirements on the scheduling of the
processing steps, but on the scheduling of the requests
on the bus. It is outside the scope of this paper. A
reservation mechanism such as the one sketched in [10]
would be useful.

4. Solution direction

There are a number of scheduling techniques that

aim at resolving the challenges identified in the
previous section. Different scheduling techniques might
be applied in different parts of the SoC. It is required
that these techniques can cooperate, and not work
against each other. Preferred scheduling techniques are
techniques that provide isolation to achieve more
predictable and composable systems.

Exploit processor sharing among processing

steps. There are several scheduling algorithms known
in literature that study the sharing of (non) pre-
emptable processors using static and dynamic
scheduling techniques. However, to address the
challenges presented in the previous section these
techniques have to be augmented by:
- Using the possibility of manipulating the processor

speed.
- Considering the effects of the bus load on the

latency.

Enable tight coupling. To be able to decide on the
synchronization granularity and the buffer size for
keeping the data on-chip, techniques have to be
provided to analyze the following tradeoffs:
- Cache usage versus context switching frequency
- Processor speed versus the amount of context

switching
Furthermore, dynamic scheduling techniques must

support co-scheduling on multiple processors and
effective use of holes left by the tight coupling

Achieve effective prefetching. Prefetched data in a

cache can be lost due to an OS decision to switch to
another task. An interesting research area is to study
whether the OS can reduce the context switch overhead
by using preferred preemption points or actively be
involved in prefetching. For example, the OS has the
knowledge when that task will be scheduled again, and
can start prefetching data for the next task just before
the next task is actually scheduled.

5. Acknowledgment

The authors would like to thank Liesbeth Steffens,

Jos van Eijndhoven and Chun Wong for their review of
this work.

References

[1] P. Stravers and J. Hoogerbrugge,
"Homogeneous multiprocessing and the future
of silicon design paradigms", in Proceedings of
the International Symposium on VLSI
Technology, Systems, and Applications(VLSI-
TSA), Apr.2001

 [2] J. van Eijndhoven, J. Hoogerbrugge, J.
Nageswaran, P. Stravers, and A. Terechko,
"Cache-Coherent Heterogeneous
Multiprocessing as Basis for Streaming
Applications," in Dynamic and robust streaming
between connected consumer electronic devices,
P. van der Stok, Ed., 2005.

 [3] A. Molnos, M.J.M. Heijligers, S.D. Cotofana,
and J. van Eijndhoven, "Compositional memory
systems for multimedia communicating tasks",
in Proceedings of Design Automation and Test
in Europe (DATE), Mar. 2005, Munich,
Germany.

OSPERT 2005

11

[4] T.R. Halfhill, "Philips Powers Up for Video", in
Microprocessor Report, pp. 1-6, Nov.2003

 [5] S. Baruah, S. Funk, and J. Goossens,
"Robustness results concerning EDF scheduling
upon uniform multiprocessors", in Computers,
IEEE Transactions on, vol. 52, no. 9, pp. 1185-
1195, Sept.2003

 [6] S.K. Baruah, "Optimal utilization bounds for the
fixed-priority scheduling of periodic task
systems on identical multiprocessors", in
Computers, IEEE Transactions on, vol. 53, no.
6, pp. 781-784, June2004

 [7] M. Maheswaran and H.J. Siegel, "A dynamic
matching and scheduling algorithm for
heterogeneous computing systems", in
Proceedings of Seventh Heterogeneous
Computing Workshop (HCW 98), pp. 57-69,
May 1998.

 [8] M. Jersak and R. Ernst, "Enabling scheduling
analysis of heterogeneous systems with multi-
rate data dependencies and rate intervals", in
Proceedings of the 40th conference on Design
automation, pp. 454-459, ACM Press, 2003.

 [9] N.C. Audsley and K. Bletsas, "Fixed priority
timing analysis of real-time systems with limited
parallelism", in Proceedings of 16th Euromicro
Conference on Real-Time Systems (ECRTS
2004), pp. 231-238, July 2004.

 [10] C.M. Otero Perez, M.J. Rutten, E.F.M. Steffens,
J. van Eijndhoven, and P. Stravers, "Resource
reservations in shared-memory multiprocessor
SoCs," in Dynamic and Robust Streaming in
and between Consumer-Electronic Devices, P.
van der Stok, Ed. Kluwer Academics, 2005.

OSPERT 2005

12

Impact of Embedded Systems Evolution on RTOS Use and Design

David Andrews∗, Iain Bate†, Thomas Nolte‡, Clara M. Otero Pérez§, Stefan M. Petters¶

Abstract

In this paper, we discuss how the evolution of embedded
systems has impacted on the design and usage of Real-Time
Operating Systems (RTOS). Specifically, we consider issues
that result from the integration of complex requirements for
embedded systems. Integration has been identified as a
complex issue in various fields such as automotive, critical
systems (aerospace, nuclear etc) and consumer electronics.
In addition, the pressure on time-to-market, the emergence
of multi-site development, and the ever-increasing size of
software stacks are driving radical changes in the develop-
ment approaches of modern applications. These complex
requirements have placed greater requirements on Operat-
ing Systems with respect to how interfaces are defined and
how resources are managed. These requirements are ex-
panded and justified through the course of this paper. The
requirements are then discussed in the context of emerging
solutions from a number of domains.

1 Introduction

The demand for increased levels of functionality and de-
pendability within small, lightweight embedded and real
time systems has been steadily increasing for a number
of years. While practitioners (academic and industrial)
have been attempting to manage and deal with the com-
plexity of modern embedded systems, the open issues are
slowly becoming apparent to the average user. There have
been numerous examples of projects not being fielded (e.g.

∗David Andrews is at the Information and Telecommunication Tech-
nology Center, University of Kansas, Lawrence, KS, USA. email:
dandrews@ittc.ku.edu

†Iain Bate is in the Real-time Systems Group, Department of Com-
puter Science, University of York, York, YO10 5DD, UK. email:
iain.bate@cs.york.ac.uk

‡Thomas Nolte is at MRTC, Department of Computer Science
and Electronics, Mälardalen University, Västerås, Sweden. email:
thomas.nolte@mdh.se

§Clara M. Otero Pérez is at the Philips Research Laboratories Eind-
hoven (PRLE), The Netherlands. email: clara.otero.perez@philips.com

¶Stefan M. Petters is at the National ICT Australia Ltd., Sydney, Aus-
tralia. email: smp@cse.unsw.edu.au

Nimrod Early Warning aircraft) or fielded systems with
problems arising associated with the interdependencies of
complex requirements (e.g. Ariane 501, Mars Pathfinder).
In the consumer electronics domain, integration problems
have led to longer time-to-market and unresolved issues be-
coming visible for the end consumer (TV resetting, DVD
recorders hanging). A common characteristic of all these
examples are that they are the result of emergent properties
resulting from integration and that are difficult to identify
and verify under sterile laboratory conditions. An example
of an emergent property related to real-time is deadlock and
priority inversion when blocking on shared resources. This
puts stringent requirements on the RTOS to provide better
mechanisms for supporting integration in complex architec-
tures and infrastructures using well defined abstractions and
interfaces.

In this paper discuss open challenges for run time kernels
(Section 2) and implications and limitations on Operating
Systems (Section 3) and then discuss proposed solutions in
the context of three applications domains: avionics, auto-
motive, and consumer electronics (Section 4). Finally, the
paper discusses some potential ways forward (Section 5).

2 Embedded systems development

Although embedded real time (RT) systems platforms
and software are tailored for specific application domains
such as consumer electronics, automotive and avionics
they all share common problems. Problem examples in-
clude timing overruns due to effects such as blocking, un-
expected time dependent calculations, and difficulties in un-
derstanding the implications of changes. These and other
issues can be traced to conflicts in functional decomposi-
tion of high level requirements into the existing capabilities
of desktop operating system semantics adopted for the em-
bedded systems domain.

The existing open problems are a concern as greater and
greater demands are being placed on precision and relia-
bility in the growing breadth of application domains within
systems that are becoming larger and more complex. Some
of the challenging new trends in designing embedded sys-
tems are:

OSPERT 2005

13

• Complexity - Greater levels of functionality together
with legacy code and lack of abstractions. The com-
plexity of these issues is derived from:

– Consumer electronics systems with the conver-
gence of storage requirements, connectivity, and
increased integration of functionality (camera,
mp3, connectivity for consumer electronics).

– Automotive systems that are integrating more
functionality to decrease cabling and numbers of
processors.

– Avionics sector weight is a major issue. Size
and weight issues are driving the movement away
from federated systems to integrating functional-
ity on fewer units.

• Flexibility - late changes, software download, reuse.

• Dependability - the level of integrity required in both
failure and non-failure cases have increased. This has
been brought about not just due to the fear of los-
ing valuable sales (e.g., Intel adopted more formal ap-
proaches after their floating point unit problems on the
early version of the Pentium processor) but also be-
cause of legislative pressure.

• Connectivity - on the systems level we have system in-
tegration where there is greater pressure on systems
to work together, e.g., mobile phones to communicate
with laptop computers etc..

• Modularity - needed to help provide maintainability
(see below) but also to support concurrent and multi-
site development of systems and subsystems. Con-
current and multi-site development is exacerbated as
more projects are managed as partnerships and/or us-
ing global software development teams.

• Maintainability - there is a move away from mono-
lithic development as it makes change difficult and
does not support reuse strategies such as Product Line
Architectures.

• Upgradeability - there is a need to be able to upgrade
systems in the field. The upgrades need to be per-
formed by both experts and naive users.

• Size and power - there is pressure towards smaller de-
vices that can run over batteries for longer periods of
times.

Early embedded systems were mostly uni-application,
uni-processor systems point designs developed by teams
co-located and targeted for systems with available power.
In contrast, embedded systems are being developed to sup-
port more than one application domain and must support

the upgrages and the addition of new applications in the
field. This increases the need for standards and compo-
nentization within the solution requiring more abstract in-
terfaces. Initially the need for greater flexibility implied ad-
ditional functionality within software, e.g., engine control
systems were converted from hydro-mechanical systems to
computer-based systems. Now, with reconfigurable logic
components, additional functionality is being specified at
the hardware level.

At the same time there has been a great deal of tech-
nology improvements such as the availability of practi-
cal Real-Time Operating Systems (RTOS), ’novel’ devices
such as Field Programmable Gate Arrays (FPGA) or hyper-
threading processors, Systems on Chip (SoC), Network on
Chip (NoC), middleware etc.. These trends lead to novel ap-
proaches for both hardware and software. These type of so-
lutions support a number of processors, which are often not
uniform (e.g., general purpose and signal processing pro-
cessors). These multiprocessor SoCs are deployed to cope
with the market demand for high performance, flexibility,
and low cost. NoCs are similarly used. A comparably new
trend is the use of asynchronous logic in FPGAs. This is
mainly driven to speed up the operation. However, this re-
quires very detailed models on timing behaviour.

To achieve a cost effective solution, expensive resources,
such as memory and processor time, are shared among con-
current applications. In the consumer electronics domain,
given the dynamic load fluctuations of these applications,
worst case resource allocation becomes prohibitive. The
allocation of resources below average needs implies that
applications have to get by with occasional overloads, re-
ducing system reliability. In the automotive domain, the
number of Electronic Control Units (ECUs) is high, driving
costs, power usage and integration complexity up, propos-
ing a new era of sharing of ECUs between several subsys-
tems. More powerful, but fewer ECUs allow for automotive
subsystems to share an architecture of ECUs. Due to the
safety-critical nature of many automotive and avionic appli-
cations resource allocation are still based on worst case sce-
narios. However, integration problems emerge that needs to
be treated, i.e., subsystem integration issues.

Component based technology is considered a prime ap-
proach to address the problem of time to market and the
perceived advantage of reusing code and hardware regard-
ing cost and reliability. The call for increased functional
integration on fewer units leads to RT and non RT parts
working side by side on the same hardware. This adds com-
plexity in the timely delivery of results, and the security and
reliability of operation. The emerging of standards based on
collaborations between competitors in the respective area is
something, which is now commonly deployed in hardware
and software. The standards are used to encourage com-
petition between suppliers, or at least provide means for a

OSPERT 2005

14

second source and hence reduce cost. Instead of traditional
top-down development, systems are built bottom-up from a
collection of independently developed components and sub-
systems.

Industrial development has changed to address this com-
plexity. Development happens not any more in a single of-
fice but is spread around the world to make effective use of
capabilities within a company, multi-site development. This
requires different means of development as this obviously
has an impact on communication. In order to reuse existing
developments legacy hardware and software are deployed.
Thus the effort is shifted from the development of new sub-
systems into the integration and support of legacy subsys-
tems. The use of Commercial Off The Shelf (COTS) com-
ponents and the outsourcing of well defined components to
subcontractors is an attractive means to reduce the in-house
development effort. Recently some industries have moved
to open source developments. The public scrutiny by enthu-
siasts is considered a good way of making software reliable.

3 Implications and limitations on Operating
Systems

The recent developments on embedded systems intro-
duce new requirements on the infrastructures and conse-
quently on the RTOS. Current RTOS techniques suffer from
a number of limitations that have to be addressed.

Developing and testing system components and subsys-
tems is a complex task in itself. However the main chal-
lenge appears at integration time, where emergent prop-
erties arise as resource sharing causes unpredictable be-
haviour. A system could potentially consist of a wide di-
verse of subsystems where the system integrator has vary-
ing possibility of control of function, reliability, resource
usage, performance and so on. However, there are a number
of legal and policy issues. One example is the potential in-
fection of in-house code with public licenses like the GNU
Public License (GPL). However the added complexity has
meant that the problem of understanding basic components
has increased dramatically, never mind the problems of un-
derstanding how they might be integrated and the resulting
emergent properties.

Scheduling techniques tend to only concentrate on the
timing aspects of systems. Although it is acknowledged
that in recent years there has been some work on expand-
ing scheduling to deal with other properties such as power.
The key problem though is the majority of systems have
a large number of properties and objectives to be satisfied.
Some of the interactions between properties and objectives
can be quite subtle, which means they are often over looked.
For instance, in the design of avionics systems there is a
link between the variations in when tasks execute and me-
chanical stress. The reason being is variations in timing

lead to errors in data, causing noise and instability on sig-
nals, which leads to the moving surfaces of the aircraft (e.g.,
flaps) being moved more than necessary and hence mechan-
ical stress. To date, little work has been done on truly multi-
disciplinary design, which has lead to a lack of available
analysis techniques. Even if appropriate techniques were
available, it is questionable how flexible and scalable the
analysis would be for larger, different or more complex sys-
tems. The need to support multiple properties suggests that
techniques and need to be more aware of the overall system
problem and the environment that it is operating in. At the
same time there is still a need for the RTOS to have appro-
priate abstractions from the rest of the system.

Furthermore, in order to cope with maintanance, bug
fixes, and system extensions during the life time of an em-
bedded system, these systems provide interfaces for inter-
operation. These interfaces may be maintanance ports in a
car or specific command sequences issued to a sattelite. Fur-
thermore some of these interfaces are an essential part of the
functionality of systems, like networking in mobile phones
or sattelites. These interfaces can be misused either delib-
erate maliciously or accidental and thus raise issues in the
area of security and possibly safety. One scenario in the mo-
bile phone industry, for example, is a reprogramming of the
radio modem of a phone. This could lead a mobile phone to
be used as a cell jammer. Paired with a clever written virus
to distribute the code, similar to the recent attacks via blue-
tooth, this can produce serious damage to the mobile phone
infrastructure.

Many of the techniques are biased to the worst-case
’hard’ real-time systems. However a great deal of systems
only have a few hard real-time requirements. Therefore
designing the system for the absolute worst case is often
un-realistic and results in fragile solutions that are prone to
change. A key issue is designing for the worst case wastes
valuable resources most of the time, which with current
market pressures is not practical. Again, components and
techniques need to be designed with QoS in mind whilst
not disregarding the importance of selective rigidity. Some
kind of Quality of Service (QoS) support might be required.

Finally, there is a lack of first principles/guidelines
to build embedded systems and how the functionality is
mapped to software tasks or hardware blocks. There is no
structural way, no rule of thumb and often, the reasons for
certain mapping are not understood.

In the next section, we will consider what some of the
key requirements are and which emerging techniques are
suited to meeting the requirements.

4 Emerging solutions

The problems can be distilled into the following require-
ments placed on the way systems are developed and in par-

OSPERT 2005

15

ticular the infrastructures:

• Provide appropriate well-defined abstractions and in-
terfaces.

• Provide design and analysis techniques to account for
the complex interactions.

• Support flexible and robust execution. This is from two
perspectives; change and failure.

• Partitioning is an essential ingredient to support in-
tegrity in systems and fault containment.

• Reduce the trusted computing base, which is the
amount of code, which needs to be trusted to keep the
system operational.

• Appropriate means for deciding whether components
are mapped onto either hardware, software or a mix of
the two (i.e., IP cores hosted on FPGAs).

The above is now discussed in the context of three ap-
plication domains, namely avionics, automotive, and con-
sumer electronics.

4.1 Avionics

Significant work has been performed within the avionics
domain to achieve the stated objectives. The main body of
work has been performed under the banner Integrated Mod-
ular Avionics (IMA) [1, 6, 7]. This work has been driven
by the need to support incremental certification and tech-
nology transparency. Figure 1, which is based on the civil
IMA standard (ARINC 653 [1]), shows the typical structure
of an IMA architecture.

Application
partition 1

Application
partition 2

Application
partition N

API Layer

Operation System

Hardware

CO-EX

Data
Flow

Figure 1. A typical structure of an IMA archi-
tecture.

The architecture features two key abstractions / interface
layers, which are between the applications and the operat-
ing systems (APEX), and then the operating system and the
hardware (COEX). Other key components of this architec-
ture is that it represents a move away from federated sys-
tems (where a single computing device supports a single ap-
plication) to modular systems where multiple applications
may be supported on a single device. However more than
that, the IMA architectures are being developed to support
multiple criticality applications on a single device, which
means there is a strong requirements for both temporal and
spatial partitioning. Thie requirement is resolved through
a mix of hardware support and the OS (by checking vir-
tual memory look ups). Other complexities related to the
operating system is the use of ”blueprints” that provide lo-
cation transparency between communicating applications.
The blueprints have to provide fast reliable resolution of ref-
erences and be alterable to support reconfiguration. Other
key initiatives related to IMA is the need for modular timing
analysis to help support change. One solution proposed to
this is the adoption of Reservation-Based Analysis (RBA)
[9]. More recently work has commenced on assessing the
parts of the hardware infrastructure that can be mapped onto
Programmable Logic Devices, e.g., FPGAs. The aim of this
work is to reduce chip counts and allow functional to be
customised so that it can be made dependable. The IMA
OS work represents a good example of work that fits with
the requirements that have been identified during this paper.
A number of IMA OS are in development and production
but there are some key challenges still including making the
OS calls more efficient and providing better support for dy-
namic reconfiguration.

4.2 Automotive

In the automotive domain, the embedded systems are
distributed; hence the communications play a key role in
the development process all the way from the design, to im-
plementation and integration.

Traditionally, many OEMs have their own standard plat-
forms for developing their embedded computer systems.
This is not good from an integration point of view, when
several subcontractors are required to adopt platform de-
pending on which OEM that currently is its customer. The
solution here is the effort towards standardization of non
competitive elements by the initiation of several large con-
sortia in order to agree on a common scalable electric /
electronic architecture (e.g., AUTOSAR [2]) and a common
scalable communication system (relying on FlexRay [8] to-
gether with existing standards such as CAN [10], LIN [11]
and MOST [12]).

Looking at communications, automotive systems dis-
tribute data over fieldbuses. One way to do this is, e.g.,

OSPERT 2005

16

based on specifications of how specific messages are to be
used and what data and signals they are to contain (e.g., the
J1939 [17] used in the truck and bus applications). This
specification is then respected throughout the automotive
system lifetime, resulting in a clear but somewhat inflexi-
ble networking interface.

Opposite to this early and static specification, the Vol-
cano system [4], currently used by Volvo Car, provides tools
for packaging data (signals) into message frames, both for
CAN and other networks possibly interconnected with gate-
ways. On top of this specification and signal packaging, it
is possible to perform timing analysis of the system from a
network point of view, and code can be generated for easy
interfacing to data and signals. The Volcano approach al-
lows for a greater degree of flexibility, compared to fixed
specification of how data and signals are packed into mes-
sage.

OSEK/VDX [13], which is a collection of widely used
standards for automotive systems, specifies a scalable real-
time operating system OSEK/VDX OS [16], communica-
tions with transparent communication services OSEK/VDX
COM [14], and a network manager OSEK/VDX NM [15]
allowing for easy integration of subsystems developed by
different OEMs. OSEK/VDX provides reusability and
portability of software by using abstract high level inter-
faces. OSEK/VDX COM allows for communications on a
high level abstraction, without detailed knowledge on com-
munication transmitters and recipients locations.

The latest automotive software standard is AUTOSAR,
by the AUTOSAR consortia, scheduled to be complete in
2006. The goal of AUTOSAR is to create a global standard
for basic software functions such as communications and
diagnostics. From an integration point of view, AUTOSAR
provides a Run-Time Environment (RTE) routing commu-
nications between software components regardless of their
locations, both within a node and over networks. Tools al-
lows for easy mapping of software onto the existing archi-
tecture of nodes (Electronic Control Units (ECUs)). This
mapping is depicted in Figure 2. AUTOSAR is working
towards integration of standardized tools relying on, e.g.,
operating system standards such as, e.g., OSEK/VDX OS,
and various communication standards as, e.g., OSEK/VDX
COM, FlexRay, CAN, LIN and MOST.

The function integration over the network is a less com-
plex task compared to the integration at the application
level. Looking at application level, while designing and
specifying the automotive system, model based develop-
ment is used by some OEMs. Component based develop-
ment is not used systematically, however, possibly by sub-
contractors of specific subsystems. Also, the introduction
of AUTOSAR will increase the usage of component based
software development.

To further increase the flexibility of the development pro-

Figure 2. AUTOSAR Virtual Functional Bus
and ECU mapping [3].

cess, some OEMs use a physical model at an early stage for
implementation, integration and testing of parts and subsys-
tems. This physical model is used together with modelling
tools, such as Statemate and MATLAB/Simulink, to sim-
ulate parts and subsystems, environments and specific run-
time scenarios. Models of subsystems allows for integration
at an early stage in the development process. However, an
issue is the exchanging of models between subcontractors
and OEMs since these models need to have proper abstrac-
tions, not revealing too little or too much information.

Furthermore, there are the issue of litigation, if subsys-
tems of different subcontractors are integrated onto a single
ECU. In the case of a major, but isolated fault it is important
to clearly identify the faulty component. Compartemental-
isation of applications serves on one hand to isolate faults
and on the other hand allows an easier identification of the
faulty application.

4.3 Consumer electronics

The consumer electronics companies start to recognize
the need for industrial standards to cope with the new trends
in software and hardware. Mastering system complexity is

OSPERT 2005

17

not any more the task of a single engineer or a single com-
pany. A number of initiatives have been initiated that bring
together various CE companies in an attempt to achieve
industry-wide standards that benefit all. In this spirit, the
Universal Home API (UHAPI) [18] is a hardware inde-
pendent API that aims at developing and maintaining sus-
tainable CE products. This API favourers the growth of
the ecosystem around the products by enabling independent
software vendors (ISVs) to create middleware and applica-
tions components that easily interact.

Another initiative that directly relates to the OS is the
Consumer Electronics Linux Forum (CELF) [5], which ad-
vocates for a open source platform for consumer electronics
(CE) devices. CELF intends to leverage the benefits of the
open source community and process to maximize the re-use
of common solutions to common problems.

On the other hand the use of commodity operating sys-
tems on embedded devices introduces the problem of mil-
lions of lines of code needed to be trusted not to be break-
able via denial of service attacks or spreading viruses. This
calls for removing any functionality, which does not need to
be priviled from the kernel and moved into the user space,
supported by proper partitioning.

5 Way forward

Surely, the current challenges facing real time operat-
ing systems within these and other embedded applications
domains are challenging at best, and will only continue to
grow. How should developers and designers of RTOS’s pro-
ceed to meet the growing challenges? Several issues are
clear and must be considered immediately for inclusion in
next generation RTOS’s.

First, RTOS designers should consider meeting the
growing requirements provided in technology growth by
exploiting and not fighting Moore’s. Hardware/software
co-design of RTOS’s have historically provided increased
scheduling precision. As Moore’s law provides a doubling
of transistor capabilities every three years, this can be ex-
ploited to offer a scaled increase in RTOS performance and
capability that cannot be equaled in pure software solutions.
With current software based RTOS’s, increased function-
ality requires more lines of sequential code exacerbating
already difficult maintenance of critical sections and addi-
tional timing overhead in context switching and operating
system processing. By migrating portions of the operat-
ing system into hardware, Moore’s law enables a migration
from the temporal to the spatial domain, and enables func-
tionality to increase concurrenty within the transistors.

Second, appropriate abstract interfaces must be formal-
ized to support the rapid seamless insertion of additional
hardware and software application components within a
system centric framework. This capability is foundational

to many of the existing issues, including dealing with in-
creased complexity through higher level abstractions and
supporting component reuse to increase times to market
for hardware as well as software components. A higher
level abstract interface also brings the benefits of abstract
type checking into the hardware/software co-design do-
main, which provides additional dependability, modularity,
and maintainability.

Third, security must be elevated to a first class design
constraint for RTOS’s. Fundamental issues of atomic se-
quencing between secure states should be considered as
both a hardware and software issue in order to eliminate
classic time of check to time of access breeches. Cur-
rent monolithic operating system organizations have also
shown the vulnerability of single supervisor mode, unlim-
ited access to global state information. Thus next generation
RTOS development should consider built in compartmen-
talization of operating system functionality, and provide a
framework for the development of both soft and hard se-
cure IP within systems that support unsecure components.
However, this can not be solved by the RTOS alone. Re-
stricting access to global states inevitably means memory
and device access protection. This requires processors to be
equipped with memory management units.

Fourth, scheduling should be expanded to include sys-
tem resource utilization in meeting application timing dead-
lines. To support expanded schedulability, RTOS’s will be
required to perform fast non-invasive resource monitoring
and scheduling of dynamically time varying reconfigurable
resources to meet more complex and interdependent func-
tional requirements.

6 Summary

In this paper we have collected some of the main de-
velopment trends in embedded systems for the automtive,
avionics and consumer electronics domains. Increasing
complexity require new approaches to system composition
for both hardware and software. In the hardware side, flex-
ibility is enabled by the use of heterogeneaous Systems on
Chip, Networks on Chip and FPGAs. For the software,
components are beeing developed multi-site and multi ven-
dor. For cost-efficiency reasons, the system resources are
being shared introducing unpredictability in the integrated
system. To still maintain the traditional “-ilities” some of
the limitations on current RTOS have to be addressed. Some
of this limitations include

• Lack of first principles

• Interference due to resource sharing not explicitly con-
sidered by analisys techniques

• Security

OSPERT 2005

18

• Lack of QoS support

Finally, emerging solutions for the application domains
were discussed.

References

[1] ARINC. ARINC 653: Avionics Application Software Stan-
dard Interface (Draft 15). Airlines Electronic Engineering
Committee (AEEC), June 17th, 1996.

[2] AUTOSAR. Homepage of Automotive Open System Archi-
tecture (AUTOSAR). http://www.autosar.org/.

[3] AUTOSAR Web Content, V22.4. Available 2005-06-06
from: http://www.autosar.org/.

[4] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Vol-
cano - a revolution in on-board communication. Volvo Tech-
nology Report 98-12-10, 1998.

[5] Consumer Electronics Linux Forum.
http://www.celinuxforum.org/.

[6] R. A. Edwards. ASAAC phase I harmonized concept sum-
mary. In Proceedings ERA Avionics Conference and Exhibi-
tion, London, UK, 1994.

[7] D. Field and J. Kemp. The ASAAC Programme, NATO HQ,
Brussels, July 20th, 2000. Available from:
http://www.safsec.com/safsec files/resources/nato p 1.ppt.

[8] FlexRay Consortium. http://www.flexray.com/.
[9] A. Grigg and N. C. Audsley. Towards the timing analy-

sis of integrated modular avionics systems. In Proceed-
ings ERA Avionics Conference and Exhibition, pages 3.1.1–
3.1.12, 1997.

[10] ISO 11898. Road Vehicles - Interchange of Digital In-
formation - Controller Area Network (CAN) for High-
Speed Communication. International Standards Organisa-
tion (ISO), ISO Standard-11898, Nov 1993.

[11] LIN Consortium. LIN - Local Interconnect Network. http://-
www.lin-subbus.org/.

[12] MOST Cooperation. MOST - Media Oriented Systems
Transport. http://www.mostcooperation.com/.

[13] OSEK/VDX. Open Systems and the Corresponding In-
terfaces for Automotive Electronics. http://www.osek-
vdx.org/.

[14] OSEK/VDX-Communication. Version 3.0.3, July 2004.
http://www.osek-vdx.org/mirror/OSEKCOM303.pdf.

[15] OSEK/VDX-Network Management. Version 2.5.3, July
2004. http://www.osek-vdx.org/mirror/nm253.pdf.

[16] OSEK/VDX-Operating System. Version 2.2.2, July 2004.
http://www.osek-vdx.org/mirror/os222.pdf.

[17] SAE J1939 Standard. The Society of Automotive Engineers
(SAE) Truck and Bus Control and Communications Sub-
committee. SAE J1939 Standards Collection, 2004.

[18] Universal Home API (UHAPI) Home Page.
http://www.uhapi.org/home.

OSPERT 2005

19

OSPERT 2005

20

Operating Systems and Supporting Architectures for
Embedded Real-Time Systems

Neil Audsley Rui Gao Ameet Patil Paul Usher Jack Whitham
Real-Time Systems Group,

Department of Computer Science, University of York, York YO10 5DD, UK
Email:{neil,rgao,appatil,usher,jack}@cs.york.ac.uk

ABSTRACT
Distributed embedded real-time systems (DERTS) require
efficient Operating Systems (OSs) and supporting hardware.
However, usual approaches involve using relatively static
OSs, that have limited configurability. Whilst this may pro-
vide a clean OS API that abstracts the underlying hardware
and provides resource management, this does not necessarily
lead to the most efficient overall system implementation for
a particular ERTS. This paper examines four complemen-
tary approaches that together enable efficient application
specific OS implementations for distributed DERTS.

1. INTRODUCTION
The implementation of an efficient Distributed Embed-

ded Real-Time System (DERTS) necessitates the tuning of
supporting Operating System (OS) and hardware architec-
ture in order to provide the performance required by the
application. However, this must be achieved whilst main-
taining OS application interfaces which provide abstraction
of the OS and hardware platform, together with resource
management of system resources (including hardware and
software, eg. OS I/O buffers). A key challenge therefore, is
the specialisation of the OS and platform to the needs of a
particular DERTS implementation. This paper describes a
multi-faceted approach to this problem involving:

• Application-Specific Resource Management Policies:
provision of reflection within the operating system to
enable run-time application specific resource manage-
ment policies (for scheduling, memory, power etc.);

• Efficient Remote Resource Access:
recognition and provision of distributed resource ac-
cess at low-level in the operating system to enable low
resource systems to efficiently utilise remote resources;

• Hardware Support for OS Functions:
establishment of a platform architecture that efficiently
supports operating system and application functions
by providing ASIP (application specific instruction set
CPUs) and co-processor elements, thus allowing di-
rect implementation of key operating system services
on hardware, e.g. communications.

The context assumed by the paper is that of systems on
chip (SoC) where the hardware platform consists of a num-
ber of separate fixed functions implemented on the same

device (e.g. CPU, RAM, communications), together with
programmable hardware elements (eg. FPGA) that allow
custom coprocessors to be implemented within the plat-
form. This platform architecture is consistent with many
existing platform architectures, eg. FPGAs with embedded
CPUs [2], hybrid CPUs [1], ASIP platforms [7]. These plat-
forms are being increasingly used for low-cost, low-resource
embedded real-time systems, but allow application-specific
functions to be implemented directly in hardware, thus pro-
viding massive flexibility.

This paper describes a number of threads of work cur-
rently being undertaken at York, all contributing to the chal-
lenge of efficient implementation of DERTS. Section 2 pro-
vides background and motivation for the approach adopted
within the paper. The remaining sections provide further
technical detail on different aspects of our approach.

2. MOTIVATION
The design of a Distributed Embedded Real-Time System

has to geared towards application specific needs. The sys-
tem is tuned to perform optimally for the application it is
being developed for. However, tweaking the hardware or the
Real-Time Operating System (RTOS) for every such appli-
cation is a very costly approach. Conventionally, the design
concentrates on standard hardware and using a general pur-
pose RTOS that provides standard interfaces (eg. POSIX)
to develop the applications.

This approach fails to satisfy the application specific re-
quirements, thereby leading to poor application performance.
Both the platform and RTOS are built for the generic case
rather than application specific requirements. From the per-
spective of the RTOS, to be application specific requires it to
undergo dynamic (Eg. at run-time) or static (Eg. at compile
time) changes. For example: given that no single scheduling
policy can satisfy all the different application domains, the
RTOS needs to implement a scheduling policy best suited for
the application it executes, potentially application-specific.
From a platform perspective, fixed components provide dif-
ficulties in efficient system implementation. Exploiting tech-
nologies that allow the platform to better match the actual
needs of the RTOS and application are essential for efficient
implementation. For example: utilising architectures allow-
ing ASIP instructions and co-processors enables key parts
of the application to be more efficiently executed (ie. less
time/power).

For RTOSs, there have been several different approaches
proposed to counter this problem in the form of APIs, com-
ponent based development, etc. However, these approaches

OSPERT 2005

21

provide solution to only a part of the problem. For exam-
ple: there exists API for changing scheduling policy in the
RTOS, but no API for changing any other module like mem-
ory management. Component based RTOSs do address the
problem but there are problem with integrating the vari-
ous component to work together. Or if the component are
designed to work together then the amount of flexibility pro-
vided by the system is lost in the process.

Also note that, the RTOS usually comes with additional
functionality that the application does not need. For ex-
ample: in a networking environment where security is not
a major issue, the application might not need the TCP/IP
stack at all for network communication. However, it is com-
pelled to use it since the RTOS cannot pack network pack-
ets without TCP/IP thus introducing a constant overhead
to network communication.

There is a need for a dynamic system (including RTOS
and hardware) that can change itself to meet the application
specific requirements. In remainder of this paper provides an
integrated approach that considers both RTOS and platform
aspects of this challenge.

3. REFLECTIVE RTOS
Reflection is a mechanism by which a program code or ap-

plication becomes ‘self-aware’, checks its progress and can
change itself or its behaviour dynamically at runtime or stat-
ically at compile time [10]. This change can occur by chang-
ing data structures, the program code itself, or sometimes
even the semantics of the language its written in. To fa-
cilitate this, the application or program code has to have
knowledge about the data structures, language semantics,
etc. The process by which this information is provided to it
is called ‘Reification’.

The Reflection model consists of a base-level and one
or more meta-level forming a structure called ‘Reflective
tower’. The code in the meta-level is responsible to analyse
the reified information, intercept the necessary calls from or
to the base-level and affect any change if required. A pro-
tocol defined so as to establish a mechanism by which the
meta-level entities introspect (analyse), intercede (Eg. by
intercepting calls to or from base-level) and affect change to
the base-level is called the ‘Meta-Object Protocol (MOP)’
[8]. In reflection the meta-level code can form a causal link
(two objects are said to be causally linked to each other
when a change initiated by one affects the other [10]) with
the data structures in the base-level to affect a change di-
rectly.

The mechanism of Reflection has been widely used in
object-oriented programming, object-oriented databases, ar-
tificial intelligence, virtual machines, etc. [10]. In terms of
OSs, reflection is used to allow applications to access key
OS data structures to obtain information pertaining to the
current system performance and resource management poli-
cies (Eg. scheduling). An application is then able to modify
or introduce new policies into the RTOS with the help of
reflective system modules that intercept certain events or
function calls to change the overall behaviour of the appli-
cation and the system. The Reflective OS on the other hand
is able to obtain critical information from the applications
and change its structure/behaviour dynamically to adapt to
the application.

A general purpose RTOS is always built without the knowl-
edge of applications that would execute upon it, rather it is

built for the general case. Such RTOS comes with extra
functionality which real-time embedded applications may
or may not require (Eg. networking, graphics). Recent
trend has been to use a component based RTOS where the
RTOS is built by combining only the required components
for a particular application. This however poses a problem
with integrating the different components together. Depen-
dencies arise between different components thereby again
adding extra functionality that was not required. Develop-
ing components that work together adds several restriction
to their development methodology there by compromising
the overall system flexibility.

Another approach taken to overcome this problem is by
providing APIs which the application can use to change cer-
tain policies in the RTOS to their specific requirements. For
example: in MaRTE [11] OS, the applications use the API
to change the scheduling policy being used to schedule the
application threads. On the other hand, SHaRK [6] pro-
vides with a similar API to develop applications that use
their own scheduling policies. Evaluation results of these
approaches show a considerable amount of overhead added
to the system there by making the approach infeasible [11].

Also, changing scheduling policy depending on application
requirement is not the only thing that needs to be changed in
an RTOS. Each and every module in an RTOS may need to
undergo a change (Eg. memory management, networking,
graphical display etc.). What we need is a generic solution
covering all the aspects rather than just a fraction of it (Eg.
scheduling API). We have designed and implemented a re-
flective real-time OS – DAMROS [3, 4]. Fig. 1 shows our
proposed generic reflective OS framework [9].

Reflective
System
Module n

Reflective
System

Base kernel core (supports Reflection)

Reflective
System

1Module 2Module

Reflection Interface

Application xApplication 2Application 1

Reflection interface

Applications in the system

Reflective OS structure

Figure 1: Generic Reflective OS framework

The framework consists of a Base kernel core that pro-
vides support for reflection in the form of reflection interface
for system modules/applications to reify information, intro-
spect and intercept the base-level. The System modules
(eg. scheduler) are designed to be completely reflective. A
reflective system module (eg. a reflective scheduler) makes
use of the interface provided to analyse reified information
and take intuitive steps to intercept and change behaviour
of the base-level module. Fig. 1 shows several reflective sys-
tem modules as well as the applications using the in-kernel
reflection interface. Similar to the reflective system mod-
ules, the applications can also be reflective. The meta-level
code in the reflective applications (not shown in fig. 1) can

OSPERT 2005

22

analyse the reified information from system and change the
behaviour of the application.

The reflective system modules (see fig.2) implement a
generic policy at the base-level. For example: in case of
a reflective scheduler, a simple round-robin scheduling pol-
icy or an optimised scheduling policy can be implemented at
the base level. Depending on the application requirement,
the meta-level code can then change this base-level policy to
an application specific one either at run time or statically.

Base Kernel Core

Code
Base−level

Code
Meta−level

link

read
reified

data

causal

Install code
or
Interception
request for

transfer
intercepted

call

reify data

Reflective System module

install
code

reified
data

Application

Figure 2: Reflective System module

The advantage of this approach is that we can develop a
system perfectly tuned for the application in hand. During
testing, the system with default policies can be used to run
applications that are allowed to make changes to suit their
needs. Depending on the performance metrics obtained after
the changes brought in, we can either change the default
policy permanently or keep the existing one for deployment.

4. EFFICIENT REMOTE RESOURCE AC-
CESS

Typical RTOS implementations support distribution by
adding network capabilities, e.g. network protocol stack,
without any architectural change. This approach may be ap-
propriate for systems that have sufficient resources to meet
all the application’s functional and non-functional require-
ments. But for low resource systems such an approach often
imposes a significant overhead (eg. applications wishing to
access remote resources cannot do so without significant part
of the involvement of local and remote nodes).

A key contention of this paper, is that they should be no
distinction between local and remote resources i.e. remote
resources are accessed and used in the same manner as local
resources. This is especially important for systems where it
is impractical, or infeasible, to equip all nodes with sufficient
resources to meet their worst-case requirements, e.g sensor
networks. To illustrate this consider memory access in a
multiprocessor (e.g. SMP) or distributed memory systems.
In such systems, accessing remote memory uses the same
mechanisms as local memory, noting that contentions have
to be managed. For other resources, this efficient mecha-
nism is not available. Usually, the access is via a remote
network operation via network protocol stacks, imposing a
heavy overload, both locally and remotely. Clearly this has
implications on an embedded real-time system’s ability to

meet any form of timing requirement.
To address the issues raised above, an efficient remote

resource access mechanism has been proposed [13]. Essen-
tially, the approach reduces the overheads of the network
stack and virtual file system (often used to name and access
remote resources) as much as possible. This is achieved by
structuring the RTOS functionality on a distribution layer,
which provides efficient access to remote resources. This
permits the virtual file system to directly access the device
drivers and devices on remote nodes, so bypassing the in-
evitable overhead of the remote OS, (part of the) network
stack and virtual file system. Clearly, resource control and
management within such a system becomes distributed. In
turn, network stack overhead can be reduced by using loca-
tion aware techniques, whereby local nodes can be accessed
far more efficiently and remote nodes, and without utilising
full TCP/IP protocol stack.

5. HARDWARE PLATFORM
When an embedded system is built on a flexible platform,

potentially including field-programmable elements, itself can
be customised to match the requirements of the RTOS and
the application [14]. Application Specific Instruction Pro-
cessors (ASIPs) provide a popular approach for doing this.
Frequently executed sections of an application task can be
optimised by replacing a number of machine instructions
with a single instruction that carries out the same job, but
does it faster and with fewer memory accesses. Careful use
of this optimisation technology can provide a substantial
speed increase [12]. An ASIP is illustrated in Figure 3.

Integer execution unit

Integer execution unit

Custom execution unit

C
on

tr
ol

(a)

(b) CPU
Custom

Co−processor

ASIP core

Memory

Interrupt line

System bus

Figure 3: (a): an ASIP core provides customisable
execution units on the processor data path. (b): a
customised co-processor is generally an additional
memory mapped device on the system bus, con-
nected to an interrupt line which is used to signal
task completion.

In contrast, conventional CPUs provide a fixed set of in-
structions and functions. Instructions and functions assist
the operating system by providing fast context switch and
memory management, for example. However, these are pro-
vided in a generic form that are not tuned to the specific
requirements of an application.

OSPERT 2005

23

It is noted that manufacturers of the tools used to cus-
tomise ASIPs to particular applications have not yet fully
considered the implications of running an RTOS on an ASIP.
The tools provided are targeted at finding the frequently
executed parts of single-threaded applications with full con-
trol of the system. This simple model does not take into
account the effects of task interaction: for example, there is
no attempt to relate the profiling information to task timing
analysis. The choice of optimisation point must make use
of this information if optimisations are to reduce response
times and improve overall performance.

ASIP improvements can be targeted at the RTOS itself,
but this is unlikely to be useful, as many of the operations
carried out by an OS are I/O or memory bound. ASIPs
can optimise operations only with the processor. However,
improvements to an RTOS can allow a developer to obtain
information about task interaction, and help decisions about
ASIP optimisation to be made. A task-aware online profiler
is required, and this can be made available within the RTOS
as an extra task.

A wider class of optimisations can be made by adding a
customised co-processor to complement the main processor.
The customised co-processor essentially replaces all or part
of a task that would otherwise execute as software within
the main processor, and may reduce power consumption
and make more CPU time available to other tasks. A co-
processor architecture is illustrated in Figure 3. The co-
processor can execute its task in parallel with another task
on the main processor, and signal completion using an inter-
rupt. This approach requires special driver support in the
RTOS, and again it is important to determine which parts
of which tasks are best handled by co-processors: informa-
tion which can only be obtained by careful analysis of task
interaction. Analysis is more complex than the ASIP case,
as the use of the co-processor is likely to be exclusive.

Future RTOSs will require profiling features and support
for co-processors in order to allow systems to make effective
use of the hardware that they use. Substantial improve-
ments to execution time and response time can be made,
provided that optimisations are applied correctly.

5.1 Example RTOS Component as Coproces-
sor

For architectures and platforms that allow application-
specific components to be programmed into hardware, e.g.
into a coprocessor, a key consideration is the choice of func-
tions that are placed into a coprocessor. An obvious compo-
nent is that of communications, where a coprocessor imple-
mentation can prevent interrupts due to the communications
subsystem reaching the CPU, and can enable application
processing and communications to occur in parallel.

Communication between ubiquitous devices has become a
major challenge in recent years. Due to enormous growth in
the communications sector, network protocols keep changing
over a period of time. Thus, making the older devices in-
compatible with the new ones. Communication via TCP/IP
does provide a standard, but it is too costly and heavy to im-
plement on a small device. New technologies like Zig-Bee,
Bluetooth, etc. pose a very light weight solution. How-
ever, they are not inter-operable. Meaning – a device with
bluetooth capability cannot communicate with a device with
zig-bee capability. A way around this problem is to make
use of an intermediate device which has bluetooth as well

as Zib-Bee capability. Then again, there is no traditional or
standard way of doing it when it comes to multiple vendors
and multiple devices. There is a great demand for commu-
nication between different heterogeneous devices.

Figure 4: Styx Hardware Coprocessor Architecture
– Client

Figure 5: Styx Hardware Coprocessor Architecture
– Server

The Styx [5] networking protocol can offer a general solu-
tion to this problem. Styx is an application layer protocol
that will work on any standard communication medium like
ethernet (either using TCP/IP, UDP, etc.), serial line, radio,
bluetooth, zig-bee, etc. Styx requires that the underlying
communications media provides reliable in order messages.
Applications that want to take advantage of Styx are pro-
vided with a simple interface, namely files, using standard
open, read, write, and close operations. Styx presents all
the networked (ie. remote) resources and devices as files to
the application. The application on the other hand commu-
nicate with the network devices or make use of the network
resource by just reading and writing to files.

As in all UNIX flavours, files have their own security. The
same applies to the Styx files. Another unique feature of
Styx is that it allows temporal isolation between different
application on a system using the same network resources.
Any change made by one application to the Styx namespace
will not affect other applications.

Current work is implementing the Styx component as an
FPGA coprocessor (within an OpenRisc architecture). The
architecture of the component is given in Figures 4 and 5.

OSPERT 2005

24

The server handles requests from the client, decoding the
specifc request (using the Message Decoder), checking that
the client has permission for that operation (using the Au-
thorisation Block). Data is manipulated in the namespace
(using the Namespace Control Logic), perhaps to read or
write, then the reply message is packed and sent (using the
Message Encoder). The implementation (combining server
and client) is small, being achieved in under 35K gates cur-
rently.

6. CONCLUSIONS
In this paper we have briefly described a multi-faceted

approach to the provision of application specific embedded
real-time operating systems. This is based upon an oper-
ating system that enables applications to reflect on their
performance, and to change resource management policies
dynamically to reflect the current state of the application. In
conjunction with a reflective operating system structure, we
provide an efficient method for remote access of resources,
by considering distribution within the RTOS structure. This
enables remote resource access with minimal network stack
and virtual file system overhead. Fundamental to this ap-
proach, is the implementation of the operating system upon
a flexible platform that can be tuned to provide application
specific functions within the hardware. This is considered
at the instruction level (ie. ASIP) where key parts of the
application and RTOS can be accelerated within single in-
structions; and at the coprocessor level, where larger appli-
cation and RTOS functions (eg. communications) can be
implemented directly in hardware.

7. REFERENCES
[1] Excalibur embedded processor solutions, Online:

http://www.altera.com.

[2] Virtex-pro fpgas, Online: http://www.xilinx.com.

[3] A. Patil and N. Audsley. VRHS: an Application
Specific Reflective Hierarchical Scheduler. In
Submission to SOSP 2005, Brighton, UK.

[4] A. Patil and N. Audsley. Implementing
Application-Specific RTOS Policies using Reflection.
In Proceedings of the 11th IEEE Real-time and
Embedded Technology and Applications Symposium,
pages 438–447, San Francisco, 2005.

[5] S. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie,
H. Trickey, and P. Winterbottom. The inferno
operating system. Bell Labs Technical Journal, 2(1),
1997.

[6] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new
kernel approach for modular real-time systems
development. In Proceedings of the 13th IEEE
Euromicro Conference on Real-Time Systems, June
2001.

[7] M. H. S. Hauck, T. W. Fry, and J. Kao. The Chimera
Reconfigurable Functional Unit. In Proceedings of the
IEEE Symposium on FPGAs for Custom Computing
Machines, 1997.

[8] J. Malenfant, M. Jaques, and F.-N. Demers. A
Tutorial on Behavioral Reflection and its
Implementation. In Proceedings of the Reflection 96
Conference, Gregor Kiczales, editor, pp. 1-20, San
Francisco, California, USA, April 1996.

[9] A. Patil and N. Audsley. An Application Adaptive
Generic Module-based Reflective Framework for
Real-time Operating Systems. In Proceedings of the
25th IEEE Work in Progress session of Real-time
Systems Symposium, Lisbon, 2004.

[10] Patrick Rogers. Software Fault Tolerance, Reflection
and the Ada Programming Language. PhD thesis,
University of York, UK, October 2003.

[11] M. A. Rivas and M. G. Harbour. POSIX-Compatible
Application-Defined Scheduling in MaRTE OS. In
Proceedings of the 14th Euromicro Conference on
Real-Time Systems, pages 67–75, June 2002.

[12] Tensilica Corporation. Accelerating existing C code
(accessed 1 Apr 05). http://www.tensilica.com/html/-

accelerating existing c code.html.

[13] P. Usher and N. Audsley. Improving the Efficiency of
Remote Resource Usage in Distributed Real-Time
Systems. In Proceedings of the 25th IEEE Work in
Progress session of Real-time Systems Symposium,
Lisbon, 2004.

[14] J. Whitham and N. Audsley. ASIP Instruction
Selection for Real-Time Systems. In Submission to
ISSS+CODES, 2005.

OSPERT 2005

25

OSPERT 2005

26

The FIRST Application Programming Interface

(Invited Talk)

Michael Gonzàlez Harbour

Dpto. de Electrónica y Computadores, Universidad de Cantabria, Santander, Spain

e-mail: mgh@unican.es

Abstract

Scheduling theory generally assumes that real-time systems are mostly composed of activities with hard real-time
requirements, many systems are built today by composing different application or components in the same system,
leading to a mixture of many different kinds of requirements with small parts of the system having hard real-time
requirements and other larger parts with requirements for more flexible scheduling, taking into account quality of
service. Hard real-time scheduling techniques are extremely pessimistic for the latter part of the application, and
consequently it is necessary to use techniques that let the system resources be fully utilized to achieve the highest
possible quality.

In this talk, we presents a framework for a scheduling architecture that provides the ability to compose several
applications or components into the system, and to flexibly schedule the available resources while guaranteeing hard
real-time requirements. The FIRST Scheduling Framework (FSF) is independent of the underlying implementation,
and can run on different underlying scheduling strategies. It is based on establishing service contracts that represent
the complex and flexible requirements of the application, and which are managed by the underlying system to provide
the required level of service.

∗This work has been funded by the Commission of the European Communities under contract IST-2001-34140 (FIRST project)

OSPERT 2005

27

OSPERT 2005

28

The need for configurable and flexible scheduling in a RTOS aspiring

to solve contemporary problems

(Invited Talk)

Thorbjörn Jemander

Enea Epact AB, Teknikringen 8, Linköping, Sweden

Abstract

As embedded systems increase in size and complexity, the demands of the underlying operating system get greater
for each generation. For a long time, the embedded systems remaied rather small, and simple operating systems
were used, if any. In modern embedded systems there are hundreds of processes on each CPU, all put together
to minimize the number of chips and hence reduce cost. This means that, today, there is a number of conflicting
demands of the various processes on a single CPU. There are hard and soft deadlines, combined with non-real-time
processes. There must the a high through- put, yet quick response times and deterministic execution times. There
is a fixed priority scheme, yet the priorities are changed run-time. All these problems have to today be solved
with, in principle, a fixed priority scheduler lacking awareness of fundamental concepts as deadline, execution time,
process time buget etc. This is not adequate for the problems at hand, and therefore modern RTOSes have to supply
mechanisms to a more flexible, configurable and timing- and/or load aware scheduling.

Curriculum Vitae
Thorbjörn Jemander is a real-time systems specialist at Enea Epact, working with design and analysis of real-

time systems. He is the systems architect of the Enea Advanced Scheduling Framework and is engaged in the

promotion of real-time analysis tools and methodology. In 1991 he earned a BSc in computer engineering, 1996 a

MSc in applied physics and electrical engineering, 2001 a PhD in solid state quantum physics.

OSPERT 2005

29

OSPERT 2005

30

An overview of the XtratuM nanokernel∗

M. Masmano, I. Ripoll, and A. Crespo
Universidad Polit́ecnica de Valencia, Spain.

{mmasmano,iripoll,alfons }@disca.upv.es

Abstract

This paper presents a new nanokernel (XtratuM) which is
aimed for executing several operating systems (where, at
least, one of them is a real-time operating system) in the
same hardware with temporal and spatial isolation.

Simplicity is the main idea behind of its design, there-
fore XtratuM can be defined as a thin layer of software
which abstract the essential devices to run a kernel: the
memory, the timers and the interrupts.

Besides, this paper presents the ARINC specification
653-1, an interface specification which allows to build
high-reliability applications, being this interface a solid
candidate to be the future XtratuM interface.

Keywords: Nanokernel, real-time, embedded system

1 Introduction

The word XtratuM derives from the latin termsubstratum
referring to the layer of material which gives support to
the upper layers.

In computer science, this term is used to designate a
software hiding the programming complexity of the lower
levels and supplying a functionality to the upper levels.
From this point of view, XtratuM can be defined as a layer
which is directly inserted between the hardware and oth-
ers Operating Systems (OSes), easing the programming
of these OSes as well as allowing to execute all of them
in an isolated and concurrent way.

An Operating System (OS) can be defined as an ab-
straction layer between the physical hardware and the ap-
plications [6, 8, 7], which hides the underlying hardware

∗This work has been supported by the European Commission project
number IST-2001-35102 (OCERA).

(processor, physical memory, storage mediums, etc) and
provides a high-level abstraction of the machine instead
(file system, process, threads, etc).

The use of an OS provides a big quantity of benefits
to the applications mainly because the complexity of the
hardware is hidden, simplifying the design and increasing
the portability of the applications. Before the apparition
of the OSes, the applications themselves were the respon-
sible of setting up and managing the underlying hardware.
Hence, these applications used to be designed for an ma-
chine with an specific configuration (quantity of memory,
storage space, speed, etc), and therefore stopping working
when this configuration was changed.

The design of an OS tend to be mainly guided by the
requirements of the applications that will be run on it.
It means that each OS just enables the use of a concrete
range of applications, whereas it is not optimum or even it
is useless when is used by applications with different re-
quirements. For instance, the Windows OS was designed
to supply a powerful, intuitive graphic interface, easy to
use for the beginners. Windows is a clear example of an
OS which does not provide any hard real-time capability
(it is important to note that Windows offers the possibility
of using an scheduler based on fixed priorities, but it does
not turn windows into a hard real-time operating system).

Another example is the OSes used in the mobile
phones, these kind of OSes are designed to be executed
on embedded systems with low resources (battery, pro-
cessing power, memory and storage space). Often these
systems tend to implement a poor graphic environment.
Therefore heavy graphic applications can not be executed
on mobile phones’ OSes. A last example could be the
real-time OSes whose timing behaviour is determinis-
tic. These systems are outstanding to execute applications
with timing requirements. However, these OSes use to

OSPERT 2005

31

lack in suppling a friendly user interface.
Current processors are more and more powerful al-

lowing to execute more and more complex applications.
These complex applications usually can be divided in sev-
eral parts with different requirements. An example of this
can be a engine control program with a graphic monitor.
The application can be split in two parts: the control al-
gorithm which interacts with the engine, with hard real-
time and fault-tolerance requirements (where using a hard
RTOS is compulsory) and the monitor, with graphical re-
quirements (where it would be nice to have a desktop OS
with graphic capabilities like Windows or Linux).

Enhancing a general purpose OS with real-time ca-
pabilities has already been tried with disappointing re-
sults. The most satisfactory results have been obtained
by the RTLinux approach, adding a software layer (a
hard RTOS) beneath a general purpose OS (Linux or
FreeBSD). This software layer virtualises interrupts and
executes the general purpose OS in the background as the
lowest priority task of the system.

This approach (running a hard real-time OS jointly with
general purpose OS within the same machine) shows that
running several OSes on the same machine enhances the
execution of the applications with disperse requirements.

Some existing techniques to execute several OSes in the
same machine are described below:

1. Running several OSes (guest OSes) on the top of an-
other OS (host OS) through a virtualisation program:
This technique consist in, on the top of a host OS,
creating a complete virtual hardware machine. Thus,
allowing the execution of the guest OS even if it were
compiled for a different physical hardware architec-
ture. The advantage of this kind of approach is that
the guest OS can be directly executed (no modifi-
cations to the OS are required). Nevertheless, this
technique also presents an important drawback: the
guest OS can not be directly executed by the real pro-
cessor but it has to be interpreted by the virtualisa-
tion program with a lost of performances. Therefore
this approach is not useful to satisfy complex appli-
cation requirements. Examples of virtual machines
are: VMWare [9], Plex86 [3], win4lin [5].

2. Multiplexing the physical hardware between several
OSes (guest OSes): Usually, OSes are internally

structured as a set of building blocks (see figure
1). These blocks can be divided in two categories,
the device drivers: network-card drivers, PCI bus
drivers, SCSI drivers, USB drivers, etc. And the ab-
stractions of the hardware: memory manager, virtual
filesystem infrastructure, network stack, etc. This
method is implemented inserting a software layer be-
neath of the guest OSes. This software layer1 takes
over the real hardware and provides a virtual one to
the guest OSes. An important disadvantage of this
approach is that the current hardware architectures
can not be completely virtualised, therefore the de-
vice drivers of the guest OSes have to be hacked to
deal with virtual drivers rather real ones. Examples
of implementations of this software layer are: Fi-
asco [4], Adeos [10], RTLinux [11], etc.

Figure 1: Classical operating system internal structure
(simplified).

The results achieved using the second approach have
encouraged us to design a new nanokernel, called Xtra-
tuM, which has been explicitly designed to support the ex-
ecution of at least one real-time OSes jointly one or more
general OSes.

2 The ARINC specification 653-x

The ARINC specification 653-x defines a general-purpose
APEX (APplication/EXecutive) between the OS of an

1There are several ways of call this layer depending on the way it
virtualise the hardware, its size and other implementation details. This
denomination can be nanokernel, picokernel, and exokernel[2].

OSPERT 2005

32

avionics computer resource and the application software.
Therefore, this specification was designed to be used by
high-reliable applications.

The main aim of the ARINC specification 653 is to de-
fine a group of substandards (phases), each of them fo-
cused in a different degree of functionality-criticality of
the system.

Figure 2: ARINC 653’s phases.

The figure 2 shows the services which are offered in
each phase of the standard ARINC 653, depending on
the criticality of the system and the desired functionality.
Currently, only the ARINC 653-1 (filled with light grey),
phase for the most critical systems with the least possible
functionality. The rest phases (filled with dark grey) are
still in development and have not been defined yet. All
services defined in these still-in-development phases have
been written down as possible examples.

Basic services offered by the ARINC 653-1 (the first
phase, and currently the only one implemented) are the
following:

• Partitions management: a partition is described as a
program, composed by code and dates with a single,
isolate memory address space.

• Processes management: in the ARINC 653-x, a pro-
cess is described as an execution unit within a parti-
tion.

• Time management: these services permit to read cur-
rent time, programming a timer, stopping an existing
timer, etc.

• Memory management: the ARINC specification
653-x does not supply any service to allocate or re-

lease dynamic memory. All memory is statically al-
located at compilation time.

• Inter-partition communication: These services de-
fine the mechanisms used to communicate some par-
tition between them.

• Intra-partition communication: These services de-
fine the mechanisms used by several processes be-
longing to a partition to communicate between them.

• The health monitor: the health monitor is the mecha-
nism proposed by the ARINC specification 653-x to
recover or kill partition after a fail has happened.

3 XtratuM architecture

The main idea behind of the design of the architecture of
XtratuM is to virtualise the minimal possible parts of the
hardware to achieve the execution, in a concurrent way, of
several OSes. Where some of these OSes (or all of them)
could be real-time kernels.

However, unlike some existing nanokernels (for exam-
ple, the L4µ-kernels family[1]) XtratuM does not virtu-
alise the whole hardware architecture, but it just multi-
plexes the most essential parts of the hardware to execute
in a concurrent ways several OSes. Each OSes should be
aware how to use the parts of the hardware which have
not been virtualised by XtratuM.

XtratuM basically offers the following virtualisations
for the guest OSes:

• Interrupts: Taking over interrupts on a computer is a
synonymous of controlling the whole machine. Once
XtratuM is started up, it is the only one who re-
ally controls hardware interrupts and, of course, the
only one who is able to disable/enable real inter-
rupts. An API is offered, enabling to the guest OSes
to deal with the virtual interrupts which allows basi-
cally enabling/disabling virtual interrupts, installing
interrupt and exception handlers, and so on.

• Timer: Providing a timer is not necessary to exe-
cute concurrently several OSes. However, to sim-
plify the porting of an OS, XtratuM providesat least
one virtual timer. The exact number of timers imple-
mented by XtratuM depends on the available number

OSPERT 2005

33

of hardware timers. For example, when XtratuM is
executed in the intel x86 architecture (supposing the
APIC timer available) will offer two different virtual
timers: the classic PIT and the APIC timer. Besides,
to work with these virtual timers, XtratuM also pro-
vides a high-level API to deal with them.

• Virtual Memory: Currently, XtratuM is only able to
create a memory map per OS, enabling memory iso-
lation among different OSes. This facility is still un-
der development and lacks of many features like a
sharing memory mechanism or increasing/shrinking
the initial allocated memory.

Therefore, currently, from the guest OSes point of view,
XtratuM just provides a high-level API to handle a timer
and the interrupts. Each guest OS has to be aware about
the rest of the existing hardware and how to share it. For
instance, two different guest OSes which are going to use
the serial port at the same time have to cooperate between
them to avoid a race condition on it use.

New features like an inter-OS communication mech-
anism and a sharing resource protocol is being imple-
mented and will be released soon.

3.1 XtratuM’s scheduling issues

In its first releases, XtratuM implements an scheduling
policy based on fixed priorities, where each domain has to
indicate its priority at the creation moment. The reason of
this decision is because, initially, XtratuM was though to
execute a general purpose OS jointly with a hard RTOS in
the same computer. In this conditions, triggered interrupts
will be reissued to the domain depending on the domain’s
priority. The main benefits achieve because of the use
of this policy is the low overhead and its implementation
simplicity.

Nonetheless, the existence of more than one domain
with timing requirements would make more desirable the
use of a different scheduling policy. At this moment we
are studying the possibility of introducing policies which
guarantee the use of the CPU to each existing domain with
timing constraints.

4 Implementation details

Implementing a nanokernel from the scratch is an ardu-
ous, hard task with a great amount of work to be carried
out: programming a booting code for the targeted archi-
tecture, implementing new drivers, etc.

Nonetheless, as demonstrated in the Adeos nanokernel
paper[10], all this work can be greatly simplified.

The nanokernel can be designed/implemented avoiding
to start from the scratch but from a previously existing
kernel (considered in Adeos as the root domain). The
nanokernel is built around the infrastructure of this ex-
isting OS (the root domain). Using this approach, Adeos
avoids the management of the virtual memory or the great
majority of the existing devices, it just take care of inter-
rupts of the system and supplies an scheduler to sched-
ule the domains (guest OSes). Even the loading of the
domains, as well as Adeos itself is implemented via the
modules of the Linux kernel, therefore overriding the ne-
cessity of implementing a loader.

Taken advantage of this approach, the first versions of
XtratuM have been built using the infrastructure supplied
by the Linux kernel. Basically, these first versions consist
of:

1. A patch for the Linux kernel. This patch modi-
fies the Linux kernel in two ways: replacing all the
disabling/enabling interrupt instructions by calls to
XtratuM and inserting several hooks in the Linux
kernel code. These hooks will be used later to vir-
tualise the interrupts and the hardware timers.

2. The XtratuM nanokernel itself. Provided as a piece
of software which has to be inserted inside Linux
through the Linux kernel module mechanism. A
XtratuM boot loader has been avoided using the
Adeos approach, that is, XtratuM is loaded into the
system as a Linux kernel module (sharing the mem-
ory map with Linux). However, XtratuM differs on
the method used to load the guest OS. In Adeos
the domains are also loaded as Linux kernel mod-
ules. XtratuM uses its own loader to create a specific
memory map for each guest OS, enabling memory
protection between the different OSes.

Besides, XtratuM virtualises the interrupts in a simi-

OSPERT 2005

34

lar way as Adeos does. The IDT2 entries, which contain
the Linux’s interrupt handlers, are replaced with the Xtra-
tuM’s interrupt handler addresses. Once the IDT has been
modified, interrupts are completely managed by XtratuM.

5 Examples of use

Next are some examples of how XtratuM can be used:

Figure 3: XtratuM running redundant systems.

Figure 3 represents a system were Linux is the back-
ground operating system; RTLinux/GPL playing the role
of master real-time operating system and running the con-
trolling application; and MaRTE OS also running the
same application (but coded by a different developers
group and using a different programming language Ada)
but the application does not effectively send the actions
to the hardware but compares its our results with those
generated by the RTLinux/GPL domain. In case of a mis-
match in the actions computed by both applications, or if
a domain raises an exception, XtratuM can stop the buggy
domain. Note that in order to know which is the faulting
domain it might be possible to need a third domain.

XtratuM, when compiled with booting code (which
will be developed soon) can be used to run the real-time
operating system in several hardware processors with mi-
nor code changes. We are currently working on the ARM
(Xscale) porting of XtratuM.

2Interrupt descriptors table, in the x86 architecture is the place where
the address of the interrupt handlers are stored.

Figure 4: Using XtratuM to test the operating system, or
application.

Another practical use of XtratuM framework is to run
your RTOS on the top of a Linux system as a regular
Linux process. The idea is to compile the guest operat-
ing system as a normal ELF executable and then run it the
same way as ls or bash does. In this scenario, XtratuM
used the POSIX signals and timers facilities provided by
the host operating system as if they were interrupts and
timers devices.

It is a very restricted and unrealistic system that can
only be used for testing and to speed up the code develop-
ment. It can also be used for teaching purposes.

Figure 5: XtratuM as an Stand-alone system.

6 Conclusions

This paper presents the basic architecture of a new nanok-
ernel called XtratuM which allows to execute several ap-
plications (application or operating system plus applica-

OSPERT 2005

35

tions) with temporal and spatial isolation.
Currently, a prototype is ready where the Linux kernel

is a domain executed in the XtratuM’s memory space.
Although XtratuM was initially designed to per-

mit the execution of a real-time operating system (as
RTLinux/GPL) jointly with a general-purpose Operating
System (Linux), currently, other configurations have been
explored:

• Use of MaRTE OS replacing RTLinux/GPL as the
real-time operating system.

• Execution of several real-time operating systems
jointly with Linux. The approach requires a modi-
fication in the current XtratuM scheduling policy.

• Directly execution of an application without any ker-
nel beneath it. For instance, a real-time application
using a cyclic executive.

As future work, we are considering and working on
three improvements:

• Adding new scheduling policies to XtratuM. These
new policies will support more than only one appli-
cation with timing requirements.

• Building an stand-alone version of XtratuM. Linux
has to be executed as any other partition, with its own
memory address. In the current version of XtratuM
a fault in the Linux kernel is translated to a crash of
the whole system.

• Replacing current non-standard XtratuM’s API with
a standard specification as ARINC 653-1.

References

[1] L4 microkernels specification.
http://l4ka.org/projects/pistachio/l4-x2-r2.pdf.

[2] Mit exokernel operating system.
http://www.pdos.csail.mit.edu/exo.html.

[3] The new plex86 x86 virtual machine project.
http://plex86.sourceforge.net/.

[4] Herman Hartig et al. Fiasco microkernel.
http://os.inf.tu-dresden.de/fiasco/overview.html.

[5] NeTraverse. Win4lin. https://www.netraverse.com.

[6] A. Silberschatz and P. B. Galvin.Operating Systems.
Addison Wesley Longman, 1999.

[7] A. S. Tanenbaum.Modern Operating Systems. Sec-
ond Edition. Prentice Hall, 2001.

[8] A. S. Tanenbaum and A. S. Woodhull.Operating
Systems. Design and Implementation. Second Edi-
tion. Prentice Hall, 2000.

[9] Inc. VMWare. Vmware workstation.
http://www.vmware.com/.

[10] Karim Yaghmour. Adaptive domain
environment for operating systems.
http://www.opersys.com/ftp/pub/Adeos/adeos.pdf.

[11] Victor Yodaiken. The rtlinux manifesto.

OSPERT 2005

36

Kernel Support for Energy Management in Wireless Mobile Ad-Hoc Networks �

Mauro Marinoni, Giorgio Buttazzo, Tullio Facchinetti, Gianluca Franchino
University of Pavia, Italy

�mauro.marinoni, giorgio.buttazzo, tullio.facchinetti, gianluca.franchino�@unipv.it

Abstract

Effective power management in wireless networks of mo-
bile robots requires a proper support from the operating sys-
tem, which must allow the application to dynamically con-
figure the onboard resources to save energy consumption
while guaranteeing the required real-time and performance
constraints. In this paper, we present the kernel mechanisms
necessary to achieve an integrated power management ap-
proach, in which energy saving is achieved at different lev-
els of the architecture, including the processor, the commu-
nication device, and the robot peripherals, like sensors and
actuators.

1. Introduction

The use of coordinated teams of small robots has several
interesting applications, including monitoring, surveillance,
searching, and rescuing. On the other hand, the use of small
robot systems introduces several new problems that need to
be solved for fully exploiting the potential bene ts coming
from a collaborative work. Most of the problems are due to
the limited resources typically available on a small mobile
robot. In fact, cost, space, weight, and energy constraints,
impose the adoption of small microprocessors with limited
memory and computational power. In particular, the com-
puter architecture should be small enough to t on the robot
structure, but powerful enough to execute all the robot com-
putational activities needed for achieving the desired level
of autonomy. Moreover, since such systems are operated by
batteries, they have to limit energy consumption as much as
possible to prolong their lifetime.

In a wireless ad hoc network of mobile robots, energy
can be saved at different architecture levels. At the oper-
ating system level, suitable scheduling and resource man-
agement algorithms can be adopted to execute tasks at the
minimum speed that guarantees the required performance

� This work has been partially supported by the Italian Ministry of
University Research under contracts 2003094275 (COFIN03) and
2004095094 (COFIN04).

constraints. At the network level, the transmission power of
each node can be set at the minimum level that guarantees a
given degree of connectivity. At the application level, spe-
ci c devices can be turned off, or con gured at a proper op-
erating low-power mode (if any), when they are not used for
a suf ciently long interval of time. Also servomotors can be
driven to drain less current when the robot joints are set in
a con guration that does not demand high torques.

Models to describe the battery charge behavior have been
proposed to help in deriving new approaches to the battery
usage. Benini et al. [5] proposed a exible discrete-time bat-
tery model that accurately describes the dynamic battery op-
eration, allowing a careful system design accounting for re-
alistic battery lifetime values. In a different work [4], the au-
thors achieved a signi cant battery lifetime improvement by
steering the power absorption in a multi-battery pack. This
solution may be easily adopted when servomotors are used
as actuating devices.

In the context of real-time systems, different energy-
aware algorithms have been proposed to minimize energy
consumption in the processor. They basically exploit volt-
age variable processors to minimize the speed while guar-
anteeing real-time constraints [15, 2, 3, 9].

In many cases, however, the approaches proposed in the
literature are based on simplifying assumptions, like neg-
ligible overhead or continuous dynamic voltage scaling,
which make them unusable in real applications, especially
in those embedded systems based on small microcontrollers
with very limited operating modes. In some cases, only two
modes are available, so power management can only be
achieved by switching between the two modes using suit-
able strategies. Recently, Bini et al. [6] proposed a method
for analyzing the feasibility of real-time applications that
execute by alternating two speeds, taking overheads into ac-
count.

On the network side, energy-aware algorithms have been
mainly focused on the MAC level. Some others consid-
ered energy conservation in routing problems. Ye et al. [16]
proposed the Sensor-MAC (SMAC) protocol, which is di-
vided in two phases: a sleep period and an active period. In
the sleep period the nodes switch their transceiver off, by
putting it in sleep mode. In the active period, the nodes turn

OSPERT 2005

37

its transceiver in the receiving mode to listen for incoming
communications, or in transmission mode to initiate a com-
munication. Each node can choose its sleep/active schedule,
therefore sleep and active periods have to be locally syn-
chronized between nodes. To synchronize them, nodes ex-
change �� ��� messages, which contain the identi ca-
tion number of the sender and the time of its next sleep. The
protocol is carrier sense multiple access with collision de-
tection (CSMA/CD), so the synchronization does not have
to be very strict. The active period is divided in two parts:
the rst part is used by nodes to send their �� ��� mes-
sages, if any, while the second part is used for the request to
send messages (RTS), if any.

T-MAC [13], like SMAC, adopts synchronized
sleep/wakeup cycles to allow nodes to operate at low
duty cycles while maintaining network connectiv-
ity. In order to reduce latency, T-MAC proposes a
����	
 � 	
��
�� � � � �
�� (FRTS) scheme to in-
form a node, on the third hop, that there exist a message for
it by sending a FRST packet. Hoesel and Havinga [14] pro-
posed a MAC protocol, LMAC, based on a TDMA
scheme. Time is divided into slots, whose size is suf -
cient to send entire messages. Each node can have only a
time slot, during which the communication is collision-free.
This implies that energy is not wasted for managing col-
lisions and accessing the radio channel. The schedul-
ing algorithm is distributed and each message is dived
in two parts: a control unit and a payload unit. The con-
trol unit includes several data, such as node identi er ,
data size, and a sequence slot number to maintain syn-
chronization between nodes. To save energy, each node
that is not addressed for communication turns its ra-
dio off until the next slot. Moreover, two nodes switch their
transceiver off when the communication between them n-
ishes.

Yu et al. [17] proposed the Geographic and Energy
Aware Routing (GEAR) algorithm, which considers energy
ef cienc y. Based on the fact that in the sensor networks
a query is often geographical, GEAR propagates a query
to the appropriate geographical region using energy-aware
and geographically informed neighbor selection heuristics
to route a packet towards the target region. Within a region,
it uses a recursive geographic forwarding technique to dis-
seminate the packet.

What is missing in the literature, however, is an inte-
grated framework for energy-aware control, where differ-
ent strategies can be applied at different levels of the archi-
tecture, from the hardware devices to the operating system,
up to the application level.

In this paper, we present a system wide approach to en-
ergy management applied to all the architecture levels and
integrated with the scheduling algorithm to guarantee real-
time constraints. The method is tailored for an embedded

Communication

Board

Servo Control

Board

Servo Servo Servo

dsPIC

A/D BUS
CAN I2C

Sensor Sensor

Figure 1. Block diagram of the main robot
components.

robot controller consisting of a dsPIC 30F601x family mi-
crocontroller, capable of driving more than 20 servomo-
tors, and a wireless communication board with different
power/transmission modes.

The rest of the paper is organized as follows. Section
2 presents an overview of the system architecture, describ-
ing the degrees of freedom available in each component to
achieve some form of power management. Section 3 illus-
trates the methods we propose at different architecture lev-
els to limit energy consumption while still meeting real-
time constraints. Section 4 focuses on the kernel support
required to provide e xible power management services to
real-time applications. Finally, Section 5 states our conclu-
sions and future work.

2. System description

The system under consideration consists of a team of
mobile robots that have to cooperate for achieving a com-
mon goal. Each robot can be either a classical wheeled ve-
hicle or a legged walking machine actuated by servomo-
tors, equipped with proximity and special-purpose sensors,
a processing board, and a wireless communication subsys-
tem. Hence, each robot can be seen as a mobile node of
a wireless ad hoc sensor network. A block diagram of the
main robot components is illustrated in Figure 1.

In the following sections we describe the characteristics
of each component installed on each robot unit, focusing on
the features that may enable the implementation of energy-
aware control strategies.

2.1. Onboard microcontroller

The onboard processing unit is a Microchip dsPIC [10],
which seamlessly integrates the control attributes of a mi-
crocontroller (MCU) with the computation and through-
put capabilities of a Digital Signal Processor (DSP). It is
a 16-bit microcontroller where most of the 24-bit wide in-
structions are executed in 1 cycle up to 30 MIPS. The
model selected for prototyping includes a program mem-
ory space of 144 KBytes, a data memory space of 8 KBytes,

OSPERT 2005

38

and a non-volatile data EEPROM of 4 KBytes. The MCU
presents a full-features software stack, up to 41 interrupt
sources, and 5 16-bit counters with 32-bit working mode.
The DSP engine features a high speed 17-bit by 17-bit
multiplier, a 40-bit ALU, two 40-bit saturating accumula-
tors and a 40-bit bidirectional barrel shifter, and performs
divisions in a 19-cycles loop. In terms of peripherals the
chip supplies Capure/compare/PWM functionality, 12-bits
Analog-to-Digital Converters (A/D) with 100 Ksps conver-
sion rate and up to 16 input channels. Connectivity is pro-
vided through a full range of channels: I2C, SPI, CANbus,
USART and Data Converter Interface (DCI), which sup-
ports common audio Codec protocols, as I2S and AC’97.

The microcontroller allows the application to choose
among three different clock sources: an external oscillator
up to 40 MHz with an internal PLL circuit to boost the fre-
quency up to 120Mhz, an internal clock of 8 MHz, and a low
power clock of 512 KHz. A postscaler can be applied to the
selected source to slow down the frequency of a factor of
4, 16, or 64 to obtain the system clock. Once the clock fre-
quency is selected, it is possible to set the supply voltage at
the lowest level that supports such amount of MIPS. For ex-
ample, slowing down the clock to one-third of its maximum
value the power supply could be lowered to 2.5 Volts. It is
also possible to create a set of frequency/voltage pairs to be
used as power states in dynamic voltage scaling (DVS) al-
gorithms. Changing the clock source is an action that is per-
formed with a latency of 10 periods of the new clock.

The MCU has two reduced power modes, idle and sleep,
which can be entered through the execution of a speci c
instruction. In the idle mode the CPU is disabled, but the
system clock source continues to operate. Peripherals con-
tinue to operate, but can optionally be disabled. In the sleep
mode, the CPU, the system clock source, and any periph-
erals that operate on the system clock source are disabled.
This mode consumes less power, but requires a delay from
10 �� to 130 �� when exited, whereas the idle mode has no
wake up delay.

A method is provided to disable a peripheral module by
stopping all clock sources supplied to that module. When a
peripheral is disabled with this feature, it is in a minimum
power consumption state. When the command is sent, the
interested module is disabled after a delay of 1 instruction
cycle. Similarly, when the wake up command is given, the
target module is enabled after a delay of 1 cycle.

2.2. Communication board

In the market there are many transceivers that are suit-
able to build small radio devices that can be used to real-
ize sensor nodes. There are many smart features that can
be exploited to design energy-aware transmission protocols.
Some of them are listed below:

� RSSI (Receiving Signal Strength Indicator) is a value
proportional to the strength of the received RF signal.
It can give a greedy esteem of the distance from the
source, if the transmission power is known.

� Different levels of transmission power. They can be
exploited, in conjunction with the RSSI, to save en-
ergy, adapting the transmission power to the distance
between source and sink nodes.

� Different operating modes. The most common modes
are: ��

�, 	
�
�����, and �	���������. Each
mode consumes different level of energy. When
a transceiver is on sleep it consumes less power
than in others modes, but the time to switch be-
tween modes is different. For example, switch-
ing from ��

� to �	��������� takes more time than
switching from 	
�
����� to �	���������. More-
over, switching between modes consumes energy too.
This latter consideration is important in the communi-
cation protocols design.

The characteristics described above can be found in sev-
eral devices available on the market. A couple of devices
suitable for our class of embedded system are the CC1000
and the ATR86RF211.

The CC1000 is a chip produced by Chipcom, with a
transmission rate of 78,5 Kbaud/sec, a variable transmis-
sion power from -20 to 10 dBm, a minimum supply volt-
age of 2.1V, and a RSSI output pin for signal strength ac-
quisition. It has two operating modes: power-up and power-
down. In the power-down mode, it consumes no more than
1 �A. The transceiver can be set in the ISM (Industrial, Sci-
enti c and Medical) and SRD (Short Range Device) fre-
quency bands at 315, 433, 868 and 915 MHz, but can easily
be programmed by a microcontroller to operate at other fre-
quencies in the 300-1000 MHz range.

The ATR86RF211, produced by Atmel, operates in the
ISM band (from 400 MHz to 930 MHz), with a FSK (Fre-
quency Shift Keying) modulation, a data rate of 64 kbps,
and eight digitally selectable power levels. The maximum
transmitter power is 14 dBm in the 433 MHz frequency
band. Its power saving features are: power down mode,
sleep mode, and stand-alone wake up procedure. It con-
sumes no more than 0.5 �A in power down mode and
no more than 3 �A in sleep mode. It is a multi-channel
transceiver with fast frequency shifts (less than 50 �s for
a 100 KHz shift). This feature is suitable to implement
an ef cient frequency hopping transmission protocol. The
AT86RF211 is also well adapted to battery operated sys-
tems as it can be powered with only 2.4V. It can be con-
trolled by means of a three wire interface, either by a mi-
crocontroller or by a DSP. Finally it has an RSSI output pin
in order to acquire the strength of the received signal.

OSPERT 2005

39

2.3. Servomotors

The motors considered in this work are the Hitec HS-
475HB, which include an internal position control loop that
allows the user to specify angular positions through a PWM
input signal. This feature simpli es the external circuitry
and avoids sending feedback signals to the motor control
unit. The internal feedback loop imposes an angular veloc-
ity of 250 degrees per second and the motor is able to gen-
erate a maximum torque of 9.6 kg�cm with a voltage of 6
Volts. Motors are connected to a board that provides them
with the required power supply and the input signals com-
ing from the control layer. The torque applied to the motors
can be estimated by monitoring the current drained by the
servo. Such a current is read by using a Maxim MAX471
chip, which produces an output voltage proportional to its
input current.

Monitoring the servo current absorption can also be ex-
ploited to obtain a level of feedback in servomotors con-
trol. In fact, as described in Section 3.3, the current absorp-
tion is related to the exerted torque and can be used to de-
tect and compensate angular position errors.

3. Power management

Hardware and software components cooperate to reach
the following main goals: low power consumption, onboard
sensory processing, real-time computation, and communi-
cation capabilities. The robot is built with generic mechan-
ical and electrical components, making the low-power ob-
jective more dif cult to be satis ed. Nevertheless, the adop-
tion of power-aware strategies inside the software modules
signi cantly increased the system lifetime. To achieve sig-
ni cant energy saving, power management is adopted inside
every system module and needs to be coordinated at the op-
erating system level.

3.1. DVS management

Using the DVS capabilities described in Section 2.1, it
is possible to implement a power-aware scheduling algo-
rithm for a discrete set of clock frequencies. The possibil-
ity to put the processor in a sleep state can be useful for
various purposes. The simplest strategy is to put the pro-
cessor in this state if there is no work to be executed. The
sleep mode can be exited upon the arrival of an interrupt
from a peripheral or from the system timer for a task activa-
tion. The sleep state can also be considered as an actual op-
erating mode, and the corresponding zero speed can be in-
cluded in the set of available speed levels.

The simplest approach for integrating power-aware
scheduling and real-time constraints is to x the clock
speed to a value computed off line to guarantee system fea-

sibility. Due to the limited number of allowed frequen-
cies for the system clock, this solution may cause a waste of
power consumption. A better result can be achieved by al-
ternating two clock frequencies to reach the ideal value
requested by the theoretical calculation. In fact, alternat-
ing two clock states, as a PWM signal, one can approxi-
mate a speed level that is not available in the processor. In
this way, an optimal speed level can be computed to guar-
antee real-time constraints while minimizing energy con-
sumption, as proposed by Bini et al. [6]. Another approach
is to calculate a different speed for each task and set the sys-
tem clock to the appropriate value when a context switch
occurs. In addition to the off-line calculation of the work-
ing frequency, it is possible to implement an on-line
reclamation technique to further decrease the frequency us-
ing the unused computation time.

Another possibility for reducing energy consumption at
the system level is to use the capability of the MCU to put
each single device in different working modes: each one
with well-known energy requirements. It is also possible to
put a device in a non working state and decide whether the
peripheral could work while the CPU is in the idle state.

3.2. Communication board

In a mobile node, a part from the electromechanical com-
ponents, the radio module is the component that usually
consumes most energy. When designing a communication
protocol for such networks, one must consider the main
sources of energy waste. In the following, we brie y de-
scribe some of them.

The rst source is idle listening, which is due to the en-
ergy wasted when listening to the channel to receive pos-
sible messages. The second source is collisions: when two
or more nodes try to send a message at the same time, some
collisions are experienced and the corrupted packets have to
be retransmitted, causing more energy consumption. This is
particularly true in carrier sense multiple access (CSMA)
systems. The third source is overhearing, occurring when a
node picks up packets that are not sent to it. Another source
is due to protocol overhead: simple protocols need less en-
ergy to operate. Some protocols introduce additional con-
trol packets (e.g., RTS/CTS packets in the IEEE 802.11 [1])
to solve the hidden node problem [12]. Such added control
packets consume additional energy.

The energy wasted during communication can also de-
pend on the particular approach used at the MAC-level. For
example, time division multi access (TDMA) protocols are
collision-free, therefore they do not have to consume energy
to retransmit corrupted packets. However, they are charac-
terized by poor scalability, high protocol overhead, and re-
quire to exchange additional information for clocks syn-
chronization.

OSPERT 2005

40

3 4 5 6 7 8 9 10

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t [sec]

I [
A

]

Figure 2. Current absorption per period in a
servomotor.

Transmission power control [8, 11] is useful to guaran-
tee network connectivity, manage density and allow spatial
reuse of radio channels. Moreover, minimizing transmis-
sion power can also indirectly reduce energy consumption
by reducing the channel contention and collision between
transmission nodes. Balancing density and connectivity net-
works maximize spatial reuse of the spectrum. The trans-
mission power control is often encapsulated in the MAC or
in the routing protocol.

3.3. Servomotors

In mobile robot systems, the energy consumed by mo-
tors is signi cantly higher than the one spent for process-
ing and communication. Hence, a careful management of
the motor power can remarkably improve the system life-
time. Servomotors are commonly adopted in robotic appli-
cations, since they are cheap and integrate reduction gears
and position control to simplify their usage. A servomotor
is controlled by modulating the duty cycle of a square wave
signal, where the duration of the active pulse de nes the an-
gular position of the shaft. The pulse period does not in u-
ence the shaft angular position, but affects the servo current
absorption, since the energy absorption starts at every pe-
riod and its duration depends both on the load and the pe-
riod. Figure 2 shows a typical current absorption in a servo-
motor within a control period.

To assess the behavior of the servo energy consumption,
we performed several tests on the Hitec HS-475HB servo-
motor described in Section 2.3. We carried out several ex-
periments by varying the control period and the load torque.
Figure 3 shows the consumed power as a function of the

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 15 20 25 30 35 40 45 50

period [ms]

P
 [

W
]

80%
70%
60%
50%
40%
30%
20%
10%

Figure 3. Power absorption per period in a
servomotor with different loads percentage
of the maximum load.

control period for different loads. It is interesting to notice
that for loads not exceeding 30% of the maximum value the
power consumed by the servo does not depend on the con-
trol period, while for higher loads it decreases with the con-
trol period.

Figure 4 shows the angular errors between the position
set-point and the real servo shaft position as a function of
the control period and for different applied torques. For
loads higher than 30% of the maximum torque value, the
servo is not able to keep the position set point, and the error
increases with the control period. However, such an error
can be predicted by estimating the exerted torque through
the absorbed current and can be corrected by using an ex-
ternal feedback loop.

On the servomotors side, power consumption can be con-
trolled at two different levels. At the application level, the
robot system can be driven to reach pre-de ned postures
that minimize the torques on the robot joints. This strat-
egy can be quite effective in multi-link robots with several
degrees of freedom, such a walking machines and anthro-
pomorphic manipulators. At the signal generation level, a
longer control period allows the driving hardware to main-
tain low-power states for longer time.

4. Kernel Support for Energy Management

This section describes the kernel infrastructure required
to support energy-aware strategies at the application level.
It consists of two parts: a set of mechanisms inside the ker-
nel that implement the methodologies described in the pre-
vious sections and a set of library functions that simplify
the user interaction. In the following, the rst part is re-

OSPERT 2005

41

0

10

20

30

40

50

60

10 15 20 25 30 35 40 45 50

period [ms]

an
g

le
 [

d
eg

re
e]

80%
70%
60%
50%
40%
30%
20%
10%

Figure 4. Shaft position errors with different
periods and loads percentage of the maxi-
mum load.

Power Manager API

Algorithm
Device DVS

Algorithm

CPU Manager
Low Level

Task Scheduler
(EDF)

CPU Manager

Dev nDev 2Dev 1

Device Manager

Figure 5. Block diagram of the Power Man-
ager.

ferred to as the Power Manager, while the second part is
referred to as the Power Management API. The main objec-
tive of the Power Manager is to achieve high ef cienc y to
reduce the overhead introduced in the system, whereas the
main goal of the Power Management API is to provide an
abstraction layer that allows the user to control the power
consumption of the different resources in a simple and uni-
form fashion. The Power Manager is responsible for select-
ing the most appropriate power states both for the CPU and
the peripheral devices.

A block diagram of the power management architecture
is illustrated in Figure 5. The blocks at the bottom repre-
sent the elements used for the interaction with the hardware,
while the top layer provides the application programming
interface (API) for interacting with the user.

� Blocks from Dev 1 to Dev n represent the low-level
drivers of each single peripheral that the Device Man-

ager uses to control the power states.
� The CPU Manager at the lower level is in charge of

managing the DVS capabilities of the processor work-
ing on the frequency-voltage table.

� The task scheduler interacts with the CPU Power Man-
ager through a set of functions invoked at known
scheduling events.

� The Device Manager controls the operating modes of
the peripherals in order to reduce the power consump-
tion at the system level while guaranteeing consistency
of both the operating system and the application. The
strategy adopted by the Device Manager is decided by
a speci c device algorithm, that can be changed by the
user.

� The Device Manager relies on the CPU Manager to in-
tegrate the CPU with all others peripherals. It could
implement different algorithms to reduce power con-
sumption and work as a bridge between the abstrac-
tion used at the higher level and the DVS mechanism
at the bottom layer.

� The set of library functions in the API layer allows the
application to interact with the power-management in-
frastructure in a simple and uniform fashion.

4.1. CPU Power Manager

The main goal of the CPU Power Manager is to select
the most appropriate voltage level and clock frequency in
the processor. The clock management is split into two lev-
els: a lower level related to the hardware and a higher level
related to the DVS algorithm. The lower level is in charge of
manipulating the fundamental CPU parameters, like clock
frequency and voltage level, so it is architecture-dependent,
while the higher level decides the time and the value of the
CPU parameters, so it depends on the DVS scheduling al-
gorithm.

Since each CPU is characterized by a different set of fre-
quencies and voltage levels, and not all possible combina-
tions are allowed, the set of frequency-voltage pairs sup-
ported by the CPU is stored in a table, as shown in Fig-
ure 1. Then, a set of kernel primitives allows the DVS algo-
rithm to retrieve some relevant information, such as the min-
imum voltage compatible with a given frequency, the maxi-
mum frequency consistent with a chosen voltage, or the nor-
malized speed (� � ������) corresponding to the selected
mode. Other primitives also allow reading and writing the
current frequency and voltage level, and managing the sys-
tem time by acting on the system tick.

To simplify the implementation of a power management
scheme for the CPU, the operating system also supplies a
set of hooks for executing speci c DVS functions upon the
occurrence of certain events. A list of most relevant events

OSPERT 2005

42

�� �� �� ��

�� 1
�� 2 4 6
�� 3 5 7 8

Table 1. Table storing the frequency-voltage
pairs allowed by the CPU.

that may require the intervention of the power manager is
reported below:

� System startup - This hook allows to setup the en-
vironment of the DVS algorithm and its initial state.
It can also be used to compute the working frequency
based on the task set parameters.

� Context switch - This hook is important whenever the
DVS algorithm has to modify the clock frequency as
a function of the scheduled task, or perform some re-
source reclaiming based on the unused computation
time.

� CPU idle - When the ready queue becomes empty, the
power manager could set the CPU in a low power con-
sumption mode until a task is activated or an interrupt
is raised.

� Wake-up - When the system exits from a power-
saving status, some action could be executed before
the kernel restarts.

� Power-Management Point - In some cases, hooks
may be explicitly inserted in the applications tasks
through a proper system call, to invoke speci c DVS
functions. For example, some algorithms proposed in
the literature [9] require to insert a function in the task
body to calculate the actual computation time with re-
spect to the worst-case one.

Finally, in some other cases, power management may
need to be executed at given time instants, hence the ker-
nel must provide a mechanism to activate a DVS function
by a timer. For example, this functionality is needed by the
Speed Modulation algorithm proposed by Bini et al. [6].

4.2. Device Power Manager

Reducing energy consumption at the system level is pos-
sible because most peripheral devices support various oper-
ating modes and the MCU has the capability of putting each
device in a sleep state. A problem is that some peripher-
als trash the current job when switched in low-consumption
states. For example the A/D converter loses the ongoing ac-
quisition and the UART does not listen to incoming data. To

reduce the power consumption without affecting the behav-
ior of tasks, a system-level coordination is required.

To support power management of peripheral devices at
the kernel level, a pstate type is de ned as an array with
size equal to the number of devices in the system. Each el-
ement of the array stores the power state of the peripheral,
where power states are represented by integers sorted by
power consumption.

Three pstate variables are de ned in the kernel:

� ���� stores the maximum number of different power
states each device can manage;

� � ��� stores the minimum power level required by
each device for the correct kernel operation.

� � ��� stores the actual power level set by the power
manager for each peripheral device.

Then, two arrays of pstate type are de ned for each
task �	 to express its requirements:

� �
��
	 stores the minimum power level for each device

required for the correct behavior of task � 	, while it is
running;

� �	��
	 stores the power levels requested by �	, when it

is not running.

It is worth observing that the proposed approach is gen-
eral enough to include the CPU in the set of devices used
by the task. In this case, the mapping between the power
state values inside the array and the real processor behav-
ior is performed by a function provided by the Power Man-
ager.

The arrays de ned above can be used in a static or dy-
namic fashion, depending on the maximum overhead that
can be tolerated in the system. If the overhead has to be min-
imized, the static approach is more suited, where all the val-
ues in the arrays are x ed and computed in the worst case.
Otherwise, each task can dynamically change these values
during execution, so allowing the power manager to reduce
the overall power consumption of the system. As an ex-
ample of dynamic behavior, a task could request a given
power level for the A/D converter only while the acqui-
sition is in progress, and then reset the value to zero. In
the static approach, the re-computation of all power lev-
els is needed only during a context switch, while in the dy-
namic mode the new power state for a device has to be com-
puted every time the running task modi es its power state
requirements. If �	 is the new active task and � is a speci c
device, the new value � ��� ��� is computed as the maxi-
mum between � ������, �
��

	 ��� and the maximum value
�	��
������ �� among all values �	��

� ��� for tasks different
than �	. That is:

� ��� ��� � ����� ������� �
��
� ���� �	��

������ ���

OSPERT 2005

43

where

�	��
������ �� � ���

�
��	��

� ��� � �� �� �	��

4.3. Power Management API

The interaction between the application and the power
management infrastructure occurs through a set of functions
that manipulate the set of pstate arrays. Every function is
implemented to work on a single device. The most impor-
tant functions perform the following tasks:

� Get the maximum power level allowed by the system
to the peripheral;

� Get the minimum power level required for the operat-
ing system consistency;

� Get the power level the device is actually using;
� Get the power level required by the task while it is run-

ning;
� Require a new power level for the device while the task

is in execution; the actual power level for that device
will be decided by the power manager based on all task
requirements.

� Get the power level required by the task while it is not
running;

� Require a new power level for the device while the task
is not running; the actual power level for that device
will be decided by the power manager based on all task
requirements.

� Get the power level required by all the other tasks
while not running;

There are also ve functions used to interact with the power-
management algorithms.

� Two of them are used to get/set parameters of the CPU
Manager to tune its behavior.

� Another function is needed to de ne a Power Manage-
ment Point, that must be explicitly inserted by the user
in the task body.

� The last two functions allow the user to get/set param-
eters of the Device Manager to tune its behavior.

5. Conclusions

In this paper we presented an integrated approach for
achieving energy management in wireless ad hoc networks
of mobile robots. We showed that signi cant energy saving
can only be obtained by a combined effort at different archi-
tecture levels. At the operating system level, speci c power-
aware algorithms can be adopted to set the appropriate oper-
ational mode to minimize energy consumption while guar-
anteeing the timing constraints. At the network level, node

transmission power can be tuned to guarantees a given de-
gree of connectivity and, at the application level, the control
strategies can trade performance with energy consumption,
so that the robot can switch to a different behavior to pro-
long its lifetime when the batteries are low, still performing
useful tasks.

We showed how the proposed techniques can be sup-
ported at the kernel level to implement e xible energy-
aware strategies on the robot resources and on the network.

As a future work, we plan to implement the proposed
strategies in the Erika kernel [7], that will run on the dsPIC
boards embedded in all robot units.

References

[1] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification. IEEE 1999.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejia Alvarez. De-
termining optimal processor speeds for periodic real-time
tasks with different power characteristics. In Proceedings of
the Euromicro Conference on Real-Time Systems, June 2001.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejia Alvarez.
Dynamic and aggressive scheduling techniques for power-
aware real-time systems. In Proceedings of the IEEE Real-
Time Systems Symposium, December 2001.

[4] L. Benini, D. Bruni, A. Macii, E. Macii, and M. Poncino.
Discharge current steering for battery lifetime optimization.
IEEE Transactions on Computers, 52(8):985–995, August
2003.

[5] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and
R. Scarsi. Discrete-time battery models for system-level low-
power design. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 9(5):630–640, October 2001.

[6] E. Bini, G. Buttazzo, and G. Lipari. Speed modulation in
energy-aware real-time systems. In IEEE Proceedings of the
Euromicro Conference on Real-Time Systems, July 2005.

[7] Evidence Srl. ERIKA Enterprise RTOS. URL:
http://www.evidence.eu.com.

[8] J. Heidemann and W. Ye. Energy Conservation in Sensor
Networks at the Link and Network Layers. Nirupama Bu-
lusu and Sanjay Jha (editors), 2005. Technical Report ISI-
TR-2004-599, USC/Information Sciences Institute, 2004.

[9] R. Melhem, N. AbouGhazaleh, H. Aydin, and D. Mossé.
Power Management Points in Power-Aware Real-Time Sys-
tems. R. Graybill and R. Melhem (editors), Plenum/Kluwer
Publishers, 2002.

[10] Microchip Technology Inc. dsPIC30F family reference man-
ual (DS70046C), 2004. URL: http://www.microchip.com.

[11] R. Ramanathan and R. Rosales-Hain. Topology control of
multihop wireless networks using transmit power adjust-
ment. In Proc. of the IEEE Infocom, March 2000.

[12] F. A. Tobagi and L. Kleinrock. Packet switching in ra-
dio channels: Part ii - the hidden terminal problem in car-
rier sense multiple-access modes and the busy-tone solution.
IEEE Transactions on Communication, 23(12):1417–1433,
December 1975.

OSPERT 2005

44

[13] T. van Dam and K. Langendoen. An adaptive energy-
ef cient mac protocol for wireless sensor networks. In Proc.
of the First ACM Conference on Embedded Networked Sen-
sor Systems (SenSys 2003), November 1993.

[14] L. van Hoesel and P. Havinga. A lightweight medium ac-
cess protocol (lmac) for wireless sensor networks: Reducing
preamble transmissions and transceiver state switches. In
Proc. of the 1st International Workshop on Networked Sens-
ing Systems, Tokyo, Japan, June 2004.

[15] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced cpu energy. IEEE Annual Foundations of Computer
Science, pages 374–382, 1995.

[16] W. Ye, J. Heidemann, and D. Estrin. Medium access control
with coordinated adaptive sleeping for wireless sensor net-
works. IEEE/ACM Transactions on Networking, 12(3):493–
506, June 2004.

[17] Y. Yu, R. Govindan, and D. Estrin. Geographical and en-
ergy aware routing: a recursive data dissemination protocol
for wireless sensor networks. Technical Report UCLA/CSD-
TR-01-0023, UCLA Computer Science Department, May
2001.

OSPERT 2005

45

OSPERT 2005

46

Variable-Rate QoS in the OS Network Subsystem∗

Hui Cheng, Xin Liu, and Steve Goddard
Department of Computer Science and Engineering

University of Nebraska — Lincoln
Lincoln, NE 68588-0115

{hcheng, lxin, goddard}@cse.unl.edu

Abstract

Many distributed applications need support for both real-
time computation and real-time communications because of
their sensitivity to delay and jitter. It therefore requires the
operating system to provide soft real-time support in the pro-
cessor and the network subsystems. In this work, we present
a network subsystem which can cooperate with any CPU
scheduler to provide network Quality of Service (QoS) to
distributed applications. This system, called VRE-NET, al-
lows applications to reserve bandwidth for the protocol pro-
cessing capacity of the network subsystem. The bandwidth
reservation can be adjusted according to different QoS re-
quirements. Since different applications may have different
execution patterns, it is infeasible to predict the resource re-
quirements in general. Instead, we provide an interface for
users to associate each application with a rate controller
that automatically adjusts the bandwidth reservation. We
also provide a default rate controller for typical multimedia
applications.

1 Introduction

In recent years, many new network applications have
emerged with QoS requirements. These applications, such
as distributed multimedia applications, need support for both
real-time computation and real-time communications be-
cause of their sensitivity to delay and jitter. In practice,a
distributed multimedia application needs to send and gather
real-time data across the network. To achieve an accept-
able performance, it should have sufficient CPU time to
code/decode frames. It also demands a certain amount of
network bandwidth. The demand varies according to dy-
namic QoS requirements. Finally, the application should ex-
ecute with a stable rate and with minimal jitter. It therefore

∗Supported, in part, by grants from the National Science Foundation
(EHS-0208619, CNS-0409382).

is becoming important for the operating system to provide
soft real-time support for these applications to acquire vari-
ous resources with timing constraints.

A conventional operating system usually separates the
scheduling of its subsystems. Each subsystem executes at
its own rate and is independent of each other. While they are
supposed to provide resources to user processes, none of the
subsystems, except the processor scheduler, know anything
about user processes. Thus it is hard for a conventional op-
erating system to appropriately allocate all resources to user
processes. Unfortunately, for a user process, insufficient
support of any subsystem could drastically degrade its per-
formance. For example, consider an online video-player and
a file transfer application running on a desktop. To guarantee
the performance of the video-player, we assign a higher pri-
ority to it than the file transfer application. However, since
the packets destined to the file transfer application arriveat a
much higher rate than the video-player, the network subsys-
tem processes more packets for the file transfer application
than for the video-player. It seems as though the network
subsystem assigns inverse priorities to the applications.As
a result, the video-player performs poorly even though it has
sufficient CPU time.

Users usually only have control over processor schedul-
ing. Conventional Unix/Linux systems provide thenice in-
terface to adjust a user process’s static priority. Many QoS-
supported CPU schedulers, such as BEST [4] and RBE [12],
were developed to satisfy the processor resource require-
ment of multimedia applications. Furthermore, some CPU-
schedulers, such as VRE [13, 14] and RBED [5], can auto-
matically adjust a user process’s CPU bandwidth according
to its dynamic QoS requirements. Therefore, it is becom-
ing easier for users to control processor scheduling, and the
important problem is to make the scheduling of other sub-
systems cooperate with the scheduling of the processor. The
challenges include: (1) The scheduling unit for processor
scheduling is different from other subsystems. For exam-
ple, the scheduling unit is a packet for network subsystems,
while the scheduling unit is a thread for processor schedul-

OSPERT 2005

47

ing. (2) Users seldom know the exact amount of resources
that other subsystems are expected to provide. (3) Even with
a stable processor bandwidth assignment, the requirements
for other resources may vary from time to time. It is impos-
sible for users to make the adjustments all by hand.

In this work, we provide a real-time solution by enabling
network subsystem scheduling to match CPU scheduling.
For distributed multimedia applications, CPU and network
bandwidth are the two most important resources. Moreover,
compared with the receipt of inbound packets, processing
of outbound packets turns out to be a trivial problem be-
cause user processes will not be blocked for sending pack-
ets. Therefore, we only consider the receiving part of the
network subsystem in this work.

We propose and implement a variable-rate scheduling
model for the OS network subsystem (VRE-NET). The
VRE-NET system allows tasks to specify bandwidth needs
and create virtual network channels, called VRE-NET
queues, with the assigned bandwidth for each task. Re-
maining tasks share a default queue. Packets in VRE-
NET queues have higher priority than packets in the default
queue. Therefore, the network subsystem processes packets
in VRE-NET queues according to bandwidth assignments
and processes packets in the default queue only when no
packet in VRE-NET queues is eligible to be processed. In
case the system is overloaded,i.e., the total amount of band-
width assignments is beyond which the network can pro-
vide, the network subsystem schedules packets in proportion
to bandwidth assignments for user processes. If packets of
a task arrive at a rate exceeding the bandwidth of the cor-
responding virtual network channel, they will be dropped
without further network processing.

However, the requirement of network bandwidth for a
task may vary from time to time and is hard to predict when
these changes will occur. Hence we introduce an automatic
rate adjustment mechanism in the VRE-NET system. An ap-
plication is associated with a rate controller, which period-
ically monitors the actual bandwidth consumed by the user
application. This value can be used to estimate the actual
network bandwidth requirement of the application. Thus,
the rate controller can make the bandwidth adjustments ac-
cording to this value. Here we make an assumption that an
application will suspend itself when it acquires excess re-
sources. This assumption is practical for most applications.
For example, if we setMPlayer, a popular multimedia player
on Linux, to play a movie at 30 frames per second, then it
will only execute with this rate, even when it controls the
whole processor and network bandwidth.

Note that when we talk about the bandwidth reservation
in this paper, we mean the reservation of the processing ca-
pacity of the network subsystem. That is, the VRE-NET
system can process incoming packets at a rate according to
the bandwidth assignment. It is not the bandwidth reserva-

tion over the actual network. However, for some network
protocols with flow control mechanisms, such as TCP, the
bandwidth reservation of the VRE-NET system can influ-
ence the network bandwidth from the sender to the receiver,
as we will see in Section 4.3.

Many QoS-supported network subsystem models have
been developed to support QoS-sensitive applications. The
VRE-NET model offers several advantages over these mod-
els: VRE-NET is easily portable to systems that do not sup-
port kernel threads; provides an interface for users to asso-
ciate applications with user-customized rate controllersthat
automatically adjust the bandwidth reservation; and can eas-
ily cooperate with any CPU scheduler.

A full discussion of related work is given in Section 2.
The architecture and implementation of the VRE-NET sys-
tem is presented in Section 3. Section 4 describes how we
evaluated our system and presents the results. Section 5
presents our conclusions and describes future work.

2 Related Work

In [7], Druschel and Banga presented the LRP network
subsystem for addressing the issues of scheduling anoma-
lies in a monolithic Unix operating system. The network
interface demultiplexes incoming packets according to their
destination socket, and places the packet directly on the ap-
propriate receive queue. Receiver protocol processing is per-
formed at the priority of the receiving process. For UDP
packets, the protocol processing does not occur until the ap-
plication requests the packet in a receive system call. For
TCP packets, a kernel thread is created for each receiving
process for the protocol processing. This thread is sched-
uled at its process’s priority and its CPU usage is charged to
its process. Later, the LRP model is used in resource con-
tainers [2] and QLinux [19], where processes can be grouped
together. In these cases, the LRP charges resource usage to
corresponding resource containers or classes.

A few limitations of LRP has been identified in [6] and
[3]. The limitations include: (1) It is hard to port the LRP
to operating systems that do not support kernel threads; (2)
The interdependencies between the resource container and
the scheduler is very high. Although LRP and resource con-
tainers could work well with time-sharing schedulers, it is
not clear how the respective techniques can be used in con-
junction with real-time or proportional-share schedulers. (3)
LRP requires significant changes to the OS kernel.

In [8], Ghosh and Rajkumar proposed the NetR real-time
network subsystem based on Linux/RK [16, 17]. The NetR
subsystem introduces a “receiving network reserve” mecha-
nism, which lets the application control how many packets
should be processed in a period. It also introduced a new
kernel thread that replaces the network bottom half and is
thereby dedicated to executing protocol processing of arriv-

OSPERT 2005

48

ing packets. The kernel thread handles packets of different
reservations usingDeadline-Monotonicpriorities, which as-
signs higher priorities to reservations with shorter relative
deadlines.

However, NetR may also present significant difficulties.
First, it relies on aresource kernel[16, 17], which is not
available in most operating systems. It also requires the
support of kernel threads, as LRP does. Therefore, it has
the same portability problem as LRP. Second, it may cause
scheduling anomalies for UDP applications. Consider an ap-
plication that uses non-blocking socket I/O to receive UDP
packets. In this case, packets cannot be processed at a rate at
which applications are prepared to receive them, no matter
how priorities are assigned.

From our perspective, the most relevant related work is
the work done within the context of the proportional share
scheduling of operating system services by Jeffay et al.[11].
While previous operating system work (e.g., [18, 10, 15]) in
proportional share resource allocation considered only the
problem of scheduling user processes, [11] addressed the
issue of real-time scheduling of internal operating system
activities, especially the network protocol processing. The
developers were also concerned with the impact of network
processing and explicitly scheduled the network processing
activity in proportion to the rate at which the process is ex-
pected to receive packets. The protocol processing makes
progress at the sum of the rates of all processes that are
currently receiving packets from the network. Furthermore,
the protocol processing activity internally sub-allocates its
quantum to packet processing by assigning eligible times
and deadlines to packets based on the weights of the user
process that will receive the packet.

Several limitations also exist in the work by Jeffay et al.
First, kernel activities may be delayed to ensure that user
processes execute for a full quantum, which may cause over-
flow of the input queue. Second, in this model the interrupt
routine consists of a loop that removes packets until the input
queue is empty or until a maximum number of packets has
been processed. However, the “maximum number” is hard
to caliberate. The authors determined it by hand timing the
loops. Obviously, this value varies for different operating
systems or protocols.

Our work differs from these works in several respects.

1. Unlike the LRP and NetR network subsystem, the
VRE-NET subsystem does not use a kernel thread to
replace the network bottom half (soft interrupt). There-
fore, it is easy to port the VRE-NET subsystem to other
operating systems.

2. The VRE-NET system does not rely on a specific
scheduler. It is transparent to and could cooperate with
any CPU scheduler to provide QoS to applications. The
CPU scheduler determines the execution rate of a user

process. The rate controller will automatically adjust
the network bandwidth of the process to match the rate
of packets consumption.

3. The VRE-NET system supports both blocking and non-
blocking socket I/O. It intercepts system calls that are
used to receive data,e.g. sysrecvfrom; records the vol-
ume of data intentionally read by the user process and
only processes the packets at the rate that the process is
prepared to receive.

4. The VRE-NET system allows applications to specify
the exact bandwidth requirements rather than using
weights or priorities. The bandwidth requirement is
more straightforward and is only related to the appli-
cation’s QoS requirements, while the weight will be af-
fected by other factors, such as other processes and the
host computer environment.

Due to the similarity of objectives in [11] and this work,
it would be nice to conduct experiments to test our VRE-
NET system against the proportional-share scheduling sys-
tem by Jeffay et al. Unfortunately, we were unable to get the
code for the proportional-share scheduling system described
in [11], and we were unable to reproduce their results.

3 The VRE Network Subsystem

In conventional Unix/Linux network subsystems, the ar-
rival of a network packet is signaled by an interrupt. The in-
terrupt handler then encapsulates the packet in a buffer and
queues the packet in a receive queue. Protocol processing of
received packets typically occurs in the context of a software
interrupt.

Interrupt-driven network subsystems can provide low
overhead and good latency. However, it only provides best-
effort scheduling and cannot guarantee applications will re-
ceive a large enough share of the network bandwidth to meet
deadline or timing constraints. In addition, incoming pack-
ets are typically processed in a FIFO manner, which provides
no isolation between different processes. These systems are
not designed to provide applications with QoS guarantees
for access to system resources. This leads to poor perfor-
mance of real-time/multimedia applications. Similar prob-
lems also arise in many non-Unix operating systems.

In the VRE-NET system, the receive queue is replaced
with several VRE-NET queues and a default queue accord-
ing to the configuration of the system. As stated in Sec-
tion 1, we leave the sending mechanism unmodified because
the user process will not be blocked by sending packets. The
incoming packets are queued per process. Packets destined
to other processes will be put in the default queue. We bind
the VRE-NET queue with the process to provide QoS guar-
antees to multimedia applications. Figure 1 illustrates the
architecture of the VRE-NET system.

OSPERT 2005

49

IP

Network Device

Interrupt handler

socket
buffer

socket
buffer

socket
buffer

Processes

transmit queue
default queueVRE queue

VRE Schedulerrate controller

protocol processing

Figure 1. VRE-NET System Architecture

Each VRE-NET queue is assigned a bandwidth and is
treated as a real-time task. A real-time task is a task with
timing constraints. Each instance of the task is called a job,
which should complete before its deadline. Here, the trans-
mission of each packet is treated as a job of the task. Each
job is specified by the tuple(v, d) of integer constants. The
parameterv denotes thevirtual release timeof the job and
the parameterd denotes thedeadlineof the job. The packets
with the earliest deadline and with the virtual release time
at or before the current system time will be chosen by the
VRE network scheduler for protocol processing. The con-
cept of the VRE model and virtual release time is presented
in Sections 3.1.1 and 3.1.2.

We also provide a rate adjustment mechanism in our sys-
tem. In practice, applications can dynamically change their
execution rates, and therefore change their resource require-
ments, including network bandwidth. Our schema is: an
application is assigned an initial bandwidth and associated
with a rate controller to dynamically adjust the bandwidth.If
the process requires more bandwidth than the assigned band-
width, the rate controller will increase the bandwidth until
the user process requires no more bandwidth. On the other
hand, if the current bandwidth assignment is more than nec-
essary, the rate controller will re-allocate the task’s excess
bandwidth to other tasks. The detailed strategy to estimate
the bandwidth requirements is presented in Section 3.2.

3.1 VRE-NET Network Subsystem Scheduler

VRE-NET is based on the VRE QoS-Supported CPU
scheduling model proposed by Goddard and Liu[9]. The
VRE model supports both variable rate tasks and non-real-
time tasks. Variable rate tasks reserve a specific execution
rate and dynamically adjust the rate. Non-real-time tasks
proportionally share the remaining processor capacity as if
they were scheduled by a time-sharing system.

Interestingly, the VRE model is well-suited for the
scheduling of network processing activity. Real-time tasks
reserve a specific bandwidth and associate it with a VRE-
NET queue. Non-real-time tasks share the remaining band-
width and the default input queue. The arrival of packets
can be considered releases of real-time jobs. The actual ar-
rival rates of packets is unknown, but the expected arrival
rates can be calculated with the expected bandwidth and sin-
gle packet size. In addition, the expected bandwidth can be
adjusted according to dynamic QoS requirements.

3.1.1 Variable-Rate Scheduling Model

A VRE task is described by four parameters
(xi(t), yi(t), ci(t), di(t)), each of which is a variable
that changes over timet. yi(t) is the inteval in which
xi(t) jobs are expected to be released;ci(t) is the WCET;
di(t) is the relative deadline, which is typically equal to
the periodyi(t). (We assumedi(t) = yi(t) in this work.)
To effect a rate change, a VRE task can change either its
execution time,ci(t), or its job release rate,(xi(t), yi(t)).
The deadline of a jobj of VRE taskTi can be represented
by Equation (1)

Di(j) =

{

tij + di(t) if 1 ≤ j ≤ xi(t)

max(tij + di(t), Di(j − xi(t)) + yi(t)) if j > xi(t)

(1)

wheretij is the release time of jobJij . All real-time tasks
are scheduled using theearliest deadline first(EDF) algo-
rithm. The second line of Equation (1) prevents the proces-
sor from being saturated by early job releases. A VRE task
set is schedulable if there exists a schedule such that each job
can complete before its deadline. See [9] for more details.
The scheduling of network packet processing using the VRE
model is presented in Section 3.1.3.

3.1.2 Virtual Release Time

One problem with the VRE task model is bad response times
in some situations, even when all deadlines are met. A real-
time task with early job releases and without the competition
from other real-time tasks will keep executing and its dead-
lines will rapidly increase. If another real-time task joins the
system, the first real-time task will stop and wait for the new
task until the new task’s deadline becomes larger than the
first one’s. The waiting period could be very long for the
first task. For users, the first task will appear non-responsive
in this period. Note that the VRE schedule is still correct
because all tasks meet deadlines.

Although thewaiting perioddoes not influence the cor-
rectness of real-time CPU scheduling, it is not acceptable
in network scheduling. An arrival packet is treated as a re-
leased real-time job and is the basic scheduling unit for a net-
work scheduler. If a packet has been pending for processing

OSPERT 2005

50

for a long time, the sender may think that the packet has been
lost during the transmission. And worse, for some network
protocols, such as TCP, the sender will re-send the packet if
it does not receive the acknowledgement in time. This may
increase network congestion. In addition, the TCP connec-
tion will be disconnected if the sender still does not receive
the acknowledgement after re-sending a certain number of
packets.

To overcome the problem of bad response times, we in-
troduce thevirtual release timeconcept to the VRE-NET
system. Each real-time job,i.e., the packet to be processed,
is assigned a virtual release time. Only when the system
time reaches the virtual release time, is this job eligible to be
scheduled. Using Equation (1) to define the absolute dead-
line, Di(j), of a real-time jobj of taskTi, its virtual release
time is given by:

vi(j) = Di(j) − di(t) (2)

We claim that the introduction of avirtual release time
will not harm the schedulability of a VRE system. The
proof of this conclusion is beyond the scope of this work but
is intuitively obvious since thevirtual release timesimply
prevents jobs(packets) from being processed at a rate faster
than the current rate expected. Thus the tasks in this system
run smoothly and have good response times. For the VRE-
NET system, thevirtual release timeenables the VRE-NET
scheduler to process packets at a stable rate. This is rather
important to network protocols that have their own conges-
tion control mechanisms. For example, a sender and a re-
ceiver of a TCP connection typically exchange messages to
find an ideal rate to transmit packets. If the network subsys-
tem holds some packets too long, the sender would think
that the packets have been lost and would slow down its
sending rate. While if the network subsystem quickly pro-
cesses packets, the sender may speed up. This may introduce
more jitter in the network transmission and cause a schedul-
ing anomaly. An example of virtual release time is shown in
Figure 2.

3.1.3 Packet Scheduling

The VRE-NET scheduler lays between the network device
interrupt handler and the software interrupt handler, which
does the IP processing for each packet. The task of the
scheduler is to choose a packet to be processed. The VRE-
NET system records the arrival time for each packet, and
calculates the virtual release time and deadline of the packet.
It always chooses the packet with the earliest deadline and a
virtual release time at or before the current system time.

A VRE-NET queue can be considered a VRE task de-
scribed as(1, pi(t), pi(t), bi(t)), which means 1 packet of
the queue will be processed every period of lengthpi(t), and
the bandwidth of the queue isbi(t). If the actual arrival time

1
2

3

1 2 3

4
5
6

4 5 6

1 2 3 4 5 6

packets
arrive

packets
arrive

(a)

(b)

virtual release time deadline

0t 1t
2t

1 2 3 4 5 6
(d)

1 2 3 4 5 6
(c)

0t 1t
2t

Figure 2. Packets arrive at t0, t1 and t2. (a)
shows how the VRE-NET system processes
the packets with qi(t) = 0 and (b) shows the vir-
tual release time and deadline for each packet
in (a). (c) shows how the VRE-NET system
processes the packets with qi(t) > 0 and (d)
shows the virtual release time and deadline
for each packet in (c)

of a packet isai(t), the size of the packet issi(t), and the
deadline of the previous packet of the same process isD′

i(t),
then the relative deadlinepi(t) of this packet is given by:

pi(t) = si(t)/bi(t)

The deadlineD of the packet is given by:

Di(t) =

{

ai(t) + pi(t) if ai(t) ≥ D′

i(t) + qi(t)
D′

i(t) + pi(t) if ai(t) < D′

i(t) + qi(t)

whereqi(t) is a time interval to deal with network jitter. In
practice, packets may arrive at a VRE-NET queue in bursts
separated by short idle periods. In this case, the reserved
bandwidth may not be fully utilized as shown in Figure 2(a).
Thus, theqi(t) parameter is used to reserve an amount of
previously unused bandwidth for future packets. It makes
the network bandwidth reservation more flexible and accu-
rate, as shown in Figure 2(c). The value ofqi(t) is a tradeoff.
While a small value cannot overcome the problem caused
by network jitter, a large value may mistakenly reserve too
much previously unused bandwidth and pose high work-
loads to the network subsystem. In our implementation, we
let qi(t) = 10× pi(t) and get good results, as shown in Sec-
tion 4. The virtual release timevi(t) of the packet is given
by:

vi(t) = Di(t) − pi(t)

OSPERT 2005

51

A system interface routineset vrenetparamsis used to
assign and adjust a real-time task’s bandwidth reservation.
The following system call assigns the bandwidth of process
pid to 4,000 kbps.

set vrenetparams(pid,4000)
The VRE-NET scheduler is triggered in two cases: (1)

when the network device interrupt handler enqueues a packet
to a queue, the VRE-NET scheduler will be invoked when
there is no other task of higher priority; (2) if all of the first
packets of queues are not eligible to be processed,i.e., their
virtual release time is larger than the current system time
T , then the VRE-NET scheduler sets a timer with a expira-
tion period ofmin(vi(t)− T) and re-schedules at that time,
wherevi(t) is the virtual release time of the first packet of a
VRE-NET queue.

3.2 VRE-NET Rate Controller

An application may dynamically change its requirement
for network bandwidth from time to time. It follows that
the reservation of bandwidth should be changed accordingly.
However, we cannot expect users to make the adjustments
all by hand since the adjustments might be too frequent and
the rules might be too complicated. Thus, we introduce the
rate controller to automatically accomplish the bandwidth
adjustments.

In practice, different applications can have different exe-
cution patterns. It is infeasible to construct a single general-
purpose rate controller. Thus, we provide an interface for
users to implement customized rate controllers. Each ap-
plication can be assigned a specified rate controller. Mean-
while, we provide a default VRE-NET rate controller. As
previously stated, we make the assumption that an applica-
tion will suspend itself when it acquires excess resources.
The assumption is also valid with QoS-supported CPU
schedulers, which usually specify an execution rate or re-
serve a processor bandwidth for an application. The appli-
cation cannot consume excess resources with the limitation
of the processor bandwidth or the specified execution rate.

Let brq denote the bandwidth requirement of the user
process. The rate controller should keep the bandwidth
reservationbrv close to the bandwidth requirementbrq, i.e.,
|brv − brq| ≤ ε. Our approach to bandwidth reservation is
not based on traditional control theory. The primary reason
for this is that the target set pointbrq is not known in ad-
vance.

Instead, the rate controller works by periodically com-
paring the current bandwidth reservationbrv with the actual
bandwidth consumptionbc of the user process. We modify
the system calls that are used to receive packets to calcu-
late the volume of data consumed by the process. Theoreti-
cally, the bandwidth consumed can exceed neither the band-
width reserved nor the bandwidth required,i.e., bc ≤ brv

and bc ≤ brq. The rate controller estimatesbrq with the
following observation: given a sufficient bandwidth reserva-
tion, the user process can consume at most the bandwidth
it requires; given an insufficient bandwidth reservation, the
user process consumes all the bandwidth reserved. That is,
if brv > bc then bc = brq. Therefore, the rate controller
works by keepingbrv > bc andbrv − bc ≤ ε. There are
three possible cases at runtime,

1. The bandwidth consumed is equal to the bandwidth re-
served,i.e., bc = brv. In this case, the rate controller
cannot estimatebrq. Thus the rate controller needs to
increase the bandwidth reservation.

2. The bandwidth consumed is a little lower than the band-
width reserved,i.e., brv − ε ≤ bc < brv. In this case,
brq = bc andbrv − brq ≤ ε. This state is considered a
stable statefor the rate controller.

3. The bandwidth consumed is much lower than the band-
width reserved,i.e., bc < brv − ε. In this case, the rate
controller reserved too much bandwidth for the process.
The rate controller will decrease the bandwidth reser-
vation to a level that is a little higher than the current
bandwidth consumption. In other words, the rate con-
troller will try to achieve thestable stateby adjusting
the bandwidth assignment.

4 Evaluation

In this section, we present experiments designed to eval-
uate the effectiveness of the VRE-NET network subsystem.
The implementation of the VRE-NET network scheduler
was done in the Linux 2.6.0 kernel. A default rate controller
was implemented as a loadable module. We compare the
performance of the Linux system with and without the VRE-
NET network subsystem. In all experiments, the standard
Linux 2.6 CPU scheduler is used to schedule processes. All
data was collected on AMD Athlon workstations. The work-
stations are equipped with 1.0GHz CPU, 256MB of memory
and run Linux 2.6.0.

Our experiments can be partitioned into four categories:
the overhead of the VRE-NET system; the reservation of
network bandwidth for specific tasks; the isolation of differ-
ent tasks; and automatic bandwidth adjustment. We repeated
each experiment 5 times and present the mean value. The
repetition of 5 times is enough because the variation of the
results was small. We selectedMplayer as the QoS sensi-
tive application. During the experiments,Mplayer runs on
a client machine and decodes a video file – a 3D PC game
demo – from a Web Server using http protocol.

OSPERT 2005

52

UDP TCP
Processing Time without VRE-NET 5538.815 7299.345
Processing Time with VRE-NET 5808.631 7569.161
Overhead of Demultiplexing 72.792 72.792
Overhead of Scheduling 197.024 197.024
Overhead% 4.9% 3.7%

Table 1. The overhead of the VRE-NET system.
The unit is nanosecond per packet.

4.1 Overhead Measurements

The first experiment measured the overhead of the VRE-
NET system. The overhead comes from two components of
the VRE-NET system: (1) the early demultiplexing module,
and (2) the VRE-NET packet scheduler.

For this experiment, we first measured the protocol pro-
cessing time for a packet in the original Linux network sub-
system. The processing time is considered from the moment
that the network interrupt handler is invoked to process a
packet to the moment that the packet is put into a user pro-
cess’s socket buffer. We connected two PCs running Linux
2.6.0 via a 100Mbps Ethernet hub. An application running
on one PC sent packets to an application on another PC. We
measured the time for the original network subsystem pro-
cessing 6,000 UDP/TCP packets. The average processing
time for a UDP/TCP packet is presented in Table 1.

With the baseline established, we next measured the over-
head for the early-demultiplexing and network scheduling in
the VRE-NET system. The overhead is independent of the
protocol type of a packet because the demultiplexer and the
network scheduler do almost the same calculations for TCP
and UDP packets. As before, we measured the overhead
for 6,000 packets, and the average overhead for a UDP/TCP
packet is presented in Table 1. The overhead percentage is
calculated with Equation (3). Note that these values may
vary in different environments.

Overhead% =
Overhead of Demultiplexing+ Overhead of Scheduling

Processing Time without VRE-NET
(3)

As shown in Table 1, the VRE-NET system causes an
overhead of 4.9% for procesing a UDP packet and an over-
head of 3.7% for processing a TCP packet. The overhead
only affects the CPU time that is used to process incoming
packets. Thus the overhead on the whole system should be
far less than the 4.9% and 3.7%. For example, we ran a send-
ing application and a receiving application on the original
Linux in this experiment senario. The sending application
sent UDP packets with a size of 400 Bytes at a uniform rate
of 30,000 pkts/s to the receiving application. The throughput
was around 96Mbps. We observed that the receiving side
used around 16% CPU time in protocol processing. That
means, if the applications were running on the VRE-NET

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

specified mplayer bandwidth (kbps)

re
al

 b
an

dw
id

th
 (

kb
ps

)

mplayer bandwidth in VRE−NET system
mplayer bandwidth in IDEAL system

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1

2

3

4

5

6

7

8

9

10
x 10

4

specified ftp bandwidth (kbps)

re
al

 b
an

dw
id

th
 (

kb
ps

)

ftp bandwidth in VRE−NET system
ftp bandwidth in IDEAL system

Figure 3. The actual bandwidth under differ-
ent bandwidth reservations, compared to the
ideal situation in which the actual bandwidth
is equal to reserved bandwidth.

system, the overhead of the VRE-NET system put on the
whole system should be16%×4.9% = 0.78%. We repeated
the experiment on the VRE-NET system. The receiving ap-
plication was assigned a bandwidth of 100Mbps. The result
showed that the receiving side used around 16.8% CPU time
in protocol processing, which verified our estimate. Con-
sidering that the VRE-NET system can provide QoS to dis-
tributed applications, we claim that the overhead is accept-
able.

4.2 Bandwidth Reservation

The purpose of this experiment was to show the effec-
tiveness of the bandwidth reservation mechanism of the
VRE-NET system. The experimental setup comprised of
a client, a HTTP server and a Ftp server. The three hosts
are connected via 100Mbps ethernet. In the first experiment,
MPlayer read data from the Web server and played videos
on the client host. We assigned different bandwidth reser-
vations toMPlayerand recorded the actual bandwidth. The

OSPERT 2005

53

second experiment was the same as the first one except that
we ran a ftp application to download a 1GB file from a Ftp
server, which needs a much higher bandwidth thanMPlayer.

As shown in Figure 3, the actual bandwidth closely ap-
proximates the assigned bandwidth in the VRE-NET system.
ForMPlayer, we specified it to decode frames at 30fps. The
actual bandwidth remained unchanged when the assigned
bandwidth was larger than around 5,300kbps, which was the
maximum bandwidth thatMPlayer needs to execute at 30
fps. For the file transfer application, the actual bandwidth
turned out to be unchanged around 93,000 kbps, which was
the maximum bandwidth that the 100Mbps network can pro-
vide. Figure 3 shows that the bandwidth reservation is accu-
rate.

We can see from Figure 3 that the bandwidth reservation
is less accurate when the specified bandwidth is higher. This
inaccuracy comes from the resolution of the kernel clock.
The Linux kernel creates a default kernel clock with 1 mil-
lisecond resolution, but the packets may arrive at a rate much
higher than 1,000 packets per second. The precision af-
forded by the kernel clock is insufficient to execute network
scheduling. However, the incoming packets are kept in the
VRE-NET input queues and can be processed in batches.
Therefore this inaccuracy is bounded, as shown in Figure 3.
Of course, a higher resolution clock can be used if necessary
to achieve a tighter bound of the allocation error.

This experiment also shows that the performance of
MPlayer is proportional to the bandwidth assignment, un-
til it gets enough bandwidth. As illustrated in Figure 4,
frames per secondincreases linearly with the bandwidth as-
signment. It also verifies our previous assumption that the
application would suspend itself when it acquires excess re-
sources.

4.3 Isolation

This experiment was on isolation of incoming streams.
The experimental setup was the same as the previous ex-
periment except that we used 10Mbps ethernet to make the
Ftp andMPlayer contend for network bandwidth simulta-
neously. To establish an unmodified Linux baseline, we first
ran our applications on a unmodified Linux 2.6.0 kernel. The
total incoming rate was around 8,000 kbps.MPlayer de-
coded frames at 13.4 to 15.0 fps, which is much lower than
the specified rate of 30.0 fps. The limited network band-
width cannot provide sufficient bandwidth for both applica-
tions and thus the file transfer application seriously affected
the performance ofMPlayer.

With the baseline established, we ran the same applica-
tions on the modified VRE-NET system. We assigned a
total of 7,500 kbps bandwidth to the two applications and
the remaining bandwidth to other communications. Note
that if we assign a capacity too large for the two steams,

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
5

10

15

20

25

30

specified mplayer bandwidth (kbps)

fr
am

es
 p

er
 s

ec
on

d

without Ftp
with Ftp

Figure 4. The Performance of MPlayer
with/without the influence of Ftp application.

BW of Mplayer(kbps) BW of FTP(kbps) FPS
1000 6500 5.85
1500 6000 8.71
2000 5500 11.65
2500 5000 14.50
3000 4500 17.33
3500 4000 20.22
4000 3500 23.00
4500 3000 25.90
5000 2500 28.46
5300 2200 30.00
5500 2000 30.00

Table 2. MPlayer and Ftp application runs on
the VRE-NET system at the same time.

the VRE-NET system will schedule packets in proportion
to their bandwidth assignments. These results are given in
Table 2. MPlayer performed better and better when we as-
signed more and more bandwidth to it. Finally it achieved
30 fps when the file transfer application was running at the
same time, but with only 2,200 kbps bandwidth. Figure 4
also illustrates the effectiveness of the isolation mechanism
of the VRE-NET system. The curve that represents the per-
formance ofMPlayer without any influence of other appli-
cations and the curve that represents data in Table 2 are al-
most completely overlapped, which verifies that the VRE-
NET system can provide isolation for user applications.

4.4 Rate Controller

The last experiment was on the rate controller. The ex-
perimental setup was the same as the second experiment.
We assigned an initial bandwidth toMPlayerand associated
a rate controller with it. The rate controller monitored the
current bandwidth and estimated the real bandwidth require-
ments every 2 seconds.

OSPERT 2005

54

0 10 20 30 40 50 60 70 80 90 100 110
0

1000

2000

3000

4000

5000

6000

Monitor Period

A
ut

om
at

ic
 B

an
dw

id
th

 A
ss

ig
nm

en
t

MPlayer

0 10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

Monitor Period

F
ra

m
es

 P
er

 S
ec

on
d

MPlayer

Figure 5. Automatic bandwidth adjustments
for MPlayerwith a low initial bandwidth assign-
ment. The specified playback speed was 20
fps.

First we specifiedMPlayer to decode frames at 20 fps,
which required a bandwidth of around 3,550 kbps. We as-
signed an initial bandwidth of 1,000 kbps toMPlayer. As
shown in Figure 5(a), the rate controller could automatically
find the required bandwidths forMPlayer and reserved a
bandwidth of 3,662 kbps, which is a little higher than the
actual bandwidth requirement of 3,550 kbps. This is asta-
ble statefor the rate controller as we stated in Section 3.2.
We also monitored the performance ofMPlayerevery 2 sec-
onds. As shown in Figure 5(b),MPlayer ran at 20 fps after
the rate controller achieved thestable state.

Next we specifiedMPlayer to decode frames at 30 fps to
simulate a higher level of QoS requirement. It follows that
MPlayerdemanded more bandwidth. According to Table 2,
the actual bandwidth requirement forMPlayer running at
30fps is around 5,300 kbps. As shown in Figure 6, the rate
controller automatically adjusted the bandwidth assignment
from 1,000 kbps to 5,392 KBPS, which is enough for the
bandwidth demand ofMPlayer.

We also specifiedMPLayer to decode frames at 20 fps

0 10 20 30 40 50 60 70 80 90 100 110
0

1000

2000

3000

4000

5000

6000

7000

Monitor Period

A
ut

om
at

ic
 B

an
dw

id
th

 A
ss

ig
nm

en
t

MPlayer

Figure 6. MPlayer with initial bandwidth as-
signment of 1,000 kbps. The specified play-
back speed was 30 fps.

and assigned an initial bandwidth of 5,000 kbps to it. The
initial bandwidth assignment is much higher than the actual
requirement of bandwidth of around 3,550 kbps. The rate
controller, however, automatically reserved a bandwidth of
3,650kbps forMPlayer. The bandwidth reservation is a lit-
tle higher than the actual bandwidth requirement and is con-
sidered astable statefor the rate controller. Due to space
limitations, a figure showing these results is not presented.

5 Conclusion

QoS sensitive applications, typically multimedia appli-
cations, call for the enhancement of conventional operat-
ing systems. In this paper, we investigate the scheduling
problem of the conventional interrupt-driven network sub-
system and present the VRE-NET system, an adaptive QoS-
supported network subsystem model. The VRE-NET sys-
tem employs three key techniques: the per-process early de-
multiplexing, the network subsystem scheduler based on the
VRE model, and a rate controller. In addition, we use avir-
tual release timein the VRE-NET system to make it suitable
for the network subsystem. Together, these mechanisms en-
sure a fair, predictable allocation of network bandwidth.

The implementation is done on the Linux 2.6.0 kernel.
The rate controller is implemented as a loadable module
that can be customized by users for different application re-
quirements. We also provide a default rate controller suit-
able for multimedia applications. Our experiments show
the effectiveness of the VRE-NET system. This work pro-
vides a foundation for our future work to construct a loosely
structured operating system, in which an application could
reserve processor, network and disk bandwidths. More-
over, these bandwidth reservations could be automatically
adjusted to match each other according to different QoS re-

OSPERT 2005

55

quirements.

References

[1] Abeni, L., Buttazzo, G., “Integrating Multimedia App-
plications in Hard Real-Time Systems,”Proc. IEEE
Real-Time Systems Symp., Madrid, Spain, Dec. 1998.

[2] Banga, G., Druschel, P., and Mogul, J.C., “Resource
Containers: A New Facility for Resource Management
in Server Systems.”In Proc. of the 3rd USENIX Sym-
posium on Operating Systems Design and Implemen-
tation,pp. 45–58, New Orleans, LA, February 1999.

[3] Bavier, A., Voigt, T., Wawrzoniak, M., Peterson, L.,
and Gunningberg, P., “SILK: Scout Paths in the Linux
Kernel,” Technical Report 2002-009, Department of
Information Technology, Uppsala University, Uppsala
Sweden, 2002

[4] Banachowski, S., and Brandt, S., “The BEST scheduler
for integrated processing of best-effort and soft real-
time processes,”in Proceedings of Multimedia Com-
puting and Networking 2002 (MMCN 02)., pp. 46–60,
Jan. 2002.

[5] Brandt, S., Banachowski, S., Lin, C., and Bisson, T.,
“Dynamic Integrated Scheduling of Hard Real-Time,
Soft Real-Time and Non-Real-Time Processes,”In Pro-
ceedings of IEEE International Real-Time Systems
Symposium,Dec. 2003.

[6] Brustoloni, J., Gabber, E., Silberchatz, A., and Singh,
A., “Signaled Recerver Processing”,Proceedings of
the USENIX 2000 Annual Technical Conference,June,
2000.

[7] Druschel, P., Banga, G., “ Lazy Receiver Processing: A
Network Subsystem Architecture for Server systems”,
Usenix Symposium On Operating System Design and
Implementation, October 1996, pp. 261-275.

[8] Ghosh,S., Rajkumar,R.,“ Resource Management of OS
Network Subsystem,”5th IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Com-
puting (ISORC) 2002, Washington, D.C.

[9] Goddard, S., Liu, X., “A Variable Rate Execution
Model,” in Proceedings of the 16th Euromicro Confer-
ence on Real-Time Systems,Catania, Italy, July 2004.

[10] Goyal, P., Guo H, X., Vin, M., “A Hierarchical CPU
Scheduler for Multimedia Operating Systems,”Pro-
ceedings of 2nd Symposium on Operating System De-
sign and Implementation (OSDI’96),Seattle, WA,
pages 107-122, October 1996.

[11] Jeffay, K., Smith, F., Moorthy, A., Anderson, J., “Pro-
portional Share Scheduling of Operating System Ser-
vices for Real-Time Applications,”In Proceedings of
IEEE Real-Time Systems Symposium,Dec. 1998.

[12] Jeffay, K., Goddard, S., “A Theory of Rate-Based Exe-
cution,” Proceedings of the IEEE Real-Time Systems
Symposium,Phoenix, Arizona, December 1999, PP.
304-314.

[13] Liu, X., Goddard, S., “Scheduling Legacy Multimedia
Applications,” Journal of Systems and Software,July
2004.

[14] Liu, X., Goddard, S., “Supporting Dynamic QoS in
Linux,” Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium,
Toronto, Canada, May 2004.

[15] Nieh, J., Lam, M., “The Design, Implementation and
Evaluation of SMART: A Scheduler for Multime-
dia Applications,”Proc. of the 16th ACM Symposium
on Operating Systems Principles,Saint-Mal̂o, France,
Oct. 1997, pp. 184-197.

[16] Oikawa, S., Rajkumar, R., “Portable RK: A Portable
Resource Kernel for Guaranteed and Enforced Timing
Behavior”In Proceedings of the IEEE Real-Time Tech-
nology and Applications Symposium,Vancouver, June
1999.

[17] Rajkumar, R., Juvva, K., Molano, A., Oikawa, S.,
“Resource Kernels: A Resource-Centric Approach to
Real-Time Systems”In Proceedings of the SPIE/ACM
Conference on Multimedia Computing and Network-
ing, January 1998.

[18] Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S.,
Gehrke, J., Plaxton, C., “A Proportional Share Re-
source Allocation Algorithm for Real-Time, Time-
Shared Systems,”Proc. 17th IEEE Real-Time Systems
Symposium,Dec. 1996, pp. 288-299.

[19] Sundaram, V., Chandra, A., Goyal, P., Shenoy, P., “Ap-
plication Performance in the QLinux Multimedia Op-
erating System,”Proceedings of the Eighth ACM Con-
ference on Multimedia,Los Angeles, CA, pages 127-
136, November 2000.

OSPERT 2005

56

Developing a Complete Integrated Real-Time System

Scott A. Brandt, Scott Banachowski, Caixue Lin, and Joel Wu
Computer Science Department

University of California, Santa Cruz
{sbrandt, sbanacho, lcx, jwu}@cs.ucsc.edu

Abstract

Modern systems are frequently called upon to support
mixes of applications with different types of timeliness re-
quirements. Current solutions for supporting such mixes
are ad hoc and do not guarantee the requirements of all
types of processes. We discuss the need for better systems
support for such mixes and present partial solutions toward
the development of such systems. These include an inte-
grated real-time scheduler that focuses on best-effort per-
formance, a slack scheduler designed to improve the per-
formance of soft real-time processes, and an integrated soft
real-time disk bandwidth manager.

1. Introduction

Application timeliness requirements vary from hard
real-time to best-effort with many flavors in between, in-
cluding soft real-time, firm real-time, rate-based, etc. Many
application scenarios ranging from desktop multimedia to
large distributed real-time systems require the ability to si-
multaneously support these different types of requirements,
yet existing systems provide little direct support for more
than one type. We argue that (1) all systems should support
the full range of possible timeliness requirements, and (2)
this can only be accomplished with resource management
algorithms that are hard real-time at their core. Toward
this goal we present a CPU scheduler appropriate for use
as the only scheduler in such a system, a slack scheduling
algorithm designed to optimally address the needs of other
tasks, and a disk bandwidth manager capable of handling a
variety of timeliness requirements.

Our CPU scheduler, HodgePodge, supports integrated
hard real-time, soft real-time, and best-effort scheduling.
Unlike many previous real-time schedulers, HodgePodge
focuses primarily on the performance of best-effort appli-
cations running concurrently with hard or soft real-time ap-
plications. Our results demonstrate that it is feasible and
practical to combine the processing of these different types
of applications without degrading the performance of any

of them. We believe this is a necessary first step towards
the development of the type of integrated real-time systems
that we envision.

In integrated systems with many different types of pro-
cesses, hard (and occasionally soft) real-time tasks fre-
quently over-reserve resources in order to ensure that they
meet deadlines. Whenever these processes use less re-
sources than they have reserved, dynamic slack is gener-
ated. The performance of soft and non-real-time processes
heavily depends upon the availability and efficient distri-
bution of this slack. Integrated real-time systems therefore
demand the development of algorithms that distribute slack
so as to best support the goals of the other processes. Our
slack scheduling algorithm, SLASH, does this by distribut-
ing slack as soon as it is available, to the process with the
earliest deadline, and allows jobs of a task to borrow re-
sources from future jobs of the same task. This provides
the resources to the most critical job as early as possible
while guaranteeing the correctness of the schedule.

Real-time systems research often focuses on CPU re-
source management. Other resources, and especially I/O
devices, are managed minimally, if at all. Solutions that
do address these resources tend to focus on a single type
of timing requirements: hard, soft, or non-real-time. How-
ever, integrated systems that will support a variety of timing
requirements must manage resources other than the CPU,
and must do so in ways that directly support different tim-
ing requirements. Our Hierarchical Disk Sharing (HDS)
algorithm begins to address this problem in the domain of
disk I/O. Based on a technique developed for networking,
HDS partitions the disk bandwidth and allows processes
to reserve fixed or relative shares of the available band-
width. HDS addresses some of the unique issues that arise
in managing disk I/O, including the non-uniform (and only
partially deterministic) service times associated with disk
requests.

So far we have developed CPU and disk allocation al-
gorithms for integrated systems, but are just beginning to
combine them into a single system. The following sections
discuss HodgePodge, SLASH, and HDS in more detail.

OSPERT 2005

57

2. HodgePodge

General-purpose operating systems are designed to
serve a wide variety of applications. Yet because these sys-
tems use best-effort CPU scheduling, the growing body of
applications that have time constraints remain unsupported.
We envision a merging of real-time scheduling techniques
with general-purpose systems. The advantage comes from
two perspectives: (1) general-purpose systems need not
treat real-time applications (e.g. multimedia) in an ad hoc
fashion, and (2) real-time systems need not treat non-real-
time applications in an ad hoc fashion.

The definition of “general-purpose” has grown to in-
clude the kind of tasks traditionally thought of as real-
time. Examples include: games, video players and en-
coders, home studio software for multi-track audio gen-
eration/recording/sequencing, voice recognition, and hard-
ware emulation tasks such as soft-modems. Many other
applications benefit from the fine-grained partitioning and
isolation of resources real-time schedulers enforce, such as
virtual sharing of processors by web servers, or reserva-
tion of CPU for highly compute-intensive data consumers
such as scientific applications or search engines. In our
experience these applications are treated in an ad hoc fash-
ion. Typically, because they tolerate some degree of missed
deadlines, the tasks are scheduled in the default best-effort
manner and mostly meet deadlines because the CPU re-
source is over-provisioned (or by luck when processor load
is high). Other options include playing with the nice prior-
ity, which is not all that predictable or robust, or overriding
the scheduler by choosing a high static priority (a technique
sanctioned by a POSIX standard [12]). The latter approach
is unsafe when the task is not designed to be cooperative or
is buggy [17]. And this approach is not scalable in the case
where multiple tasks need real-time support. Our approach
is to provide an integrated real-time scheduler for all tasks.

Conversely, many real-time systems share some
general-purpose requirements. Although the primary func-
tions of flight, defense, and manufacturing control systems
are real-time, they commonly include many non-critical,
yet non-trivial, tasks that are best served using traditional
time-sharing techniques. In our experience these applica-
tions are treated in an ad hoc fashion. In a real-time system,
non-real-time tasks are often deemed unimportant, and left
to background processing, when they instead prefer time-
share disciplines. More sophisticated approaches use hi-
erarchies of schedulers [6, 10], allowing co-existence of
multiple schedulers for different kinds of tasks. However,
an arbitrary scheduling hierarchy may become (needlessly)
complex, and even in simple hierarchies the effect of stack-
ing schedulers must be well-understood to ensure meeting
constraints [19]. Our approach is to provide a simple mech-
anism for time-sharing the non-reserved resources of a real-

time system.
The goal of the HodgePodge (Holy-Grail, Pipe-Dream)

CPU scheduler is to support a veritable hodgepodge of pro-
cessing or timeliness constraints. HodgePodge uses a real-
time scheduler, EDF [15], for all tasks, whether they have
time constraints or not. Time-sharing is provided by a re-
source allocation layer that uses the reservation capabil-
ity of the real-time scheduler [3]. To make such a system
desirable for general-purpose, it should in all appearances
mimic a time-share scheduler except when called upon to
run a real-time task. Our previous experience showed that,
using aperiodic bandwidth servers for non-real-time tasks,
we may get behavior similar to time-share algorithms in
terms of responsiveness and overhead [2]. The novelty is
to provide time-share-like service by adapting each appli-
cation’s aperiodic server parameters during run-time based
on behavior.

2.1. The Best-effort Bandwidth Server

General-purpose systems behave unpredictably, because
it is not known a priori which tasks will run, or when. In
contrast, a periodic real-time task is predictable: it is a se-
quence of jobs, where each job begins at the start of a pe-
riod, and completes at or before the end of the period. Non-
real-time tasks may not resemble periodic tasks at all—
however, during execution tasks can still be modeled as a
sequence of jobs. These jobs may not begin or end in peri-
odic (or even predictable) intervals, so it is therefore natural
to treat these tasks as aperiodic.

An aperiodic server is an algorithm that assigns peri-
odic deadlines to tasks that are not necessarily periodic,
or which have no deadlines. Modern processors have the
processing headroom for dynamic scheduling, and our pre-
vious work shows that the overhead of using an aperiodic
server for each task is akin to existing time-share sched-
ulers. It follows that it is practical to use a real-time sched-
uler as the core of a general-purpose scheduler, with aperi-
odic servers for non-real-time tasks. The advantage is pro-
viding real-time scheduling as a native feature, without re-
sorting to an ad hoc addition or combination of schedulers.

The Best-effort Bandwidth Server (BEBS) is an aperi-
odic server that addresses the two main goals of time-share
scheduling: fairness and better responsiveness for interac-
tive tasks. It achieves fairness by adjusting the reservations
of tasks equally, and allocating the reclaimed slack fairly.
Slack is any CPU that is unreserved, and any reserved CPU
that is unused. IRIS [16] is a server designed to reclaim
slack fairly, and BEBS is similar to IRIS, with differences
noted in our previous report [2]. To meet the interactive
goal, the server adjusts its period according to the run-
time behavior of the task: interactive servers have shorter
periods for better responsiveness, while compute-bound

OSPERT 2005

58

servers have longer periods (which incur less scheduling
overhead). Each server is assigned a utilization equal to a
fair-share allowance of CPU bandwidth.

2.2. A Brief Comparison

To illustrate the difference in operation between a tradi-
tional time-share scheduler and HodgePodge we describe a
simple scenario. Imagine N tasks executing, all using equal
amount of CPU. In a time-share system based on multi-
level feedback queues, such tasks will reside in the same
priority queue and receive service in round-robin quanta of
length q. In the worst-case the longest wait for service is
(N−1)q, and the task will receive at least q amount of ser-
vice in q×N amount of time.

In HodgePodge, each task is assigned a reservation by
the resource allocation algorithm. In the above workload, a
reservation equal to (p := qN,u := 1/N) will, in the worst-
case, give q amount of service in q×N amount of time, the
same as the time-share system. In HodgePodge, once set,
this reservation will be guaranteed, independent of other
activities in the system. This is an advantage over tradi-
tional time-share scheduling.

Now consider what happens if tasks differ in interactiv-
ity. In the time-share system, they will be served from dif-
ferent queues, with higher priority tasks preempting lower
priority tasks. It becomes difficult to predict exactly when
a task will receive a full quantum q of service, because the
service of its queue may be preempted by other tasks for
any unknown number of durations.

In HodgePodge, the performance of tasks is adjusted by
controlling server reservations at run-time, based on the
past task activity. Interactive tasks do not receive higher
priority, but instead receive reservations consistent with
their past execution, for example a reduced utilization but
increased periodic rate (scaled in accordance with the level
of interactivity and other factors such as nice setting). In-
teractive tasks likely preempt less-interactive tasks because
their periodic deadlines are likely earlier when active; in the
average case they remain responsive. However, each task
is still guaranteed a reservation, so all receive a predictable
level of service in accordance with the time-share goals.
We have found that while running a mix of real and non-
real-time applications, the performance of time-sharing in
this approach is significantly better than assigning real-time
tasks higher priorities, while at the same time there are no
violation of real-time constraints [2].

The reservation policies can be tuned to mimic the ex-
pected performance from Linux or any other time-share
scheduler. An enhancement to the algorithm also tries to
auto-detect multimedia and other periodic soft real-time
applications while they execute, and make reservations
consistent with their inferred requirements (such as by the

measured period of frame synchronizations). In this way,
the system better supports legacy periodic applications.

2.3. HodgePodge Implementation

In order to build a HodgePodge prototype and test and
use BEBS in a general-purpose environment, we imple-
mented EDF in Linux [14]. We replaced the Linux sched-
uler while leaving as much of the existing infrastructure
intact. This is not the approach we’d take if implement-
ing from scratch; the existing structure of Linux definitely
impacts our design and performance. For example, some
process accounting occurs during a periodic timer inter-
rupt that is not necessary for EDF. However, disabling
this interrupt also disables mechanisms for timeouts and
synchronization used by many device drivers and applica-
tions. Also, removing the interrupt would require signif-
icant changes to some of the process accounting. Rather
than disable and re-implement portions of the kernel, we
decided to leave them intact, and when applicable leverage
them for our purpose.

Linux uses a 1000 Hz periodic timer to drive many op-
erations (a.k.a the tick timer). We leverage this interrupt to
schedule the release of jobs. All processes in the system
are treated as sequences of jobs that begin at periodic inter-
vals. Each job has a processing budget (or quantum) equal
to u× p (determined by the reservation tuple (p,u)). When
its budget is used, a job suspends until the start of the next
period. By using the tick timer for scheduling these events,
we do not need to support arbitrary release times or periods,
and reduce the number of interrupts and task preemptions.

Because all task jobs must be released on 1 ms. inter-
vals, the minimum period of a reservation is bounded to an
integral number of milliseconds. We call the occurrence
of 1000 Hz clock interrupt a major tick. Currently there
are no sub-millisecond periods. For this system we expect
most real-time workloads to involve multimedia rates of at
most 50 Hz, so this is currently sufficient for our purpose.

The EDF scheduler enforce reservations by using a
timer interrupt to prevent tasks from overrunning their bud-
get (similar to the R-EDF implementation [23]). Periods
are scheduled at relatively coarse-grained times, but task
budgets may be a fraction of a tick interval, requiring a
higher resolution timer to trigger a reschedule when a job’s
budget expires (we use the Pentium-class APIC timer).
Thus a one-shot timer only needs to be programmed if
an expiration occurs before the next major tick. This im-
plementation resembles firm timers [9], because the actual
overhead of setting up hardware is avoided when a task is
preempted before its budget expires. Also, only a single
one-shot timer must be maintained at any time, so we need
not maintain lists of timer events. The one-shot timer is
programmed to the nearest microsecond, and we call these

OSPERT 2005

59

clock intervals minor ticks (although unlike major ticks,
there are not periodic interrupts at every minor tick).

Every task is assigned a utilization u, which is its allo-
cated fraction of CPU, and dictates the maximum amount
of time (budget b) it may execute per period p (b = up).
The granularity of the one-shot timer limits the budget we
may assign to at most 1 µs.1 To simplify reservations, the
system requires the utilization be set in an increment of
0.1% (1µs per ms period). Since a task must have some
utilization, this limits the number of servers we may ad-
mit to at most 1000 (however a server may service multiple
tasks, so this is not a limitation on task number).

EDF selects the task with the earliest deadline, requiring
an O(n) search of n runnable tasks. Previous versions of
Linux (< 2.5) also required O(n) selection, but the newer
versions bound the search to a fixed number (locating the
first non-empty priority queue). Our EDF algorithm is not
quite as scalable as Linux’s new constant-time algorithm,
however it is better than the previous version of Linux.

We shift overhead from the selection code to the queue
insertion by keeping the run queue sorted in deadline order.
On average, inserting into an already sorted list is better—
we found that for random task sets, sorted inserts averaged
less than 3 times fewer operations than searching the un-
sorted list. This gives us less overhead than the previous
generation Linux. We are looking into further optimiza-
tions in queuing structures to reduce overload for large sets
of servers. 2

2.4. Future Directions

In order to build the HodgePodge prototype and test
and use BEBS in a general-purpose environment, we im-
plemented EDF in Linux [14] by replacing the kernel’s
scheduler. Changing Linux’s CPU scheduler alone does
not make it real-time, but better equips it to handle work-
loads with time constraints. An existing problem is that
CPU used by the kernel is charged to the currently running
task, even if the work is on behalf of another. Using a tech-
nique such as Augmented CPU reservations [18] may track
the time “stolen” from tasks by OS operations, making our
CPU allocations better match reservations.

BEBS could be incorporated into a hard real-time en-
vironment by adapting techniques used by DROPS [11],
which allow time-share and real-time applications to co-
exist on a real-time micro-kernel, or RTLinux [22], which
runs Linux as a low-priority task on a real-time executive.
Both approaches treat the time-share portion of the system

1Budgets this small are impractical for Linux. We measured the aver-
age context switch time on a 2.4 Hz P4 to be about 5µs, so a task with 1µs
budget will consume more time in context switch, not to mention cache
warming, than its budget allows.

2For handling a larger number of tasks we may consider using a sorted
heap with lg(n) insertion and deletion.

as a single user-program; our approach dictates that the
time-share portion be treated as a set of servers, with each
a corresponding user-program. This is an area for future
research.

3. SLASH

The increasing demand for more powerful computing
platforms and applications requires modern operating sys-
tems capable of simultaneously supporting applications
with a variety of different time constraints. The hierarchi-
cal HLS scheduler [19], and the flat integrated RBED [3]
and closely related HodgePodge schedulers are examples.
Such systems simultaneously support (1) critical hard real-
time applications such as external signal sampling and pro-
cessing, (2) non-critical soft real-time applications such as
desktop multimedia, and (3) best-effort applications such
as compilers, word processors, etc. Hard real-time appli-
cations make worst-case resource reservations to guaran-
tee their constraints; soft real-time applications may re-
serve less than worst-case to achieve good average-case
performance; and best-effort applications generally make
no reservations beyond what is necessary to avoid starva-
tion. Any variance in execution times below what has been
reserved leads to dynamic slack—reserved but unused re-
sources. Efficient distribution of this slack to processes
whose current needs exceed their reservation can signifi-
cantly improve the performance of both soft real-time and
best-effort applications.

SLASH is a slack scheduling mechanism system specif-
ically designed to improve the performance of soft real-
time applications while guaranteeing the worst-case reser-
vations of hard real-time processes. Our evaluation shows
that SLASH reduces the number of missed deadlines and
decreases the average tardiness of late deadline for soft
real-time applications when both hard real-time and soft
real-time applications coexist. In our experiments, SLASH
always misses fewer deadlines than CBS [1], BEBS, and
CASH [5], reducing missed deadlines by 70%, 70% and
10% (respectively) in the best scenario we observed.

3.1. SLASH Design and Implementation

SLASH is implemented in RBED [3], which uses an
integrated scheduler for hard, soft, and non-real-time pro-
cesses. The low-level scheduler is earliest deadline first
(EDF). Processes use the scheduler by associating their
tasks with a rate-based server, conceptually similar to CBS
and other bandwidth servers. A server is characterized by a
reservation tuple (Bs,Ps), where Bs is the execution budget
and Ps is the period (both in units of time). The server uti-
lization isUs = Bs

Ps . A deadline occurs at the end of the each
period. Each hard or soft real-time task is associated with

OSPERT 2005

60

0 1 2 3 4 5 6 7 8 9 10

Overrun part

Slack time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

Slack time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Overrun part

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

(a) case 1 (b) case 2
Figure 1. Drawbacks of idle-time slack management

0 1 2 3 4 5 6 7 8 9 10
Slack time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

Slack time

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

T1

T2

T3

(a) case 1 (b) case 2
Figure 2. SLASH solves both problems

its own server. Periodic and aperiodic best-effort tasks are
scheduled as soft real-time tasks. All other best-effort tasks
are served by one server in first come, first serve order.

SLASH combines our SLAck Donation (SLAD) al-
gorithm [13] with the CASH slack management algo-
rithm [5]. In SLAD, when a task completes, it immediately
donates any remaining budget to the task whose server has
the earliest deadline. This server is the most critical, the
most likely to be near the completion of its current job, and
the least likely to benefit from any later donations of slack.

Figure 1 shows two problems that can occur when slack
is only made available to tasks when all other tasks are
idle, a technique common among other algorithms. The
problems are that slack cannot be used to prevent a dead-
line miss caused by either (1) a past overrun or (2) a fu-
ture overrun. The examples show three soft real-time tasks,
T1, T2, and T3, with the following respective reservation
configurations: (B1 = 1.5,P1 = 6), (B2 = 4,P2 = 8) and
(B3 = 2.5,P3 = 10); the CPU is 100% utilized. Each task
has an actual deadline coinciding with its server deadline,
and may overrun its reserved budget. In Figure 1(a), the
first job of T1 has an actual execution time of 2, exceed-
ing its reservation by 0.5, and the first job of T2 has an
actual execution time of 2, 2 less than its reserved bud-
get. With idle-time slack management, the overrun portion
of T1 does not resume execution until time 6, missing its
deadline. In Figure 1(b), the first job of T1 has an actual ex-
ecution time of 1, 0.5 less than its reservation; the first job
of T2 overruns by 0.5. Again with idle-time slack manage-
ment, the slack is “pushed back” and unused until a later
idle point, resulting in T2 missing its deadline. By donating
slack to other processes as soon as it is available, SLASH
solves both of these problems. The resulting schedules are
shown in Figure 2. In both cases no task misses its dead-
line, despite the overruns.

In CASH [5], when a server becomes idle, any remain-

ing budget is recorded in a queue. When a server runs,
it first consumes all queued budgets with deadlines ≤ its
own. When a server consumes its budget, it is recharged
and its deadline extended by one period, allowing it to bor-
row against its future budget to complete the current job.
This has some benefits, allowing current jobs that need
more CPU to safely borrow from future jobs of the same
task, which may need less CPU (or may borrow from still
more future jobs). Unfortunately, this borrowing may pre-
vent slack from getting to the tasks that need it most—when
a task overruns its budget, its server deadline will be post-
poned before the task completes its current job, reducing
its EDF priority and making it less likely to receive slack.

SLASH addresses this problem by combining the SLAD
EDF-based slack donation mechanism with the CASH
greedy budget replenishment mechanism, donating slack to
the tasks that need it the most and executing overrun tasks
as early as possible (so that they improve their chance of
meeting deadlines) by not forcing servers to remain inac-
tive when their budget is consumed.

3.2. The SLASH algorithm

SLASH uses an earliest virtual deadline first (EVDF) for
slack scheduling decisions. The virtual deadline of a server
is calculated as follows:

vds,k = ds,k−
⌊
ds,k− t
Ps

⌋
Ps

where t is current time (note that the condition ds,k > t al-
ways holds). Like CASH, SLASH has no expired status.
When a SLASH server consumes its budget, the budget is
recharged, its deadline is advanced by one period, and its
state is reset to waiting. The algorithm is as follows:

1. At the beginning of each period, the current budget
of a server cs is set to its reservation budget Bs, its

OSPERT 2005

61

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.05 0.1 0.15 0.2 0.25

De
ad

lin
e

M
iss

 R
at

io
 (%

)

ST3 Load (fraction of CPU)

CBS
BEBS
CASH
SLAD

SLASH
RANDOM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.05 0.1 0.15 0.2 0.25

Av
er

ag
e

Ta
rd

in
es

s
(fr

ac
tio

n
of

 p
er

io
d)

ST3 Load (fraction of CPU)

CBS
BEBS
CASH
SLAD

SLASH
RANDOM

(a) Deadline Miss Ratio as a function of load (b) Average Tardiness as a function of load
Figure 3. Load effect on performance (one soft real-time task, p= 310)

dynamic deadline ds,k is set to ds,k−1 +Ps, and its state
is set to waiting.

2. The waiting server with the earliest deadline becomes
running.

3. A running server executes its pending task on the CPU
until it has finished its task or consumed its budget,
and decreases its budget cs by the actual amount of
CPU consumed. If it has no pending task, it donates
any remaining budget to:

(a) the task of the waiting server with the earliest
virtual deadline; or, if none exist, to

(b) the idle task

4. When cs of a running server equals zero, the server
is recharged with full budget cs = Bs, its deadline is
incremented ds,k = ds,k +Ps, and its state is reset to
waiting (or remains running if it still has the earliest
deadline).

5. When a running server is preempted, its state is set to
waiting.

Step 3 implies that if servers always have their own asso-
ciated tasks to execute, then no slack scheduling occurs. If
there is slack available, it is immediately donated to other
pending tasks whose servers have the highest priority de-
termined by EDF. It is possible for other slack scheduling
choices besides EDF to perform better for certain applica-
tions or in certain easily contrived circumstances. Never-
theless, SLASH is simple, straightforward, and effective in
practice.

3.3. SLASH Performance

We compare the performance of SLAD and SLASH to
CBS, BEBS, CASH, and a RANDOM algorithm (which
provides aggressive slack donation like SLAD but, instead
of using EDF, assigns slack to a random task). All hard
real-time tasks meet their deadlines. Our metrics of soft
real-time performance are deadline miss ratio (DMR), and
average tardiness (ATD).

The first experiment examines soft real-time perfor-
mance as a function of system load. The workload consists
of two periodic hard real-time tasks and one periodic soft
real-time task. In this experiment HRT1 has constant exe-
cution time equal to its server budget, HRT2 has normally
distributed execution times with its server budget equal to
the worst-case, and SRT3 has normally distributed execu-
tion times with its server budget set to their average. SRT3
will often overrun its budget but should meet most of its
deadlines by taking advantage of the slack from HRT2.

Figures 3 and 4 show SRT3’s deadline misses and tar-
diness, using the different algorithms, as a function of uti-
lization between 5% and 29% (in all cases, the total aver-
age sum of server utilization is 100%). RANDOM, SLAD,
and SLASH outperform CBS and BEBS, demonstrating
the benefit of donating slack at the earliest possible time.
SLAD and SLASH outperform RANDOM, demonstrating
the additional benefit of giving the slack to the process with
the earliest deadline. SLAD and CASH outperform each
other in different circumstances. Finally, SLASH outper-
forms both SLAD and CASH, demonstrating the effective-
ness of combining SLAD slack donation with CASH bud-
get replenishment.

The second experiment shows soft real-time perfor-
mance as a function of server (and task) period. The work-
load consists of five periodic hard real-time tasks and one
periodic soft real-time task. Every hard real-time task has
execution times fitting a normal distribution and a server
budget set to their worst-case execution time. SRT6 has
normally distributed execution times with its server budget
set to the average. Each hard real-time task reserves 10%
of the CPU and SRT6 reserves the remaining 50%.

Figure 4 shows SRT6’s performance as a function of pe-
riod ranging from 10 to 190. We see results similar to the
previous subsection: (1) RANDOM, CASH, SLAD, and
SLASH outperform CBS and BEBS, (2) SLAD and CASH
outperform each other in different circumstances, and (3)
SLASH is always the best. Interestingly, as we increase
the number of soft real-time tasks (and decrease their tar-
get utilization and reservations accordingly), we find that

OSPERT 2005

62

 0

 10

 20

 30

 40

 50

 60

 70

 10 30 50 70 90 110 130 150 170 190

De
ad

lin
e

M
iss

 R
at

io
 (%

)

ST6 Period

CBS
BEBS
CASH
SLAD

SLASH
RANDOM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 30 50 70 90 110 130 150 170 190

Av
er

ag
e

Ta
rd

in
es

s
(fr

ac
tio

n
of

 p
er

io
d)

ST6 Period

CBS
BEBS
CASH
SLAD

SLASH
RANDOM

(a) Deadline Miss Ratio as a function of period (b) Average Tardiness as a function of period
Figure 4. Period effect on performance (one soft real-time task, u= 50%)

the performance of SLASH improves (not shown).
In our experiments, SLASH always outperforms CBS,

BEBS, and CASH in this regard, reducing missed deadlines
by 70%, 70% and 10% (respectively) in the best scenario
we observed. Although designed for our integrated real-
time system, RBED [3], SLASH should work equally well
with any deadline-aware scheduler.

4. HDS

Systems that use or serve multimedia data require timely
access to data on hard drives. To ensure adequate perfor-
mance in an integrated real-time environment, users must
either prevent overload of disk resources, not generally fea-
sible in a general-purpose environment, or use real-time al-
gorithms that rely on intricate knowledge of disk internals
to meet deadline requirements. Hierarchical Disk Sharing
(HDS) allows disks to be (nearly) fully utilized while sus-
taining bandwidth reservations, without requiring detailed
knowledge of the drive internals. Derived from hierarchical
link sharing for networks [8], HDS uses a hierarchy of to-
ken bucket filters to isolate disk access among clients and
groups of clients, and to allow for reclaiming of unused
bandwidth, capabilities that are absent in current commod-
ity operating systems and which are necessary to support
time constraints in an integrated system.

One of our main design goals is that the reservation
mechanism be independent of high-level features like file-
systems, and low-level features like disk schedulers, so that
it can be employed across many systems, including storage
network devices. Therefore we chose to implement our
prototype of HDS in the block device layer of the Linux
kernel. We discuss the design of HDS and present our
Linux implementation, demonstrating both the effective-
ness (and limitations) of this approach.

4.1. HDS Design and Implementation

Traditional disk access is best-effort, with no timing
guarantees. Acceptable performance is achieved when the

disk is not overloaded. When demand for disk bandwidth
exceeds the supply, all applications may experience perfor-
mance degradation, including those with time constraints.
Our approach to this problem is to provide a mechanism
that allows reservations of disk bandwidth, graceful degra-
dation under heavy load, and reclaiming of unused reser-
vations. A hierarchical structure for resource sharing pro-
vides a basis for meeting all of these goals.

Specifying a disk reservation by bandwidth is intuitive,
but disk bandwidth is not constant; service times vary de-
pending upon the initial position of the read-write head,
the position of the requested data on the disk, the low-level
disk scheduling algorithm, etc. Translating bandwidth re-
quirements into low-level disk operations is a complicated
task [7]. Alternatively, specifying a disk reservation by a
reserved time-slice (instead of bandwidth) may result in
different amounts of data being retrieved per time-slice.

Existing reservation-capable schedulers contend with
this issue. The Cello [20] scheduler presents two meth-
ods of accounting, either by size or time. Some schedulers
allow reservations in terms of number of requests [4, 21].
However, requests may also vary in size and service time.
To fulfill QoS goals, the system must provide perfor-
mance in line with the users’ expectations, regardless of
the amount of work that the disk is actually doing on behalf
of different users. We expect users to perceive the quality
of service for disk by the bandwidth (data rate) that it can
provide. Therefore HDS accounts for disk usage in terms
of bandwidth and does its accounting based on the actual
amount of data transferred.

In HDS, a disk’s bandwidth is divided between applica-
tions in a hierarchical tree structure; an example is pictured
in Figure 5. Each leaf node represents a point of control for
accessing the disk, and is associated with a Linux process.
When a process first attempts to access the disk, a leaf node
is created and added to the tree. When it quits, its node is
removed. Non-leaf nodes are called classes, and represent
a group of clients. The children of a class node may be leaf
nodes or other class nodes.

Figure 5 demonstrates using classes to isolate best-effort

OSPERT 2005

63

Disk

Best-Effort Soft Real-TIme

P s1 P b3 P b2 P b1 P s2

100%

40% 60%

20% 15%

P b4

80% 30% 30% 25%

G

C C

P P P P P P

Figure 5. HDS allows arbitrary mix of shares
controlled by Global bucket, Class buckets,
and Process buckets

and real-time processing, an approach useful for multime-
dia servers where the requests with time constraints should
be isolated from other traffic. Our system has an interface
for constructing the desired class hierarchy, including dy-
namically adding and deleting classes.

Each node x has an associated reservation rx, determined
by the reservations of nodes above it in the tree structure.
There are two modes for a node to specify its reservation:
either an absolute fraction fx, or a relative fraction, based
on a weight wx, of the parent node’s reservation. The root
node has an absolute fraction of 1. If a node x has an abso-
lute reservation fx (between 0 and 1), its reservation is this
fraction of its parent’s reservation. For example, because
the root node has r0 = 1, a child of the root with fx = 0.4
will have a reservation of rx = fxr0 = 0.4. The sum of abso-
lute fractions among any node’s children may not exceed 1.
A class’s bandwidth that is not used by absolute reserva-
tions is shared by its other children in proportion to their
relative weights.

By default, clients are added to a parent node with equal
weight to promote fair sharing. When a client needs a
higher level of service than others, it may do so by either in-
creasing its weight or requesting an absolute fraction of its
parent’s bandwidth. If the nodes on the path from a client
to the root all have absolute reservations, then the client
effectively reserves a static fraction of the total disk band-
width; if any node in this path has a relative reservation, the
node’s reservation may vary when other nodes join or leave
the structure. HDS allows administrators to set permissions
for adding classes or nodes, changing reservations, admis-
sion control, etc.

Disk bandwidth may be controlled at different points in
the I/O stack. HDS resides at the block-device layer, be-
tween the file system and disk scheduler. The regulation of
disk bandwidth in HDS is implemented using token bucket
filters. In order to make disk requests, a client must possess
tokens. In HDS, each token represents 1 KB of data, mean-

ing a request for 16 KB of data requires 16 tokens. Each
node x in the hierarchy has an associated bucket, which
may hold up to Nx tokens. When a client request is ser-
viced, tokens are removed from its bucket. Tokens are re-
plenished at a rate corresponding to the client’s reservation.
If the root token rate is T0, then its child node x with reser-
vation rx will replenish tokens at rate Tx = rxT0. The root
token rate represents the entire available bandwidth of a
disk.

Although every node has a token bucket, only leaf nodes
make requests. The token buckets of non-root nodes facil-
itate sharing of bandwidth. In addition to its own tokens,
a node may use tokens from its parent (which in turn may
use those of its parent). The effect is that unused bandwidth
is shared first among nodes of the same class, then among
parent class, and eventually, globally.

When a node drains tokens from a bucket, it also drains
those from buckets in the path up to and including the root.
The result is that when a class’s children make disk re-
quests, the class’s tokens will be drained as well. If some
of the children are not fully using their reservation, the par-
ent will have surplus tokens. These tokens are available
to other children when their own supply runs out, so that
a node that has exceeded its reservation may still be able
to proceed. Bandwidth isolation is preserved not only be-
tween leaf nodes, but at the class level and, in fact, at every
level of the hierarchy.

4.2. HDS Performance

We ran several experiments to demonstrate the ability of
HDS to shape disk traffic, using synthetic applications to
generate disk workload. We focus mostly on read work-
loads both because multimedia is typically read-intensive
and because write performance is often aided by buffering.
Our test system is a 1.5 GHz P4 with 512MB of RAM. The
disk is a Seagate ST340810A IDE drive formatted with the
ext2 file system.

Figure 6 shows a situation where disk bandwidth has
become saturated by two processes reading from the disk.
The x-axis shows the requested bandwidth and the y-axis
shows the measured received bandwidth. Figure 6(a) shows
the result on unmodified Linux. Both processes receive
their desired bandwidth until the disk becomes saturated
with requests. There is no isolation, so at that point actual
throughput is unpredictable and varies considerably.

HDS provides reservation and isolation of bandwidth.
Figure 6(b) shows the same experiment with HDS, where
each task reserves equal relative weight. At saturation
the bandwidth divides evenly between the streams and
achieved throughput is very stable. This fair-sharing comes
at the expense of slightly lower overall disk throughput be-
cause we limit the number of requests. Figure 6(c) demon-

OSPERT 2005

64

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

Re
ce

ive
d

Ba
nd

wi
dt

h
(K

B/
s)

Requested Bandwidth (KB/s)

Stream 1
Stream 2

(a) Normal Linux system behavior

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

Re
ce

ive
d

Ba
nd

wi
dt

h
(K

B/
s)

Requested Bandwidth (KB/s)

Stream 1: 50%
Stream 2: 50%

(b) With HDS sharing of 50%-50%

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

Re
ce

ive
d

Ba
nd

wi
dt

h
(K

B/
s)

Requested Bandwidth (KB/s)

Stream 1: 70%
Stream 2: 30%

(c) With HDS sharing of 70%-30%

Figure 6. The effect of overload on throughput

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160 180

Th
ro

ug
hp

ut
 (K

B/
s)

Time (s)

Stream 1 (100% of class A)
Stream 2 (65% of class B)
Stream 3 (35% of class B)

(a) Isolation of bandwidth (Class A and B reserve 50%
each. All streams are greedy)

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 20 40 60 80 100 120 140 160 180

Th
ro

ug
hp

ut
 (K

B/
s)

Time (s)

Stream 1 (80% of class A)
Stream 2 (20% of class A)

Stream 3 (100% of class B)

(b) Using unassigned bandwidth (Class A and B re-
serve 50% each. All streams are greedy)

Figure 7. HDS isolation and slack reclamation

strates the effect of allocating 70% of the disk to stream 1
and 30% to stream 2.

The next experiment shows the ability of HDS to pro-
vide hierarchical resource sharing. We created two classes,
A and B, each reserving 50% of the disk. Stream 1 be-
longs to Class A, so it reserves 100% of the class reserva-
tion. Streams 2 and 3 belong to Class B, and reserve 65%
and 35% of Class B’s reservation, respectively. Figure 7(a)
shows that all three streams receive bandwidth correspond-
ing to their allocation, with no interference from each other.

Excess bandwidth may be available when a process
needs more than its reserved share. Figure 7(b) shows this
scenario. In this experiment, there are two classes and three
streams. Class A and B each reserve 50%. Stream 1 and 2
belong to Class A and reserve 80% and 20% of its band-
width. Stream 3 belongs to class B, so receives 100% of
its bandwidth. At the beginning, only Stream 1 is active.
Although its total share is only a fraction of the total band-
width (its share is 40%), because no other tasks are active
it receives the total disk bandwidth. At time 60 Stream 2
becomes active. There is still excess bandwidth because
Class A’s share is only 50%. The excess bandwidth is dis-
tributed to Streams 1 and 2. From time 60 to time 120,
they receive their fair-share plus the excess bandwidth. Ex-

cess bandwidth is allocated on first-come first-serve basis,
accounting for the observed variation in actual rate (this
variation is a topic for future investigation). At time 120
Stream 3 begins and, now fully loaded, the nominal reser-
vations are enforced.

5. Conclusion

We are developing flexible integrated real-time solu-
tions based on real-time scheduling algorithms. This is a
first step in providing better real-time support in general-
purpose systems, better general-purpose support in real-
time systems, and, ultimately, a general framework to fully
integrate applications of different types of processing con-
straints.

The longer-term goals of this project include combin-
ing these solutions in a single system, and developing com-
plete solutions for other resources including, network I/O,
memory, cache, and others. A key challenge will be the
development of a framework that supports the combined
management of all of the system resources so that, for ex-
ample, failure to meet a soft deadline in one resource will
not negate the benefit of meeting the same deadline with an-
other resource. Our ultimate goal is the complete merging

OSPERT 2005

65

of real-time scheduling techniques with general-purpose
systems, supporting a range of timing constraints from hard
real-time to background best-effort batch processing.

Our research is funded by a DOE HPCS Fellowship and
the Intel Corporation.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS 1998), pages
4–13, Dec. 1998.

[2] S. Banachowski, T. Bisson, and S. A. Brandt. Integrating
best-effort scheduling into a real-time system. In Proceed-
ings of the 25th IEEE Real-Time Systems Symposium (RTSS
2004), Dec. 2004.

[3] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-
namic integrated scheduling of hard real-time, soft real-time
and non-real-time processes. In Proceedings of the 24th
IEEE Real-Time Systems Symposium (RTSS 2003), pages
396–407, Dec. 2003.

[4] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silber-
schatz. Disk scheduling with quality of service guarantees.
In IEEE International Conference on Multimedia Comput-
ing and Systems, volume 2, pages 400–405, June 1999.

[5] M. Caccamo, G. Buttazzo, and L. Sha. Capacity shar-
ing for overrun control. In Proceedings of the 21th IEEE
Real-Time Systems Symposium (RTSS 2000), pages 295–
304, Dec. 2000.

[6] G. M. Candea and M. B. Jones. Vassal: Loadable sched-
uler support for multi-policy scheduling. In Proceedings of
the 2nd USENIX Windows NT Symposium, pages 157–166,
Aug. 1998.

[7] S. Childs. Portable and adaptive specification of disk band-
width quality of service. In Proceedings of the 9th Interna-
tional Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV), June 1999.

[8] S. Floyd and V. Jacobson. Link-sharing and resource man-
agement models for packet networks. IEEE/ACM Transac-
tions on Networking, 3(4):365–386, 1995.

[9] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. Sup-
porting time-sensitive applications on general-purpose op-
erating systems. In Proceedings of the 5rd Symposium on
Operating Systems Design and Implementation (OSDI’02),
Dec. 2002.

[10] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU
scheduler for multimedia operating systems. In Proceed-
ings of the 2nd Symposium on Operating Systems Design
and Implementation (OSDI’96), Oct. 1996.

[11] H. Härtig, M. Hohmuth, and J. Wolter. Taming Linux.
In Proceedings of the Fifth Parallel and Real-time Systems
(PART98), 1999.

[12] The Institute of Electrical and Electronics Engineers. IEEE
Standard for Information Technology-Portable Operating
System Interface (POSIX)-Part 1: System Application Pro-
gramming Interface (API)-Amendment 1: Realtime Exten-
sion [C Language], Std1003.1b-1993 edition, 1994.

[13] C. Lin and S. A. Brandt. Efficient soft real-time processing
in an integrated system. In Work in Progress Proceedings
of the 25th IEEE Real-Time Systems Symposium (RTSS WIP
2004), Lisbon, Portugal, Dec. 2004.

[14] The Linux kernel archives. http://www.kernel.org, Jan.
2004. A web site with the latest Linux kernel and infor-
mation.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Jour-
nal of the Association for Computing Machinery, 20(1):46–
61, Jan. 1973.

[16] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. IRIS:
A new reclaiming algorithm for server-based real-time sys-
tems. In 10th IEEE Real-time and Embedded Technology
and Applications Symposium (RTAS04), May 2004.

[17] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall.
SVR4UNIX scheduler unacceptable for multimedia appli-
cations. In Proceedings of the Fourth International Work-
shop on Network and Operating System Support for Digital
Audio and Video, 1993.

[18] J. Regehr and J. A. Stankovic. Augmented CPU reserva-
tions: Towards predictable execution on general-purpose
operating systems. In Proceedings of the Real-Time Tech-
nology and Applications Symposium (RTAS01), pages 141–
148, May 2001.

[19] J. Regehr and J. A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. In Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), pages
3–14, London, UK, Dec. 2001. IEEE.

[20] P. Shenoy and H. Vin. Cello: A disk scheduling framework
for next generation operating systems. In Proceedings of
the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 44–55. ACM Press,
1998.

[21] R. Wijayaratne and A. L. Reddy. Integrated QOS manage-
ment for disk I/O. In Proceedings of the IEEE International
Conference on Multimedia Computing and Systems, pages
487–492, June 1999.

[22] V. Yodaiken and M. Barabanov. Real-time Linux. In Pro-
ceedings of Linux Applications Development and Deploy-
ment Conference (USELINUX), Jan. 1997.

[23] W. Yuan, K. Nahrstedt, and K. Kim. R-EDF: A reservation-
based EDF scheduling algorithm for multiple multimedia
task classes. In Proceedings of the Real-Time Technology
and Applications Symposium (RTAS01), May 2001.

OSPERT 2005

66

A unified framework for managing different resources with QoS guarantees

Luigi Palopoli, Tommaso Cucinotta,
Antonio Mancina, Luca Marzario,

Paolo Valente
Scuola Superiore S.Anna, Pisa, Italy

�palopoli, cucinotta, mancina, marzario, valente�@sssup.it

Abstract

This paper describes ongoing research activities aimed
at developing a unified framework by which a general pur-
pose operative system is able to support applications with
Quality of Service requirements. The work is focused on a
feedback based dynamic management of the resources re-
quired by an application, where each resource is handled
through the use of a Resource Reservation paradigm. This
allows applications to share the access to a resource by
specifying the fraction of usage, where such fractions are
dynamically adapted by the system on the basis of observa-
tions made on the hosted activities.

Research in this area comprises development of both
a theoretical framework for modelling applications and
analysing the impact of control theoretic feedback strategies
to the QoS experienced by applications, and a prototype im-
plementation of an architecture with the ability of providing
the needed functionality on a Linux Operative System.

1. Introduction

In the past few years, the use of computer based tech-
nologies has become pervasive in a wide class of appli-
cations ranging from communication (e.g., Voice-over-IP)
to entertainment (e.g., video games). For many of these
applications, the Quality of Service perceived by users is
tightly linked with the temporal behaviour. For instance,
for a video-on-demand streaming application, the frame-
rate plays a role of paramount importance, whereas for a
video-conference application the delay and the jitter are also
crucial parameters. Recent research activities in this eld
have covered the following topics: 1) scheduling mecha-
nisms inside the operating system such that it is possible
to allocate speci ed fractions of resource to the competing
tasks [11, 9, 7], 2) feedback based management strategies
to cope with scarcely known or time-varying execution re-
quirements of the tasks [5, 3, 10], 3) architectural solutions

for the Operative Systems and middleware to support the
technologies described above.

The results cited above do not offer a conclusive re-
sponse to the problem of QoS management. Indeed, they
miss a fundamental point: soft real-time tasks typically use
resources of different types at the same time. Therefore we
need a holistic approach, where scheduling requests of het-
erogeneous types, such as CPU, disk and/or network re-
quests, are streamlined and managed in a holistic and co-
ordinated way. As an example of such an application, con-
sider a MPEG decoder. Its main routine could be the fol-
lowing:

for(;;) �
read frame();
decode frame();

�

From this sketch, it is possible to see that it makes lit-
tle sense to provide the correct amount of CPU for the
decoding part, if the application is delayed in its access
to the disk or network. In general, the need for different
types of resources may generate undesired effects of unex-
pected harshness, unless the interaction of different alloca-
tion mechanisms is not adequately accounted for. The prob-
lem becomes even more complex if adaptivity is required
(i.e., feedback based allocation of resource in response to
temporal variations of the workload).

Moreover, an evident shortcoming of reservation based
scheduling mechanisms proposed so far is that they are
strongly biased toward a particular class of applications,
i.e., soft real-time systems and particularly continuous me-
dia (CM). From a wider perspective it is possible to iden-
tify three different types of applications that populate gen-
eral purpose systems:

Interactive: applications like console shells, text editors
and GUI-based applications;

Soft Real Time: o ws of data like audio and video
streams;

OSPERT 2005

67

Batch: applications which ask for an intensive use of a
resource but which do not have strict timing require-
ments (they are much less sensitive to delays than soft
real-time ones), i.e. le-transfer applications.

Notably, the above is not a clear-cut division: indeed, ap-
plications may even change their nature, according to the
inputs provided by the user and by the environment. As
an example, consider a graphic application waiting for a
user choice, and then starting a particular operation such
as a spell-checker or a compiler. In this case an application
switches from an interactive to a batch behaviour.

In our view, the operating system should be able to guar-
antee a speci ed QoS level - albeit of a different type - to
all of these applications. For instance, interactive applica-
tions are sporadic in the true meaning of the adjective (i.e.,
they do not occur with speci ed frequencies) and have typ-
ically little requirements; still when they do occur the QoS
experienced by the user is tightly connected with the short-
ness of the response time (i.e., the user expects to see a char-
acter on the screen right away, when he/she presses a key).
Standard heuristics to solve this problem are commonplace
in modern operating systems, but they are not able to of-
fer any guarantee whatsoever when the system is heavily
loaded. We will discuss in this paper a possible strategy to
combine temporal guarantees with responsiveness for inter-
active applications, which is also sensitive to applications
changing their behaviour as in the example above.

As far as soft real-time (e.g., Continuous Media) ap-
plications are concerned, in our prior work [5] we have
shown a QoS management system built on the top of a re-
source reservation mechanism. In that case, we used a uid
model of the system’s evolution (i.e., of the dynamic equa-
tions of the “plant” to be controlled). This model can be
approximated to a desired precision by a resource reserva-
tion scheduler, paying the price of a potentially consider-
able overhead. In this paper, we take a more pragmatic view
by building a model of the system that is closer to the im-
plementation. The granularity used by the QoS manager is
necessarily coarser but most of the attractive properties of
the control schemes shown in [5] can be recovered to a sat-
isfactory extent. Another contribution of this paper is the
presentation of a middleware where these techniques are
implemented. Although based on the Linux kernel, the ar-
chitecture of the middleware relies on a kernel abstraction
layer, which allows for easy porting to other operating sys-
tems (e.g., MAC-OSx and FreeBSD). Finally, we will show
the lines of an ongoing research aimed at extending the ap-
proach to the case of applications modelled as pipelines of
stages using different resources. This extension can be done
both for the theoretical aspects (i.e., control design) and for
the middleware.

Figure 1. Main conceptual blocks

2. Overview

Our framework is described in Figure 1 and it comprised
of the following elements:

1. Resource Reservation (RR) mechanisms
2. QoS manager
3. QoS Contract Broker

The Resource Reservation layer is the fundamen-
tal building block enabling us to control the alloca-
tion of CPU and other resources to the applications. In our
idea, it should not require any kernel-speci c functional-
ity but, rather, be conceived as a sort of “plug-in” installable
into any kernel by means of minimally invasive modi -
cations. Indeed, referring to the Linux implementation,
the RR is implemented in a small patch and in a plug-
gable module. Applications scheduled according to the
resource reservation mechanism can coexist with other ap-
plications scheduled according to the standard policy
used in the “host” kernel, although the latter do not re-
ceive any type of temporal guarantee. With respect to the
standard view of resource reservations, our approach al-
lows us to dynamically change the resource bandwidth al-
loted to each task, thus acting as a sort of “actuation”
mechanism inside the kernel. Moreover, we explicitly ad-
dress the problem of guaranteeing responsiveness to the
interactive applications.

The QoS manager purpose is twofold. On the one hand,
the QoS Manager performs an admission control: when an
application requires admission, a negotiation phase with the
broker determines the QoS level, if any, which can be guar-
anteed. The second purpose of the QoS manager is to dy-

OSPERT 2005

68

namically tune the bandwidth reserved to each task for ev-
ery resource it uses (in the following sections we will anal-
yse this aspect thoroughly). The purpose of this activity is to
maintain as much as possible the previously negotiated QoS
levels. In case an overload occurs, the manager can decide
to degrade the QoS level of any task by a call-back noti ca-
tion, urging the application to reduce its bandwidth utilisa-
tion.

At the QoS management level the way for measuring
QoS is quite rough: the QoS is simply related to the de-
lay with which a task accomplishes its function related to
the expected termination. Moreover, the “currency” used for
negotiating the admission of the application into the system
is the resource utilisation required on the average by the ap-
plication. This information is hardly available at the appli-
cation level (a programmer typically does not make any as-
sumption on the platform that will be used for the appli-
cation), unless prior executions on the same platform have
been pro led and logged. Indeed, the QoS level required
by the application is associated to a set of parameters (e.g.,
resolution, latency, delays), whose mapping to the resource
utilisation is not obvious. For this reason, we envision the
use of a QoS contract broker, which is able to translate the
application level requirements into kernel level parameters
governing resource allocations. For example, a video player
could ask for a 25 fps frame rate with a given resolution
(level 1), or for the same frame rate with a lower resolu-
tion (level 2). The QoS contract broker is in charge of trans-
lating these application level parameters into resource de-
mands (understood by the QoS Manager) and, likewise, to
supervise the callback mechanism so that a bandwidth re-
duction required by the QoS manager is translated into the
appropriate application level working mode. To the current
state this component is still in the early design phase and,
for this reason, it will not be referred to in this paper.

3. Resource Reservations

The problem coped with in this paper is how to effec-
tively schedule time-shared resource in soft real-time sys-
tems. This task is to be regarded as a challenging one. In-
deed, a dif cult match has to be found between two differ-
ent requirements: 1) ensuring a correct timing behaviour to
the applications, 2) making an ef cient use of the shared
resource. Our strategy is based on the concept of adap-
tive reservations, which combine state-of-the-art schedul-
ing solutions for soft real-time systems (resource reserva-
tions) and a feedback-based adaptation strategy.

In this section, we will formally introduce the problem
of scheduling time-shared resources in a real-time system
and present our proposed scheduling solution. Then, we will
state the feedback control problem.

3.1. The real-time tasking model

A real-time task � ��� is a stream of jobs, or task instances.
Each job � �

� is characterised by an arrival time �
���
� , a re-

source utilisation time ����� , and a deadline ����� .
When a job arrives at time �

���
� , the task is eligible for

the allotment of temporal units of the resource (e.g. CPU)
from the scheduler. After the task receives ����� time units the
job nishes at a finishing time labelled as � ���

� . We will con-
sider preemptive scheduling algorithms. In our model job
�
���
� cannot receive resource units before � ���

���, i.e. the acti-
vation of a job is deferred until the previous ones from the
same task have been completed.

Furthermore, we will restrict to periodic tasks: task � ���

generates a job at integer multiples of a xed period � ���

and the deadline of a job is equal to the next periodic acti-
vation: ����� � �

���
��� � �� ���.

For example, a typical CPU-intensive task code structure
is the following:

task () �
initialisation;
while(condition) �

computation
wait for next instance();

�
�

After initialisation, the task enters a loop where it per-
forms the computation and then waits for the next acti-
vation. We assume that the task is activated by a peri-
odic timer that, upon expiration, send a signal or a mes-
sage that wakes up the task. Each instance of the loop is a
job; the nishing time of the job is the time it invokes the
wait for next instance().

As said, we assume that the relative deadlines of the tasks
are equal to the tasks’ periods. Therefore, if the task is soft
real-time, a job is allowed to complete after the next activa-
tion. In this case, activations are buffered.

3.2. Temporal protection and Resource Reserva-
tions

When dealing with a multiprogrammed environment a
major emphasis is usually put on the issue of protection.
Roughly speaking, protection means that the effects of a
problem in the execution of a task are con ned to the
task itself. The most important feature of real-time appli-
cations is that their correctness is related to their ability of
meeting real-time constraints. Therefore, to cope with ex-
ecution time variations and unpredictability in this type of
systems, the notion of temporal protection plays a role of

OSPERT 2005

69

paramount importance alongside of memory protection. Re-
stricting for the sake of simplicity to the case of independent
tasks ��	

 	 ��, a formal de nition of this concept can be
as follows: a scheduling algorithm is said to guarantee tem-
poral protection if the ability for each task � ��� to meet its
timing constraints only depends on the evolution of the re-
source utilisation time and inter-arrival times, and not on
the other tasks’ workload.

There are many scheduling algorithms known in liter-
ature that exhibit this property; examples are Proportional
Share schedulers, and Resource Reservations.

In this paper, we focus on Resource Reservations, orig-
inally proposed in [9]. Reservations have been success-
fully applied to a variety of different resources (including
CPU, disk bandwidth, network bandwidth and so forth) [9].
Therefore, even though we focus on CPU scheduling in the
following, the presented approach may be applied on differ-
ent kind of resources as well.

A resource reservation ��� for a task � ��� is described
by a pair �����	 � ����, with the meaning that the task is re-
served the resource for a maximum time ���� every � ���

units of time. ���� is the reservation maximum budget and
� ��� is the reservation period. In general, the task � ��� needs
not to be periodic; also, in case of periodic tasks, � ��� can
be different from the task’s period � ���.

The basic idea behind resource reservations is that ev-
ery task has a limitation ���� on the amount of computa-
tion it can perform every period � ���. For example, if we
want to keep under control a task � ��� with variable compu-
tation time, we can assign it a reservation �����	 � ���� with
� ��� � � ��� and ���� equal to some value above the aver-
age computation time of the task. The resource reservation
guarantees that the task will never request more than � ���

units of time every � ���. If a job �
���
� needs to execute for

more than ���� time units, some action must be taken to en-
force the limitation on the execution time. There are many
different algorithms that implement the resource reservation
approach. Our framework is based on a derivation of the
well known Constant Bandwidth Server (CBS) [1]. The in-
terested reader is referred to the cited paper for details. For
our purposes, it is suf cient to say that the CBS manipulates
the deadlines to be used in an Earliest Deadline First Sched-
uler. The idea is very simple: at the beginning of a server pe-
riod, a task is given a scheduling deadline equal to the end
of the period. When a task becomes eligible for execution it
starts to execute consuming its budget. This algorithm can
be proved to be a possible implementation scheme for re-
source reservations.

As an important remark, with this scheme a reservation
��� � ���	 ��� behaves like a periodic task with worst-
case computation time equal to �� and period equal to ��.
Therefore, to ensure the schedulability according to the se-
lected scheduling algorithm, the following inequality has to

be respected:

���� ����

� ���
� � ��� (1)

with � ��� � � for the CPU. If (1) holds, every task � ��� at-
tached to a reservation �����	 � ���� is guaranteed to receive
its reserved amount of time (i.e., ���� time units over � ���).
The ratio ���� � ����

� ��� is said reserved bandwidth and it can
intuitively be thought of as the fraction of the CPU time re-
served to the task.

3.3. Dealing with CM: Adaptive reservations

Resource reservations cannot be regarded as a conclu-
sive solution to the problem of guaranteeing a correct tem-
poral behaviour to a set of soft real-time tasks. In particular,
a non-trivial problem still holds: how should the (� ���	 � ���)
pair be dimensioned? In presence of scarcely known or
and/or time-varying execution times a static partitioning of
the CPU time (based on x ed choice for �����	 � ����) may
lead to infeasible or in e xible choices. To address this prob-
lem, a feedback based mechanism can be used to self-tune
the scheduling parameters and to dynamically recon gure
them in presence of changes in the workload.

More speci cally , such a feedback mechanism can be
constructed based on:

� an actuator, which permits to apply the feedback ac-
tion to change the system behaviour;

� an observed value, used as input to the feedback mech-
anism;

� a feedback function, used to compute the new actua-
tor’s value, based on the observed value.

Since the feedback strategy is applied to a reservation
based scheduler, the actuator is the amount of reserved time
����. In this case ���� and ���� are not constant, but can
change for each job: therefore, they will be indicated as
�
���
� and �

���
� . We call the resulting abstraction an Adap-

tive Reservation [2]. To respect the consistency of the re-
source reservation algorithm, such changes cannot be done
abruptly and attention must be paid to the current state of
the servers that change their bandwidth. However impor-
tant, we will not deal with this issue in this paper for evi-
dent reasons of space.

Since we aim at applying feedback control to a CPU
scheduler, the observed value can be some QoS metric re-
lated to the tasks. The ideal goal of an adaptive reserva-
tion could be to schedule � ��� so that �� 	 �

���
� � �

���
� . In-

deed, in this way, not only is it guaranteed that the task pro-
gresses respecting its timing constraint but also the quan-
tity of CPU alloted to the task is exactly the one the task
needs. Therefore, the deviation, � ���

� � �
���
� seems to be a

OSPERT 2005

70

reasonable choice as an observed value, to be used as a
QoS metric. When this quantity is positive (and this is al-
lowed to occur in a soft real-time system), we need to in-
crease the amount of CPU reserved to the task. When it
is negative, then it means that the task received CPU time
in excess and we may want to decrease it. Unfortunately,
due to the de nition of a resource reservation given above,
it is impossible to control the exact time instant when a
job finishes. However, it is possible to control the reserva-
tion period inside which the job will nish. Assuming that
��������� � �

���
� � ����� (i.e., the job terminates within the

��	���� execution of reservation��� and that the task pe-
riod �� � ����, we can de ne the scheduling error as the
difference ���� � ������

The feedback function ��� that is used to compute the
new actuator value based on the observed value determines
the closed-loop system behaviour, and must be carefully de-
signed to attain the desired design goals. We will talk in
some detail of this issue in the next section.

The System Dynamic Model A considerable advantage of
the choice of the observed value as provided above is that
it is possible to construct an accurate mathematical model
of the system dynamic evolution. This model can be lever-
aged in the design of a feedback function ���.

Thanks to the temporal isolation property it is possible
to describe the evolution of the scheduling error by the fol-
lowing equation:

�
�� � ��� ��	 �
�	

�
�

�

�
� � � (2)

where �
 denotes the scheduling error experienced by the
�� �� job, �
 denotes the computation time experienced by
the � � �� job and �
 is the budget allocated to the job. In
the equation above dropped the ��� superscript referring to
the task for notational convenience. The above is an approx-
imate and simpli ed model that describes the evolution of
the scheduling error. For practical purposes, the approxima-
tion can be regarded as a satisfactory one.

The case of multiple resources The model described above
can easily be generalised to the case of flows managed by
a pipeline of tasks. Each stage performs a partial process-
ing and stores the results into an intermediate buffer (for in-
stance, a stage could do the fetching of a packet, a stage
could decode it and a stage could visualise the movie on the
screen). Clearly, at each stage the task is periodically acti-
vated but its computation might be delayed if the data pro-
cessed in the previous stage is not yet available. As far as
the actuation variable is concerned, in this case we have a
vector of budgets to work with (one for each stage of the
pipeline). The observed variables can still be the scheduling
errors experienced on each stage (assuming for each stage a
deadline equal to the period). The extension of the model in

Equation 2 is the following:

��
�� � ���
�
�	 ��
	 �

���

��

�
	

�
��

��

�
� � � �	 (3)

where the superscript � denotes the stage of the pipeline.
This is a nonlinear model with a diagonal structure. This
model is developed assuming that at each stage of the
pipeline the task makes a prevalent utilisation of one type of
resource, although it is not required that the resource used
at each stage be of the same type (for instance ��

 could re-
fer to the disk and ��

 to the CPU). Moreover we assume
the presence of in nite buffers between the different stages.

3.4. Dealing with interactive applications

This mechanism has been shown to perform very well on
continuous media application. However, as we said above,
this is not necessarily the case for interactive applications.
Consider as an example a text editor waiting for the user in-
put; assume also that it is running in a lightly loaded sys-
tem. If the application then starts a spell checker, a classic
CBS strategy would grant the whole bandwidth to the re-
claiming task and this would eventually end up with a dead-
line postponed far away, thus strongly reducing the applica-
tion’s priority. If the application becomes interactive once
again (waiting for some other inputs), the user may expe-
rience a very low responsiveness due to low priority of the
task.

The inde nite postponement of the deadline in response
to a set of events like the one suggested earlier breaches the
correctness of the implementation of a resource reservation
scheme by the CBS and it has been solved in a ne tuning of
the algorithm known as IRIS [6]. Unfortunately, the prob-
lem of lack of responsiveness still holds, depending on the
choice of period lengths. Indeed,:

1. if we choose a long period �� tasks’ interference is re-
duced, but responsiveness can be very low (the� � bud-
get can be potentially given only at the end of the pe-
riod still respecting the resource reservation idea);

2. if we choose a short ��, we get a better responsiveness
paying the cost of a greater overhead

To cope with this problem, we propose and adaptive mech-
anism that operates on ��. When the bandwidth required by
the application grows, �� is lowered thus allowing a fast re-
sponse if the task really behaves in an “interactive” fash-
ion. However, in the subsequent server activations � � is in-
creased in order to reduce the overhead if the task mutates
into a batch application. The possibility of using also � �

to trade-off responsiveness against overhead discloses in-
teresting opportunities, which are largely unexplored.

OSPERT 2005

71

Figure 2. Decentralised control scheme

4. QoS Manager

In this section, we show a conceptual architecture for
a feedback based management of the QoS experienced by
the different tasks. In our model, the information on the
QoS can be measured using the scheduling error � ���. As
shown earlier, when task � ��� is served by a reservation pair
��

���

 	 � ����, it generates a discrete event subsystem. The

dynamic evolution of the subsystem can be succinctly de-
scribed by Equation 2. In this model, ����
 plays the role of
state variable, ���� is an exogenous disturbance and �

���

 can

be used as a command variable to steer the evolution of the
system.

The subsystems related to the different tasks are very
loosely coupled. Indeed, owing to the temporal isolation
property, the evolution of task � ��� depends only on its own
parameters and it is asynchronous from the one of the other
tasks. Moreover, since we take measurements upon the ter-
mination of each job, a system-wide notion of “sampling”
is entirely missing. The only global constraint is the one ex-
pressed by the consistency relation in Equation (1), which
the system must never violate lest the temporal properties
of the RSV mechanism be severely jeopardised.

The considerations above almost naturally dictate the
control scheme in Figure 2, which is referred to as “decen-
tralised” in the control literature. Each task is attached a
dedicated controller, called “task controller”, that uses only
the information collected from the task. Roughly speaking,
a task controller is responsible for maintaining the QoS pro-
vided by the task in speci ed bounds with the minimum
impact on CPU utilisation. Still, the total bandwidth re-
quest from the different task controllers is allowed to exceed
the bound in Equation (1). This situation is de ned over-
load and it is the indirect outcome of concurrently large re-
quests of computation from different tasks. In presence of
an overload, a component called supervisor is used to re-

set the bandwidth allocated to the different tasks within ap-
propriate levels respecting Equation (1). While an overload
occurs, the task controllers are not allowed to work prop-
erly, since there may be alterations and/or delays in the ap-
plication of the budget that they dynamically decide. For
this reason, we will assume that overloads are episodic oc-
currences. This working condition can be attained if: 1) the
number of tasks admitted into the system is kept within rea-
sonable bounds, 2) the algorithms used for task controllers
are designed to avoid excessive bandwidth requests.

4.1. Task controllers

A task controller is comprised of two components: a
feedback controller and a predictor (as shown in Figure 3).
An appropriate sensor located inside the RSV scheduler re-
turns at the termination of each job the computation time of
the job just concluded and the experienced scheduling er-
ror. The former information is used by the predictor to pro-
duce an estimation regarding the next computation time �
.

We have developed both deterministic [8] and stochas-
tic [4] approaches for control design. In the case of deter-
ministic design, the control goal is to keep the evolution of
the scheduling error con ned in a small set. To attain this
goal, the controller “plays” a game against the uncertainty
introduced by the variability in computation time. In other
words, the controller tries and counteract the variability of
the computation times based on an assessment of its worst
case effects. For this reason, the predictor produces an in-
terval in which the next computation time is likely to fall,
while the feedback controller decides the new budget based
on the measurement of the current scheduling error and on
the interval provided by the predictor. Intuitively speaking,
the larger the size of the predicted range, the larger the set
where it is possible to control the scheduling error.

The same conceptual structure is applicable also to
stochastic approaches. In this case, the controller con-
siders �
 as a stochastic process and tries to choose the
control action to optimise some probabilistic perfor-
mance metrics (conditioned to the current measurements
of the scheduling error and to its past history). For in-
stance, one possibility is to choose the control value so
as to have an expected value of the scheduling error in
the next step equal to �. We called this approach stochas-
tic dead beat (SDB) since it tries to reduce the scheduling
error to � (in the average sense) in one step. The pre-
dictor in its turn works in a stochastic framework. For
instance in the case of the SDB controller, the predic-
tor produces a guess of the expected value of the next
value of �
 conditioned to the past story of the pro-
cess [4].

OSPERT 2005

72

Figure 3. Block diagram of a task controller

4.2. Supervisor

The supervisor component has the following de-
sign goals:

1. if all task controllers have bandwidth requests that do
not exceed the bound in Equation 1, and are compati-
ble with security limits imposed by the system admin-
istrator, then the supervisor has to be “transparent” (i.e.
it simply forwards to the scheduler the bandwidth re-
quests coming from the task controllers)

2. in case of overload, the supervisor has to ensure to ev-
ery task that the deviation from its required resource
utilisation will not be permanent. For instance, con-
sider the case of a deterministic control policy aiming
at con ning the system evolution into a set �. In pres-
ence of overload the scheduling error may be taken afar
form �. This requirement amounts to saying that even-
tually it will return into �.

The second design goal can be translated into guarantee-
ing a minimum bandwidth �

���
��� for each task, which is at

least equal to its average computation requirements. Tak-
ing a pragmatic approach, we will require the enforcement
of this requirement, only to the tasks for which such an es-
timation is available (choosing �

���
��� � � for the remaining

ones). The selection of a policy for managing in presence
of overloads the bandwidth exceeding the minimum guar-
anteed to each task is a free design parameter for the su-
pervisor. We have studied different alternatives (based on a
prioritisation of tasks, on a weighted compression of the re-
quired bandwidths or on both), but we will not detail them
here for reasons of space. The reader is referred to [5] for
further details.

4.3. Possible extensions to multiple resources

The scheme proposed above can be extended to multime-
dia streams managed by a pipeline of tasks. Indeed, as dis-
cussed in Section (3.3), we can introduce a scheduling error
�� for the ���� stage of the pipeline and the evolution of the

pipeline is describe by Equation (3). An important feature of
this model is that the scheduling error at one stage only de-
pends on the scheduling error experienced by the stage im-
mediately before. Thereby, it is possible to operate with a
dedicated controller at each stage of the pipeline. This con-
troller takes its decision based on: 1) the scheduling error
experienced by the previous job at the current stage of the
pipeline ��
, 2) the scheduling error ����
 experienced at the
current job by the pipeline stage immediately before the one
in consideration, 3) the prediction of the resource workload
��
 required for the current job. In this framework, the exten-
sion of the deterministic control approaches cited earlier is
straightforward. But, we are currently evaluating the possi-
bility of different control strategies, which, for each stage,
take their decision based on a global information.

5. Implementation Architecture

In this section we describe a software architecture aimed
at proving the technological feasibility of the theoretical ap-
proaches described so far. The architecture is built on the
top of the GNU/Linux OS (Kernel Version 2.4.27). The
choice of Linux was motivated by its growing popularity
and by the availability of the source code and of a large
documentation on the kernel. A considerable advantage of
Linux, is also its modular structure that allows one to ex-
tend the kernel by inserting a module. However, this choice
is also to be considered as incidental: most of the architec-
ture proposed here can be ported with a limited effort to
other Operative Systems. More generally, our purpose was
to prove that the theoretical machinery described in the pre-
vious sections can be introduced into a general purpose op-
erating system, with a limited impact on the kernel structure
and on the introduced overheads.

5.1. Design Goals and Architecture overview

The design of the system was carried out pursuing the
following goals:

Portability: the link between the proposed architecture
and the adoption of a speci c kernel platform (Linux
kernel 2.4.27) is shallow. To achieve this goal, we
designed a layered structure where kernel dependent
code is con ned inside the lowermost level. Moreover,
the changes made on the kernel are minimal and the
communication between the different components of
the architecture (which run partly at user and partly at
kernel level) uses virtual devices, which are common-
place in operating systems of Posix class.

Backward compatibility: we did not change the API of the
Linux kernel. Therefore, preexisting applications can
run without modi cations. Moreover, tasks that do not

OSPERT 2005

73

Figure 4. System Architecture

require QoS services are taken care of by the Linux
scheduler.

Flexibility: our architecture allows one to easily introduce
new control and prediction algorithms. These algo-
rithms can be run either in user or in kernel space.
In the former case, it is possible to use oating point
mathematics and third parties math libraries (which
is very useful during the prototyping phase). Another
possibility potentially offered by user space implemen-
tation is to provide speci c predictors along with the
different applications (whose introduction into the ker-
nel might be untrusted). On the other hand, kernel
space implementation is certainly more ef cient and
preferable when the algorithms are well-tested and re-
liable (as is the case of the algorithms proposed in this
paper).

Ef cienc y: the overhead introduced by QoS management
mechanisms is acceptable. Moreover, applications that
do not use QoS management functionalities experi-
ment a negligible overhead.

Security: the possibility of changing the bandwidth re-
served to the different applications makes for denial
of service attacks; therefore the bandwidth allocation
mechanism has to be compatible with a “maximum”
CPU bandwidth de ned on a per-user basis (in the
same way as disk quotas are).

The proposed architecture is depicted in Figure 4, and it
is composed of the following main components:

� the Generic Scheduler Patch (GSP), a small patch
to the kernel (276 lines) which allows to extend the
Linux scheduler functionality by intercepting schedul-
ing events and executing external code;

� the Resource Reservation Component, composed of a
kernel module and of an application library communi-
cating through a Linux virtual device:

– the Resource Reservation module imple-
ments the resource reservation mechanism and
the RR supervisor; a set of compile-time con g-
uration options allows one to use different Re-
source Reservation (RR) primitives, and to cus-
tomise their exact semantics (e.g. soft or hard
reservations);

– the Resource Reservation library provides an API
allowing an application to use resource reserva-
tion functions;

� the QoS Manager Component, composed of a kernel
module, an application library, and a set of predictor
and feedback subcomponents which may be con g-
ured to be compiled either within the library or within
the kernel module:

– the QoS Manager module offers kernel space im-
plementations of some feedback control and pre-
diction algorithms (including the ones shown in
this paper);

– the QoS Manager library provides an API al-
lowing an application to use QoS management
functionalities; as far as the control computation
is concerned, the library either implements the
control loop (if the controller and predictor al-
gorithms are in user-space) or redirects all re-
quests to the QoS Manager kernel module mod-
ule (in case a kernel-space implementation is re-
quired). In the former case, the library commu-
nicates with the resource reservation module to
take measurements of the scheduling error or
to require bandwidth changes (such requests are
“ ltered” by the RR supervisor).

6. Conclusions and future work

In this paper we stated the general problem of adaptive
management of resources for soft real-time applications.
We described extensions to our prior model, which focused
only on CPU allocation, in the context of applications us-
ing multiple resources. We also introduced the architecture
that is being developed for supporting these mechanisms on
a general purpose OS like Linux, based on an extension of
our prior architecture allowing adaptation of the CPU band-
width for QoS control.

We plan to investigate on the impact of the introduced
decentralised control technique on the QoS experienced by
soft real-time applications. We also plan to develop cen-
tralised control strategies, where decisions are based on the
state of the entire pipeline of activities by which a multi-
resource application is composed. We expect this approach
to be particularly effective whenever applications possess

OSPERT 2005

74

the ability to adapt their fraction of use of a resource de-
pending on quality parameters, as is commonly the case for
multimedia applications.

Finally, even though development is primarily focused
on the Linux OS, we plan to maintain portability across
multiple systems (e.g. FreeBSD, on which we already have
a resource reservation based management of the disk) by
means of the kernel abstraction layer.

References

[1] L. Abeni. Server mechanisms for multimedia applica-
tions. Technical Report RETIS TR98-01, Scuola Superiore
S. Anna, 1998.

[2] L. Abeni, L. Palopoli, and G. Buttazzo. On adaptive control
techniques in real-time resource allocation. In Proceedings
of the Euromicro Conference on Real-Time Systems, Stock-
holm, Sweden, June 2000.

[3] G. T. C. Lu, J. Stankovic and S. Son. Feedback control real-
time scheduling: Framework, modeling and algorithms. Ppe-
cial issue of RT Systems Journal on Control-Theoretic Ap-
proaches to Real-Time Computing, 23(1/2), September 2002.

[4] T. Cucinotta, L. Palopoli, and L. Marzario. Stochastic
feedback-based control of qos in soft real-time systems. In
Proc. of the IEEE 2004 conference on decision and control
(CDC04), Paradise Island,Bahamas, December 2004.

[5] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and
L.Abeni. Adptive reservations in a linux environment. In
Proc. of the 10t10th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTSA04), Toronto,
Canada, May 2004.

[6] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. Iris:
a new reclaiming algorithm for server-based real-time sys-
tems. In Proc. of Real-Time Application Symposium (RTAS
04), May 2004.

[7] C. W. Mercer, R. Rajkumar, and H. Tokuda. Applying hard
real-time technology to multimedia systems. In Workshop
on the Role of Real-Time in Multimedia/Interactive Comput-
ing System, 1993.

[8] L. Palopoli, T. Cucinotta, and A. Bicchi. Quality of service
control in soft real-time applications. In Proc. of the IEEE
2003 conference on decision and control (CDC02), Maui,
Hawai, USA, December 2003.

[9] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource
kernels: A resource-centric approach to real-time and multi-
media systems. In Proceedings of the SPIE/ACM Conference
on Multimedia Computing and Networking, January 1998.

[10] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole. A feedback-driven proportion allocator for real-
rate scheduling. In Proceedings of the Third usenix-osdi.
pub-usenix, feb 1999.

[11] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems. In
Proceedings of the IEEE Real-Time Systems Symposium, De-
cember 1996.

OSPERT 2005

75

OSPERT 2005

76

Adding new features to the Open Ravenscar Kernel ∗

Santiago Urueña José A. Pulido Juan Zamorano Juan A. de la Puente

Universidad Politécnica de Madrid, Spain

Abstract

ORK is a specialized real-time kernel for high-integrity
embedded systems based on the Ada Ravenscar profile.
The paper is focused on the evolving requirements for a
new generation of Ravenscar kernels, coming both from
the evolution of the Ada language and the needs of future
aerospace systems. An assessment of the changes is done,
and a set of new features to be included in the next ORK
version is selected. The new features are organized as an
upward-compatible set of kernel configurations, which can
be used in different kinds of systems.

1. Introduction

The Open Ravenscar real-time Kernel (ORK) [11, 13] is
a small, reliable kernel for high-integrity embedded real-
time systems which supports a simple computational model
which can be analysed for temporal correctness using rate-
monotonic and response-time analysis techniques [15, 6].
The ORK computational model is defined by the Ada
Ravenscar profile [7, 8], and supports systems consisting
of a static set of periodic and sporadic tasks communicating
by means of protected shared objects. Embedded real-time
applications can be built on top of ORK in Ravenscar Ada
or in C, using the GNAT1 compilation system.

The current version of ORK2 has shown its value for
high-integrity embedded real-time systems, after having
been used in some pilot applications with very positive re-
sults (see e.g. [25]). It has been recently adopted as a
basis for a professional software development system for
mission-critical spacecraft embedded systems [21]. How-
ever, new requirements for supporting a wider class of em-
bedded systems have arisen, and a proposal to update the
Ada language standard, including the Ravenscar profile it-
self and a number of interesting new features for real-time
systems, is expected to be approved soon. These changes in

∗Work supported by MEC, project TRECOM (TIC2002-04123), and
the EC 6FP, project ASSERT (IST 4033).

1http://www.gnu.org/software/gnat/gnat.html
2Available at http://www.dit.upm.es/ork.

the application domain and in the Ada technology make it
necessary for the kernel to be adapted to the challenges that
the development of high-integrity real-time systems will
raise in the near future.

The aim of this paper is to make assessment of the re-
quired modifications to ORK, and a selection of the new
features that the upcoming versions of the kernel must have,
in order to be used in future high-integrity embedded sys-
tems.

The paper is organized as follows: a short summary of
the ORK functions and architecture is first made in section
2. New requirements coming from the upcoming Ada 2006
standard are then analysed in section 3. Other changes and
possible alternative computation models coming from the
evolution of high-integrity embedded systems are discussed
in section 4, taking the aerospace domain as a basis. Section
5 contains a proposal for a configurable enhanced version
of ORK addressed at future aerospace embedded systems.
Finally, some conclusions and proposals for future work are
presented.

2. ORK functionality and structure

ORK supports restricted Ada tasking as defined by the Ada
Ravenscar profile. This results in the following set of func-
tionalities:

• Thread creation only at system start time. Threads can-
not be terminated.

• Preemptive priority thread scheduling, with FIFO dis-
patching for threads with the same priority. Priorities
are fixed, and can only be changed as part of the im-
plementation of the ceiling locking access protocol.

• Thread synchronization is restricted to mutexes and a
simple form of condition variables. In order to prop-
erly support Ravenscar protected objects, mutexes are
static and are locked according to the ceiling locking
protocol [2, 22]. At most one condition variable can
be used with a mutex, and at most one thread can be
waiting on a condition variable.

OSPERT 2005

77

• Time keeping and absolute delays implemented with
the highest possible accuracy [28].

• Storage management, restricted to linear allocation of
stack space for threads at system start time.

• Interrupt handling.

The kernel is organized as a set of Ada packages which
implement the above functionality (figure 1). This archi-
tecture has been designed in order to ensure portability and
configurability, thus easing its maintenance and evolution.

3. Ada 2006 real-time features

3.1. The Ada 2006 revision process

The first motivation for the evolution of ORK comes from
the changes in the Ada language itself. After a good amount
of work by the responsible standardization bodies and the
Ada community, an amendment to the language has been
developed which will expectedly result in a new standard to
be issued at the beginning of the next year.3 The amendment
is aimed at improving the language in several areas, one of
which is real-time systems.

The most visible enhancement is the addition of the
Ravenscar profile itself to the standard [1, D13.1], thus ac-
knowledging its relevance for the high-integrity systems do-
main. The main implication of this change is that all Ada
compiler builders who want to offer the Ravenscar profile
have to do it in a standard way, so that Ravenscar programs
are portable at the compiler level. However, existing real-
time kernels that support the Ravenscar profile need not be
modified, as the profile definition has been stable for some
years now.

In addition to making the profile part of the standard,
there are other changes in the real-time area that have a po-
tential impact on real-time kernels. Some of the changes
are outside the Ravenscar definition, but they still have to
be analysed in order to find possible conflicts or side ef-
fects, and to assess the possible benefits of extending the
computation model so that the new features can be used in
high-integrity systems. The following paragraphs include
a discussion of the most important Ada 2006 changes and
their impact on Ravenscar kernels.

3.2. Dynamic ceiling priorities

Dynamic task priorities is an important feature for real-
time systems with multiple operating modes, which was
already supported in Ada 95. However, there was some

3See http://www.ada-auth.org/amendment.html.

inconsistency in that the ceiling priorities of protected ob-
jects could not be dynamically changed. Although there
are workarounds that enable mode changes to be effected
with constant ceilings, they are error-prone and may intro-
duce additional blocking. The proposed Ada amendment
solves this inconsistency by enabling ceiling priorities to be
changed at run time [1, D5.2].

Dynamic task priorities were excluded from the Raven-
scar profile because they may compromise temporal pre-
dictability if used improperly [8]. The 2006 amendment
sticks by this policy by keeping dynamic ceiling priorities
out of the profile. This implies that no modification to the
kernel is required by this change. However, if ORK would
be extended to support some kind of “extended Ravenscar
profile”, which has some supporters in the real-time Ada
community, [14], it would be a simple matter to add sup-
port for dynamic priorities and ceilings. All that is needed
is to provide kernel services for modifying the priority en-
tries in the kernel data structures associated with tasks and
protected objects, respectively.

3.3. Execution-time clocks and timers

Execution-time clocks provide a mechanism for measuring
the CPU time that a task has spent since it was started [1,
D14]. This is indeed a useful feature for high-integrity sys-
tems, as it enables execution-time budgets to be monitored
and overloads to be detected. It has been shown to be com-
patible with the Ravenscar restrictions [12], and has been
included in the new standard definition of the profile.

The Ada 2006 proposal also includes execution-time
timers, which can be used to make a handler procedure
to be executed whenever a specified amount of CPU time
is consumed by a task [1, D14.1]. This feature enables
execution-time overruns to be detected and, when applica-
ble, error recovery to be performed. However, effective use
of execution-time timers requires asynchronous transfer of
control, a construct which introduces what is usually con-
sidered a unacceptable degree of indeterminacy for high-
integrity systems [8]. For this reason it has been excluded
from the Ravenscar profile.

A related feature is execution-time budgets for groups of
tasks [1, D14.2]. The main motivation for this mechanism
is to provide support for aperiodic servers [23, 24]. Group
budgets have been kept out of the Ravenscar profile for sim-
ilar reasons as execution-time timers.

The impact of the above changes on ORK is not the same
for each of them. Execution-time clocks have to be sup-
ported, as they are part of the profile, and can be imple-
mented in a rather straightforward way by keeping track of
each task consumed CPU time on every context switch [27].

Execution-time timers and group budgets are not part
of the profile, but are clearly of interest for a wider class

OSPERT 2005

78

Kernel.ParametersE
Kernel.Interrupts

Kernel.Peripherals

Kernel.CPU_Primitives

Kernel.Time

Kernel.Memory

Kernel.Threads

{Time Keeping and Delays}

{Storage Allocation}

{Thread Management}

{Synchronization}

{Scheduling}

{Interrupt Handling}

Kernel

Figure 1. ORK architecture

of real-time systems requiring a strict control on overruns.
Their implementation is more complex, as it involves us-
ing a hardware timer, which in some architectures has to
be shared with the implementations of delay services. A
pilot implementation has also shown that these features in-
troduce a significant overhead on context switches and in-
terrupt handling [27].

3.4. Scheduling policies

The current Ada standard [2] defines a preemptive priority
scheduling policy, with FIFO dispatching order for tasks at
the same priority, and an immediate ceiling priority access
protocol for shared data encapsulated in protected objects.
The Ravenscar profile mandates this scheduling policy, and
forbids dynamic priority changes other than those required
by the locking policy, as well as dynamic tasks and pro-
tected objects. All these restrictions define a static, analyz-
able task model [8].

The proposed new standard enlarges the Ada schedul-
ing model by including additional scheduling methods in an
upward-compatible way. The primary scheduling mecha-
nism is still priorities, but different dispatching policies may
be specified for different priority levels. The new dispatch-
ing policies include non-preemptive FIFO, round-robin, and
earliest deadline first (EDF). Dispatching policies apply to
a band of priority levels, so that different policies, e.g. EDF
and preemptive FIFO may be used on the same system [1,
D2].

The new scheduling policies are not part of the Raven-
scar profile, but non-preemptive and EDF scheduling are
clearly of interest for an “extended Ravenscar” class of
applications. The impact of adding alternative scheduling
policies to the kernel is comparatively high, as it involves a
major modification of the thread management package (fig-
ure 1). Different dispatching procedures have to be imple-
mented, and the one to be used at scheduling point depends
on the scheduling policy which is used at the current pri-
ority level. This mechanism has a cost on context switch
times which is still to be evaluated.

3.5. Timing events

Timing events enable a low-level mechanism for executing
procedures at specified points of time, without using tasks
or delay statements [1, D15]. This feature enables efficient
implementation of short time-triggered actions, and is thus
of interest for real-time embedded systems.

The updated Ravenscar profile definition for the new
standard allows timing events, but only at the library level,
i.e. the set of timing events must be static. Therefore, the
kernel has to be updated in order to support static timing
events.

The impact of this change on ORK is high. The approach
is to use a hardware timer and an ordered queue of tim-
ing events. Delay expirations are a particular case of tim-
ing events, and thus share the same timer and event queue.
The main problem is with event cancellations, which may

OSPERT 2005

79

compromise the static, predictable nature of Ravenscar pro-
grams.

4. Requirements of future embedded systems

4.1. The ASSERT project

Technological changes in hardware and software are ex-
pected to keep the trend towards increasing flexibility and
complexity in high integrity embedded systems in the forth-
coming years. This trend is exemplified by the ASSERT4

project, which is aimed at improving the system-and-
software development process for critical embedded real-
time systems in the Aerospace and Transportation domains.
Preliminary requirements capture for two pilot projects in
the aerospace domain which has been performed in the
framework of ASSERT shows that future real-time embed-
ded systems in this domain will have significant differences
in size and complexity within a single product family of
related applications. This means among other things that
the real-time kernels for these systems will have to be con-
figurable and flexible enough to support the variability of
future families of embedded systems.

The most important characteristics that have been iden-
tified in this analysis are:

• Distribution. Future embedded systems will require
distributed execution on a set of possibly heteroge-
neous computers. Communication must be transpar-
ent with respect to the location and architecture of the
communicating entities, and at least in some cases it
must also be predictable in the temporal domain.

• Criticality. Some applications are highly critical, in
the sense that their failure may lead to loss of life or
mission failure. These applications are usually classi-
fied as level A or B according to DOD-178B [20] or a
similar standard, and are usually required to undergo a
certification process which is also defined in the rele-
vant standard.

• Partitioning. The increasing power of microproces-
sor hardware has led to putting together in the same
computer different applications, possibly with differ-
ent criticality and timing requirements. Partitions are
logical spaces for the protected execution of such ap-
plications, so that storage space and processor time al-
located to one application are not invaded by other ap-
plications.

• Dependability. In order to ensure the integrity of high-
criticality applications, dependability-oriented tech-

4Automated proof based System and Software Engineering for Real-
Time systems, FP6 IST 4033.

niques such as replication and fault containment re-
gions may have to be used in future embedded systems.

The implications and impact of these properties on real-
time kernels are analysed in the next paragraphs.

4.2. Distributed execution

Transparent communication and other functionality are ap-
propriately handled by a middleware layer [4]. Indeed, mid-
dleware to be used in real-time systems must exhibit a pre-
dictable temporal behaviour [5], which can be analysed us-
ing appropriate response-time analysis methods [18]. Poly-
ORB [26] is a middleware which can be configured for
different so-called personalities, including some real-time
standards as RT-CORBA and Ada DSA. It has been adopted
as one of the building blocks of a generic distributed sys-
tems architecture which is to be prototyped in the frame-
work of the ASSERT project (see 5 below).

The impact of distribution features on the real-time ker-
nel is mainly on the lower-level communication layers. Pre-
dictable communication requires bounded, analysable mes-
sage transmission times as a basis [18]. A number of net-
work and communication protocols are available that have
the required properties [5], but not all of them are appropri-
ate for the ASSERT application domains. RT-EP [16] and
SOIS MTS [9, 19] have been selected for the prototype ar-
chitecture. The only modification which is required from
the kernel in order to support these protocols is the devel-
opment of a device handler for a LAN chip and the associ-
ated RT-EP driver, which are included in the board-support
package.

4.3. Partitions

In a partitioned system, computer resources are allocated to
a number of partitions, in which different applications run.
Each application may in turn have a number of concurrent
threads (figure 2). In order to ensure space and time isola-
tion among partitions, appropriate mechanisms have to be
used that prevent one application to run into other applica-
tion memory space or to use processor time beyond a given
budget. The same applies to other resources, such as input-
output devices and communication links.

There are a number of methods that can be used to
enforce inter-partition isolation. Hardware mechanisms
(MMU) are customarily used to divide a physical storage
space into a number of virtual memory spaces, which can
be allocated to different partitions. Time partitioning can
be achieved by hierarchical scheduling. A global sched-
uler distributes processor time among partitions, and a local
scheduler determines which thread within the running par-
tition executes at a given time. Timers of different kinds

OSPERT 2005

80

partition A

thread 1

thread 2

thread 3

partition B

thread 1

thread 2

Figure 2. Partitioned system

can be used to detect overruns both at the local and global
levels.

The ARINC 653 standard [3] for integrated modular
avionics (IMA) is based on such principles. It defines an
operating system interface (APEX), with two-level schedul-
ing. Static scheduling is used for partition scheduling, in
a similar way as a cyclic executive works, while thread
scheduling within partitions is based on fixed-priority pre-
emptive scheduling (FPPS). This approach leads to highly
predictable, analysable timing behaviour, at the cost of an
inherent lack of flexibility at the partition scheduling level.

A possible alternative is to use FPPS for scheduling
partitions. This approach has the advantage of a greater
flexibility and better processor utilization, although tempo-
ral analysis becomes more complex. Recent work in the
framework of the FIRST project [10] provides new tech-
niques for response time analysis of systems with hierarchi-
cal scheduling that make FPPS a real alternative to static
scheduling for partitioned systems.

Another relevant issue in partitioned systems is inter-
partition communication, which in the real-time case must
be predictable. Communication mechanisms should be de-
signed in such a way the integrity of the communicating
partitions is not compromised.

The impact of partitioning on the kernel is deep. Al-
though hierarchical scheduling can be implemented using
priority bands and group budgets as proposed in the Ada
amendment, this may not be enough for systems with a high
level of criticality. A hierarchical architecture of the ker-
nel reflecting the hierarchy of partitions and threads seems
a better approach for building partitioned systems, as pro-
posed in section 5.

4.4. Criticality and dependability

Applications running on a partitioned system may have dif-
ferent criticality levels. Moreover, all the software which
is involved in the execution of a high-criticality applica-

tion must be certified at that criticality level. This means
that, in order not to have to certify all the applications to the
highest level, applications must be isolated so that a failure
in a low-criticality application —which may be acceptable
at its level— does not compromise the execution of high-
criticality applications. Indeed, partition mechanisms can
be used to this purpose, including MMU hardware for spa-
tial isolation and appropriate scheduling methods, together
with temporal analysis and overrun detection mechanisms,
for temporal isolation. Of course, this approach requires all
the software implementing the partition mechanisms to be
certified at the highest level, but in turn applications only
have to be certified at their respective criticality levels. Un-
der this approach, partitions act as failure confinement re-
gions for the applications running within them.

The main impact that this approach has on the kernel is
that it requires all the partition support software to be certi-
fied at the highest level. This includes the real-time kernel
and other components which are described in section 5 be-
low. An implication of this requirement is that the kernel
and related software must be kept simple enough so that is
behaviour can be shown to be predictable at all times.

5. A tailorable real-time architecture

5.1. Introduction

Not all the embedded systems of the future will require
support for all the above described properties. The need
for small, highly-reliable systems based on a single proces-
sor board will still exist, and the Ravenscar profile will un-
doubtedly be a reasonable computation model for this kind
of systems. On the other hand, complex multi-partition dis-
tributed systems will also be needed, and appropriate com-
putation models providing the required levels of predictabil-
ity and dependability for such complex systems will be an
issue with growing importance. As we have seen, parti-
tions with space and time separation, hierarchical FPPS and

OSPERT 2005

81

predictable communications and middleware offer solutions
based on available technology for these systems.

Our proposal is to develop a tailorable family of real-
time kernels that can give support to different kinds of sys-
tems. The baseline configuration is a Ravenscar-compliant
kernel, similar to the current ORK version plus the compati-
ble Ada 2006 extensions and communication drivers. Some
possible extensions include an “extended Ravenscar pro-
file” with dynamic priorities and ceilings, execution-time
timers, and task group budgets. Support for alternative
scheduling methods, such as EDF and non pre-emptive pri-
orities, as well as priority-band scheduling, is another clear
extension to the basic profile.

Supporting partitions and distributed systems is a more
complex issue. A hierarchical architecture has been de-
signed in the framework of the ASSERT project as a first
step to investigate these issues, and a first prototype has
been built with the aim of showing the capabilities of
present day technology and learning more about the prob-
lems of complex, distributed embedded systems.

5.2. ASSERT middleware prototype architecture

The first prototype of the ASSERT middleware architecture
is based on a set of components that provide support for
predictable distributed execution of hard real-time systems
(figure 3.) The main software components are:

• A real-time kernel that provides support to thread
scheduling and other functions. In the current proto-
type this component is instantiated by ORK.

• A message transfer service (MTS), which is instanti-
ated in the prototype by a SOIS-MTS package.

• A middleware layer providing support for transparent
communication between distributed application com-
ponents. In the prototype this layer is instantiated by
PolyORB, tailored to work on SOIS-MTS and provid-
ing both RT-CORBA and Ada DSA services to appli-
cations.

The prototype works on bare PC boards linked by a ded-
icated Ethernet link. A sample application is built on top
of it, showing a minimal but representative distributed real-
time configuration.

5.3. Partitioned architecture

The above prototype architecture does not support parti-
tions. In order to enable multi-partition systems to be built,
a proposal for a partitioned architecture has been developed
(figure 4), as an extension of the distributed architecture. In

order to make the architecture upward compatible, the ex-
tended architecture puts all the partition management func-
tions in a separate nano-kernel layer, leaving the upper lay-
ers unchanged or even removing it in the computer nodes
that have only one partition. This approach has already been
explored in other real-time domains with promising results
(see e.g. [17]).

The main nano-kernel functions are:

• Memory management and spatial separation among
partitions.

• Partition scheduling and temporal separation. Parti-
tions can be scheduled according to a static execution
plan, or with fixed priorities following the scheme pro-
posed in FIRST [10]. Temporal separation can be en-
forced by using execution-time timers at the partition
level.

• Inter-partition communication. Message-based com-
munication provides upward compatibility with the
middleware layer and location transparency at this
layer.

• Virtual device handling for partition input-output.

Detailed design of the partitioned architecture is ex-
pected to be developed before the end of this year.

6. Conclusions

The need for evolution of the ORK kernel comes mainly
from two sources: The Ada 2006 revision process and the
increasing complexity of high-integrity embedded real-time
systems. We have analysed the changes that are required,
and a basic set of features have been selected to be added to
the ones defined in the Ravenscar profile.

Future versions of the kernel will be tailorable, ranging
from a basic Ravenscar configuration to a full-fledged ker-
nel that is included in a partitioned, distributed architecture
including also other components. A first prototype sup-
porting predictable distribution has already been developed,
and an extended prototype also supporting partitions on the
same computer will soon be designed in the framework of
the ASSERT project.

7 Acknowledgments

The ASSERT middleware prototype has been developed
jointly with Laurent Pautet, Jerome Hugues and Khaled
Barbaria from ENST, Stuart Fowler and Marek Prochazka
from SciSys, and Tullio Vardanega from the University of
Padua. The authors have also had many fruitful discussions
with these and other members of the ASSERT project about
the architectural concepts presented in this paper.

OSPERT 2005

82

computer board

application

LAN driver RT kernel

MTS

midleware

computer board

application

LAN driver RT kernel

MTS

midleware

bus / LAN

Figure 3. Distributed system architecture

computer board

computer board

bus / LAN

application

RT kernel

MTS

midleware

Comm.

application

RT kernel

MTS

midleware

Comm.

application

LAN driver RT kernel

MTS

midleware

LAN drivernanokernel

partition partition

Figure 4. Partitioned system architecture

OSPERT 2005

83

References

[1] Ada Reference Manual. Language and Standard Libraries.
Consolidated Standard ISO/IEC 8652:1995(E) with Tech-
nical Corrigendum 1 and Amendment 1 (Draft 11), 2005.
Available on http://www.adaic.com/standards/
rm-amend/html/RM-TTL.html.

[2] Consolidated Ada Reference Manual. Language and Stan-
dard Libraries. International Standard ANSI/ISO/IEC-
8652:1995(E) with Technical Corrigendum 1, 2000. Avail-
able from Springer-Verlag, LNCS no. 2219.

[3] Avionics Application Software Standard Interface — ARINC
Specification 653-1, October 2003.

[4] P. A. Bernstein. Middleware: A model for distributed sys-
tem services. Communications of the ACM, 39(2):86–98,
February 1996.

[5] B. Bouyssounouse and J. Sifakis, editors. The ARTIST
Roadmap for Research and Development, volume 3436 of
Lecture Notes in Computer Science. Springer-Verlag, March
2005. ISBN: 3-540-25107-3.

[6] A. Burns. Preemptive priority based scheduling: An appro-
priate engineering approach. In S. Son, editor, Advances in
Real-Time Systems. Prentice-Hall, 1994.

[7] A. Burns, B. Dobbing, and G. Romanski. The Ravenscar
profile for high integrity real-time programs. In L. Asplund,
editor, Reliable Software Technologies — Ada-Europe’98,
number 1411 in LNCS. Springer-Verlag, 1998.

[8] A. Burns, B. Dobbing, and T. Vardanega. Guide for the use
of the Ada Ravenscar profile in high integrity systems. Tech-
nical Report YCS-2003-348, University of York, 2003.

[9] Consultative Committee for Space Data Standards
(CCSDS). CCSDS Spacecraft On-board Interface Services
Green Book – CCSDS 830.0-G-0.4, December 2004. Draft.

[10] R. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. Technical Report YCS-2005-385, Uni-
versity of York, 2005.

[11] J. A. de la Puente, J. F. Ruiz, and J. Zamorano. An open
Ravenscar real-time kernel for GNAT. In H. B. Keller
and E. Ploedereder, editors, Reliable Software Technologies
— Ada-Europe 2000, number 1845 in LNCS, pages 5–15.
Springer-Verlag, 2000.

[12] J. A. de la Puente and J. Zamorano. Execution-time clocks
and Ravenscar kernels. Ada Letters, XXIII(4):82–86, De-
cember 2003.

[13] J. A. de la Puente, J. Zamorano, J. F. Ruiz, R. Fernández,
and R. García. The design and implementation of the Open
Ravenscar Kernel. Ada Letters, XXI(1), 2001.

[14] B. Dobbing and J. A. de la Puente. Session: Status and
future of the Ravenscar profile. Ada Letters, XXIII(4):55–
57, December 2003. Proceedings of the 12th International
Real-Time Ada Workshop (IRTAW 12).

[15] M. H. Klein, T. Ralya, B. Pollack, R. Obenza, and
M. González-Harbour. A Practitioner’s Handbook for Real-
Time Analysis. Guide to Rate Monotonic Analysis for Real-
Time Systems. Kluwer Academic Publishers, Boston, 1993.

[16] J. M. Martínez and M. González Harbour. RT-EP: A fixed-
priority real time communication protocol over standard eth-
ernet. In T. Vardanega and A. Wellings, editors, Reliable
Software Technologies - Ada-Europe 2005, volume 3555 of
LNCS. Springer-Verlag, 2005.

[17] M. Masmano, I. Ripoll, and A. Crespo. An overview of
the XtratuM nanokernel. In OSPERT 2005 — Workshop on
Operating System Platforms for Embedded Real-Time Ap-
plications, Palma de Mallorca, July 2005.

[18] J. C. Palencia, J. J. Gutiérrez, and M. González-Harbour.
On the schedulability analysis for distributed hard real-time
systems. In Proc 9th Euromicro Workshop on Real-Time
Systems, pages 136–143. IEEE CS Press, June 1997.

[19] C. Plummer and P. Plancke. The spacecraft onboard inter-
faces, sois, standardisation activity. In DASIA 2002 - Data
Systems in Aerospace, 2002.

[20] RTCA Inc. Software Considerations in Airborne Systems
and Equipment Certification — RTCA/DO-178B, 2002.

[21] J. F. Ruiz. GNAT Pro for on-board mission-critical space
applications. In T. Vardanega and A. Wellings, editors, Re-
liable Software Technologies - Ada-Europe 2005, volume
3555 of LNCS. Springer-Verlag, 2005.

[22] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Tr. on Computers, 39(9), 1990.

[23] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task schedul-
ing for hard real-time systems. Real-Time Systems, 1(1),
1989.

[24] J. Strosnider, J. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in
hard real-time environments. IEEE Tr. on Computers, 44(1),
January 1995.

[25] T. Vardanega and G. Caspersen. Using the Ravenscar Profile
for space applications: The OBOSS case. In M. González-
Harbour, editor, Proceedings of the 10th International Work-
shop on Real-Time Ada Issues, volume XXI, pages 96–104.
Ada Letters, 2001.

[26] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. Poly-
ORB: a schizophrenic middleware to build versatile reliable
distributed applications. In Proceedings of the 9th Inter-
national Conference on Reliable Software Techologies Ada-
Europe 2004 (RST’04), volume LNCS 3063, pages 106 –
119, Palma de Mallorca, Spain, June 2004. Springer Verlag.

[27] J. Zamorano, A. Alonso, J. A. Pulido, and J. A. de la Puente.
Implementing execution-time clocks for the Ada Ravenscar
profile. In A. Llamosí and A. Strohmeier, editors, Reliable
Software Technologies - Ada-Europe 2004, volume 3063 of
LNCS. Springer-Verlag, 2004. ISBN 3-540-22011-9.

[28] J. Zamorano, J. F. Ruiz, and J. A. de la Puente. Implement-
ing Ada.Real_Time.Clock and absolute delays in real-time
kernels. In A. Strohmeier and D. Craeynest, editors, Re-
liable Software Technologies — Ada-Europe 2001, number
2043 in LNCS, pages 317–327. Springer-Verlag, 2001.

OSPERT 2005

84

OCERA: A Framework based on Components for Real-time

Embedded Applications

(Invited talk)

Alfons Crespo

DISCA Universidad Politécnica de Valencia

e-mail: alfons@disca.upv.es

Abstract

The recent introduction of Linux into the embedded sector has been one of the most exciting changes in the last
few years. Based on the open-source model, it offers new possibilities to embedded engineers traditionally used to
commercial operating systems. The main benefits address important areas for embedded software developers as cost
and availability issue based on no runtime royalties and available source code at no charge.

The Linux kernel was not originally designed for real-time applications. Although kernel developers are actively
working in improving the responsiveness of the kernel, Linux is still not suited to support hard real-time applications.
However, the use of RTLinux implemented a real-time executive permits the execution of real-time tasks in a Linux
system.

In this paper we present the OCERA architecture based on Linux kernel and RTLinux executive which provides
support for critical real-time applications that need a very low response time and can be considered as critical, less
critical and more complex real-time applications, that may not be trusted and both kind of applications incorporating
new techniques in scheduling resource reservation, communications and fault tolerance. A list of components
improving the functionalities and implementation of real-time applications is described.

∗This work has been funded by the Commission of the European Communities under contract IST 35102 (OCERA project)

OSPERT 2005

85

OSPERT 2005

86

Lightweight RTAI for DSPs

Jens Kretzschmar, Robert Baumgartl
Department of Computer Science

Chemnitz University of Technology, Germany
fjens.kretzschmar, robert.baumgartlg@informatik.tu-chemnitz.de

Abstract

Digital Signal Processors (DSP) are an interest-
ing alternative to conventional microcontrollers for em-
bedded real-time systems. Up to now, no open source
operating system has been widely accepted for DSPs.
The special architecture of these chips prevents a sim-
ple port of Linux and its real-time modifications.

This paper presents a novel approach to implement
real-time APIs for DSP systems with small memory re-
sources: remove Linux from the Real-Time Application
Interface (RTAI). We realized this concept for the VLIW
DSP platform TMS320C62x. The interdependencies be-
tween Linux and RTAI are identified and eliminated. We
document necessary modifications to RTAI and present
a methodology to systematically port RTAI modules to
our system. The resulting operating system is compared
and evaluated to origninal RTAI. A careful optimiza-
tion results in an interrupt latency below 100 clock cy-
cles. The system is small enough to fit into DSP internal
memory.

1. Introduction

During the last couple of years, Linux has attracted
much interest within the embedded system market for
its obvious advantages: freedom, flexibility and perfor-
mance. The advent of RTLinux [13] and RTAI [4] has
provided the foundation for the construction of Linux-
based hard real-time systems.

Embedded systems based on digital signal proces-
sors (DSP) have been omitted from this trend for two
main reasons:

� scarce memory and

� non-existent competitive compilers.

Application and even more operating system pro-
gramming has been a task for only a few very skilled
specialists producing few lines of code per day. Oper-
ating systems for DSPs have been very efficient, small

and expensive. Almost always they are closed source.
Porting software across different DSP platforms is usu-
ally difficult due to non-standardized OS APIs.

This situation has changed somewhat with the in-
troduction of Texas Instruments’ C6x DSP family. This
processor is able to address several megabytes of mem-
ory, it has a fairly orthogonal instruction set and the
compiler produces reasonably optimized code. Not sur-
prisingly, ports of uCLinux to the C6x DSP have been
published [5, 6, 7].

With regard to the main application area of DSPs,
it would be favorable to have not only the plain Linux
kernel but its real-time extensions available. RTLinux
applications could be executed on DSP platforms and
it seems in general very attractive to have a well-
established and open source real-time OS API available
for DSPs. Up to now, neither RTAI nor RTLinux have
been ported to a DSP architecture. Therefore, we de-
cided trying to migrate RTAI to a DSP. For historical
reasons, we solely concentrated on RTAI.

The port has been done for the TMS320C62x
VLIW fixed-point DSP architecture [10]. The chip has
a Harvard architecture and provides separate internal
memory banks for program and data of 256 kBytes
each. Depending on the actual hardware platform ex-
ternal RAM of different sizes are possible. Clock rates
range from 150 to 300 MHz. Due to its downward com-
patibility, our solution is also usable for the more recent
type TMS320C64x, which is also used in application-
specific DSPs, e. g. the TMS320DM642 and DM643.
Typically, these processors incorporate between 1 and 8
MBytes of internal RAM and are clocked between 400
and 1000 MHz.

There is also a floating-point variant of the architec-
ture, the C67x, which has been omitted from our port so
far due to certain architectural differences to the C62x.
We feel it would be not too difficultto include that ver-
sion in the port, should the need arise.

The target hardware platform is a so-called Imag-
ing Evaluation Kit (IEK C64x) by the french company
Ateme [1].

OSPERT 2005

87

App3App1

App2

ADEOS

Hardware

RT−App1

RT−App2

Sched MBX Mem

ARTI

Linux

RTAI Domain

...

Linux Domain

Figure 1. Basic architecture of RTAI

The rest of the paper is structured as follows. In
section 2, we give a short overview of RTAI and the
used development tools, motivate the elimination of
Linux and give an overview of the porting process. Sec-
tion 3 details some of the technical aspects and difficul-
ties of the port. Efforts to optimize the resulting sys-
tem are also described. The following section 4 docu-
ments the achieved performance and compares our solu-
tion to a conventional RTAI/x86 system. The final sec-
tion 5 summarizes the main contributions of this work
and gives a short outlook on further research.

2. Basic design

2.1. RTAI overview

Figure 1 depicts the basic structure of an RTAI sys-
tem. The so-called ADEOS nanokernel realizes the
domain concept and the virtual interrupt pipeline [12].
ADEOS is a separate entity and could also be used with-
out RTAI, for instance to construct abstract machines.
The ARTI (ADEOS Real-Time Interface) layer imple-
ments timers, generates/proc entries in Linux and
contains some legacy functions. On top of it reside
RTAI components which together constitute the real-
time API and RTAI applications. From Linux’ point-of-
view both RTAI components and applications are spe-
cialized kernel modules. RTAI schedules the Linux do-
main (kernel and applications) with lowest priority, i. e.
when no real-time application is ready to run. ADEOS
prevents seizure of interrupts by Linux. More details on
RTAI can be found elsewhere [4].

2.2. Compiler considerations

RTAI has been designed and implemented using
the GNU Compiler Collection (GCC). Therefore, it

would be natural to employ GCC for the port. Unfor-
tunately, although GCC has indeed been ported (by our
group) to the C6x DSP architecture, this port is not ma-
ture enough yet for serious development projects. Es-
pecially its optimizing features are inferior to Texas In-
struments’ C6x compiler [9]. Because our solution aims
at low interrupt latency and low operating system over-
head we decided against GCC.

For many years, Digital Signal Processors (DSPs)
have been very special for programmers. To obtain op-
timum performance, it is quite common to implement
even large software projects solely by means of hand-
optimized assembler code. We did not pursue this ap-
proach for reasons of complexity and code maintain-
ability. As we will demonstrate in section 4 this deci-
sion causes no intolerable performance penalty.

The only remaining option was to use the C com-
piler by Texas Instruments which represents the state-
of-the-art in code optimization for the C6x architecture.
Unfortunately, this tool is not open source. Addition-
ally it is not fully compatible to GCC. For instance, the
interface between C code and assembler statements dif-
fers in several ways from GCC.

By constantly improving our GCC port, we hope to
migrate RTAI/C6x to that compiler in the future.

2.3. Eliminating Linux

To port RTAI to the DSP architecture, two principal
design approaches can be distinguished. The first one is
the ’classical’: one of the Linux versions ported to the
DSP must be extended with RTAI functionality.

Obviously, porting a monolithic kernel like Linux
to a DSP causes serious overhead. Many kernel func-
tions are obsolete within a DSP context (e. g. , drivers,
memory management). Adding RTAI functionality (in-
terrupt virtualization, real-time scheduler, . . .) to Linux
is likely to increase that overhead. The resulting system
will have a large memory footprint, large interrupt la-
tency and large processing overhead. We believe this to
result in an inacceptable performance penalty and there-
fore propose a radically different approach: Port RTAI
to the DSPwithout the Linux kernel! Hopefully, the
resulting system would be small and fast.

The feasibility of this approach strongly depends
on the interdependencies between RTAI and Linux. If
RTAI is using many Linux kernel functions, the port
will be difficult, because these functions have to be
reimplemented. As we will demonstrate, this is not the
case.

In a typical RTAI system, Linux is used for

� booting the system,

OSPERT 2005

88

� real-time system maintenance (adding tasks using
insmod , modifying system behavior etc.),

� non-real-time communication to the RT subsystem
(e. g. logging).

Additionally, it offers some advantages to let the devel-
opment environment and the target platform reside on
the same machine.

If these responsibilities are dispensable or can be
emulated, the resulting system does not need Linux.

The Linux boot mechanism is not of any value for
a DSP, because these devices usually boot from EEP-
ROM or some interconnection network. System main-
tenance solely depends on the execution environment
and therefore must be reimplemented anyway. Logging
functionality is not immediately necessary and will be
implemented if the need arises. Clearly it is impossi-
ble to use the DSP as development machine. Hence, we
can conclude that Linux may be safely removed from an
RTAI port to a DSP (the dotted parts in figure 1 vanish).

2.4. Challenges

Migrating software between such radically differ-
ent architectures is obviously a demanding task. The
peculiarities of the DSP and its C compiler rendered the
port difficult but not impossible.

In contrast to conventional ports, two different
types of functionality must be localized and reimple-
mented:

1. hardware-dependent code, and

2. functions provided by Linux.

The former comprises interrupt handling, con-
text switch and timer manipulation. The lat-
ter is, fortunately, only a small set of functions:
printk() , kmalloc() , request irq() , some
data type definitions and functions for bit manipula-
tions (bitops.h). In addition, the Linux functions
to transfer data between kernel and user address spaces
(copy to/from user() have to be removed from
certain RTAI modules (for instance, the mailboxes).

Hardware-dependent code in RTAI is well sepa-
rated. The amount of porting work differs from mod-
ule to module. The scheduler is—with the notable
exception of the context switch—almost completely
hardware- and Linux-independent. Memory allocation
is a different story: the MALLOC module uses the
Linux kernel functionkmalloc() .

For rapid prototyping we used the following tech-
nique. Whenever a Linux kernel function was encoun-
tered, it was substituted by a reimplementation based on
Texas Instruments’ library without paying attention to

memory overhead. For instance, a call tokmalloc()
would simply be substituted by a call to the TI library
function MEMalloc() . After basic RTAI/C6x was
up and running the according function was reevaluated,
whether it could be safely removed, must be imple-
mented from scratch or could be resubstituted by an
RTAI module function which was not available initially.
In the case ofkmalloc() , the last option was chosen,
that is, it was substituted by a call tort malloc()
provided by the MALLOC module.

3. Porting RTAI

Porting RTAI to the C6x DSP by eliminating Linux
can be structured as follows:

� adapting ADEOS,

� implementing ARTI functions (timers),

� migrating individual RTAI modules: scheduler,
memory management, MBX, . . .

� implementing a new module loader and

� optimizing the system.

The individual stages are briefly described in this sec-
tion.

3.1. Adapting ADEOS

Porting the ADEOS abstraction layer was surpris-
ingly easy. All functions and data structures that are
important for registering and initializing a new do-
main were adopted. Simplification is possible, because
ADEOS/C6x does not modify interrupt handling of op-
erating systems executed on top. Functions that ma-
nipulate the interrupt hardware likeadeos hw cli()
were implemented from scratch. Many ADEOS func-
tions are obsolete in the DSP context and have been
subsequently omitted, among them

� ADEOS’ semaphore implementation,

� SMP code,

� domain manipulation (suspending, deregistering).

3.2. Timer emulation

For obvious reasons, a very precise emulation of
the RTAI timing functionality is crucial. Original RTAI
time keeping uses three different facilities: the 8254
timer for generating interrupts, the time stamp counter
(TSC) register for accurate execution time measurement
and scheduling decisions and the Linux global kernel
variable jiffies . The C6x provides three timers

OSPERT 2005

89

which offer a reasonable resolution and are able to gen-
erate interrupts. Table 1 compares the timing facilities
of the x86 and DSP architectures.

One of the DSP timers is used exclusively to pro-
vide an 8254 emulation. Another timer approximates
the behavior of the TSC by using its shortest possi-
ble period. Due to the 40 bits precision of arithmetic
operands, the maximum representable time value is
14660 seconds (four hours) for a 600 MHz DSP which
might not suffice for all application scenarios. We hope
to eliminate this limitation in the future.

The Linux variablejiffies is used very sel-
domly within RTAI. It would have been easy to replace
it. Due to its usage at innumerable locations within the
Linux kernel we felt it would be favorable to preserve it
because very probably kernel (and device driver) pro-
grammers are used to its existence. To ease porting
of RTAI/x86 applications, we decided to implement a
jiffies emulation.

3.3. Porting RTAI modules

As mentioned in section 2.4 the scheduler is
easy to port. Only the context switch is hardware-
dependent because registers have to be saved and re-
stored. Its implementation is straightforward though:
all registers and the return address must be saved on
the stack, certain task management structures must
be manipulated (e. g. the pointer to the current task
rt smp current[0] is updated), the stack pointer
of the next task is obtained and finally the next task’s
registers have to be restored. Because the C6x is
a uniprocessor the various multiprocessor schedulers
were not regarded.

In original RTAI another context switch exists: the
so-called domain switch is performed when control is
transferred between different operating systems. In
RTAI/C6x, domain switches never occur because it con-
sists of only one domain. Therefore, domain switches
have been eliminated.

The MALLOC module manages a memory heap
available to applications by means of a buddy system.
The size of this heap is defined at compile time. When
RTAI is booted, the heap is allocated with a call to
kmalloc() from Linux kernel space. When the heap
is fully allocated by RTAI applications and more heap is
still required it is extended by calling the internal func-
tionalloc extend() which essentially allocates an-
other chunk of Linux kernel memory viakmalloc() .

The following aspects of the module were mod-
ified. First, instead of callingkmalloc() at boot
time, a memory block of the configured size is sim-
ply reserved by the development tools. Second, there
is no way of increasing the size of the heap at

run time (kmalloc() will always fail if the heap
has been consumed). Hence, the programmer must
carefully predict the needed heap size before. Fi-
nally, because the DSP offers two different memory
spaces, MALLOC managestwo heaps. The macros
rt malloc() , rt text malloc() , rt free()
andrt text free() constitute the programming in-
terface.

Currently, only the most needed modules have been
ported to RTAI/C6x: the scheduler, the memory alloca-
tor MALLOC, the semaphore SEM and two communi-
cation modules, MQ and MBX. A significant effort in
the future will be to bring more modules into RTAI/C6x.
The following methodology proved successful:

Redefine Data Types.RTAI extensively uses data
types that are defined in Linux header files. Therefore,
data types likesize t or time t have to be redefined.
Redefining data types was the main effort in porting
both communication modules.

Including Linux Header Files. Every RTAI
source file includes some Linux headers. In most cases,
only very few pieces are really needed from these files.
Either the required lines are brought into RTAI/C6x or
the complete header file is taken over, as it has been
done forerrno.h .

Adapting RTAI Header Files. Every RTAI mod-
ule defines its API in a separate header file which
must be made known to RTAI by including it in
rtai schedcore.h .

Substituting Macros. All macros with variable
parameter list must be substituted by an inline function
due to limitations of TI’s compiler. Other macros like
MODULELICENCEetc. can be eliminated.

Reimplementing Linux functions. In RTAI/x86
modules may access all Linux kernel functions and
data. Because Linux does not exist in RTAI/C6x, all
these functions must be reimplemented or eliminated.
Fortunately, in the modules ported so far only a small
set of Linux functions and data was referenced. An ex-
ample isprintk() which is used extensively through-
out RTAI for logging purposes. During debugging,
this function is substituted by the TI library function
LOGprintf() which passes the logging messages to
the simulator. Another example is thejiffies vari-
able for which we provide a suitable reimplementation
as mentioned in section 3.2.

Handling 64-bits data. Operations onlong
long data (64 bits) are not supported by the compiler.
The C6x DSPs are only able to operate on 40 bits wide
operands. Therefore, it must be analyzed whether this
reduced precision can be tolerated. If not, software em-
ulation must be employed. The MSG module uses sev-
eral 64 bits constants, therefore other communication

OSPERT 2005

90

Table 1. Comparison of timing hardware in x86 and C6x architectures

C6x, 600 MHz x86 8254 x86 TSC, 600 MHz
register size 32 bits 16 bits 64 bits

frequency 75 MHz 1.19 MHz 600 MHz
shortest period 13 ns 840 ns –
longest period 57 s 0.055 s 3 � 10

10 s

modules were ported before.

3.4. Module loader

As a consequence of the elimination of Linux, the
tools insmod and rmmod which are used in conven-
tional RTAI systems to insert or remove individual mod-
ules and applications are not available anymore. A sim-
ple alternative is the transferral of one large binary file
containing all RTAI modules and needed applications
to the DSP at boot time. Because this prevents task and
system modifications at runtime, we decided to imple-
ment a more flexible mechanism. Figure 2 illustrates its
principle.

Providing a universal communication interface for
all kinds of DSP hardware is beyond the scope of this
paper, because DSP hardware is in general very hetero-
geneous (different communication interfaces, chip sets,
external periphery . . .). Therefore, we followed a prag-
matic approach which solely concentrated onto our cur-
rent hardware platform. Some implications for the im-
plementation of a generic communication infrastructure
between a Linux host and DSP hardware are described
in [2].

In our current system configuration, the DSP com-
municates to the host processor via a JTAG interface.
Due to lack of documentation, direct access to the host’s
JTAG interface is impossible. Instead, the Code Com-
poser Studio IDE is used as a gateway. Ourinsmod
andrmmod tools connect via COM to CCS which inter-
acts with the JTAG port. The so-called RTDX libraries
by Texas Instruments [11] encapsulate JTAG communi-
cation on both the DSP and the host side. We developed
a very simple communication protocol between Host
and DSP which is thoroughly described in [8]. Basi-
cally it allows to install and remove RTAI modules and
applications.

Furthermore, the DSP needs a loader which ana-
lyzes the received executable files, relocates the con-
tained sections and finally starts the program. Unfortu-
nately, Linux’ object loader could not be adapted for
that purpose because it uses the ELF binary format,
whereas the DSP compiler generates COFF binaries.

Therefore, a new DSP module loader has been imple-
mented from scratch. On arrival of a new COFF binary
it does the following:

1. read section headers from received COFF file, al-
locate memory, copy sections into it,

2. relocate pointer destinations,

3. copy initial data values to the object’s data mem-
ory,

4. register the module, save its exit handler,

5. jump to the entry symbolapp init .

Module removal is straightforward. Several implemen-
tation problems and unclear technical documentation
made the module loader one of the most difficult parts
of our project. More details can be found in [8].

The loader is not needed if the task set is constant
at runtime.

3.5. Optimization

After a timer interrupt event all software layers
(IRQ handler, ADEOS, ARTI, scheduler) have to be
traversed until finally a ready task is activated. There-
fore, the time to process a timer interrupt was chosen
as quantitative measure of the initial port’s efficiency.
The measurement was performed using a DSP simula-
tor. Due to the C6x architecture such measurements are
possible with single cycle precision.

Note that this time is not the interrupt latency
(which is lower, cf. section 4.1).

The first RTAI/C6x version needed 1448 cycles for
the activation of a task ready for execution. Almost
half of the time was spent within ADEOS (cf. table 2).
Therefore, ADEOS was analyzed and optimized as fol-
lows:

ADEOS is designed to manage several operating
system instances in parallel. In a classical RTAI system
two such domains are realized: RTAI itself and Linux.
It is possible, to install and execute more operating sys-
tem instances but to our knowledge this has not been

OSPERT 2005

91

RTDX
library

insmod/
rmmod

Code Composer Studio

RTDX
library

RTAI

Module
loader

HOST

JTAG

COM

DSP C6x

Figure 2. Communication between host and DSP

explored yet. Because we removed Linux from RTAI
and we do not intend to execute another operating sys-
tem it seemed reasonable to us to bypass the interrupt
pipeline completely. As a consequence, several unnec-
essary functions were removed. The principle of queue-
ing incoming interrupts in software when interrupts are
disabled was not changed though in order to preserve
standard ADEOS behavior. This optimization saved ap-
proximately 230 clock cycles.

Additional execution time improvements were
achieved by exploiting certain architectural features of
the DSP: inlining bit operations, optimizing interrupt
enable and disable functions and parallel register sav-
ing. By this, we were able to save another 216 clock
cycles.

Still, ADEOS needed some 320 cycles. Because
low interrupt latency is crucial in many DSP applica-
tions we decided to introduce a change in interrupt se-
mantics: only one incoming interrupt is queued up now
if interrupts are disabled (interrupts may get lost when
they are disabled for too long, now). Because critical
sections are rare and short we feel that the limitation
can be justified. This last optimization effort reduced
ADEOS’ execution time drastically to only 32 clock cy-
cles!

4. Achieved performance

4.1. Interrupt latency

Two interrupt scenarios must be distinguished. An
incoming timer interrupt causes all four RTAI compo-
nents (IRQ handler, ADEOS, ARTI and the scheduler)
to run, because it usually means that a task has been
activated (cf. section 3.5).

When an other interrupt arrives, the IRQ handler,
ADEOS and ARTI are executed whereas the scheduler
is omitted, because the association of tasks with inter-

rupts is performed in ARTI (no scheduling decision is
necessary). Therefore, interrupt latency is the sum of
the execution times of the IRQ handler, ADEOS and
ARTI.

Table 2 shows the contribution of every RTAI com-
ponent involved and reflects both interrupt latency and
the time to process a timer interrupt. We compare our
initial port, the current status obtained by the optimiza-
tions described in section 3.5 and a typical x86-based
RTAI system (AMD Duron 650MHz, Linux 2.4.26,
RTAI 3.1). All values are in clock cycles. The re-
sults for the x86-based system were obtained by reading
out the Time Stamp Counter (TSC) register at selected
points. We did not pay attention to serialization, there-
fore the results may be not as accurate as for the DSP.

The time to save registers has not been measured
for the x86 version. Due to the low number of registers
(nine), it can be neglected.

It it obvious that RTAI/x86 needs much more clock
cycles due to the different chip architecture and the fact
that original RTAI provides richer functionality.

The obtained results indicate that ADEOS/C6x is
competitive. The optimization process proved suc-
cessful. Especially the low interrupt latency renders
RTAI/C6x suitable for reactive systems.

The optimization potential of the scheduler seems
comparatively small as long as no change in its seman-
tics is intended. A subject of further study could be the
design of a specialized DSP scheduler which offers a
similar performance boost as we obtained by optimiz-
ing ADEOS.

4.2. Task switch duration

Another important aspect is task switch efficiency
(cf. Table 3). The duration of a task switch de-
pends on whether the task to be activated has pre-
viously released the processor voluntarily (i. e. by

OSPERT 2005

92

Table 2. Comparison of time to process a timer interrupt (in clock cycles)

RTAI/C6x RTAI/C6x
(initial) (optimized)

RTAI/x86

IRQ Handler+saveregs 64 40 ?
ADEOS 704 32 � 1182

ARTI 24 24 � 47
Scheduler 656 552 � 6804

interrupt latency 792 96 � 1229
timer interrupt processing 1448 648 � 8033

rt task wait period()) or preemptively (has
been interrupted by the timer). Again, we can report
a significant performance gain by optimization.

Table 3. Task switch time (in clock cycles)

RTAI/C6x RTAI/C6x
(initial) (optimized)

RTAI/x86

voluntarily 704 512 � 16800
preemptively 1448 784 � 11400

It is interesting to note that a x86 task switch needs
14 to 32 times more cycles than its C6x counterpart.
This result is somewhat mitigated by the higher clock
rates of x86-based processors but even considering the
highest available clock rates for both processors the
DSP version is in the lead.

More measurement results can be found in [8].

4.3. Memory footprint

One of the motivating factors for this project was
to adapt RTAI for systems with very limited memory
resources. Because the actual memory consumption is
influenced by the number of needed RTAI modules and
the number of application tasks, we consider two differ-
ent systems.

A minimum system consisting of ADEOS, ARTI,
SCHED and MALLOC requires only 39808 bytes of
code and 6151 bytes of data memory. If the DSP BIOS
by Texas Instruments (a kind of low-level library) is
used, another 1216 bytes of code and 6816 bytes of data
are needed. Every application task requires memory for
its code, data, its stack and used application libraries
and a certain amount of space for management struc-
tures (e. g. anRT TASKstructure).

The full set of ported functionality so far comprises
the abstraction layers ADEOS and ARTI, the modules

SCHED, MALLOC, SEM, MBX and MQ as well as
the loader to dynamically modify the task set at run-
time. This system requires 87104 bytes of code and
24474 bytes of data memory (plus the space for DSP
BIOS, otherwise run-time communication to the host is
impossible).

The numbers indicate that a real-time system based
on Lightweight RTAI is very likely to fit into internal
RAM of even the smallest C6x variant.

5. Conclusions and outlook

We demonstrate the feasibility of separating RTAI
from Linux. Additionally, we show that it is possible
to provide the RTAI API for a DSP without the over-
head caused by the Linux kernel. Modules for schedul-
ing, memory allocation, inter-process communication
and semaphores have been ported to the DSP. Task
switch time and scheduler performance are competitive
in comparison to x86-based systems. Interrupt latency
is especially low and outperforms x86-based systems by
more than a factor of 10 in clock cycles. As expected,
the memory footprint is small enough to locate RTAI
and application tasks fully in DSP internal memory.

The main motivation for this work was to establish
an open-source real-time API for the C6x DSP which
allows manipulations of the task set at runtime. We feel
this has been achieved.

Currently, the project is under active development.
Some of the necessary improvements were mentioned
throughout this paper. Among other, the following work
must be done:

� porting remaining RTAI modules,

� implementation of DSP-specific RTAI modules,

� ease some of the module loader’s limitations.

We will provide CVS snapshots at our website

OSPERT 2005

93

http://rtg.informatik.tu-chemnitz.de

soon. Interested developers are welcome to join the
project. Hopefully, ports to other DSP architectures will
follow.

As soon as a competitive GCC for the C6x DSP
is available, we will migrate our solution from Win-
dows to the Linux host operating system. This project is
currently under active development [3]. Several Linux
drivers and tools for communication with DSP hard-
ware have been developed. The GCC suite is improved
continuously.

Another interesting question is whether
Lightweight RTAI can be established for systems
using conventional processors. This would require
migrating drivers from Linux to RTAI which seems to
be an interesting project itself!

References

[1] Ateme SA: IEK C64x Imaging Evaluation Kit,
Data sheet,http://www.ateme.com/products/iekc64.php,
2005

[2] Robert Baumgartl, Ingo Oeser, Daniel Schreiber,
Michael Schwindt:DSP Accelerator Support for Linux,
Proceedings of the International Conference on Signal
Processing Applications & Technology (ICSPAT), Dal-
las, October, 2000

[3] Robert Baumgartl, Ingo Oeser, Mirko Parthey, Adrian
Str̈atling: Bridging the Gap between Linux and DSPs,
Proceedings of European DSP Education and Research
Workshop (EDERS), Birmingham, 2004

[4] Pierre Cloutier et al.DIAPM-RTAI Position Paper, Pro-
ceedings of the 21st IEEE Real-Time Systems Sympo-
sium and Real-Time Linux Workshop, Orlando, 2000

[5] Eatamar Drory, Or Sagi.Introducing MediaLinux –
A new real-time Linux Approachhttp://www.linux-
devices.com/articles/AT554348551.html, 2003

[6] Eatamar Drory.Linux-programmable Audio-Video de-
vice based on TI DM64x DSP, Proceedings of the Texas
Instruments Developer Conference (TIDC), Birming-
ham, 2004

[7] Jaluna SA:Jaluna OSware Linux Edition for TI C6000
DSP, Product Datasheet,http://www.jaluna.com/ filead-
min/pdf/TIDSP2305JalunaUS.pdf, 2005

[8] Jens Kretzschmar.Implementing RTAI on a DSP Pro-
cessor without Linux, Diploma Thesis, Chemnitz Uni-
versity of Technology, May, 2005

[9] Jan Parthey, Robert Baumgartl:Porting GCC to the
TMS320-C6000 DSP Architecture, Proceedings of the
Global Signal Processing Conference and Expo (GSPx),
Santa Clara, September, 2004

[10] Texas Instruments, Inc.:TMS320C6000 CPU and In-
struction Set Reference Guide, October 2000

[11] Texas Instruments, Inc.:TMS320C6000 DSP/BIOS
Application Programming Interface (API) Reference
Guide, November, 2001

[12] Karim Yaghmour.Adaptive Domain Environment for
Operating Systems, Whitepaper, http://www.opersys.
com/ftp/pub/Adeos/adeos.pdf, 2001

[13] Victor Yodaiken, Michael Barabanov.Real-Time Linux,
Linux Journal, March, 1996

OSPERT 2005

94

Power Measurement as the Basis for Power Management

David C. Snowdon, Stefan M. Petters and Gernot Heiser

National ICT Australia
and

School of Computer Science and Engineering
University of NSW, Sydney 2052, Australia

{daves,smp,gernot}@cse.unsw.edu.au

Abstract

Energy has become a critical component of computer
system design, particularly in the embedded space where
the source of energy is often finite. While hardware design
has the more significant effect on the system’s power con-
sumption, well designed system and application software
make an important contribution to controlling the energy
consumed.

In order to optimise software systems to reduce energy
consumption, feedback is required. Traditional techniques
rely heavily on models of the system which have various dis-
advantages. We examine the benefits of using live power
measurements using statistical sampling for both off-line
and on-line feedback on application power consumption. A
hardware platform is manufactured, operating system mod-
ifications made, and extensive validation carried out. We
conclude that the idea shows promise and justifies further
investigation.

1 Introduction

Computer power usage has become an important area of
research for a number of reasons. High-performance sys-
tems are limited by problems with thermal dissipation, and
portable and embedded systems are often supplied power
from a limited source (batteries, solar panels). In both cases,
energy efficiency is a key quality determining computer sys-
tem utility. Energy awareness and management is critical in
improving the energy efficiency of a computer system. This
is loosely termed power management.

There are three key problems which power management
research has attempted to solve. Generally, these problems
are:

• determining how, and why, power is used in a com-
puter system;

• configuring hardware to match power and performance
requirements (dynamic voltage scaling and low power
idle states have become standard on modern hard-
ware);

• adapting software to use available resources efficiently.

We observe that it is useful to know, to some level of de-
tail, how and why a computer uses power. Such information
is used to evaluate and analyse the operation of power man-
agement algorithms, can help to optimise application and
operating system code with respect to power consumption,
and supports the generation of off-line schedules. We fur-
ther hypothesise that, should the information be available at
run-time, it would be useful as the basis for some classes of
power management algorithms, particularly for intelligent
throttling of system components (CPU via frequency scal-
ing, hard disk via spin-down, etc).

This paper presents the details of an investigation into
obtaining power usage information through direct measure-
ment of the current supplied to the computer’s processor
core, memory and IO subsystems. Hardware and software
infrastructure for making these measurements is developed,
the overheads examined, and the accuracy of the system as-
sessed.

The initial version of the system was used as an off-line
analysis tool. The same methodology can be used to per-
form on-line measurements, giving feedback to the operat-
ing system and user-level processes, and allowing the sys-
tem to block processes which exceed an energy quota. The
effectiveness of these techniques is examined, leading to
ways in which the information can be used, both for off-line
analysis and for on-line accounting/power-management.

OSPERT 2005

95

2 Previous work

A variety of energy-estimation techniques have been de-
veloped with a view to programmer feedback, power man-
agement research evaluation, and on-line accounting. Many
of these techniques rely on indirect measurements coupled
with a model of the system in order to estimate the power
used. There are several disadvantages to a model-based ap-
proach with regard to power estimation:

• A sufficiently detailed model is required in order to ob-
tain a given accuracy. Computational complexity must
be traded with the detail and accuracy of the model,
and sufficient information must be available in order
to construct it. Circuit-level simulations require the ac-
tual circuit design, etc.

• Modifications and additions to the system require
changes to the model — a significant engineering ef-
fort.

• The model must be verified against real-world mea-
surements.

• Most established simulators concentrate on the CPU
rather than the entire system.

• Models will inevitably miss details: the model of a
hard disk is unlikely to take into account the physical
condition and situation of the disk, which might affect
power consumption.

• Similar to execution times the manufacturers are reluc-
tant to provide the details required, since it may give
advantageous information to competitors.

One advantage of model-based estimation techniques is that
the parameters fed to the model are often useful in their own
right.

Simulators are often proposed as an off-line analysis tool
[5, 7, 10–12]. Typically, trace output from an architecture-
level simulator (such as SimpleScalar [?]) is obtained, and
an energy associated with each instruction in the trace. The
energy used is usually pre-calibrated via measurement of
the actual hardware, since it is rare that the detailed de-
sign information necessary to accurately determine this via
circuit-level simulation is available.

Event-counter based techniques, typified by Bellosa and
Weissel’s work [14], use live data generated by CPU per-
formance counters as the input to a model. The counters
are configured to measure events which are significant to
the energy consumption (cache misses, instructions retired,
etc), and a model interprets these results to estimate the to-
tal CPU power consumption. The accuracy of the system

is therefore determined by the amount of information avail-
able (the number of event counters and measured proper-
ties). The model used is typically simple and the simpli-
fications can lead to inaccuracies in the estimation. These
systems have the advantage that they can efficiently be used
on-line, allowing the information obtained to be used by
power management algorithms. This technique has only
applied to CPUs, since performance counters are generally
not available in peripherals. The only exception to this are
memories, which could be observed, albeit indirectly, by
counting cache misses and write back operations.

State-based accounting techniques such as those em-
ployed in ECOSystem [16] instrument operating system
software to track the state of the CPU and its peripherals
(e.g. for a disk, whether it is spun up or down and whether
it is active or idle). The power in each of these states is
pre-calibrated, and the time spent in each used to determine
the energy consumed. In ECOSystem the energy is then ac-
counted to the processes causing the device to transition out
of its lowest-power state. These techniques have the advan-
tage of being an all-software solution which can simulate
the entire system, however they fail to capture any variation
of the power within a given state. The accuracy of the tech-
nique therefore depends on the number of states (detail of
the model).

Jejurikar and Gupta introduce a system which uses off-
line and on-line analysis to reduce the energy usage of their
applications [8]. The off-line part produces the slowdown
factor in such a way that under the assumption that ev-
ery task runs for its worst-case execution time (WCET) all
deadlines are just met. In the real system deployment this
will hardly be the case as most applications almost never
run for their WCET. The on-line part takes advantage of this
”gain time” to increase the slowdown in order to keep CPU
utilisation high. Such an approach would complement the
proposed measurement technique we are presenting here,
which may be used to produce the input values for their op-
timisation. Similarly, AlEnawy and Aydin look at on-line
and off-line methods [2]. Their results are produced by sim-
ulations rather than using direct measurements our system
would enable.

An alternative to using model-based power estimation
techniques is proposed by Flinn [6]. He uses statistical
sampling techniques (as are widely used in sampling pro-
filers such as Shark [3]). Measurements of the power con-
sumed by a computer are taken periodically, along with
the program counter, and process ID. This information is
stored and later analysed by attributing each power sam-
ple to a process and to a symbol within the process’ code.
Although the sampling rate is slow in comparison to the
CPU’s clock rate, over time enough samples are attributed

OSPERT 2005

96

to each piece of code (process/symbol) that a statistically
significant average is obtained. This information is more
detailed than either state-based or event-counter-based tech-
niques can provide, and comparable with (and potentially
more accurate than) results obtained via simulation. Flinn
called his energy-profiler Powerscope.

Using these direct measurements counters the disadvan-
tages of model-based approaches, however there are several
problems which were not addressed in the original and sub-
sequent Powerscope work.

One of particular importance is the inability of the sys-
tem to account for background activity (activity which is not
associated with the process which is running on the CPU)
such as blocking disk reads and writes). In the original
Powerscope system this activity is accounted to the running
process rather than the blocked process which is actually
responsible for the activity. It is impossible to distinguish
between the power consumed by the disk (which should be
attributed to the blocked process) and the power consumed
by the processor (which should be attributed to the running
process).

A related issue is not being able to understand how and
where energy is being used in the system. For example,
it is not possible to discern between energy consumed by
the CPU and memory subsystems (without estimating via a
system model).

Other problems include the cumbersome hardware se-
tups (the original Powerscope work involved a second com-
puter connected to an external multimeter in order to per-
form the power measurements. The low sampling rate
which was used means very short functions are not mea-
sured accurately (owing to an effective low-pass filter at the
measurement input). Lastly, the information can not be used
at run-time, since the measurements are taken using a dif-
ferent computer.

3 Measurement system

Many of the problems identified in Powerscope can be
avoided by building a computer with hardware support for
taking the measurements. one of these problems is, for ex-
ample, the attribution of background activities, such as net-
work traffic or hard-disk data transfer, to the wrong process.
By splitting up the measurements into separate entities for
these devices and associating those with modules instead of
processes, a deferred attribution to processes is possible.

For example, a system with a CPU, memory, network
card, and hard disk, would measure the power consumed
by each of these independently. The system can then asso-
ciate the CPU measurement with the running process, the
network card with processes which have submitted or re-

ceived packets, the disk with processes using file systems,
and the memory system with processes causing memory bus
accesses (which may be associated with devices, owing to
DMA).

3.1 The PLEB 2 Platform

PLEB 2 is a single-board computer based on the Intel
XScale PXA255 [1]. It was custom-designed primarily as
a reference to be used in embedded systems research, but
secondarily as a platform for applications implementation.

The PXA255 was chosen as being representative of high-
performance CPUs designed for embedded systems. It con-
sists of a 400MHz ARMv5TE compatible core combined
with a set of on-chip peripheral units including memory, in-
terrupt, DMA and LCD controllers.

The main processing core consists of the CPU, SRAM
and flash memory. Three switching power supplies gener-
ate core, memory and IO power from lithium-ion battery
voltage. A minimal set of peripherals (infra-red, USB, and
serial port) are provided on-board, and supplied from IO
power. An 8-bit microcontroller (an Atmel AVR) resides
on-board in a supervisory role. This models a typical em-
bedded system. Un-used pins on the XScale are connected
to two connectors which allow for other peripheral electron-
ics to be added.

Linux 2.4.19, Linux 2.6.8 and L4ka::Pistachio [9] have
been modified to run on PLEB 2 hardware.

Of particular interest in this context are the device’s fea-
tures designed to support power management. The CPU
core, and memory clock frequencies can be changed in
(very roughly) 30MHz and 10MHz intervals respectively
(the intervals are smaller for the lower frequencies), al-
though not all combinations of clock frequency, bus fre-
quency, memory frequency, etc. are possible.

One problem encountered with frequency scaling
(changing the frequency on-the-fly to adapt to performance
requirements, thereby saving energy) is that there is an over-
head associated with changing frequencies. The XScale at-
tempts to solve this by offering a turbo mode which is a sec-
ond frequency mode. Changing between the run (normal)
mode, and turbo mode is much faster than changing be-
tween arbitrary frequencies because the system can perform
a synchronous switch between the modes, without having
to disturb the memory controller, LCD controller, and other
peripherals.

As well as being capable of setting its core clock fre-
quency, the CPU can enter a number of low-power states.
These states disable circuitry within the CPU: the more cir-
cuitry disabled, the longer it takes to re-activate. Therefore
it is necessary to ensure that the energy saved by being in

OSPERT 2005

97

the sleep for a period of time is enough to offset the energy
used to sleep and wake up.

Techniques for voltage scaling have also seen a lot of at-
tention in the literature (most notably by Weiser [13], but
also others too numerous to cite) - at a lowered frequency,
the CPU’s core voltage can be reduced, allowing quadratic
energy savings (at half the frequency, the system will use a
quarter of the power). The power supply used on PLEB 2
supports setting the voltage between 0.8 and 1.5V in 0.1V
increments. The chip communicates with the PXA255 via
I2C (a bidirectional serial bus). Similarly, the memory volt-
age can be set to either 3.3V or 2.5V, depending on speed
and peripheral requirements.

Lastly, the Micron SDRAM used can place itself in
power-down and self-refresh modes. These low-power
states can save significant amounts of power. The Intel flash
memory used for non-volatile storage has power-saving fea-
tures, but they are not controllable, and therefore are of little
interest in terms of power management.

3.2 Power measurement hardware

In support of embedded systems research, PLEB 2
was designed with power-measurement hardware on-board.
Each of the three power supplies (nominally for the CPU
core, memory and IO)1 are instrumented with current sen-
sors. Each power supply is well regulated to its designated
voltage, therefore the voltage is assumed to be constant and
the current is proportional to the power (P=IV).

The microcontroller on-board has an integrated
analogue-to-digital converter and can read the sensors at up
to 15kHz. Since it can only measure one of the sensors at a
time, this equates to a maximum of 5kHz on the individual
sensors when all are measured at equal rates.

Samples are transferred from the microcontroller to the
PXA255 as they are taken (as described further in Section
4). Communication between the microcontroller and the
PXA255 is via I2C. This is a significant limitation since
I2C transfers data slowly (400kbps). Thus, in order to avoid
excessive overhead, the transfer of each measurement re-
quires several interrupts (one per byte — each measure-
ment requires two data bytes to be transferred, along with
the I2C bus’ addressing byte). Furthermore, the maximum
sampling rate is limited by the rate at which data can be
transferred between the processors.

Figure 1 details the protocol for taking measurements:
once enabled, the microcontroller interrupts the PXA255

1Note that, should peripherals (such as a network interface) be con-
nected to the system, they will be connected to one of the three power
supplies. This breaks the power-supply-per-device concept.

I/O Data

Memory Data

Sample

Sample

CPU Data

Sample

CPU Data

Sample

Offline
only

Xscale

t

150us

t

Atmel

t t

Data Available: GPI/O IRQ

Start: GPI/O IRQ

Read Address: I2C

Databyte 2: I2C

Databyte 1: I2C

Sample: GPI/O IRQ

30us

34us

44us

44us

1.15ms

3.9ms

Xscale Atmel

Figure 1. On-board communications timing of
on-line analysis

periodically. The PXA255 initiates a measurement by as-
serting an interrupt line on the ATMEL chip. After a fixed
delay the measurement of one of the three sensors is started.
At the same moment the interrupt at the PXA255 is asserted.
The interrupt handler records the state of the system (PC,
PID, etc.) when the interrupt occurred. Once the analogue-
to-digital converter has completed, the microcontroller in-
terrupts the XScale a second time, triggering the XScale to
start a transfer using I2C by sending a read command over
the bus. This generates three further interrupts. After a short
pause (which controls the sampling frequency) the micro-
controller moves on to the next sensor to be sampled and
the process repeats. The data transferred is stored by the
XScale along with the PID and PC information previously
recorded.

4 Off-line analysis

The experiments presented in this paper were conducted
using Linux 2.4.19 because of its immediate availability.
Kernel modules, as well as minor changes to the kernel it-
self, were used to implement communications with the mi-
crocontroller, the off-line analysis and energy accounting
and budgeting (Section ??).

Off-line analysis in this context implies that the system
collects data at run-time, and stores it for later examination.
Power and time used by each process running on the system,
as well as each function within the process and its shared
libraries can be obtained from the data collected [6].

The off-line analysis facility is based on a port of the
Powerscope code to the PLEB 2 platform which has been

OSPERT 2005

98

Benchmark No profiling Off-line % overhead On-line % overhead
gzip 10.025 10.83 8.03 10.784 7.57

mpg123 30.256 31.213 3.16 31.071 2.69
vision 54.664 55.902 2.26 55.803 2.08
celp 85.397 87.34 2.28 87.17 2.08

Table 1. Time Overhead Introduced by the Measurement System in seconds

extended in order to take advantage of the extra hardware
features available.

The Powerscope framework obtains samples via the pro-
tocol outlined in Section 3.2. It stores the samples for later
analysis via a user-level daemon which reads from a ker-
nel buffer (un-modified from the original implementation).
The tool designed to analyse the data was modified to ac-
commodate the three current sensors which do not sample
concurrently.

This arrangement has a number of advantages over the
original Powerscope implementation:

• Three current sensors are sampled, giving a user in-
sight into how power is used in the system (it is possi-
ble to distinguish between memory and CPU power,
for example). Further sensors can be added easily
within the same software infrastructure.

• Because each of the three current sensors are con-
nected to measure the major functional units, asyn-
chronous activity (e.g. IO) can be accounted to the
correct process and code. (ie. we can distinguish be-
tween background activity and activity directly cor-
related with the program counter and present process
ID).

• The device is an integrated unit with no external ap-
paratus required (Powerscope used a second computer
and multimeter to reduce overhead on the system be-
ing profiled). This makes using the tool as easy as any
other profiling tool. This also means there is only one
data file which needs to be analysed, saving the need to
move copy samples and data files to the same location.

The information gathered can be used in various ways.
One way would be to guide the trade off between memory
hierarchy and performance. Applications depending heav-
ily on the CPU might benefit from the increased reuse of
previous computation results stored in main memory, while
applications with a large memory-bandwidth requirements
can be optimised by recomputing values instead of relying
on results stored in memory. In such a way the performance
and energy usage could be optimised.

5 On-line analysis

5.1 Energy accounting

Because the XScale is set up to receive its own power
measurement data, the information can be used on-line at
run-time. The method of receiving data is very similar to
the off-line system. For each sample, the value obtained
is accumulated in Linux’s process control (task) structure,
and a field indicating the number of samples is incremented.
Using this, the information is made available at user-level
via the Linux /proc interface.

The method of taking direct measurements of the power
consumed has numerous advantages over other methods of
estimating the power consumed on-line:

• It does not employ a model, and therefore is not hin-
dered by inaccuracies in that model. Furthermore, the
extensive development time required to build an accu-
rate model is avoided.

• Computation associated with accurate model-based
simulations effectively prohibits their use for on-line
power estimations.

• When comparing with state-based power estimators
[15], which are often used for on-line power manage-
ment in the literature, the measurement-based system
can capture variation within a single state (for exam-
ple, network interface power will vary greatly depend-
ing on whether it is sending, receiving, or both. The
likelihood of these states can not be predicted by the
operating system. Furthermore, the energy expended
per packet will depend on the availability of the net-
work).

• The approach does not only cover the CPU, but all
the components within a system which are usually not
covered in indirect measurement or simulator-based
approaches.

• It is also possible, with little effort, to extend the ap-
proach to charge background IO activity to the process

OSPERT 2005

99

Powerscope CPU LEA CPU Powerscope Mem LEA Mem
copymem 0.306 0.308 0.347 0.352
fillmem 0.310 0.314 0.405 0.412

fp-exercise 0.315 0.318 0.211 0.212
add bench 0.268 0.211

Table 2. Comparison of some typical results for on-line (LEA) and off-line (Powerscope) measure-
ments. All measurements in Watts.

initiating this activity, rather than to whichever process
is running during this background activity. This gives
similar capabilities (with better accuracy) to the state-
based currentcy system [15].

5.2 Energy budgeting

The on-line accounting technique has been used to im-
plement an energy budgeting system. The information
available allows the operating system to make scheduling
decisions based on energy related criteria. The implementa-
tion is similar to the currentcy approach (cf. [15]) described
in Section 2.

The OS process control structure is augmented with an
energy remaining and energy budget field. The energy ac-
counting system is used to decrease the energy remaining.
Periodically (in the present implementation, once per sec-
ond), the energy remaining field is reset to the budget value.
The scheduler was modified to ignore processes with a neg-
ative energy remaining field. This halts processes whose
budget has been exhausted until it is replenished.

The system is able to control the processes’ power us-
ing direct measurements, rather than state-based account-
ing, as was deployed in the currentcy work. This allows the
processes to be throttled more accurately. A Linux /proc

interface allows to set the budget for each process.
The energy budgeting system allows control over how

much energy processes use. This is a mechanism by which
power management algorithms can throttle processes (ig-
noring quality of service constraints). Desired goals achiev-
able include obtaining a desired battery lifetime, or main-
taining a maximum CPU temperature. Further work will
revolve around validating the energy budgeting system and
leveraging the infrastructure to implement power manage-
ment algorithms.

Throttling the processes via this energy budgeting tech-
nique is a mechanism rather than a power management al-
gorithm. In order to meet deadlines and other quality of ser-
vice objectives, the processes would have to degrade grace-
fully. This degradation is likely to be application specific,

although it could potentially be built into middleware.
Techniques such as voltage scaling and the use of low-

power processor modes are complementary and can be used
to eliminate idle time and increase the “work” done by the
system per joule.

6 Results

Of major concern is the perceived overhead of taking
measurements, both in terms of power and time. We have
chosen four benchmark programs to discuss the impact of
the measurement system on the application:

• gzip represents a compression algorithm, which may
be used to reduce memory footprint of data — in this
case, a 1.4MB MP3 — the output is discarded;

• mpg123 is an MP3 player operating on the same
1.4MB MP3 file and is representative of a typical mul-
timedia application — the output is discarded;

• vision is computer vision software, which uses a low
resolution (128x128) greyscale image and identifies
the type, location and orientation of an object within
the image;

• celp is a codebook excited linear predictor and has
been adapted from version 3.2 of the US DoD’s
Federal-Standard-1016 implementation for a lossy
speech compression algorithm.

The benchmark applications cover a wide range of embed-
ded applications. Compression algorithms are common to
reduce the amount of data to be transmitted over low band-
width interconnect and field buses. Multimedia applications
like the MPEG decoding example mpg123 are common in
most 3G phones and PDAs. Similarly the celp example
stresses audio compression technique for mobile commu-
nication over a low bandwidth carrier. The vision example
is typical for software used in industrial manufacturing au-
tomation involving simple, low resolution and robust image
processing software.

OSPERT 2005

100

The data presented in Table 1 shows the time overhead
introduced by the measurement system with the main pro-
cessor running at 199MHz, the system bus at 99MHz, and
the memory bus at 99MHz. It suggests that the impact of the
off-line measurements is not unreasonable. The overhead
comes from three sources: the Linux interrupt handling
code, the measurement system interrupt handling code, and
the associated cache-related costs of running these two. The
comparably large impact on gzip can be explained by its
heavy memory and cache dependency. The Linux inter-
rupt overhead code is much larger than the actual measure-
ment system code. One possibility is that Linux pollutes
the caches, badly affecting the working set of gzip. An-
other possibility is that the interrupt code and page mapping
are evicted from the cache and TLB when running memory-
intensive applications, leading to overhead when the inter-
rupt is triggered.

In the case of the on-line system, the overheads presented
in Table 1 are not unreasonable for a prototype system.
gzip is adversely affected in the same way as in the off-
line measurements. The on-line measurement system shows
slightly lower overhead than that of the off-line system as a
result of its not having to store large amounts of data (a run-
ning total, rather than a complete history, is maintained),
and smaller interrupt handler code size.

Future versions of the system will make use of the
XScale’s fast interrupt queue (FIQ) vector, avoiding over-
heads associated with the Linux interrupt code, while at
the same time reducing interrupt latency and improving
the measurement accuracy because the sampled program
counter will be better synchronised with the actual measure-
ment. Furthermore, the interrupt handler could be pinned in
the cache and TLB, avoiding the particular effect on cache-
intensive applications.

The measurement based monitoring technique may be
used for real-time systems, especially when the interrupt is
moved to a separate interrupt queue, the TLB entry pinned
and handler is locked into cache. In the context of real-
time systems the off-line measurements may be obtained at
the same time as the traces for a measurement based worst-
cases execution-time analysis as in [4]. This would make
effective use of the test scenarios created.

It is necessary to take into account the potential latency
added by other interrupt service routines. We believe that
it is safe to assume that enabling the measurement sys-
tem does not extend the WCET of any task being analysed.
The testing undertaken may well be used in a measurement
based WCET approach, as described by Bernat et al [4].

The accuracy of the measurements has been validated by
checking:

• sanity: for a variety of benchmarks and combinations
of benchmarks, measuring the total average current
consumed at the input and comparing with the total
power given by the measurements;

• proportionality: running benchmarks with a consis-
tent power consumption and comparing the ratio be-
tween the CPU and memory power for both the output
of the measurement system and the voltage presented
to the microcontroller by the current sensors;

• consistency: running different combinations of bench-
marks and checking consistency of the measured re-
sults (i.e. in the absence of cache effects or other cross-
coupling of the process’ power, the measured power
should be the same independent of what programs are
running concurrently).

In order to measure the system’s instantaneous power
consumption, it was necessary to use artificial benchmarks
which hold the power consumption at a constant level
(while that benchmark is running).

• fillmem repeatedly fills a 1MB block of memory with
meaningless numbers.

• copymem repeatedly copies a 1MB block of memory.

• fp exercise performs some CPU intensive opera-
tions.

• mul bench repeatedly executes the mul instruction.

• add bench repeatedly executes the add instruction.

In order to obtain a larger variety of powers to be mea-
sured, the frequency of the main processor core was ad-
justed to 99MHz, 199MHz, and 398MHz. The processor’s
internal bus was also adjusted according to half the core fre-
quency.

There is some advantage given to the measurement sys-
tem by keeping the benchmarks at a constant power: band-
width limitations and mis-alignment of the analogue and
digital samples will have less impact. This could be further
examined by comparing identical functions run in different
programs, or comparing the total energy consumed rather
than the power. However, in these cases, the measurement
system accuracy will be reduced because of a smaller num-
ber of samples. Furthermore, as the size of the entity being
measured is reduced, the assumption that the power of the
entity is not affected by the surrounding program (or pro-
grams) becomes less valid. Lastly, since it is unlikely that
the entity would be passed the same input each time, its
power would further vary. The latter two are not inaccuracy

OSPERT 2005

101

-6

-4

-2

 0

 2

 4

 6

 450 500 550 600 650 700 750 800 850 900 950

LE
A

 O
ve

rh
ea

d
(W

)

Power (W)

LEA overhead
f(x)

Figure 2. Overhead vs. actual power

in the measurement system, but a natural variation in the
power. Further validation forms part of the future work in
this area.

Figure 2 compares the power overhead with the actual
system power without the measurement system running.
The extra power used by the measurement system is found
to be approximately constant, with a similarly constant per-
centage of the time executing. This is consistent with data,
since there will be no change in input power if the mea-
sured software is using the same power as the measurement
system. (i.e. the power will be constant). Mathematically:

Pmeas = (1 − r)Pin + rPsys (1)

where Pmeas is the power when the measurement sys-
tem is running, Pin is the power when its not running, and
r and Psys are constants describing the proportion of time
running the measurement system and the measurement sys-
tem power respectively. Fitting this model to the data using
least squares, we find that the measurement system uses ap-
proximately C = 700mW for r = 2.7% of the time. This
is approximately the same as thees time overheads shown in
Table 1.

A sanity check was performed by comparing the input
power (obtained by measuring the input current and voltage
with two multimeters) with the sum of the (CPU, memory
and IO) measurements for a given constant-power bench-
mark as given by the on-line measurement system. However
due to the nature of the circuit the sum of the power con-
sumed by the sum of the CPU, memory and IO power will
not equate with the input power. There are several sources
of power dissipation which must be considered in order to
compare the two sets of measurements:

• The system uses several DC-DC converters to convert

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 500 600 700 800 900 1000 1100 1200 1300

C
or

re
ct

ed
 m

ea
su

re
m

en
t p

ow
er

 (
m

W
)

Measured input power (mW)

Corrected measurement total

Figure 3. Measured vs. input power

from the main supply voltage to the CPU, memory and
IO voltages required. These converters have an effi-
ciency which varies with the current and difference
in voltage. For simplicity we assume a constant effi-
ciency for each converter.

• A small amount of current consumed on the IO line.
While PLEB2 has been designed to allow this line to be
monitored, the components to do it were not available.
The supply was physically measured using a current
meter, and shown to be 20mA.

• There is a linear regulator to supply a clean voltage to
the XScale’s phase-locked loop, and another to supply
the DC-DC converter logic.

• Other power drains are not accounted by the measure-
ment system. Their power dissipation varies with the
main supply voltage. We suspect these are resistive
loads within the power-supply circuits.

For the purposes of checking the measurements, a sim-
plified model was developed and fit to the measured values.

Pin =
1

ηcpu

Pcpu +
1

ηmem

Pmem +
1

ηio

Pio +
V 2

in

RDCDC

(2)

where η represents efficiency, P represents power, V

represents voltage, and RDCDC represents an equivalent re-
sistive load in the DC-DC converter chip. DC-DC converter
quiescent power, the power consumed by the linear regula-
tors, and non-linearities in η are ignored for simplicity.

The data was fit to the above model numerically using
least squares. The efficiency of the DC-DC converters was
found to be approximately ηcpu = 86% and ηmem = 95%.

OSPERT 2005

102

The rated efficiency in the data sheet for the DC-DC con-
verter circuit is 90% (the figures could be distorted by
sources of power loss not considered in the model).

Figure 3 compares the corrected total power against the
input power (measured with two multimeters) — i.e. each
side of Equation 2. The maximum error between the two
for these measured cases is 8mW (1.29%), showing that
the measurement system is indeed making sane measure-
ments (much of the error is likely to stem from the simpli-
fied model used to compare the input and measured power).

The defining feature of the measurement system is the
ability to distinguish between the power used by differ-
ent pieces of software running concurrently. This ability
is proven by running several benchmark processes concur-
rently (i.e. with the Linux scheduler switching between
them). Each benchmark should cause a near constant power
draw during its period of execution. Varying the bench-
marks which are run concurrently changes the system’s av-
erage power consumption. The measurement system should
be capable of distinguishing the different processes’ con-
stant power in each case.

Tables 3 and 4 show consistency between the measure-
ments. Each of six tests was formed via a combination of
one or more of the benchmarks and the power measured us-
ing the off-line system. It can be seen in the CPU results
that the system varies by 2mW(0.6%) for the CPU power,
and 9mW(2.6%) for the memory power (for this small sam-
ple size). The small variation in memory power can be ex-
plained by the increased cache misses caused by running
concurrent processes. This effect varies due to cache place-
ment, concurrent cache refills and write-back.

While these measurements presented were performed
using the on-line system for convenience, the conclusions
should apply to off-line measurements (i.e. the off-line and
on-line results should be equal). Table 2 shows typical mea-
surements for the constant-power benchmarks measured us-
ing both the off-line and on-line systems for comparison.

In summary, it was shown that the measurement sys-
tem measurements can be equated with the observed input
power. Then, that the measurements are consistent when
run with a variety of benchmarks. Lastly we present some
samples from both the on-line and off-line systems for com-
parison. We conclude that the system is useful as a tool for
making power measurements.

7 Conclusions and future work

Direct power measurements, correlated with the in-
system activity, provide a good way to obtain information
to be used in analysing power use in computer systems. The
implementation presented has low overheads and provides

accurate results. It is easier and neater to use than previ-
ous implementations. The system can be used for off-line
static analysis, and adds support for on-line accounting and
budgeting.

A major advantage of the proposed approach over pre-
vious work is the ability to measure from more than one
current sensor, allowing accounting for background activ-
ity, as well as more detailed information about how power
is used in the system. Further advantages include not having
a requirement for a detailed system model.

Future work will investigate several ideas:

PLEB 2 was designed as a general purpose research plat-
form, and so was designed with the basic power monitoring
features described in the previous sections. Given experi-
ence with PLEB 2 and a greater knowledge of the require-
ments placed on the measurement system, more appropriate
hardware could be designed. An FPGA, rather than a mi-
crocontroller, could be used to coordinate current measure-
ments. This would allow significantly reduced overheads,
since the link via I2C could be replaced by a connection
directly to the PXA255’s memory bus, speeding and sim-
plifying the data transfer. The FPGA could perform any
necessary integrations or scaling.

Instead of measuring the current supplied by each power
supply, a current sensor could be installed per device, al-
lowing the system to measure the current consumed. This
would mean each IO device would be individually moni-
tored allowing users of the off-line analysis tools to under-
stand how and why each device consumes power as well
as allowing the on-line tool to accurately account for back-
ground activity.

Energy accounting could be done in the FPGA in order to
improve the accuracy and and reduce the measurement sys-
tem overheads. An FPGA with memory could be informed
of a context switch, allowing it to track the power consumed
by running processes without interrupting the system.

Applying the techniques discussed would both validate
the ideas, and provide useful feedback about the behaviour
of a typical system. Two possibilities are: compare a num-
ber of proposed dynamic voltage scaling techniques to de-
termine how they perform at a system level (rather than
using the CPU-specific power estimations), analysing the
power consumption of a range of benchmarks, and integrat-
ing with timing analyses.

A more detailed investigation of the sensitivity to sam-
pling frequency and process power variation would also be
desirable.

OSPERT 2005

103

Test 1 2 3 4 5 6
copymem 0.306 0.307 0.308 0.307
fillmem 0.310 0.311 0.311 0.311

fp exercise 0.315 0.315 0.315
add bench 0.268

Table 3. Comparison of CPU power measurements by Powerscope for four benchmarks in six com-
binations. All measurements in Watts.

Test 1 2 3 4 5 6
copymem 0.347 0.349 0.340 0.340
fillmem 0.405 0.405 0.405 0.397

fp exercise 0.211, 0.211 0.211, 0.211 0.211
add bench 0.211, 0.211

Table 4. Comparison of memory power measurements by Powerscope for four benchmarks in six
combinations. All measurements in Watts.

References

[1] Intel PXA250 and PXA210 applications processors de-
veloper’s manual. http://www.intel.com/design/pca/
products/pxa255/techdocs.htm, 2005.

[2] T. A. AlEnawy and H. Aydin. On energy-constrained real-
time scheduling. In Proceedings of the 16th Euromicro Con-
ference on Real-Time Systems, Catania, Italy, July 2004.

[3] I. Apple Computer. Tools - performance and debugging.
http://developer.apple.com/tools/performance/, 2005.

[4] G. Bernat, A. Colin, and S. M. Petters. WCET analysis of
probabilistic hard real–time systems. In Proceedings of the
23rd Real-Time Systems Symposium RTSS 2002, pages 279–
288, Austin, Texas, USA, Dec. 3–5 2002.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions. In the proceedings of the 27th Annual International
Symposium on Computer Architecture (ISCA), pages 83–94,
2000.

[6] J. Flinn and M. Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. In Pro-
ceedings of the Second IEEE, Workshop on Mobile Comput-
ing Systems and Applications, 1999.

[7] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vi-
jaykrishnan, M. T. Kandemir, T. Li, and L. K. John. Us-
ing complete machine simulation for software power esti-
mation: The softwatt approach. In Proceedings for the 8th
International Symposium on High Performance Computer
Architecture, pages 141–150, 2002.

[8] R. Jejurikar and R. Gupta. Optimized slowdown in real-time
systems. In Proceedings of the 16th Euromicro Conference
on Real-Time Systems, Catania, Italy, July 2004.

[9] L4Ka Team. L4Ka::Pistachio kernel. http://l4ka.org/
projects/pistachio/.

[10] T. Simunic, L. Benini, and G. D. Micheli. Cycle-accurate
simulation of energy consumption in embedded systems. In
Design Automation Conference, pages 867–872, 1999.

[11] A. Sinha and A. Chandrakasan. Jouletrack — a web based
tool for software energy profiling. In Design Automation
Conference, pages 220–225, 2001.

[12] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of em-
bedded software: A first step towards software power mini-
mization. IEEE Transactions on VLSI Systems, 1994.

[13] M. Weiser, B. Welch, A. J. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Operating Systems
Design and Implementation, pages 13–23, 1994.

[14] A. Weissel and F. Bellosa. Process cruise control: event-
driven clock scaling for dynamic power management. In
Proceedings of the international conference on Compil-
ers, architecture, and synthesis for embedded systems
CASES’02, 2002.

[15] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Cur-
rentcy: Unifying policies for resource management. In Pro-
ceedings of the USENIX 2003 Annual Technical Conference,
2003.

[16] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat.
ECOSystem: Managing energy as a first class operating sys-
tem resource. In Tenth International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems (ASPLOS X), 2002.

OSPERT 2005

104

	1.OSPERT2005Otero.pdf
	1. Introduction
	2. Efficient resource usage on a SoC
	3. Scheduling challenges
	3.1. Processor sharing
	3.2. Keeping data on-chip
	3.3. Prefetching

	4. Solution direction
	5. Acknowledgment
	References

