
PROCEEDINGS OF

OSPERT 2016
the 12th Annual Workshop on

Operating Systems Platforms for
Embedded Real-Time Applications

July 5th, 2016 in Toulouse, France

in conjunction with

the 27th Euromicro Conference on Real-Time Systems
July 6–8, 2016, Toulouse, France

Editors:
Robert KAISER
Marcus VÖLP

Contents

Message from the Chairs 3

Program Committee 3

Keynote Talk 5

Session 0: Short Paper 7
Towards versatile Models for Contemporary Hardware Platforms

Hendrik Borghorst, Karen Bieling, Olaf Spinczyk . 7

Session 1: Multicore and Parallel Systems 11
A communication framework for distributed access control in microkernel-based systems

Mohammad Hamad, Johannes Schlatow, Vassilis Prevelakis, Rolf Ernst 11
Tightening Critical Section Bounds in Mixed-Criticality Systems through Preemptible Hardware

Transactional Memory
Benjamin Engel . 17

GPU Sharing for Image Processing in Embedded Real-Time Systems
Nathan Otterness, Vance Miller, Ming Yang, James H. Anderson, F. Donelson Smith, Shige Wang 23

Session 2: Real-Time and Predictability 31
Combining Predictable Execution with Full-Featured Commodity Systems

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig . 31
Timeliness Runtime Verification and Adaptation in Avionic Systems

José Rufino and Inês Gouveia . 37

Session 3: OS and System Modelling 43
Effective Source Code Analysis with Minimization

Geet Tapan Telang, Kotaro Hashimoto, Krishnaji Desai . 43
Towards Real-Time Operating Systems for Heterogeneous Reconfigurable Platforms

Marco Pagani, Mauro Marinoni, Alessandro Biondi, Alessio Balsini, Giorgio Buttazzo 49
An implementation of the flexible spin-lock model in ERIKA Enterprise on a multi-core platform

Sara Afshar, Maikel P.W. Verwielen, Paolo Gai, Moris Behnam, Reinder J. Bril 55

Program 62

© Copyright 2016 RheinMain University of Applied Sciences.
All rights reserved. The copyright of this collection is with RheinMain University of Applied Sciences. The
copyright of the individual articles remains with their authors.

Message from the Chairs

Welcome to Toulouse, France and welcome to OSPERT’16, the 12th annual workshop on Operating Systems
Platforms for Embedded Real-Time Applications. We invite you to join us in participating in a workshop of
lively discussions, exchanging ideas about systems issues related to real-time and embedded systems.

The workshop will open with a keynote by Adam Lackorzynski of Kernkonzept GmbH, Germany. He will
present his views and experience in transitioning concepts that originate from research into a corporate setting.
We are delighted that Adam volunteered to share his experience and perspective, as the exchchange between
academics and industry has always been one of OSPERT’s goals.

As a new feature this year, we will try to initiate an open discussion among workshop participants about
important open research challenges in real-time operating systems. Contributors to the workshop have been
asked in advance to suggest topics they would like to see discussed. Their suggestions have been collated and
will be presented for discussion at the workshop.

The workshop received a total of fifteen submissions, three of which were in the short-paper format. All
papers were peer-reviewed and nine papers were finally accepted. Each paper received at least three individual
reviews.

The papers will be presented in three sessions. The first session includes three papers that explore approaches
to real-time multicore and parallel systems design. Following the lunch break, we expect to have a lively
discussion on open research challenges in real-time operating systems. Two interesting papers from the context
of real-time and predictabilty will be presented in Session 2, and, last but not least, the third session will present
three compelling papers addressing topics from the broad range of system modelling.

OSPERT’16 would not have been possible without the support of many people. The first thanks are due to
Gerhard Fohler, Rob Davis and the ECRTS steering committee for entrusting us with organizing OSPERT’16,
and for their continued support of the workshop. We would also like to thank the chairs of prior editions of the
workshop who shaped OSPERT and let it grow into the successful event that it is today.

Our special thanks go to the program committee, a team of ten experts from seven different countries, for
volunteering their time and effort to provide useful feedback to the authors, and of course to all the authors for
their contributions and hard work.

Last, but not least, we thank you, the audience, for your participation. Through your stimulating questions
and lively interest you help to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Robert Kaiser Marcus Völp
RheinMain University of Applied Sciences University of Luxembourg
Wiesbaden, Germany Luxembourg

Program Committee

Andrea Bastoni, SYSGO AG
Michael Engel, multicores.org
Paolo Gai, Evidence Srl
Shinya Honda, Nagoya University
Adam Lackorzynski, Kernkonzept / TU Dresden
Daniel Lohmann, FAU Erlangen-Nuernberg
Chanik Park, Pohang University of Science and Technology
Pavel Pisa, Czech Technical University Prague
Linh Thi Xuan Phan, University of Pennsylvania
Richard West, Boston University

3

Keynote Talk

From Research to Reality: Releasing System Software to the Masses

Adam Lackorzynski
Kernkonzept GmbH

In this talk I will share some of our experiences made so far while transitioning a university-founded research
project into real life. Work on L4 systems started about two decades ago and has gone through various ups and
downs. With our latest version, the L4Re system, we finally had the opportunity to be part of technologically
challenging projects that gave us the possibility to found our company, Kernkonzept, and move on beyond
university’s life. Our projects since then include a multi-VM secure smartphone and world’s first open-source
bare-metal hypervisor platform for the MIPS architecture. The ride might be bumpy from time to time, but it is
well worth pursuing.

Dr. Adam Lackorzynski is a post-doctoral researcher with Prof. Hermann Härtig and the Operating-Systems
Group of Technische Universität Dresden. He is a co-founder of Kernkonzept, the technology company behind
L4Re, a microkernel-based operating system framework. Adam received his Ph.D. in Computer Science from
Technische Universität Dresden. His research interests focus on secure operating systems for real-time and
virtualization use-cases in a wide range of application fields. The L4Re system universally targets these fields
and is being applied, for example, in secure communication devices such as mobile phones and routers. Adam
is a main architect of the L4Re system, which originated from TU Dresden and is now being developed by
Kernkonzept.

5

Towards versatile Models for Contemporary
Hardware Platforms

Hendrik Borghorst, Karen Bieling and Olaf Spinczyk
Department of Computer Science 12

Technische Universität Dortmund, Germany
e-mail: {hendrik.borghorst, karen.bieling, olaf.spinczyk}@tu-dortmund.de

Abstract—The demand for computationally intensive work-
loads in the domain of real-time systems is growing which
needs to be satisfied with more capable hardware. Cheap but
powerful multi-core hardware seems to be a good solution but
these processors often lack a good predictability. An operating
system can hide measures to regain the predictability, like cache
management but to do so a good knowledge of the hardware
is required. A problem with these measures is that they are
usually not portable and require a lot of work to adapt them to
new platforms. It is desirable to generate the platform-specific
code from abstract architecture descriptions to get a portable
operating system that adapts itself to the specific hardware
properties of modern hardware to provide a predictable execution
environment.

I. INTRODUCTION

Workloads within the real-time domain are getting more and
more computationally intensive with the automotive industry
pushing for autonomous cars, real-time face detection systems
in security systems or power supply line monitoring for smart-
grids. To meet this demand and at the same time reduce the cost
of the hardware it is preferred to use cheap standard hardware
with capable multi-core processors. But the low price for high
performance computing power comes at the cost of loss of
predictability.

These multi-core processors are usually designed to share
resources to keep both the energy consumption and the
price low. As a result of this, the timing behavior of these
processors is not predictable and therefore they are not directly
suitable for the use in real-time systems. The primary sources
of unpredictability are caches [1], buses [2] and the main
memory [3]. These sources of unpredictability have been in
the focus of research for some time. Software-based control
of the content of the shared caches has been proven to be an
effective instrument to reduce the unpredictability of caches [4].
Rescheduling of memory accesses also was shown to be a
viable mean to improve the memory access behavior [3].

These approaches can be used to reduce the unpredictability
of modern hardware but often require special knowledge of
the hardware and software a system uses. This could lead to
an additional complexity for the system developers because
they have to take into account on what hardware their code
runs. One example is the alignment of data structures to cache
line sizes. Instead these platform-specific measures should be
handled by the operating system. In the past we presented an
operating system concept that explicitly manages what data is

in the cache, to get a more predictable system[5]. A problem
with an approach like this is that it adds even more platform-
specific code to the operating system which should be avoided.
Instead we would like to write code that is normally platform-
specific, in a new generic way to reuse it for all platforms. To
do so we present an approach that uses an domain-specific
language to describe an hardware architecture that can be used
to generate code for low-level operating system functions like
context switching, cache management, memory protection and
other low-level functions that need to be written for every new
hardware platform.

On the other hand an operating system also needs good
information about the hardware it uses to fully utilize all the
resources as good as possible. To achieve this the system
needs a comprehensive model about the available resources
and the timing behavior of a platform. An empirical approach
to generate such a model can be used and the methods to do
so can also be generated by the code generation. Profiling of
a hardware architecture is used as a case study for this paper
as it is usually a complex task because the profiling code has
to be written in a low-level assembly language [6]. The model
that is generated should provide essential information to the
operating system at runtime and during the compilation to
optimize it as much as possible.

In the following section we present an approach that utilizes
a generic domain-specific language to describe hardware
architectures with all their details needed to generate platform-
specific code that can be used instead of manually written
hardware-adaption code.

II. APPROACH

To specify an architecture we chose an approach with
a domain-specific language (DSL). A language to model a
hardware architecture, needs to be flexible enough to be able
to specify current and upcoming architectures. This means
that it should not have limitations, how the memory system
of a architecture is structured. The language should be able
to model a processor with multiple scratchpad memories for
one processor core and a NUMA-based architecture just as
well. To completely model a memory hierarchy it is also
important to represent the interconnects between components
like memories or processor cores correctly to ensure that the
operating system can later take full advantage of measures to
increase the performance and predictability of the hardware.

7

a r c h i t e c t u r e ExampleArch {
Memory RAM {}
Memory L2Cache : RAM {}
Memory Cache0 : L2Cache {}
Memory Cache1 : L2Cache {}
P r o c e s s o r CPU0 : Cache0 {}
P r o c e s s o r CPU1 : Cache1 {}

ISA {
r e g i s t e r s { R% [0 . . 1 5] }
i n s t r u c t i o n s {

a d d _ c o n s t ADD: d e s t , arg , # a r g c o n s t
add_reg ADD: d e s t , arg , a r g

}
}

}

Fig. 1: Example of an architecture description

Besides the memories, interconnects and computing units
the architecture description needs to specify the instruction
set architecture (ISA) of the available computing units. This
ISA description is used for the code generator and contains
details about the available registers, with the names used by
the assembler for the architecture, and a basic set of assembly
instructions. For heterogeneous architectures it is also possible
to specify multiple ISAs for one architecture. So that different
processor cores could use different ISAs.

An example representation of an architecture is shown by
Figure 1. It consists of two processors which are each connected
to a private cache, that is connected to a shared level-2 cache.
The last item in the memory hierarchy is a main memory
called RAM. The example architecture also included the register
specification for the registers R0 to R15. The interconnects
between multiple components are directly derived from the
inheritances, for example in Figure 1 level-2 cache is connected
to both the private Cache0 and Cache1.

The instructions block includes all platform-specific
assembly instructions needed for the abstract assembly language
for the code generator. As an example Figure 1 only shows two
instructions to add two values. Once with a constant and once
with a value residing in another register. This language also
allows to model a NUMA-based architecture by specifying
multiple RAM-components that are only connected to one
processor unit.

Figure 2 lists an example of a memory component. It
describes a exemplary memory of the example architecture.
To generate low-level operating system code it is necessary to
specify some parameters that the operating system can use to
optimize itself to the target architecture. These parameters in-
clude properties like the cache-line length (minAccessSize)
or where a memory is mapped to in the address space.

In addition to the architecture description an abstract low-
level development language needs to be defined. This language

RAM {
wordLength : 4 / / B y t e s
minAccessSize : 16 / / B y t e s
s t a r t A d d r e s s : 0 x40000000
s i z e : 2G

}

Fig. 2: Example of a memory component description

ram_benchmark {
move (d e s t reg : 0 , arg %[bmStar t_ <BM>])
move (d e s t reg : 1 , arg %[bmEnd_<BM>])

jmp_mark (arg " l o o p _ b e g i n : ")
m e a s u r e _ s t a r t
load (d e s t reg : 3 , s r c ∗ reg : 0)
measure_end

add_const (d e s t reg : 1 , arg reg : 1 ,
arg <WordLength >)
cmp (arg reg : 0 , arg reg : 1)
cond_jump_lt (arg " l o o p _ b e g i n ")

}

Fig. 3: Simple memory benchmark in abstract assembly code

is an abstract form of an assembly language that can be
translated to platform-specific assembly code via the code
generator. To do so the architecture description has to specify
a minimal set of assembly instructions that are necessary for
the code generator. The abstract assembly language can then
be used to write low-level operating system code like context
switching, cache flushing and time measurements in an abstract
way so that it has to be done only once.

An example how to use the abstract assembly language is
given with Figure 3. It depicts a memory read performance
profiler. The profiling starts with the preparation of several
constant values that are necessary to run the code like such as
limits of the benchmark range. The next step is the creation
of a label to create a loop over a certain benchmark range.
Inside this loop is an abstract load instruction surrounded with
two abstract methods that handle the measurement of elapsed
clock cycles. The content of these functions is omitted here to
keep the listing short. Each assembler instruction needs certain
arguments. Some of them are register values and some of them
constants which has to be annotated at the moment. Also the
registers need to be allocated manually but we like to improve
this in the feature with register allocation techniques borrowed
from compiler research.

With the architecture description and the abstract assembly
code it is possible to develop a code generator that creates
the operating system code for a specific hardware platform. A
simplified overview of the process is given with Figure 4. The

8

Platform
specification

Abstract low-level
OS-code

Code generation

Platform-specific
OS-code Generic OS-code

Operating system executable

Profiling code

Platform
model

Generates Code/Model data

Uses Code/Model data

Fig. 4: Concept of operating system with abstract code

code generation combines one specific platform architecture
with the abstract code and generates the assembler code for the
architecture. This is then integrated with the generic program
code of the operating system. The code generator can also be
used to create comprehensive profiling code for the creation
of a timing behavior description for the platform, that can also
be used by the operating system as a base for optimizations
like cache management to get a predictable system.

III. EVALUATION

As a proof of concept we chose to develop a memory read
performance profiler with the abstract language, because it is
essential for the operating system to have information on the
platforms memory performance to get predictable execution
times. We want to use the generated information within our
prototype operating system for the cache management [5].

We implemented the presented languages with the Eclipse
Modeling Framework (EMF) and Xtext [7] as this allows
rapid prototyping of our domain specific languages and code
generation which is helpful to quickly adapt the language to the
changing demand as we developed our requirements to develop
an operating system with abstract low-level code. We evaluated
our implementation of the code generation with a Samsung
Exynos 4412 ARM-processor on a prototype operating system
where no other load is simultaneously active.

The results of two generated benchmarks are shown on Fig-
ure 5. We evaluated two abstract benchmarks. One benchmark
warms up the private cache of a processor by iterating over a
memory range with the size of the private cache and finally
iterates over the same range and measure the access times.
The results are shown in Figure 5a. Another test is shown in
Figure 5b where the main memory is tested without warming
up so that we get many more cache misses.

Although the profiling code for now was only generated for
an ARM processor, it is possible to adapt it to other processors
in the future.

IV. CONCLUSION & FUTURE WORK

We demonstrated that it is possible to create abstract low-
level code that can be transformed to architecture-specific

0 500 1000

100

200

access number

A
cc

es
s

tim
e

in
cy

cl
es

(a) L1-Cache profiling

0 500 1000

100

200

access number

A
cc

es
s

tim
e

in
cy

cl
es

(b) RAM accesses

Fig. 5: Memory read benchmarks

assembly code by providing a simple architecture description.
Although we could only present some preliminary results for
now we intend to improve on this in the future.

One use case for the code generation process can be to
write abstract profiling code once and then run it on many
hardware platforms. To do so would require a good execution
base to get reliable results. We intend to run profiling code on
our prototype operating system [5]. But it would be interesting
to see if it is possible to generate code that could be run on
a operating system like Linux to get much better hardware
support right away. A possible solution would be to generate
Linux kernel modules that take control over the system and
run the profiler code exclusively for a limited time. This would
allow a broad range of hardware architectures to be analyzed.
These models could be used by real-time operating systems to
adapt them on specific hardware properties.

As hardware platforms are getting more difficult to develop
for it would be handy to write low-level operating system
code for hardware features like memory management, memory
address translation and other things only once. To achieve this
our abstract languages need to evolve to provide the necessary
means.

A distant goal we would like to aim for is to generate an
open source database with hardware models that describe the
hardware in a way that is especially useful for the design and
implementation of operating systems.

REFERENCES

[1] J. M. Calandrino and J. H. Anderson, “Cache-aware real-time scheduling
on multicore platforms: Heuristics and a case study,” in 20th Euromicro
Conf. on Real-Time Sys. (ECRTS ’08), Jul. 2008, pp. 299–308.

[2] D. Dasari, B. Akesson, V. Nelis, M. Awan, and S. Petters, “Identifying
the sources of unpredictability in COTS-based multicore systems,” in 08th
IEEE Int. Symp. on Industrial Embedded Systems (SIES 2013), Jun. 2013,
pp. 39–48.

[3] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory
access scheduling,” in 27th Int. Symp. on Comp. Arch. (ISCA ’00). New
York, NY, USA: ACM, 2000, pp. 128–138.

[4] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making
shared caches more predictable on multicore platforms,” in 25th Euromicro
Conf. on Real-Time Sys. (ECRTS ’13). IEEE, Jul. 2013, pp. 157–167.

[5] H. Borghorst and O. Spinczyk, “Increasing the predictability of modern
COTS hardware through cache-aware OS-design,” in 11th W’shop on OS
Platf. for Emb. Real-Time App. (OSPERT ’15), Jul. 2015.

[6] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory perfor-
mance and cache coherency effects on an Intel Nehalem multiprocessor
system,” in Parallel Architectures and Compilation Techniques, 2009.
PACT ’09. 18th International Conference on, Sep. 2009, pp. 261–270.

[7] “Xtext,” https://eclipse.org/Xtext/, accessed: 2016-05-23.

9

A communication framework for distributed access
control in microkernel-based systems

Mohammad Hamad, Johannes Schlatow, Vassilis Prevelakis and Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig

{mhamad,schlatow,prevelakis,ernst}@ida.ing.tu-bs.de

Abstract—Microkernel-based architectures have gained an in-
creasing interest and relevance for embedded systems. These can
not only provide real-time guarantees but also offer strong secu-
rity properties which become increasingly significant in certain
application domains such as automotive systems. Nevertheless,
the functionality of those complex systems often needs to be dis-
tributed across a network of control units for various reasons (e.g.
physical location, scalability, separation). Although microkernels
have been commercially established, distributed systems like these
have not been a major focus. This is basically originated by the
fact that – in the microkernel world – policy, device drivers
and protocol stacks are userspace concerns and rather left to
be solved by the particular application domain. Following the
principle of least privilege, we therefore developed a distributed
access-control framework for all network-based communication
in microkernel-based systems that can be generically deployed.
Our design not only enforces security properties such as integrity
but is also scalable without adding too much overhead in terms
of run time or code.

I. INTRODUCTION

Nowadays embedded systems are ubiquitous, i.e. in most
of the electronic devices in our life; from simple devices
such as microwaves to sophisticated ones such as cars. The
latter is a driving motor when it comes to safety concerns
of complex embedded systems, which is typically approached
by a deliberate system design that uses separation and
“safety nets”. A contemporary car contains from 70 to 100
microcontroller-based computers [1], known as electronic con-
trol units (ECUs). These ECUs control many functions within
the car, ranging from the mundane such as controlling courtesy
lights to the highly critical such as engine control. These
ECUs are distributed around the vehicle and interconnected
using different bus systems such as CAN, MOST or FlexRay
in a rather static setup. The need of exchanging bigger and
more expressive messages is pushing towards using Internet
Protocol (IP) standards for both on-board and vehicle-to-X
communications [2], [3], which is also driven by the desire
of better modifiability and updateability in the automotive
domain. However, one main reason that connected ECUs are
becoming increasingly vulnerable is the use of unprotected
wireless and wired communication [4].

Increasing the flexibility of vehicular (software) platforms
while not neglecting the safety and security therefore is a
major challenge. Moreover, in contrast to traditional comput-
ing systems, embedded systems not only come with limited
resources concerning memory and CPU power but also have
slightly different demands on the system’s security.

Modern sedans run a huge number of applications (func-
tions) with millions of lines of code (LOC) [1]. These
applications come from several vendors with various levels
of code quality. Safety-relevant functions, such as anti-lock
braking systems, are typically well-engineered and heavily
tested, while others, such as the entertainment systems, could
be implemented with security and reliability not as prime
factor. The uncontrolled interference within shared buses
between applications with a mixed level of safety, security
and criticality may create vulnerabilities [5]. Compromising
uncritical components by an adversary could be sufficient to
control critical components across the entire car, which must
be dealt with by appropriate protection mechanisms. Using
microkernels could be the first step towards providing a secure
environment for such systems [6], which will benefit from the
small amount of privileged code, the minimal trusted com-
puting base (TCB), and the memory protection between the
different components. However, providing a comprehensive
framework for controlling the communication between the
various platform subsystems is a crucial complementary task
to the microkernel’s security services.

We have created a distributed access-control framework
which allows only authorized components to interact with each
other inside the vehicle and with external entities. Our frame-
work ensures the ability to define the type of security provided
for each communication link (e.g. integrity, confidentiality),
and other connection properties (e.g. priority). We defined a
secure communication policy, which determines all permitted
paths between different components, centrally and gradually.
Later on, the policy was enforced by each ECU on the vehicle
isolatedly (i.e. without any need for additional interactions).

The rest of the paper is organized as follows. Section II
describes the communication framework and the objectives of
our work. It also explains the security approach of local and
remote communication between the different components. In
Section III, we describe the main parts of the communication
module and its implementation. Finally, related work is pre-
sented in Section IV before we evaluate our implementation
in Section V and discuss our findings in Section VI.

II. COMMUNICATION FRAMEWORK

Fig. 1 depicts an exemplary distributed system and the
different scenarios of inter-component communication. In our
idealistic world, each ECU is running a microkernel-based
operating system that hosts multiple (interacting) software

11

C2

C4

C1

C3

ECU1 ECU2

network

C4’

local

remote

Fig. 1. Communication scenarios in distributed automotive systems

components. The ECUs are then inter-connected by a network.
Here, we identify two types of inter-component communica-
tion: Local communication, which refers to the communication
between two components on the same ECU (e.g. C3 and C4),
and remote communication, which denotes the communication
between components on two different ECUs (e.g. C1 and C2).

Our goal is to build a framework that ensures secure
communication between the components in this scenario while
still maintaining a high flexibility. For this purpose, we first
state our objectives before we discuss local communication
mechanisms w.r.t. their application in our scenario and finally
derive our networking architecture approach.

A. (Security) objectives

When it comes to designing a communication framework
for distributed systems in critical application domains such as
automotive systems, we identified the following objectives:

1) Fine-grained access control: Our primary goal is to con-
trol who should talk to whom in an efficient manner without
the need for static access-control mechanisms. Components
should only communicate with other components who are
specified by the policy. One main advantage of this is that
even a compromised component will only be able to interact
with authorized components and will be unable to attack other
components indiscriminately.

2) Secure communication: Providing security services for
authorized connections is a fundamental requirement. The
required security services are varying from one application
to another. However, since most security issues in vehicle
communications are related to the lack of authentication
mechanisms, providing integrity and mutual authentication is
necessary to prevent unauthorized parties from sending false
data or injecting them in established connections.

3) Composability and migratability: In a component-based
system, the desired functionality is integrated by composing
several interacting components. In a distributed scenario, we
also gain the freedom of choice where to execute each com-
ponent. Fig. 1 illustrates this on component C4 which could
alternatively be executed on ECU2 but then requires a remote
communication mechanism to C3. Hence, composability and
migratability are important values whose lack would quickly
restrict the design space. Note that we consider migration in

terms of a (partial) system reconfiguration that must undergo
several admission tests before being applied.

4) Minimum (application-specific) TCB: A common goal
when building secure systems is the minimization of the TCB,
i.e. the subset of hardware and software that must be relied
upon. Microkernels already do their share w.r.t. minimizing
the TCB. Yet, in userspace, a flawed design can easily bloat
the TCB, e.g. by adding a middleware for all applications.
Instead, each application should only rely upon a minimum
set of software components with minimum complexity and
therefore have its specific TCB [7].

5) Legacy application support: Another concern is the
ability to integrate legacy applications into a component-based
system. Note that legacy APIs might need to be monitored
and restricted so that they do not conflict with the above
objectives. In the scope of this work, we demonstrate the
feasibility of this by providing a socket API to conventional
network applications.

B. From IPC towards networked communication

Any microkernel architecture provides strong isolation of
application components in order to minimize the TCB. There-
fore, any communication between isolated components, i.e.
inter-process communication (IPC), needs to be mediated
by the kernel. On the one hand, this introduces additional
overhead which was historically one of the main drawbacks of
the microkernel approach but was weakened by the optimiza-
tion of (synchronous) IPC mechanisms and the evolution of
microkernels [8], [9]. On the other hand, this has the benefit
of making any communication explicit. This property was
further strengthened by introducing capability-based access
control that enables a fine-grained and unforgeable control of
a component’s communication channels. As a result, today’s
microkernel architectures allow us to apply the principle of
least privilege and enforcing security policies when integrating
application components from different, potentially untrusted,
parties [10]. In summary, all these properties helped establish-
ing microkernels as sophisticated, and also commercialized
[11]–[14], implementation vehicles for critical application
domains.

When it comes to more dynamic scenarios like distributed
systems, a service-oriented approach is commonly taken to
equip the system with the required flexibility. Typically, a
communication middleware then takes care of routing the
messages to the communication partner that registered under
a certain service name thereby deploying a communication
mechanism (API) that is agnostic of the actual communication
partners and their location. Yet a major drawback of such a
middleware is that enforcing security policies and providing
isolation (e.g. local namespaces) while not adding too much
overhead is a non-trivial obligation. This approach clearly
trades ease-of-use against simplicity and efficiency.

We therefore believe that the strong architectural guarantees
already provided by microkernels can and should be utilized
in such scenarios. That means local communication shall still
benefit from the existing efficient and secure implementations

12

C1

TCP/IP

Network Device

Multiplexer

Network

C2

TCP/IP

C3

TCP/IP

Communication Module

RPC

Network Device

C1 C2 C3

(b) (a)

TCP/IP

library call IPC

Fig. 2. Architecture with multiple TCP/IP stacks and a shared multiplexer
(a) compared to a shared communication module with an integrated TCP/IP
stack (b).

while we transparently transform between the local and remote
communication mechanisms where necessary. The challenge
here is to provide similar guarantees for remote communica-
tion, i.e. the fine-grained access control and integrity of remote
communication channels. Yet there is a mismatch between the
fine-grained access control for local IPC and the socket API
typically used for network applications that gives full access
to any attached network. We therefore need to provide the
infrastructure with which we can control network accesses
in order to establish unforgeable network communication
between application components as we are used to on when
using local IPC.

C. From user-level networking towards a distributed firewall

Microkernel philosophy is based on moving all policy,
including device drivers and protocol stacks, from the kernel
to the userspace. Therefore, implementing the network stack in
the userspace was a hot topic for many years; it was proposed
for different motivations, including increasing the performance
and flexibility of the network layer [15].

Providing maximum isolation between different applica-
tions, a straight-forward approach of executing several network
applications on a microkernel consists in using dedicated
network stacks for each application (cf. Fig. 2a). Here, the
low-level Network Interface Controller (NIC) must be multi-
plexed/virtualized, e.g. by a network bridge. As a result each
application is linked to its network-stack library and requires
its own MAC and IP addresses. The drawback of this approach
is that unless some sort of packet filtering is deployed, each
application also gets full access to the shared network, which
contradicts our objective of a fine-grained access control.
More precisely, this approach is susceptible to the following
communication threats:

a) Spoofing: An application, which has a full access to
the network stack, can emit a frame with fake IP or MAC
addresses. Such an application may imitate other applications,
eavesdrop on their communication, or collect relevant infor-
mation about the platform. It could also change the transmitted
data and inject false values.

Authorizer: Integrator_public_key

Licensees: Platform_public_key

Conditions: (Vendor_id ==“ACME_INSTRUMENTS“
 && Src_device_name == “headlight_control“
 && Dst_device_name == “ambient_light_sensor“
 && Src_device_type == CONTROL_PLATFORM
 && Dst_device_type == LIGHT_SENSOR
 && Security_level >= SL_INTEGRITY && Priority_level == HIGH
 && Bitrate_limit == X Kbitd/sec) -> “ALLOW“

Signature: Integrator signature

Fig. 3. An example of KeyNote credential which enables an ambient light
sensor to communicate with headlight control. The credential ensures integrity
of the communication line with high priority.

b) Denial of service (DoS): One of the primary results
of the IP spoofing can be a DoS attack. I.e. a malicious
application could spoof a target service’s IP address and
send many packets to different receivers. All responses to the
spoofed packets will be directed to the services IP, which will
be flooded. Sometimes, an attack cannot cause a disruption of
the service, but can cause a degradation of its quality (e.g. by
increasing its response time). The DoS could lead to serious
issues if that service is responsible for the users’ safety.

In order to combat these threats, adequate access-control
mechanisms should be implemented to control the interaction
between different applications and to prevent unauthorized
parties from processing foreign data. However, packet filtering
is more network-centric and typically too abstract for fine-
grained application-level access control. Moreover, there is a
consistency challenge when it comes to updating static filtering
rules in a distributed system in case of a dynamically changing
environment.

Integrating other traditional network protection methods
such as firewalls in vehicle communication networks was
shown to be inadequate too [16], especially if the integrator
keeps the assumption that all insider nodes are trusted. More-
over, using a single ECU as a firewall to control the whole
communications within the vehicle is also not an optimal
solution. Such an ECU will create congestion, become a single
point of failure and jeopardize the scalability.

Hence, adopting the distributed firewall technique [17]
seems to be a favorable solution in order to remove any
performance bottleneck. We applied this method by providing
a single communication module for each ECU as shown in
Fig. 2b. This module is playing the role of a firewall by
controlling all incoming and outgoing communications on a
single ECU and by enforcing the security policy locally. The
security policy is managed centrally and then distributed to
all ECUs. Note that the communication module implements
a shared network stack and multiplexes the network device.
It is therefore a potentially complex component that might
compromise the isolation of the application components. We
believe, however, that this design choice can actually simplify
the policy enforcement and multiplexing task in contrast to
solutions that implement these on other layers of abstraction.

In our previous work [18], we presented a mechanism to
integrate the evaluation of communication policy into the

13

C5

C1

Communication Module

C3

ECU1

network

local IPC (capability-based)

network protocol (IPsec)

socket API (capability-based)

Fig. 4. Architecture with a shared communication module on each ECU

components’ development flow; from the design process until
the final integration stage of the component with the platform.
Such integration will ensure that the defined policy will fulfill
all the operational component requirements. Each component
is identified by its own credential, which gives it the ability to
communicate with other components regardless its topological
location in the network.

We used the KeyNote policy definition language [19] to
formulate the communication policy as shown in Fig. 3.
The application-independent design of KeyNote allows for
the support of a variety of different applications. KeyNote
furthermore enables the delegation of the policy by allowing
principals to delegate authorization to other principals (e.g. in
Fig. 3 where the integrator delegates rights to the platform).
Consequently, the delegation capability allows to decentralize
the administration of policies.

III. IMPLEMENTATION OF THE COMMUNICATION MODULE

We implemented our communication module for the Genode
OS Framework as distinct userspace server which provides and
monitors network accesses. Hence any network application
acts as a client that connects to this server using a socket-like
API. Fig. 4 illustrates the different communication scenarios
(cf. Fig. 1): While C1 represents a network application compo-
nent directly using the socket API, C3’s local IPC is translated
by C5 and the communication module into a network com-
munication. An important detail here is the capability-based
access control used to manage the access to the communication
module. As a system integrator, we can thus perfectly control
the local inter-component communication and thus guarantee
that no application component has direct access to the network
interface. Moreover, the communication module is able to
distinguish its clients by their capabilities and can therefore
select and enforce different (pre-defined) policies for the
network communication. In this way, all network accesses are
securely mediated by the communication module. Note that
this is based on the assumption that capabilities cannot be
arbitrarily delegated between application components.

The communication module is composed of four cooper-
ating submodules as depicted in Fig. 5. The pseudo-socket
layer plays a central role by providing a suitable interface
to the applications as well as by coordinating the other
submodules. In the remainder of this section, we elaborate
on these submodules in more detail:

Communication Module

Pseudo-Socket Layer

Network
Stack

Decision
Repository

Policy
Decision
Module

add, delete, search

verify socket call

Fig. 5. Architecture of the communication module

a) Pseudo-socket layer: A lot of conventional (legacy)
applications use a socket-like API (as in the standard C
library) to access the network stack. Similarly, the pseudo-
socket layer represents the interface which the applications
use to interact with the communication module. In contrast
to the conventional function/library calls, the pseudo-socket
layer uses local IPC and must therefore take care of the
memory management between the different address spaces of
the communication module and its clients before a call can be
handed over to the actual network stack. More precisely, we
used shared memory to transfer the data between the address
space of the application and the communication module to
avoid imposing extra overhead by copying data multiple times.
All this is transparently taken care of by this layer, so that the
clients can still use the typical socket API functions. Legacy
applications can be supported by linking against a slightly
modified version of the standard C library that forwards the
socket API calls to the communication module. Additionally,
this layer checks the parameter validity, invokes the policy
decision component with the relevant information related to
the connection, and reacts to the received decision. If an
affirmative decision (i.e. allow) is received, a new rule will
be added to the repository. This rule contains many runtime
specified selectors such as IP addresses and port numbers of
the two ends of the connection. It also includes the required
security level (i.e. integrity or confidentiality), the maximum
allowed bit rate, and the priority level of the connection.
Associating this rule with the opened socket gives us the ability
to enforce this rule in two different layers. The first one is at
the socket layer when an application uses the socket to send
or receive data while the second one is placed at the IP layer
whenever a new packet is received. The rule will be removed
from the repository as soon as the socket is closed.

b) Policy Decision Module: This submodule is responsi-
ble for monitoring, i.e. granting or denying, the main requests
of an application such as initiating a connection, sending, or
receiving data. In order to make a decision, it determines
whether a proposed request is consistent with the local policy
and whether the conditions specified in the credentials were
met. For this purpose, we use the KeyNote library.

c) Network Stack: As mentioned before, the network
stack was integrated into the communication module to pro-
vide the basic network access. In our implementation, we

14

used the lightweight TCP/IP stack (lwIP). In addition, we
integrated embedded IPsec [20] into this network stack (as
proposed in [21]) in order to provide basic security services
(e.g. integrity, confidentiality) to the clients. Furthermore, we
consider implementing traffic monitoring in a later phase of
our work to keep tracking of the bit rate of a connection in
order to prevent DoS attacks, like proposed in [22].

d) Decision Repository: Providing a repository for sav-
ing the policy decisions is an essential technique in our design
to spare the run-time costs of the request evaluation. By doing
this, the evaluation only occurs when an application initiates
a connection (i.e. accept() and connect() for TCP-based com-
munication). For this purpose, the decision repository stores
the decided rules for any opened connection.

IV. RELATED WORK

Many authors have addressed deficiencies of vehicle com-
munication and the need for a mechanism to control the
interaction between the components within the vehicle and
between the vehicle and the outside world [23]. However, only
a few proposals have appeared to provide such a mechanism.

Based on legacy network solutions, Chutorash [16] proposes
an approach for using a firewall to control the interaction
between applications on the one side and vehicle bus and
vehicle components on the other side. His approach was
restricted to monitor the interaction between HMI systems
and other vehicle components, which ignored controlling the
interaction between the vehicle’s components. We extended
this approach by using a firewall for each ECU in order
to build a distributed firewall that is concerned about all
communication inside the vehicle.

Concerning multiple network stacks, a userspace port switch
was proposed in [24] that controls interconnecting indepen-
dent network applications which run together. Swarm assigns
the same IP, MAC address to all different stacks and uses
port number to distinguish them. Yet using port numbers to
control the communication flows is not sufficient when the
applications use dynamic port assignment.

The Genode OS Framework [25] proposed the use of a
NIC bridge which implements the Proxy-ARP protocol [26]
to multiplex and monitor the communications of different
applications that run on the same host. Neither solutions use
filtering mechanisms which identify the application properly.

QNX Neutrino RTOS is a commercial microkernel-based
real-time operating system that uses a networking architecture
[27] very similar to what we propose. The dominant (local)
IPC mechanism is synchronous message passing. Network
communication is enabled via a socket API by a central
network manager which implements device drivers and the
network stack. In addition, the so-called Qnet protocol trans-
parently extends the message-passing paradigm over a dis-
tributed system [28]. However, as Qnet is designed to be
deployed for a group of trusted machines, it does not perform
any authentication. Moreover, policy enforcement is only done
in terms of packet filtering.

TABLE I
COMMUNICATION MODULE CODE SIZE

Part SLOC

Pseudo-socket layer 500

Policy Decision Module interface 300

IPsec extension of the Network Stack 2000

Decision Repository 600

1 64 256 512

packet sizes [byte]

0

1

2

3

4

5

6

7

8

la
te

n
cy

 [
m

s]

baseline
comm_module
nic_bridge

(a) Genode on Raspberry Pi

1 64 256 512

packet sizes [byte]

0

1

2

3

4

5

6

7

8

la
te

n
cy

 [
m

s]

baseline
comm_module
nic_bridge

(b) Genode on Linux

Fig. 6. Average round-trip latency results for our two test platforms.

V. EVALUATION

We evaluated our implementation of the communication
module w.r.t. its overhead in terms of source lines of code
(SLOC) and latency. Table I summarizes the SLOC values
that have been acquired by the cloc tool. Note that we
only evaluated the part of the policy decision module which
interfaces the unmodified KeyNote library. It is also worth
mentioning, that by our approaches saves about 750 SLOC by
superseding the multiplexing component (i.e. nic bridge).

Regarding the latency, we used the TCP RR test of the
netperf tool in order to measure the average round-trip latency.
As a matter of course, the communication module must
perform worse than a scenario where a single application
directly accesses the network device. We therefore compared
our approach against the scenario illustrated in Fig. 2a. More
precisely, the multiplexer we used is the nic bridge of the
Genode OS Framework that implements the Proxy-ARP proto-
col. Hence the scenarios we compared both include additional
copying and context switching caused by the nic bridge and
the communication module. The netserver component was
executed on the system under test while the netperf binary was
run from a standard linux machine. In particular, we added the
parameters -i 10,3 -I 99,5 in order to perform multiple
iterations and achieve a confidence level of 99 %.

The average round-trip latency results are shown for differ-
ent package sizes and two different platforms in Fig. 6. As a
baseline, we also included the results for a setup in which the
netserver directly accesses the network device. One of the test
platforms was running Genode on a Raspberry Pi whereas the
other platform was running Genode directly on the same linux
machine as the netperf binary. Note that we used the latter to

15

bypass any physical network devices and drivers as it only
utilizes rather simple virtual network interfaces. Interestingly,
we can observe a slight improvement of the latency for our
approach in comparison to the nic bridge.

Since the TCP RR benchmark does not measure the TCP
connection setup, we accounted the additional latency imposed
by the policy decision module separately. This overhead only
occurs once for every TCP connection and is thus amortized
over the lifetime of the connection. For this, we measured a
maximum of 30 milliseconds. Note that our implementation is
still in a proof-of-concept stage so that various optimization
techniques could be applied to improve the performance.

VI. CONCLUSION

From the microkernel-perspective, using a dedicated net-
work stack for each application is a common and reasonable
design decision in order to achieve a high level of isolation.
However, this approach either enables full and uncontrolled
network access to potentially malicious applications or com-
plicates the process of controlling the network accesses on a
rather low abstraction level. In the scope of this work, we pre-
sented and implemented an alternative approach that consists
in providing a single communication module that efficiently
mediates and controls all network accesses. By deploying this
communication module in a distributed system like an auto-
motive system that feature rather complex networks of many
ECUs, we can equip those systems with a distributed firewall
that enforces the integrity of all network communication. As
this communication module authorizes both, incoming and
outgoing, connection requests, by invoking a policy engine,
it protects the network from malicious processes on the ECU
and the ECU from unauthorized network connections.

Nevertheless, as security often has a price, it is clear that
our access-control mechanism imposes some overhead. For
our approach, this consists in processing overhead by the
communication module and protocol overhead required to
provide secure network communication (i.e. IPsec). For the
latter we have already shown in our preliminary work [21]
that the overhead is typically very low. By introducing the
communication module, we could marginally improve the
average round-trip latency once a connection is established.
However, this also requires some additional (but amortized)
cost for establishing a connection.

In summary, communication integrity is an essential prereq-
uisite for functional safety, a major requirement for automotive
systems. We therefore believe that our approach enables the
use of microkernels in such demanding distributed systems.

ACKNOWLEDGEMENT

This work was supported by the DFG Research Unit
Controlling Concurrent Change (CCC), funding number
FOR 1800. We thank the members of CCC for their support.

REFERENCES

[1] R. Charette, “This car runs on code,” feb 2009. [Online]. Available:
http://www.spectrum.ieee.org/feb09/7649

[2] A. Bouard, B. Glas, A. Jentzsch, A. Kiening, T. Kittel, F. Stadler, and
B. Weyl, “Driving automotive middleware towards a secure IP-based
future,” in 10th conference for Embedded Security in Cars (Escar’12),
Berlin, Germany, Nov. 2012.

[3] RTI Conntext DDS. [Online]. Available: http://www.rti.com
[4] M. Wolf, A. Weimerskirch, and C. Paar, “Security in automotive bus

systems,” in Workshop on Embedded Security in Cars (ESCAR), 2004.
[5] Y. Laarouchi, Y. Deswarte, D. Powell, J. Arlat, and E. De Nadai,

“Ensuring Safety and Security for Avionics: A Case Study,” in DAta
Systems in Aerospace (DASIA), ser. ESA Special Publication, vol. 669,
May 2009, p. 28.

[6] G. Heiser, “Secure embedded systems need microkernels,” USENIX
;login:, vol. 30, no. 6, pp. 9–13, dec 2005.

[7] H. Härtig, “Security architectures revisited,” in 10th ACM SIGOPS
European Workshop. New York, NY, USA: ACM, 2002, pp. 16–23.

[8] J. Liedtke, “Improving IPC by kernel design,” ACM SIGOPS Operating
Systems Review, vol. 27, no. 5, pp. 175–188, Dec. 1993.

[9] K. Elphinstone and G. Heiser, “From L3 to seL4 – what have we learnt
in 20 years of L4 microkernels?” in ACM Symposium on Operating
Systems Principles, Farmington, PA, USA, nov 2013, pp. 133–150.

[10] A. Lackorzynski and A. Warg, “Taming Subsystems: Capabilities As
Universal Resource Access Control in L4,” in Proceedings of the Second
Workshop on Isolation and Integration in Embedded Systems (IIES).
New York, NY, USA: ACM, 2009, pp. 25–30.

[11] GenodeLabs. [Online]. Available: http://genode-labs.com
[12] Kernkonzept. [Online]. Available: http://www.kernkonzept.com
[13] Cog Systems: OKL4 Microvisor. [Online]. Available: http://cog.

systems/products/okl4-microvisor.shtml
[14] QNX Neutrino RTOS. [Online]. Available: http://www.qnx.com/

products/neutrino-rtos/neutrino-rtos.html
[15] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A user-level

network interface for parallel and distributed computing,” in Proceedings
of the Fifteenth ACM Symposium on Operating Systems Principles
(SOSP). New York, NY, USA: ACM, 1995, pp. 40–53.

[16] R. Chutorash, “Firewall for vehicle communication bus,” Feb. 24
2000, wO Patent App. PCT/US1999/017,852. [Online]. Available:
http://www.google.de/patents/WO2000009363A1?cl=en

[17] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith,
“Implementing a distributed firewall,” in Proceedings of the 7th ACM
Conference on Computer and Communications Security (CCS). New
York, NY, USA: ACM, 2000, pp. 190–199.

[18] V. Prevelakis and M. Hamad, “A policy-based communications archi-
tecture for vehicles,” in 1st International Conference on Information
Systems Security and Privacy (ICISSP), Feb. 2015, pp. 155–162.

[19] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The
keynote trust-management system version 2,” RFC 2704, September
1999, http://www.rfc-editor.org/rfc/rfc2704.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2704.txt

[20] S. Kent and K. Seo, “Security architecture for the internet protocol,”
RFC 4301, December 2005.

[21] M. Hamad and V. Prevelakis, “Implementation and performance evalua-
tion of embedded ipsec on microkernel os,” in The 2nd World Symposium
On Computer Networks and Information Security, September 2015.

[22] A. Garg and A. N. Reddy, “Mitigation of DoS attacks through QoS
regulation,” Microprocessors and Microsystems, vol. 28, no. 10, 2004.

[23] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. Mccoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Ex-
perimental security analysis of a modern automobile,” in In Proceedings
of IEEE Symposium on Security and Privacy in, 2010.

[24] M. Unzner, “A split TCP/IP stack implementation for GNU/Linux,”
Diploma thesis, Technische Universität Dresden, 2014.

[25] Genode OS framework. [Online]. Available: https://genode.org/
[26] S. Carl-Mitchell and J. S. Quarterman, “Using arp to implement

transparent subnet gateways,” RFC 1027, October 1987, http:
//www.rfc-editor.org/rfc/rfc1027.txt. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc1027.txt

[27] (2014, feb) QNX Neutrino RTOS System Architecture. [Online].
Available: http://support7.qnx.com/download/download/26183/QNX
Neutrino RTOS System Architecture.pdf

[28] (2014, mar) QNX Core Networking Stack User’s Guide. [On-
line]. Available: http://support7.qnx.com/download/download/26171/
Core Networking with io-pkt Users Guide.pdf

16

Tightening Critical Section Bounds in
Mixed-Criticality Systems through Preemptible

Hardware Transactional Memory

Benjamin Engel
Operating-Systems Group

Department of Computer Science
Technische Universität Dresden

Email: 〈name〉.〈surname〉@tu-dresden.de

Abstract—Ideally, mixed criticality systems should allow archi-
tects to consolidate separately certified tasks with differing safety
requirements into a single system. Consolidated, they are able to
share resources (even across criticality levels) and reduce the
system’s size, weight and power demand. To achieve this, higher
criticality tasks are also subjected to the analysis methods suitable
for lower criticality tasks and the system is prepared to relocate
resources from lower to higher criticality tasks in case the latter
risk missing their deadlines. However, non-preemptible shared
resources defy separate certification because higher criticality
tasks may become dependent not only on the functional behavior
of lower criticality tasks but also on their timing behavior.
For shared memory resources, hardware transactional memory
(HTM) allows to discard changes made to the resource and roll
back to a previous state. But instead of using HTM for conflict
detection and synchronization, we use this hardware feature to
abort low critical shared resource accesses in case they overrun
their time budget.

In this paper, we present the results from extending HTM
to allow transactions to become preemptible in order to support
mixed criticality real-time shared resource access protocols. We
implemented a lightweight cache-based HTM implementation
suitable for embedded systems in the cycle accurate model
of an out-of-order CPU in the Gem5 simulation framework.
The software implementation using this extension in a priority-
ceiling shared resource access protocol complements our work
and demonstrates how transactional memory can be used to
protect higher criticality tasks from untimely lower criticality
tasks despite shared resources. Our simulation with synthetically
generated tasksets show a reduction in system load of up to 22 %
compared to scheduling LO resource accesses with HI bounds and
a schedulability improvement of up to 54 % for state-of-the art
real-time locking protocols. We used a LO-to-HI ratio of 1:1.2 –
1:2 and loaded the system between 50 % – 75 %.

I. INTRODUCTION

Announced in 2007, but later cancelled, Sun’s Rock pro-
cessor [1] was supposed to be the first production-ready CPU
to include hardware transactional memory (HTM) [2]. Four
years later, IBM’s 3rd generation BlueGene/Q [3] fulfilled this
promise by providing HTM functionality to high-performance
computing, followed in 2014 with Intel’s implementation [4]
for general-purpose desktop and server systems. We expect
cache-based HTM implementations to soon make their way
into embedded processor architectures. For example, the open-
source RISC-V ISA [5] already contains a placeholder for
transactional memory instructions. Ferri et al. [6] identified

energy and throughput improvements for accessing contented
resources in a simulated ARM multiprocessor system-on-a-
chip of 30 % and 60 %, respectively.

In its simplest version, cache-based HTM implementations
keep transactional data stored in the cache until the transaction
is committed. The cache will continue to respond normally
to coherence requests, but accesses from other CPUs (writes
to cached transactional data and reads to dirty transactional
state) will cause an local abort and the invalidation of all
cached transactional state. The result is either that the complete
transaction becomes visible (in case the cache returns to
normal operation) or the core reacts as if the transaction did
not happen (by invalidating all transactional state).

In this paper, we exploit this all-or-nothing effect of trans-
actions in mixed criticality systems to protect resources that
are shared across criticality levels.

Mixed criticality is about consolidating tasks with different
certification requirements into a single system. In his seminal
work, Vestal [7] observes that independent tasks can be inte-
grated in such a way by ensuring that higher criticality tasks
can still meet their deadlines, even if they have failed to do
so when they were scheduled with more optimistic scheduling
parameters of lower criticality levels. Baruah et al. [8] calls
this interpretation of mixed criticality systems certification
cognisant as it maintains the increasing pessimism that is
imposed by evaluation criteria to assert correct and timely
operation of more safety critical tasks. In this paper, we adopt
this certification cognisant interpretation of mixed criticality
systems.

Unfortunately, the independence assumption is not very
realistic in practical systems because in general tasks share
resources that are not as easily preemptible as the CPU. For
single criticality systems, a wealth of resource access protocols
have been proposed following the early works of Baker [9]
and Sha et al. [10] to bound priority inversion 1 and minimise
blocking times. Priority inversion occurs if a lower prioritised
job prevents a higher prioritised job from running because it is
holding a resource that the latter needs or because the resource
is otherwise inaccessible due to the mechanics of the resource
access protocol.

1For ease of presentation, we use a priority based formulation for all
preemption conditions and leave it as future work to adjust this formulation
to preemption levels for EDF-based locking protocols.

17

In mixed criticality systems arises a second problem, which
has led to a debate whether resources should actually be shared
across criticality levels: the trustworthiness of the resource
after a lower criticality access. For example, in [11], Burns
takes the view that with the exception of some cryptographic
protocols, resources should not be shared across criticality
levels. He introduces MC-PCP to prevent unbounded priority
inversion among jobs of the same criticality level. Bran-
denburg [12] on the other hand takes a much more radical
approach and requires all resource accesses to be executed
in a server, which assumes the criticality level of the highest
criticality resource accessing task.

We take the view that resource sharing across criticality
levels should be possible without having to subject resource
accesses to a timing analysis at this highest criticality level.
Instead we use available hardware features, namely transac-
tional memory, to enforce timely bounds on shared resource
accessed from low criticality tasks. Unfortunately, IBM Blue-
Gene, although successful in high-performance computing is
typically not widely used in real-time and mixed criticality
systems. We therefore extend a simple x86 cache-based HTM
implementation with support for a single preempted transaction
and report in Section III about the implementation of this HTM
variant in the cycle accurate model of an out-of-order CPU in
the Gem5 hardware simulator. In Section IV, we evaluate the
performance of our approach before we draw conclusions in
Section V.

We are confident that it is much easier to establish partial
correctness (i.e., that if the resource access terminates, the re-
source will be in a good state) than establishing the timeliness
of such accesses. In particular, establishing partial correctness
with sufficient confidence is still possible if the code is
incompatible with sophisticated timing analysis tools. Our
main contribution of this paper is to provide a means to ensure
the timeliness of lower criticality accesses by executing them
transactionally. We use the hardware feature of transactional
memory not for synchronizing access to shared resources (the
usual locks are still in place), but to quickly abort low critical
shared resource accesses that violate their time bounds.

II. BACKGROUND AND RELATED WORK

In this section we describe the foundations our research
builds upon, namely hardware transactional memory (HTM)
as a feature of modern processors and real-time locking
protocols like immediate-ceiling or inheritance based protocols
for controlling the access to a shared resource. We combine
both in a mixed criticality system, where low critical tasks can
be aborted if they overstep their temporal bounds or if higher
critical tasks overstep their optimistic scheduling parameters
and actually need to be scheduled with more pessimistic ones.

A. Hardware Transactional Memory

As of today, IBM Blue Gene/Q [3] has the most elaborate
HTM implementation. By versioning data in the shared L2
cache, Blue Gene/Q is able to maintain multiple transac-
tional states in parallel, which allows them to roll back later
transactions if they conflict with earlier ones. Both, IBM’s
and Intel’s HTM, have dedicated instructions to start and
end a transaction. Within a transactional region, updates to

memory are kept local to the CPU and are not visible to other
processors. When the transaction finishes, it tries to commit all
changes atomically and thereby makes them visible to other
CPUs. If this commit fails, no changes are written back at
all, the transaction is said to be aborted and the CPU state is
rolled back to the state before the transaction was started to
do proper error handling. We use this all-or-nothing approach
when accessing shared resources within temporal bounds.

Cain et al. [13] give a very detailed description of the
transactional memory system, its hardware implementation and
suggested OS, and application programming models for the
IBM Power architecture. Interestingly, this paper also explains
in detail how and why they allow suspending and resum-
ing transactions. Rather than aborting transactions, interrupts
preempt transactions. In addition, transaction preemption and
resuming is made available to developers through explicit in-
structions: tsuspend and tresume. The authors thoroughly
evaluate the costs and benefits and show that transaction
suspension is a valuable feature when building robust and
reliable systems.

In this work, we propose a more lightweight implementa-
tion of transaction suspension for x86 that advances Intel’s
Transactional Synchronization Extensions (TSX). Although
most implementation details of TSX [4] remain confidential,
some parts may be inferred from released information in the
Intel developer and optimisation manuals, which indicate a
L1D cache-based implementation.

B. Real-Time Locking Protocols

In this paper, we consider both single and mixed criticality
resource protocols, which we classify by the mechanism used
to guarantee bounded priority inversion:

• immediate-ceiling based protocols, such as the stack
resource [9] (or ceiling priority [14]) protocol (SRP), im-
mediately raise the priority of resource acquiring threads
to a resource dependent ceiling priority. By preventing
released threads at a lower priority from executing, they
seek to ensure that all resources are readily available once
the thread starts executing.
• inheritance based protocols, such as the priority in-

heritance protocol (PI) and the original priority ceiling
protocol (OPCP) by Sha et al. [10], allow preemptions of
resource holders by higher prioritised threads but help out
the resource holder in case a thread requests a resource by
raising its priority to the priority of the higher prioritised,
blocked thread. We distinguish between local helping
(i.e., helping out a resource holder on the same CPU)
and global helping (i.e., pulling the resource access from
a remote CPU to the local CPU) and restrict ourselves to
local helping protocols only. The rationale is that global
helping would require transferring transactional state from
one CPU to another, a complexity we are not willing to
take into account when extending our cache-based HTM
implementation.

Single criticality protocols of the first class are the mul-
tiprocessor variants MRSP by Gai et al. [15] and FMLP by
Brandenburg et al. [16]. Both execute global resource accesses
(i.e., resources accessed from threads on multiple cores) non-
preemptively, which corresponds to raising the priority of

18

non-transactional

transactional

preempted

tbegin
(n=0)

tabort
tend (n = 0),
tresume

tbegin,
tpreempt,
tabort,
tend

tpreempt tresume

tbegin
(n > 0)

tend
(n > 0)

Fig. 1: States of cache controller for preemptible transactions.

the resource accessing thread to the maximum priority of
threads on its core. Zhao et al. [17] extend the stack resource
protocol to work with EDF schemes in which threads have
more than one deadline to accommodate mode changes. As a
member of the second class, Burns [11] extends the analysis
of OPCP to consider criticality dependent blocking terms.
Avoiding resource sharing across criticality levels, Burns al-
lows local helping only between tasks of the same criticality.
Single criticality protocols with local helping include the
partitioned multiprocessor priority inheritance protocol [18]
and similar variants for EDF [19]. The clustered O(m) locking
protocol [20] and Brandenburg’s inter-process communication
scheme [12] apply global helping and are therefore not consid-
ered in this work in their original form. However, it is possible
to modify the former to apply local helping (i.e., inheritance)
only and we address this variant. Lakshmanan et al. [21]
integrate ceiling (PCCP) and inheritance (PCIP) in their slack
based scheduling approach to allow resource sharing across
criticality levels. In addition to inheriting priority, they propose
to also inherit criticality to prevent tasks from being suspended
by low criticality tasks. Both PCIP and PCCP are single
processor variants with local helping and ceiling, respectively.

III. PREEMPTIBLE TRANSACTIONS IN THE GEM5
OUT-OF-ORDER MODEL

Gem5 is a modular simulation framework with various
CPU, memory, device and cache models. At the time of writ-
ing, there was already an HTM implementation [22] in Gem5,
which is based on LogTM [23]. However, it was not built for
the cycle accurate Out-of-Order CPU model (O3CPU) but for a
simpler, less timing precise model. Moreover, its implementa-
tion was based on an undo log (like PARs [24]) whereas we fo-
cus on cache-based implementations, since available hardware
(IBM, Intel) most likely implements transactions in the cache.
We therefore started a new implementation in the O3CPU
model, which we will introduce shortly in the following before
we return to our implementation in Section III-B. Like most
modern simulators, Gem5 decouples the internal architecture
from the instruction set architecture (ISA) exposed to the
user. In this way, Gem5 unifies different CPU models, like
AtomicSimple, TimingSimple, and the 5-stage Out-of-Order
model we use. Internally, Gem5’s O3CPU makes use of a
RISC like ISA, called M5, whereas user ISAs can be x86,
ARM and others.

A. Out-of-Order CPU Model

Currently the most advanced CPU model in Gem5 is the
5 stage pipelined Out-of-Order CPU model, which loosely
resembles an Alpha 21264. It implements the following usual
pipeline stages: fetch, decode, rename, issue + execute +
writeback, and commit. Issue forwards instructions to specific
queues where they are processed by the execution units and
the memory subsystem in the order in which their parameters
become ready. Relevant for this work is the load/store queue
and the ordering enforced by the memory barrier instruction.

The CPU model is event-driven and timing costs are
attached and accumulated at each individual step. An external
clock drives the CPU and creates ’ticks’ for each of its stages
to advance the model in a cycle-precise fashion. The number of
instructions that can be fetched, decoded, issued and sent to the
execution units is configurable. The delay and the bandwidth
in each step, the delay of caches, the traversing of multiple
ports, and the accumulating lookup-, forward- or data-copying
delay are also subject to configuration. For our evaluation in
Section IV, we use the default configuration for the Out-of-
Order CPU, with a L1 instruction and L1 data cache of 32KB
each and a 256 kB unified L2 cache. Cachelines store 64 bytes.
The associativity of L1D is 4, 8 for L1I, and 16 for the L2
cache. Although modern CPUs have shared L3 cache, we did
not add it, since transactional data will solely be placed in
the L1 data cache. The cache one level beneath is important
for the simulation, but multiple levels do not add any further
detail.

B. Preemptible transactions in O3CPU

Based on publicly available information, we recreated part
of the restricted transactional memory (RTM) implementation
proposed by Intel [4]2. More precisely, we augmented the
L1 data cache with additional state —the T bit— to distin-
guish transactional from non-transactional data and extended
the logic for the MOESI cache coherence protocol to react
accordingly.

We chose to implement basic RTM functionality on top
of MOESI although Intel CPUs implement MESIF because a
MOESI protocol implementation was already present in Gem5.
Common to both protocols are the cacheline states Invalid for
empty cachelines, Exclusive for data that has not yet been
modified and that is present only in this cache, Modified for
exclusive data that has been modified and Shared for data that
may exist with the same value in multiple caches. Owned
cachelines allow sharing of dirty data by delaying the write
back to the time of eviction. The data in memory might be
stale, but the cacheline is shared. Forward is a similar variant
of S, which allows the forwarding cache to respond, instead
of the underlying memory.

We first describe the modifications required to put the
CPU and the caches in transactional and transaction preempted
state before returning to the coherence protocol and how
transactions change the state machine of the cache controller.

2Notice, while we added the full user functionality of RTM, including
nested transactions, we leave the triggering of transaction aborts in all kind
of exceptional cases as a future engineering task. For example, we added all
instructions to begin, end and abort a transaction but do not trigger the abort
mechanism when the page-table walker experiences a page fault.

19

Figure 1 illustrates the transaction states and the transitions
assuming aborts are eager. To implement these state changes,
we added three control signals to the CPU —HTM-ENABLE,
HTM-COMMIT and HTM-ABORT— and interpret them in the
load/store unit and in the cache controller. The outermost TBE-
GIN instruction transitions the CPU into transactional mode
and informs the cache to start a new transaction. From now
on, until the outermost TEND commits or aborts the transaction,
all memory accesses will be stored transactionally in the L1
cache with the T bit set. Subsequent execution of TBEGIN
stays in this state but increases the transaction nesting level,
which TEND decreases. The outermost TEND with nesting level
n = 0 sends a HTM-COMMIT-request to the underlying cache.
The TEND instruction will retire not before the cache responds,
either with commit or abort. TABORT triggers the abort directly
through HTM-ABORT. In all three cases, the cache and the
CPU return to non-transactional operation.

To add transaction preemption, we implemented two fur-
ther instructions TPREEMPT and TRESUME and introduced one
additional control signal HTM-PREEMPT to signal that the
cache and the CPU are not in preempted transaction mode.
TPREEMPT sets this signal, so that further memory-requests
are no longer transactional and TRESUME clears it, returning
to the previous transaction. Depending on the desired abort
behavior, TRESUME will return an error if the transaction was
aborted and immediate aborts should be supported. For lazy
aborts, TRESUME returns normally but transactions will no
longer commit. All other variants (including TBEGIN while
a transaction is preempted) map to an abort. Aborts always
affect all transactions up to the outermost one.

Special attention needs to be payed on in-flight memory
operations and outstanding cache misses, since we cannot com-
mit or abort a transaction that has pending memory requests.
For this reason, all transaction instructions have to behave
like a full memory barrier, which ensures that earlier memory
accesses (including outstanding cache misses) are completed
before a mode change is triggered and that later instructions are
not started before the instruction is commited by the processor
pipeline. In particular, we cannot execute these instructions
speculatively because they change the behaviour of the CPU
and the cache.

What remains is to ensure that the cache controller reacts
appropriately depending on the state it is in and, in particular,
that it detects all conflicts that lead to transaction aborts. For
that we augment the cache with a vector of Transaction bits
(one for each cacheline). To enable HTM, the snoop logic
changes its behavior depending on the state of the T bit of the
affected cacheline. While the cache executes in transactional
mode, the snoop logic responds normally to external reads
to exclusive (E), shared (S, O) or modified M cachelines.
However, if the read origins from the local core and targets an
Exclusive, Shared or Owned cacheline, it sets the T bit to mark
these lines as belonging to the read set. Writes put cachelines
to the write set by setting the T bit in the M state. When
an external snoop request hits a cacheline that is transactional
(i.e. belongs to the read or write set and thus has its T bit set),
the transaction will be aborted if the snoop request signals an
external write (rfo) or a read (busrd) of modified data. An abort
unconditionally invalidates all modified cachelines and returns
to non-transactional operation.

M

E

I

S

O

M

E

S

O

T

T

T

T

rdT /wb

rdT/busrd=t

wrT /wb/rfo

rdT

rdT

wrT/rfo

rdT wrT /wb/rfo

rdT/busrd = f

rd/wr/
busrd/rfo/evict
=> tabort

wr/rfo/evict
=> tabort

Fig. 2: Augmented coherence protocol for preemptible transac-
tions. We omit the standard MOESI transitions and present in
blue (solid) the behavior or transactional reads and writes and
in red (dashed) the effect of non-transactional reads and writes
on ntransactional data while the transaction is preempted.
·T denotes transactional operations and state, wb indicates a
required write back, evict a cache eviction and rfo and busrd
are events indicating external writes and reads.

Special care must be taken for non-transactional dirty
cachelines that become transactional. Because aborts will
unconditionally discard cachelines, we first have to write
back dirty cachelines to not lose the old data when abort-
ing the transaction. More precisely, we have to write back
Owned cachelines before they are written in a transaction and
Modified lines before they are read or written.

Now, if the cache controller enters preempted transaction
mode, the controller has to react to local accesses as if they
were external. That is, if a local read hits the write set or if
a local write hits this transactional data in the read or write
set, the transaction is aborted prior to executing this request.
Figure 2 shows the modified transitions of the resulting cache
coherence protocol. For better readability, we omitted the
transitions of the normal MOESI protocol and only show the
transitions due to transactional reads and writes accessing non-
transactional data and of non-transactional reads and writes
hitting a preempted transaction. All other transitions among the
non-transactional MOESI states and among their transactional
counterparts are like in the standard MOESI protocol except
that evictions of the latter trigger aborts.

To evaluate the costs of transactions, we annotate all
steps in this execution with the costs we found for similar
instructions (i.e., memory barriers and the signal propagation
delay to the cache).

IV. EVALUATION

For the experimental evaluation we generated 1,000 ran-
dom tasksets with up to 10 tasks and a given maximum util-
isation (0.5, 0.75, and 1.0) using the uunifast algorithm [25].
We use a periodic task model with implicit deadlines, in which
periods are the product of two randomly chosen factors from

20

the set [2, 3, 4, 6, 8, 9, 12], resulting in a maximum hyper period
of 5184. Randomly choosing arbitrary periods from a given
range typically results in extremely long hyper periods that can
no longer be simulated in a reasonable amount of time. These
tasks access shared resources and split their execution time in
such a way that the first half in each period is spent outside of
the critical section and the second half within. Furthermore we
selected 83%, 67%, and 50% of them to be high-critical and
increased their high-critical WCET by a factor of 1.2, 1.5, or
2.0 respectively. Thus we roughly have the same utilisation for
the low and the high criticality mode. Fig. 3, 4, and 5 show the
histogram of 1,000 tasksets. The solid three plots are almost
overlapping and depict the distribution of tasks when using
preemptible transactional memory, so that low critical tasks
accessing their shared resource can be scheduled with their
low-WCET. The transactional semantic of the cache allows
us to use the more optimistic low criticality bounds when
accessing the shared resource. In the case of overrunning the
time budget, the timer will fire, the resource access will be
aborted and the system changes into its high criticality mode,
dropping all low criticality tasks. If the resource access finishes
within time, the transaction will commit, the job will finish and
the next job will be scheduled.

The dashed three plots show the same taskset when no
transactional memory is used to bound the low critical WCET.
Hence, we have to use their high critical counterpart for low
critical jobs, resulting in a higher overall system load. The
low critical WCET to high critical WCET ratios are 1.2, 1.5,
and 2.0, i.e. a ratio of 1 : 1.2 means high-critical WCETs are
20% higher then their low criticality counterpart, reflecting the
higher trust and associated higher costs.

In the first experiment we chose an utilisation target of
50%, so that the load of all low-critical execution times sums
up to about 50%. Since low-critical tasks share resources with
high-critical ones, their WCET to access the resource needs
the highest confidence of all sharing tasks. Although a task
is low-critical, the resource access has to use its high-critical
WCET, which leads to a higher load on the CPU. In this
setup we observed up to 72% load, compared to the 50%
when not sharing resources between low and high tasks. Even
at an assumed very moderate LO to HI ratio of 1.2, already
1% of the tasksets were no longer schedulable, due to missed
deadlines. With higher low critical to high critical ratios (1.5
and 2.0 respectively) the deadline misses increased to 6% and
21% of all tasksets. With our proposed hardware extension,
we are able to use transactions for low-critical tasks in their
critical section and therefore use the lower but less trustworthy
low criticality bounds and abort jobs if they overrun their
budget. Fig. 4 and Fig 5 show the results when increasing
the initial load in the system to 75% and 100%. At a system
load of 75%, already 4% of all tasksets (at ratio 1.2), 14%
(at ratio 1.5), and 54% (at ratio 2.0) cause deadline misses.
The very extreme is at a maximum utilisation of 100%. Due
to pessimistic WCET for low critical tasks only 55% of all
tasksets were schedulable when assuming a LO to HI ratio of
1.2. At 1.5 or 2.0 virtually 100% were no longer schedulable.
This is not surprising, since adding even minor additional load
to a very loaded system very likely causes deadlines to be
missed. Therefore, we did not plot the actual load, but rather
the theoretical load this system would have to handle, if we
ignore all occurring deadline misses.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

20

40

CPU load

nu
m

be
r

of
ta

sk
se

ts

1.2
1.5
2.0

Fig. 3: Taskset with a maximum CPU load of 0.5 and a ratio of 1:1.2,
1:1.5, and 1:2.0 for low-critical to high-critical WCET. Although all
tasksets are schedulable with EDF on a uniprocessor, it is clear that
the additional pessimism for low critical tasks sharing a resource with
a high critical task significantly increases their WCET and thus leads
to a higher utilisation, i.e. higher resource demands (or less slack).

0.6 0.7 0.8 0.9 1
0

20

40

60

CPU load

nu
m

be
r

of
ta

sk
se

ts

1.2
1.5
2.0

Fig. 4: Taskset with a maximum CPU load of 0.75 and a ratio of
1:1.2, 1:1.5, and 1:2.0 for low-critical to high-critical WCET. At a
ratio of 2.0, 54% of the tasksets are no longer schedulable.

0.9 1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

CPU load

nu
m

be
r

of
ta

sk
se

ts

1.2
1.5
2.0

Fig. 5: Taskset with a maximum CPU load of 1.0 and a ratio of 1:1.2,
1:1.5, and 1:2.0 for low-critical to high-critical WCET. The three solid
plots show the actual load when using transactions to bind low-critical
resource access, whereas the three dashed plots depict the theoretical
system load, since with a ratio of 1.5 and 2.0 virtually no tasksets
were schedulable any longer. So we ignored the deadline misses and
report the load the system would have to handle.

1.4 1.5 1.6 1.7 1.8
0

20

40

60

CPU load

nu
m

be
r

of
ta

sk
se

ts

1.2
1.5
2.0

Fig. 6: Taskset with a CPU load of about 1.5, 20% of the WCET is
spent in a critical section and in high criticality mode tasks require
1.2/1.5/2.0 times their low-WCET.

21

To substantiate the feasibility of our approach and to
quantify the benefits of using transactional memory in mixed
criticality systems, we evaluate a very simple multiprocessor
setup. We use the same task model as in the uniprocessor case,
generate the tasksets in the same fashion, and use partitioned
EDF with one synchronisation processor for accessing global
resources according to [26]. To generate tasksets that are still
schedulable, the task’s first 80% of its execution time is spent
outside critical sections, the remaining 20% within. Of all
tasks, about 83%, 67%, and 50% of them are classified as
high critical and their high-WCET is 1.2, 1.5, and 2.0 times of
their low-WCET, respectively. We removed all tasksets which
caused deadline misses either in low or high critical mode,
Fig. 6 shows the results. As in the uniprocessor case, reliably
enforcing low-critical WCETs for shared resource accesses
reduces the overall load in the system. Moreover, at a ratio of
1.2, 5% of the tasksets caused deadline misses when not using
transactional memory to enforce timely bounds on critical
sections. At 1.5 this number raises to 26% and with high-
WCETs being twice as long as their low-WCETs counterparts
50% of the tasksets were no longer schedulable. This means
that approximately one half is plotted, the other half was
schedulable with hardware transactional memory enforcing
lower WCET bounds, but could not be scheduled without it.
This clearly shows the benefit of using preemptible transac-
tional memory in combination with mixed criticality systems
to improve schedulability and reduce system utilisation.

V. CONCLUSIONS

In this work, we investigated the use of hardware trans-
actional memory (HTM) in real-time locking protocols to
make low criticality resource access bounds trustworthy at
higher criticality levels. We have seen that although existing
HTM implementations are quite limiting or too complex to
integrate in embedded systems, a lightweight implementation
supporting preemptible transactions significantly broadens the
applicability of our approach.

Future work includes extending our HTM implementation
to an L2 victim cache to increase the amount of data that can
be accessed within a resource access. Also, we did not yet
exploit the optimistic locking behavior of transactions when
a thread finds a resource blocked. To preserve the real-time
guarantees of the legitimate lock holder, support for optimistic
locking requires control over which transaction gets aborted
(the optimistic) and which will be continued (the lockholder’s).

REFERENCES

[1] M. Tremblay and S. Chaudhry, “A third-generation 65nm 16-core 32-
thread plus 32-scout-thread sparc processor,” in International Solid-
State Circuits Conference Digest of Technical Papers (ISSCC 08).
IEEE, 2008, pp. 82–83.

[2] M. Herlihy, J. Eliot, and B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Computer Architecture, 1993.,
Proceedings of the 20th Annual International Symposium on, May 1993,
pp. 289–300.

[3] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sug-
avanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski,
A. Gara, G.-T. Chiu, P. Boyle, N. Chist, and C. Kim., “The IBM blue
gene/q compute chip,” IEEE Micro, vol. 32, no. 2, pp. 48–60, April
2012.

[4] I. Corp., “Web resources about intel transactional synchronization
extension,” www.intel.com/software/tsx, July 2014.

[5] A. Waterman, Y. Lee, D. Patterson, and K. Asanović, “The RISC-
V instruction set manual volume i: User-level ISA - version 2.0,”
CS Division, EECS Department, University of California, Berkeley,
Technical Report UCB/EECS-2014-54, May 2014.

[6] C. Ferri, A. Viescas, T. Moreshet, I. R. Bahar, and M. Herlihy, “Energy
implications of transactional memory for embedded architectures,” in
Workshop on exploiting parallelism with transactional memory and
other hardwre assisted methods, April 2008.

[7] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium, December 2007, pp. 239–243.

[8] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, ser. RTAS. IEEE, April 2010,
pp. 13–22.

[9] T. P. Baker, “A stack-based resource allocation policy for real-time
processes,” in Real-Time Systems Symposium. IEEE, 1991.

[10] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronisation,” in IEEE Transaction on
Computers, 39, 1990.

[11] A. Burns, “The application of the original priority ceiling protocol to
mixed criticality systems,” in L. George and G. Lipari, editors, Proc.
ReTiMiCS, RTCSA, 2013, pp. 7–11.

[12] B. Brandenburg, “A synchronous IPC protocol for predictable access to
shared resources in mixed-criticality systems,” in 35th IEEE Real-Time
Systems Symposium (RTSS 2014), 2014, pp. 196–206.

[13] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le, “Robust architectural support for transactional memory in the
power architecture,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2013, pp. 225–236.

[14] N. H. Cohen, “Ada as a second language, chapter real-time systems
annex.” McGraw-Hill, 1996.

[15] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-chip.”
in Real-Time Systems Symposium. IEEE, 2001, pp. 73–83.

[16] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson,
“A flexible real-time locking protocol for multiprocessors,” in 13th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, 2007.

[17] Q. Zhao, Z. Gu, and H. Zeng, “Integration of resource synchronization
and preemption-thresholds into EDF-based mixed-criticality scheduling
algorithm,” in RTCSA, 2013.

[18] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchroniza-
tion Protocols for Multiprocessors,” in Real-Time Systems Symposium.
IEEE, 1988, pp. 259–269.

[19] C.-M. Chen and S. K. Tripathi, “Multiprocessor priority ceiling based
protocols,” College Park, MD, USA, Tech. Rep., 1994.

[20] B. B. Brandenburg and J. H. Anderson, “Real-time resource-sharing un-
der clustered scheduling: mutex, reader-writer, and k-exclusion locks,”
in EMSOFT, 2011.

[21] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Mixed-criticality task
synchronization in zero-slack scheduling,” in IEEE RTAS, 2011, pp.
47–56.

[22] G. Blake and T. Mudge, “Duplicating and verifying LogTM with os
support in the M5 simulator ABSTRACT.”

[23] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: Log-based transactional memory,” in in HPCA, 2006, pp.
254–265.

[24] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin,
and J. Vitek, “Preemptible atomic regions for real-time java,” in In 26th
IEEE Real-Time Systems Symposium, 2005.

[25] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Syst., vol. 30, pp. 129–154, 2005.

[26] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchroniza-
tion Protocols for Multiprocessors,” in Real-Time Systems Symposium.
IEEE, 1988, pp. 259–269.

22

GPU Sharing for Image Processing in Embedded Real-Time Systems∗
Nathan Otterness1, Vance Miller1, Ming Yang1, James H. Anderson1, F. Donelson Smith1, and Shige Wang2

1Department of Computer Science, University of North Carolina at Chapel Hill
2General Motors Research

Abstract
To more efficiently utilize graphics processing units (GPUs)
when supporting real-time workloads, it may be beneficial
to allow multiple tasks to issue GPU computations without
blocking one another. For such an option to be viable, it
is necessary to know the extent to which concurrent GPU
computations interfere with each other when accessing hard-
ware resources. In this paper, measurement data is presented
regarding such interference for several image processing
routines motivated by automotive use cases. These measure-
ments were taken on NVIDIA Jetson TK1 and TX1 boards.
The presented data suggests that currently available real-
time GPU management frameworks should evolve to enable
the option of co-scheduling GPU computations.

1 Introduction
Vision-based sensing through cameras is being widely used
in automobiles today to support advanced driver assistance
systems (ADASs). Common capabilities of current ADASs
include forward collision detection with automatic braking,
lane departure warnings, and adaptive cruise control. Envi-
sioned capabilities include advanced obstacle-tracking fea-
tures, sign recognition, and 360-degree sensing.

Such capabilities give rise to workloads that can be chal-
lenging to support for three reasons. First, individual tasks
may be subject to real-time constraints. Second, such tasks
may be computationally intensive. Third, the overall work-
load must be supported on a hardware platform that oper-
ates within an acceptable size, weight, and power (SWaP)
envelope and also is not too expensive.1 In light of these
needs, multicore+GPU platforms have been suggested as a
promising way forward. Such a platform consists of several
general-purpose CPUs augmented with one or more graphics
processing units (GPUs) that can accelerate computations
typically required in automotive settings.

Prior foundational work: GPUSync. Unfortunately, effi-
ciently utilizing GPUs in contexts where real-time con-
straints exist requires sifting through many tradeoffs involv-

∗Work supported by NSF grants CPS 1239135, CNS 1409175, and CPS
1446631, AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-1-
0499, and funding from General Motors.

1In contrast to various “one-off” implementations of autonomous or
semi-autonomous features, as seen for example in the Google car [1] and
various DARPA challenge vehicles [46], affordability is a serious limitation
with respect to production automobiles.

ing how GPUs are allocated at runtime and how GPU com-
putations and related overheads are analyzed when check-
ing real-time schedulability. To enable such tradeoffs to be
systematically studied, our research group developed a real-
time GPU allocation framework called GPUSync [15]. In
GPUSync, the management of GPU-related hardware re-
sources is viewed as a synchronization problem and thus
real-time multiprocessor locking protocols are used to ac-
quire and release such resources. GPUSync is highly con-
figurable: options exist to control how tasks are scheduled
on CPUs, how data is copied to and from GPUs, how GPU-
related computations are queued and prioritized, etc.

Beyond GPUSync. In recent work, we have been attempt-
ing to evolve our work on GPUSync to more directly meet
the needs of automotive use cases. The consideration of such
use cases has caused the nature of our work to change in two
significant ways. First, GPUSync is implemented primarily
in LITMUSRT, and the code base is large, approximately
15,000 lines. Automotive manufacturers would likely be
highly resistant to allowing such extensive operating system
(OS) modifications. Due to this, we have shifted our atten-
tion to a simplified variant of GPUSync called GPUSyncLite
that implements only a few GPUSync configurations (one
currently) and requires only minimal OS modifications (none
currently). Second, our prior GPUSync-related experimental
work was conducted on an Intel platform that provides 12
CPU cores augmented with eight high-end GPUs. At present,
it is hard to imagine such an expensive, energy-hungry plat-
form being used in a production automobile. As a result,
we have shifted our attention to less-expensive ARM-based
platforms that provide a single less-costly, less-capable GPU.

Efficient GPU utilization through co-scheduling. This
shift in hardware platform has created a new dilemma:
when using a single, less-capable GPU, any waste of the
GPU’s capacity becomes untenable. Unfortunately, when
using most previously proposed real-time GPU management
frameworks [7, 8, 9, 12, 16, 25, 26, 50, 48, 49, 55, 56], in-
cluding GPUSync, such under-utilization may be common.
In particular, these frameworks disallow concurrent GPU
execution by different tasks, so a task that under-utilizes the
GPU’s hardware resources can waste much of its capacity.
Other prior work [10, 11] has considered co-scheduling GPU
workloads, but in this work, several simplifying assumptions
are made that preclude applicability on real-world GPUs. No-
tably, GPU instructions are assumed to always require only

23

a single clock cycle, and cache misses and memory latency
are not considered. Furthermore, this prior work includes no
evaluation using real hardware.

To combat GPU under-utilization, we are beginning
to investigate a new variant of GPUSyncLite that allows
GPU computations issued by different tasks to be concur-
rently co-scheduled. When considering multi-threaded work-
loads scheduled on conventional multicore platforms, Jain et
al. [22] observed that some co-scheduling choices are con-
structive and some are destructive. This is true in our context
as well. In particular, it is constructive to co-schedule GPU
computations issued by different tasks if the resulting GPU
execution times and blocking times (i.e., times spent waiting
to access a GPU) yield real-time schedulability improve-
ments. In contrast, such co-scheduling is clearly destructive
if it causes a large inflation in GPU execution times or block-
ing times. Any such inflation is a sign that the co-scheduled
GPU computations are adversely interfering with each other
with respect to the hardware resources they access.

Contributions of this paper. To get a sense of the nature
of such interference, we conducted experiments involving
several common image-processing routines motivated by
automotive use cases. For each of the considered routines,
we obtained execution-time data via a measurement process
under various co-scheduling scenarios. These measurements
were taken on NVIDIA Jetson TK1 and TX1 boards. The
obtained data suggests that certain co-scheduling choices are
indeed constructive, while others are clearly destructive. The
main contribution of this paper lies in presenting this data
and discussing its implications as far as the future evolution
of real-time GPU management frameworks is concerned.

Organization. In the rest of the paper, we provide needed
background on GPUs (Sec. 2), describe the image-processing
benchmarks under consideration (Sec. 3), present our experi-
mental data (Sec. 4), and conclude (Sec. 5).

2 Background on GPUs
In this section, we provide a brief introduction to GPU hard-
ware and programming fundamentals.

GPU hardware. GPUs may be either discrete or integrated.
Discrete GPUs are packaged on adapter cards that plug into
a host computer bus. Such a GPU has its own local DRAM
memory that is completely independent from the DRAM
memory used by the host processor. Discrete GPUs com-
monly draw between 150 and 250 watts, need active cooling,
and occupy substantial space. Integrated GPUs are com-
monly found in system-on-chip (SOC) designs. The SOC
typically combines a multicore machine with a GPU and
uses DRAM memory that is tightly shared between the GPU
and CPU cores. Integrated GPUs commonly draw between 5
and 15 watts, require minimal cooling, and add virtually no
space requirements. These attributes make integrated GPUs
the de facto choice in many embedded computing domains.

CPU 0
…

L1-I

32KB

L1-D

32KB

CPU 3

L1-I

32KB

L1-D

32KB

L2

2 MB

DRAM

Bank 0

64 MB

DRAM

Bank 1

64 MB

….. DRAM

Bank 31

64 MB

DRAM

Bank 2

64 MB

DRAM

Bank 30

64 MB

L2

128 KB

K1 GPU

Memory Controller

192 cores

Figure 1: Jetson TK1 architecture.

Several SOC implementations with integrated GPUs capa-
ble of running sophisticated image-processing programs are
on the market, including options from AMD [5], Intel [21],
NXP [41] and NVIDIA [38]. In this work, we are using
NVIDIA Jetson TK1 [39] and TX1 [40] boards, which retail
for $200 and $600, respectively. These are likely acceptable
price points in many automotive settings.

As illustrated in Fig. 1, the TK1 employs an SOC design
that incorporates a quad-core 2.32 GHz 32-bit ARM machine
and an integrated Kepler GK20a GPU. The CPUs share a
2-MB L2 cache. The GPU has 192 cores and a 128-KB L2
cache and provides up to 365 32-bit GFLOPS. The TK1 is a
“big-little” platform in which an additional low power, low
performance ARM CPU (not shown in Fig. 1) is provided
on chip. The ARM CPUs and the GPU share 2 GB of 930
MHz DRAM memory partitioned into 32 banks.

The TX1 is a higher-end platform with a similar design. It
consists of a quad-core 1.91 GHz 64-bit ARM machine, a
2-MB L2 cache shared by all CPUs, 4 GB of 1600 MHz
DRAM, and an integrated Maxwell GM20B GPU. The GPU
has 256 cores and a 256-KB L2 cache, and provides up to
512 32-bit GFLOPS. The TX1 is also a “big-little” platform.

As Fig. 1 suggests, GPU-using tasks may compete for
many hardware resources. These resources include caches,
DRAM memory banks, the memory bus and memory con-
troller, and GPU cores. In prior work on real-time multicore
computing, issues related to shared-hardware interference
have received considerable attention [2, 3, 4, 6, 13, 14, 17,
18, 19, 20, 23, 27, 29, 28, 30, 31, 33, 35, 43, 45, 47, 51, 52,
53, 54]. However, we are aware of no such work that consid-
ers hardware interference with respect to GPU computations.

Obviously, concurrent GPU computations by different
tasks may directly interfere with each other. Additionally,
such computations can also interfere with programs running
on CPU cores. For example, on both the TK1 and TX1, re-
quests to load new lines into the GPU’s L2 cache require
accesses to the DRAM banks and may interfere with accesses
by CPU cores. Further, so that GPU programs may be easily
ported between discrete and integrated GPUs, CUDA (see
below) explicitly treats memory as being either CPU-local
(host memory) or GPU-local (device memory) and provides
operations for copying data between the two. Such copy op-

24

erations run concurrently with programs running on both the
GPU cores and the CPU cores, potentially creating additional
DRAM interference.2 With integrated GPUs, explicit data
copying can be avoided by using the zero-copy functions of
CUDA (see below).

GPU programming in CUDA. The following is a high-
level description of GPU programming in CUDA [37]. A
GPU is fundamentally a co-processor that performs opera-
tions requested by CPU programs. CUDA programs use a set
of C or C++ library routines to request GPU operations that
are implemented by a combination of hardware and device-
driver software. The typical structure of a CUDA program is
as follows: (i) allocate GPU-local (device) memory for data;
(ii) use the GPU to copy data from host memory to GPU
device memory; (iii) launch a program—called a kernel—to
run on the GPU cores to compute some function on the data;
(iv) use the GPU to copy output data from the device mem-
ory back to the host memory; (v) free the device memory. On
integrated GPUs, CUDA provides a zero-copy option where
programs can simply pass a pointer to shared memory where
data used for a kernel is located—that is, explicit copying
from CPU-local memory to GPU-local memory is avoided.

By default, copy operations are synchronous with respect
to the CPU program: they do not return until the copy is
complete and will not start until any prior kernels have fin-
ished. However, kernel launches are always asynchronous,
and asynchronous copy operations are also available. These
operations require the CPU process to explicitly wait for
GPU operations to complete, using a configurable synchro-
nization mechanism. We configured our experiments to block
the CPU process while synchronizing.

CUDA operations pertaining to a given GPU are ordered
by associating them with a stream. By default, there is a
single stream for all programs that share a GPU, but multi-
ple streams can be optionally created. Operations in a given
stream are executed in FIFO order, but the order of execution
across different streams is determined by the GPU schedul-
ing in the device driver. They may execute concurrently (or
out of request order with respect to other streams).

Each GPU operation from a CUDA program is repre-
sented internally by a command string that is written to a
command buffer (queue) managed by the device driver. The
driver then schedules these commands for execution on the
GPU. Programmers can think of a GPU as being abstractly
composed of one or more copy engines (CEs) that implement
transfers of data between device memory and host memory,
and an execution engine (EE) that executes GPU kernels.
The TK1 has one CE that moves data both ways. The TX1
has two CEs, one for each direction of transfer.

EEs and CEs operate concurrently. When there are multi-
ple streams, multiple kernels and one or two copy operations

2With discrete GPUs, only the GPU data-copy operations may cause
DRAM interference with respect to CPU usage and then typically in the
form of DMA operations over a bus.

can operate concurrently depending on the GPU hardware.
When a kernel is scheduled, it may not require all EE re-
sources, in which case the GPU scheduler may co-schedule
more than one kernel (from different streams only) to exe-
cute concurrently and increase GPU occupancy. Concurrent
kernel execution can create more interference in the GPU
L2 cache and for DRAM accesses. To the best of our knowl-
edge, complete details of kernel attributes and policies used
by NVIDIA to co-schedule kernels are not available.

3 Benchmark Programs
In the study presented herein, we considered both GPU pro-
grams and CPU-only benchmark programs.

GPU programs. We chose three CUDA programs as repre-
sentative of typical image-processing computations, and a
fourth to represent a general class of programs that create
stress on GPU resources:

• stereoDisparity (SD): Extracts 3D depth information
from 2D images taken with a stereo camera. The input
consists of left and right 640 × 533 color images; the
output is a 640× 533 grayscale image.

• fastHOG (HOG): Detects objects in an image using
histograms of oriented gradients. The input is a 640×
480 color image; the output is a matrix of bounding-box
coordinates and object-detection probabilities.

• Convbench (CONV): Executes convolutional neural-
network layers as used in image recognition. The input
is a 227 × 227 color image; the output is a matrix of
neural-network parameters.

• matrixMul (MMUL): Multiplies two square matrices
of 32-bit floats (16 MB each).

SD and MMUL were taken from CUDA samples distributed
by NVIDIA [36], HOG was downloaded from Oxford Uni-
versity [44], and CONV was constructed using code from
AlexNet [32], implemented in Caffe [24]. All programs were
adapted to run as iterative tasks, with a short random sleep
between iterations. Each iteration corresponds to processing
one image (SD, HOG, and CONV) or performing one matrix
multiplication (MMUL). The programs were instrumented to
log total execution time and the time required for performing
data copies and executing kernels in every iteration. Even
though our experiments were conducted using fixed images
as inputs, we still verified that none of the benchmarks ex-
hibited different runtime characteristics based on the content
of the input images.

Each CUDA program was executed in a stream of its
own, with all memory copies performed asynchronously
and placed in the stream along with kernel launches in the
intended FIFO order. After each kernel launch or group of
memory copies, the CPU execution of each program was
blocked while waiting to synchronize with the GPU. Each
program was structured to ensure that all memory allocation

25

and freeing operations were done outside the iteration loop
and all memory accesses within each iteration were to pinned
memory, as is common practice in real-time systems. Display
operations for the visualization of input or output images
were removed. Image input data was read from memory
buffers as would happen with camera-driven input. Two
versions of each program were constructed, one with zero-
copy memory and one without.

CPU-only benchmark. We used this program as a CPU-
only workload:

• vectorAdd (VADD): Adds two vectors of 32-bit floats
(16 MB each).

VADD was based on the CUDA samples [36] and instru-
mented in an identical fashion as the GPU programs, but
launches no GPU kernels.

4 Experiments
We are interested in supporting automotive image-processing
workloads on a multicore+GPU platform such as the TK1 or
the TX1. We assume that such workloads have soft real-time
constraints: missing a deadline (occasionally) does not have
catastrophic consequences, as long as an incomplete frame
can be dropped and the system as a whole can use redundant
or historical data processed by hard real-time components
as a fail-safe mechanism. Given this assumption, our tasks
can be provisioned by determining their execution times via
measurement. Such a provisioning could be based on a task’s
average-case execution time, its worst-case execution time,
or some intermediate value between the two. A measurement-
based approach is further justified by the lack of adequate
static timing analysis tools for multicore+GPU platforms.
Even if such tools did exist, they would probably produce
execution-time estimates that are so pessimistic that virtually
no interesting workload could be supported.

The issue being considered in this paper is whether allow-
ing GPU co-scheduling might have schedulability benefits.
To get a sense of any potential benefits, we conducted ex-
periments on both the TK1 and TX1 in which the various
benchmark programs described in Sec. 3 were used as sur-
rogates for real application code. These experiments were
designed to assess whether GPU co-scheduling can be con-
structive from a schedulability point of view. We assessed
this by running different combinations of the benchmark
programs and recording execution-time data. We call each
experiment involving such a combination of programs a sce-
nario. In each scenario, execution-time data was recorded for
a set amount of time (typically 10–15 minutes) under the de-
fault Linux scheduler with the considered programs pinned
to separate CPUs. We present our obtained execution-time
data by plotting cumulative distribution functions (CDFs), as
such functions provide a sense of the best-case, average-case,
and worst-case recorded times. We denote a given scenario
by simply listing the combination of programs that were run.

20 52 84 116 148 180
SD time (ms)

0

20

40

60

80

100

%
 <

=
x

SD
SD+{SD}
SD+{2SD}
SD+{3SD}

Figure 2: CDF of execution times of SD in scenarios only involving
multiple SD instances.

20 52 84 116 148 180
SD time (ms)

0

20

40

60

80

100

%
 <

=
x

SD
SD+{MMUL}
SD+{2MMUL}
SD+{3MMUL}

Figure 3: CDF of execution times of SD in scenarios involving
MMUL competitors.

For example, in the scenario HOG+{2SD,HOG}, execution-
time data was obtained on one CPU for the HOG program in
the presence of two instances of SD and another instance of
HOG running on the other three CPUs.

In total, we tested 52 scenarios, each both with and with-
out the zero copy feature of CUDA and on both the TK1 and
TX1. Unless otherwise noted, the scenarios presented here
were measured on the TK1 and did not use the zero-copy
feature. Data for all considered scenarios can be found in an
online appendix [42].

Typical observed trends. We begin by commenting on gen-
eral trends seen in our collected data.
Obs. 1. GPU co-scheduling was always constructive in sce-
narios consisting of multiple instances of a single benchmark.

Fig. 2 supports this observation for the case of the SD
benchmark. In this case, GPU co-scheduling is mildly con-
structive. While SD execution times do increase with more
competition, they do not increase to the point of eliminating
any benefit due to co-scheduling. In particular, the addition
of one competitor yields execution times that are somewhat
better than simply doubling the execution time of a single in-
stance, and this trend continues to apply as more competition
is introduced.
Obs. 2. GPU co-scheduling was so constructive in some

26

661 1341 2022 2702 3382 4063
HOG time (ms)

0

20

40

60

80

100

%
 <

=
x

HOG
HOG+{HOG}
HOG+{3HOG}
HOG+{2SD,HOG}

Figure 4: CDF of execution times of HOG in scenarios involving
multiple instances of other benchmarks.

20 52 84 116 148 180
SD time (ms)

0

20

40

60

80

100

%
 <

=
x

SD
SD+{SD}
SD+{2HOG,SD}
SD+{3SD}

Figure 5: CDF of execution times of SD in scenarios involving
multiple instances of other benchmarks.

scenarios that any introduced interference was practically
negligible.

Fig. 3 supports this observation. Note that the execution
times for SD remain virtually unaffected when instances of
MMUL are introduced. This low impact is probably due to
MMUL having short kernel execution times (approx. 1ms),
which would rarely prevent SD from accessing the GPU.
Obs. 3. In some scenarios, particularly those involving
HOG, GPU co-scheduling proved to be rather destructive.

Fig. 4 supports this observation. Note that the most de-
structive interference occurs when two instances of HOG and
two instances of SD are run together, given by the curve for
the scenario HOG+{2SD,HOG}. Fig. 5 presents execution-
time data for SD that allows us to examine this same scenario
from the perspective of SD. In particular, note the curve la-
beled SD+{2HOG,SD} in Fig. 5.

In our TK1 experiments, the worst-case execution time of
SD running in isolation was 71.1ms, and the worst-case
execution time of HOG running in isolation was 768.9
ms. However, the median execution time of HOG in the
HOG+{2SD,HOG} scenario was 3747.0ms. Had the sched-
uler simply treated the GPU as an exclusive resource when
running two instances of HOG and two instances of SD, we
could expect HOG’s worst-case execution time to be closer
to 1680.0ms, which is the sum of each instance’s worst-

case execution time in isolation. By examining the curve for
SD+{2HOG,SD} in Fig. 5, we see that SD in this scenario
has a median execution time only approximately 30ms worse
than its execution time in isolation. Since a single iteration of
HOG performs over 180 kernel invocations of varying sizes,
and an iteration of SD performs only one, the plots support
the hypothesis that a large portion of the effect on HOG is
due to HOG’s multiple kernels being interleaved with SD’s
single kernel at multiple points in each HOG iteration. While
one may argue that this scheduling in SD’s favor is beneficial
in some applications, the significantly increased execution
time for HOG may result in an overall net loss in terms of
schedulability.
Obs. 4. The TX1 platform exhibited similar trends to those
observed on the TK1.

The TX1, with greater resources, unsurprisingly exhib-
ited improved execution times. Most interference patterns,
however, applied to both platforms. This is shown in Fig. 7,
which shows similar patterns to Fig. 4, and Fig. 8, which is
analogous to Fig. 6 (discussed next).

An anomalous result. We conclude this section by dis-
cussing an anomalous result that suggests that further study
of sources of interference among GPU-using tasks is needed.
Obs. 5. In rare cases, a benchmark program exhibited better
performance when executing in the presence of a competing
workload rather than in isolation.

We were very surprised to find that in some cases, in-
creasing the concurrent workload unintuitively led to slight
improvements in observed benchmark execution times. We
observed such improvements in two sets of scenarios, shown
in Figs. 6 and 8, where instances of HOG exhibited execution-
time improvements with additional competition. This behav-
ior was noticed in HOG with one or two VADD competitors
on the TK1, and with up to 3 VADD competitors on the TX1.
The only other scenarios where we observed such behavior
involved the CONV benchmark competing against additional
CONV instances.

Our current hypothesis is that this behavior is due to
DRAM or CPU L2 cache activity. This hypothesis is based
on the observation that, in Fig. 6, the VADD benchmark runs
solely on the CPU. This fact eliminates GPU contention as
the source of the anomaly in Fig. 6, leaving only hardware
resources shared by the two benchmarks as potential causes:
the CPU, its L2 cache, and the DRAM banks. We still, how-
ever, do not have a concrete explanation of this anomalous
behavior, and plan to continue investigating it in hopes of
identifying specific causes.

5 Conclusion
In order to effectively use GPUs in automotive settings,
it is imperative to not waste GPU capacity. Such waste
can lead to the necessity of introducing additional hard-
ware, which can have a detrimental impact with respect

27

660.8 684.1 707.4 730.7 754.0 777.2
HOG time (ms)

0

20

40

60

80

100

%
 <

=
x

HOG+{2VADD}
HOG+{VADD}
HOG
HOG+{3VADD}

Figure 6: CDF of execution times of HOG in scenarios involving
VADD competitors (which are CPU-only).

349 803 1256 1710 2164 2618
HOG time (ms)

0

20

40

60

80

100

%
 <

=
x

HOG
HOG+{HOG}
HOG+{3HOG}
HOG+{2SD,HOG}

Figure 7: The same scenarios as Fig. 4 running on the TX1.

347.69 355.10 362.52 369.94 377.36 384.77
HOG time (ms)

0

20

40

60

80

100

%
 <

=
x

HOG+{3VADD}
HOG+{2VADD}
HOG+{VADD}
HOG

Figure 8: The same scenarios as Fig. 6 running on the TX1.

to SWaP and monetary cost. Unfortunately, most prior
GPU management frameworks proposed for real-time sys-
tems [7, 8, 9, 12, 16, 25, 26, 50, 48, 49, 55, 56] preclude
multiple tasks from executing GPU kernels concurrently. If
such a kernel requires only a relatively small fraction of a
GPU’s processing cores, then much of that GPU’s capacity
will be wasted. In this paper, we have explored the possibility
of allowing multiple kernels to be co-scheduled in the context
of image-processing applications. Our results suggest that, in
some cases, allowing multiple kernels to be co-scheduled can
have a positive impact on real-time schedulability. Allow-
ing such functionality will require new extensions to prior
real-time GPU management frameworks.

In future work, we plan to introduce such extensions
to the frameworks developed by our group, GPUSync and
GPUSyncLite. These extensions will require the use of real-
time locking protocols that sometimes allow multiple tasks
to hold locks simultaneously. Blocking analysis will be re-
quired for these protocols as well. We believe that the needed
protocols can be obtained by using ideas found in recently
proposed multiprocessor real-time locking protocols for man-
aging replicated resources [34]. Our idea here is to abstractly
view a single GPU as a replicated resource and require a task
to lock only the replicas it needs. In other future work, we
intend to conduct more in-depth experimental studies to try
to discern the root sources of interference that cause some
kernels to perform poorly when co-scheduled. Additionally,
we plan to consider other GPU-based hardware platforms
that might be viable in automotive use cases.

References
[1] Google self-driving car project. Online at https://www.google.

com/selfdrivingcar/, 2016.
[2] A. Alhammad and R. Pellizzoni. Trading cores for memory bandwidth

in real-time systems. In RTAS ’16.
[3] A Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global

scheduling of real-time tasks. In RTAS ’15.
[4] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. Evaluation of

cache partitioning for hard real-time systems. In ECRTS ’14.
[5] AMD. Amd embedded g-series system-on-chip product

brief. Online at https://www.amd.com/Documents/
AMDGSeriesSOCProductBrief.pdf.

[6] N. Audsley. Memory architecture for NoC-based real-time mixed
criticality systems. In WMC ’13.

[7] J. Aumiller, S. Brandt, S. Kato, and N. Rath. Supporting low-latency
CPS using GPUs and direct I/O schemes. In RTCSA ’12.

[8] C. Basaran and K. Kang. Supporting preemptive task executions and
memory copies in GPGPUs. In ECRTS ’12.

[9] K. Berezovskyi, , L. Santinelli, K. Bletsas, and E. Tovar. WCET
measurement-based and extreme value theory characterisation of
CUDA kernels. In RTNS ’14.

[10] K. Berezovskyi, K. Bletsas, and B. Andersson. Makespan computation
for GPU threads running on a single streaming multiprocessor. In
ECRTS ’12.

[11] K. Berezovskyi, K. Bletsas, and S. Petters. Faster makespan estimation
for GPU threads on a single streaming multiprocessor. In ETFA ’13.

[12] A. Betts and A. Donaldson. Estimating the WCET of GPU-accelerated

28

applications using hybrid analysis. In ECRTS ’13.
[13] M. Campoy, A. Ivars, and J. Mataix. Static use of locking caches

in multitask preemptive real-time systems. In IEEE/IEE Real-Time
Embedded Sys. Workshop ’01.

[14] M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and
isolation tradeoffs in multicore mixed-criticality systems. In RTSS

’15.
[15] G. Elliott. Real-Time Scheduling of GPUs, with Applications in Ad-

vanced Automotive Systems. PhD thesis, University of North Carolina
at Chapel Hill, 2015.

[16] G. Elliott, B. Ward, and J. Anderson. GPUSync: A framework for
real-time GPU management. In RTSS ’13.

[17] G. Giannopoulou, N. Stoimenov, P. Huang, and L.Thiele. Schedul-
ing of mixed-criticality applications on resource-sharing multicore
systems. In EMSOFT ’13.

[18] M. Hassan and H. Patel. Criticality- and requirement-aware bus
arbitration for multi-core mixed criticality systems. In RTAS ’16.

[19] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling
DRAM memory accesses for multi-core mixed-time critical systems.
In RTAS ’15.

[20] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A pre-
dictable cache-aware memory allocator. In ECRTS ’11.

[21] Intel. Intel atom processor series product brief. On-
line at http://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/
atom-x3-c3000-brief.pdf.

[22] R. Jain, C. Hughs, and S. Adve. Soft real-time scheduling on simulta-
neous multithreaded processors. In RTSS ’02.

[23] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and P. Ca-
zorla. A dual-criticality memory controller (DCmc) proposal and
evaluation of a space case study. In RTSS ’14.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. ACMMM ’14.

[25] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. RGEM: A responsive GPGPU execution model for
runtime engines. In RTSS ’11.

[26] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:
GPU scheduling for real-time multi-tasking environments. In USENIX
Annual Technical Conference ’11.

[27] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A
predictable and command-level priority-based DRAM controller for
mixed-criticality systems. In RTAS ’15.

[28] H. Kim, D. de Niz, B. Anderson, M. Klein, O. Mutlu, and R. Rajku-
mar. Bounding memory interference delay in cots-based multi-core
systems. In RTAS ’14.

[29] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for
practical OS-level cache management in multi-core real-time systems.
In ECRTS ’13.

[30] N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D.
Smith. Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning. In RTAS

’16.
[31] Y. Krishnapillai, Z. Wu, and R. Pellizzoni. ROC: A rank-switching,

open-row DRAM controller for time-predictable systems. In ECRTS
’14.

[32] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural infor-
mation processing systems.

[33] R. Mancuso, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni.
Real-time colored lockdown for cache-based multi-core architectures.
In RTAS ’13.

[34] C. Nemitz, K. Yang, M. Yang, P. Ekberg, and J. Anderson. Multipro-

cessor real-time locking protocols for replicated resources. In ECRTS
’16.

[35] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive WCET analysis lever-
aging runtime resource capacity environment. In ECRTS ’14.

[36] NVIDIA. Cuda sample programs. Online at http://docs.
nvidia.com/cuda/cuda-samples.

[37] NVIDIA. Cuda zone. Online at http://www.nvidia.com/
object/cuda_home_new.html.

[38] NVIDIA. Jetson tx1 system-on-module data sheet. Online at https:
//developer.nvidia.com/embedded/downloads.

[39] NVIDIA. Whitepaper: NVIDIA Tegra K1. Online at
http://www.nvidia.com/content/pdf/tegra_
white_papers/tegra-k1-whitepaper.pdf.

[40] NVIDIA. Whitepaper: NVIDIA Tegra X1. Online at
http://international.download.nvidia.com/pdf/
tegra/Tegra-X1-whitepaper-v1.0.pdf.

[41] NXP. i.mx 6dual/6quad automotive and infotainment applications
processors data sheet. Online at http://cache.freescale.
com/files/32bit/doc/data_sheet/IMX6DQAEC.pdf.

[42] N. Otterness, V. Miller, M. Yang, J. Anderson, F.D. Smith, and
S. Wang. GPU sharing for image processing in embedded real-time
systems. Full version of this paper available at http://www.cs.
unc.edu/˜anderson/papers.html, 2016.

[43] R. Pellizzoni, A. Schranzhofer, J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore sys-
tems. In DATE ’10.

[44] V. Prisacariu and I. Reid. fastHOG–a real-time GPU implementation
of HOG. Department of Engineering Science, 2310, 2009.

[45] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. Phatak, R. Pel-
lizzoni, and M. Caccamo. A real-time scratchpad-centric OS for
multi-core. In RTAS ’16.

[46] S. Thrun. Toward robotic cars. Communications of the ACM, 53:99–
106, 2010.

[47] P. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In RTAS ’16.

[48] U. Verner, A. Mendelson, and A. Schuster. Batch method for efficient
resource sharing in real-time multi-GPU systems. In ICDCN ’14.

[49] U. Verner, A. Mendelson, and A. Schuster. Scheduling periodic real-
time communication in multi-GPU systems. In ICCCN ’14.

[50] U. Verner, A. Mendelson, and A. Schuster. Scheduling processing
of real-time data streams on heterogeneous multi-GPU systems. In
SYSTOR ’12.

[51] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared
caches more predictable on multicore platforms. In ECRTS ’13.

[52] M. Xu, S. Mohan, C. Chen, and L. Sha. Analysis and implementation
of global preemptive fixed-priority scheduling with dynamic cache
allocation. In RTAS ’16.

[53] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicoore
platforms. In RTAS ’14.

[54] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
access control in multiprocessor for real-time systems with mixed
criticality. In ECRTS ’12.

[55] J. Zhong and B. He. Kernelet: High-throughput GPU kernel execu-
tions with dynamic slicing and scheduling. TIEEE Transactions on
Parallel and Distributed Systems, 25:15221532, 2014.

[56] H. Zhou, G. Tong, and C. Liu. GPES: A preemptive execution system
for GPGPU computing. In RTAS ’15.

29

Combining Predictable Execution with
Full-Featured Commodity Systems

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig
Operating Systems Group, Technische Universität Dresden

{adam.lackorzynski,carsten.weinhold,hermann.haertig}@tu-dresden.de

Abstract—Predictable execution of programs is required to
satisfy real-time constraints in many use cases, including automa-
tion and controlling tasks. Unfortunately, background activities
of the operating system may influence execution of such work-
loads in unpredictable ways, as do other applications running
on the system concurrently. Separating time-critical workloads
from unrelated activities is thus a common approach to ensure
predictable execution.

Different strategies are used to achieve this separation. On
multi-core systems, developers typically assign work loads to
dedicated cores, which then run completely separate software
stacks. They often do not provide fault isolation nor security
guarantees. Another approach is to co-locate a commodity
operating system with a real-time executive, which hooks into
the interrupt subsystem of the standard kernel to run real-time
code at the highest priority in the system. There are also ongoing
activities to modify commodity kernels such as Linux to enable
more predictable execution. This pairing of the rich and versatile
feature set of Linux with a real-time execution is very compelling,
but it requires significant developer effort to ensure that the huge
monolithic code base does not violate real-time requirements.

In this paper, we present a mechanism that combines pre-
dictable execution and all of Linux’ functionality with much
less effort. It allows unmodified programs to be started on
top of a virtualized Linux kernel and then “pull them out”
of the virtual machine to let them run undisturbed on the
microkernel that hosts Linux. Whenever the program performs
a system call or catches an exception, those are forwarded to
Linux transparently. Experimental results show that execution-
time variation is reduced by two orders of magnitude.

I. INTRODUCTION

Predictable execution, often also called real-time execution,
is a required functionality for a broad range of uses cases.
Common real-time operating systems (RTOS) are simple,
and thus predictable, but lack features commonly offered
by a full-featured commodity operating system (OS), such
as Linux. Unfortunately, full-featured OSes typically cannot
ensure predictable execution. Still, there is ongoing work
on full-featured operating systems aiming to run real-time
workloads. An example are the real-time extensions for Linux
(Linux-RT [1]) which are merged step-by-step into mainline
Linux. However, it is a constant challenge to keep the huge code
base of the kernel preemptible, while hundreds of developers
add new features all the time or rework entire subsystems;
preemptibility and real-time capabilities are typically not the
main concerns for most of these developers.

Another common approach is to use multi-core systems
and to run a commodity OS and an RTOS on the same

system. This provides good temporal isolation but lacks spatial
isolation. Both OSes exist side by side and interaction between
them is usually coarse grained, for example, through mailbox
systems. As each of the two OSes runs with full system
privileges, such setups do not offer effective fault containment
as required for security and safety-critical usage scenarios.
A hypervisor (or microkernel) that virtualizes the platform
can contain faults within each of the two software stacks by
deprivileging their OSes. Adding the virtualization layer may
cause a slight performance degradation, but run-time overheads
are not prohibitive in most cases.

The contribution of this work is a mechanism for combining
the flexibility and feature set of a full-featured commodity
OS with the real-time characteristics of an RTOS. By means
of virtualization, we enable threads of a program to detach
from the unpredictable commodity OS and run in the real-time
capable environment. Whenever such a detached thread needs
to call services of the feature-rich OS (e.g., system calls), those
requests will be forwarded to the commodity OS transparently.
In our prototype, we use the L4Re system, a microkernel-
based operating system framework [2] for building customized
systems. The L4Re microkernel serves both as a hypervisor
and in the role of an RTOS to runs detached threads. We use
L4Linux, a paravirtualized variant of the Linux kernel that
comes with L4Re. It has been adapted to run on the L4Re
system as a deprivileged user-space application.

We are not the first to combine a real-time executive and
a feature-rich commodity operating. However, our approach
represents a new way of building this kind of split OS platform.
We reach this goal without “reinventing the wheel” by enhanc-
ing existing microkernel technology with a simple mechanism.
We believe that our approach is low-effort, maintainable, and it
provides continuous access to the latest releases of the feature-
rich OS. This paper builds on our previous work in the context
of high-performance computing [3].

In the remainder of the paper, we will describe our system
in more detail (Section II) and then discuss the detaching
mechanisms we added in Section III. We evaluate our work in
Section IV before we conclude.

II. VIRTUALIZATION SYSTEM

We build an OS for predictable execution based on the L4Re
microkernel system, which hosts a virtualized Linux kernel
called L4Linux. To get an understanding of L4Re’s capabilities

31

and the detaching mechanism described in Section III, we will
now introduce the L4Re system architecture.

A. L4Re Microkernel and User Land

The L4Re microkernel is a small and highly portable kernel.
It is the only component of the system running in the most
privileged mode of the CPU. Its main task is to provide isolation
among the programs it runs, in both the spatial and temporal
domains. To do so, the kernel needs to provide mechanisms
for all security-relevant operations, such as building up virtual
memory for programs and scheduling them. To support virtual
machines (VMs), the kernel also provides abstractions for
those virtualization-related CPU instructions that can only be
executed in the most privileged processor mode. Thus it also
takes the role of a hypervisor. Functionality that is not required
to enforce isolation of applications and virtual machines is
built on top of the kernel in user-level components.

The L4Re system is a component-based operating system
framework that provides a set of components on top of the
microkernel. It can be tailored to the needs of applications.
The set of components includes services and libraries for
memory management, application loading, virtual machines,
device drivers, and more. As the L4Re system provides
functionality as components, applications need to rely only
on those services they use, thereby minimizing their Trusted
Computing Base (TCB). The TCB is also application-specific,
as different application to may depend on different services.
This is in contrast to monolithic designs, where, for example,
a malfunction in a file-system leads to a kernel panic that
concerns every application, including those that do not use that
file-system at all.

The L4Re microkernel supports hardware-assisted virtual-
ization such as Intel’s VT and ARM’s VE, as well as a pure
software approach to hosting VMs. The latter only relies on
the memory management unit, which also provides address
spaces for isolating ordinary applications. The kernel provides
interfaces specifically designed so that OS developers can port
their kernels to L4Re with little effort. This paravirtualization
support includes support for mapping guest processes and
threads to the L4 tasks and L4 vCPUs that the microkernel
provides: An L4 task encapsulates address spaces both for
memory and kernel objects such as capabilities; a vCPU is a
thread and thus a unit of execution, however, enriched with
features beneficial for virtualization.

Besides providing address spaces through L4 tasks and
execution through L4 thread and vCPUs, the microkernel
provides a few more mechanisms. Interrupts are abstracted
using Irq objects. Irqs are used for both physical device
interrupts as well as for software-triggered interrupts. The
microkernel also schedules the threads on the system and
offers multiple, compile-time selectable scheduling algorithms.

The whole L4Re system is built around an object capability
model. Any operation on an object outside the current L4
task must be invoked through a capability; this includes the
objects that provide inter-process communication (IPC) and
Irqs. Thus one can state that IPC is used to invoke capabilities.

L4Re uses the same invocation method for all objects in the
system, whether they are implemented in the microkernel itself
or provided by user-level applications.

The L4Re microkernel always runs on all cores of the system
and address spaces span all cores; threads can be migrated.
The microkernel itself will never migrate a thread between
cores on its own; however, user-level applications can request
migrations.

B. L4Linux

In our work, we use L4Linux, a paravirtualized variant of
the Linux kernel that has been adapted to run on the L4Re
system. L4Linux is binary compatible to normal Linux and
runs nearly any Linux binary [4]. We chose L4Linux instead of
a fully-virtualized Linux because L4Linux is integrated more
tightly with the underlying L4Re system and thus allows our
approach to be implemented much more easily. In the following
we will describe L4Linux in sufficient detail to understand our
approach to detaching thread execution.

The L4Linux kernel runs in an L4 task and each Linux user
process is assigned its very own L4 task, too. Thus, the L4Linux
kernel is protected from misbehaving applications like native
Linux is, where user processes run in another privilege level.
There are no dedicated L4 threads for the user processes as
those are provided by the vCPU. A vCPU is like a thread,
but provides additional functionality useful for virtualization.
Such features include an asynchronous execution model with
a virtual interrupt flag and also the ability of a vCPU to
migrate between address spaces which is used to implement
user processes. Thus, from the host’s point of view, an L4Linux
VM comprises multiple vCPUs (one for each virtual CPU in
the guest) and L4 tasks that provide address spaces for the
L4Linux kernel and each user process.

During operation, a vCPU executes both guest kernel code
and the code of the user processes. When the L4Linux kernel
performs a return-to-user operation, the vCPU state is loaded
with the register state of the user process as well as the L4 task
of the user process. The vCPU will then continue execution in
that task. For any exception that occurs during execution (e.g.,
system call invocations or page faults), the vCPU migrates back
to the guest kernel task and resumes execution at a predefined
entry vector, where the exception is analyzed and handled
appropriately. Interrupts are handled similarly: After having
bound a vCPU to an interrupt object, firing the interrupt will
halt current execution and transfer the vCPU to the entry point
of the L4Linux kernel where the interrupt will be processed.

Memory for user processes is exclusively managed by the
Linux kernel. To populate the address spaces of user processes,
L4Linux maps memory from the Linux kernel task into the
respective L4 tasks using L4 system calls to map and unmap
memory pages. When resolving page faults for user processes,
L4Linux traverses the page tables that Linux builds up internally
to look up guest-kernel to user address translations. Note that
those shadow page tables are not used by the CPU. Only the
L4 microkernel manages the hardware page tables; the only

32

way to establish mappings in Linux user processes (or any
other L4 task) is to use the microkernel’s map functionality.

III. DETACHING WORK

Now we want to pursue how we can separate a thread of a
Linux user program so that it can run undisturbed from the rest
of the L4Linux system. As described in the previous section,
L4Linux does not use separate L4 threads for user processes,
but it multiplexes user threads onto a single vCPU. However,
to isolate execution of a user thread from the unpredictable
L4Linux, we must create a dedicated L4 thread that is not
managed by the Linux scheduler. This detached thread will
run Linux user code, be scheduled by the L4Re microkernel
independently from L4Linux’s scheduler. As a separate L4
thread, we can also move it to a different core, preferably one
that does not share caches with L4Linux. A schematic view of
our architecture is depicted in Figure 1.

L4Re Microkernel

C C C C

L4Linux

L4Linux
Core(s)

Real-Time
Core(s)

Linux App

Detached
Thread

Fig. 1. A thread detached from L4Linux running on a separate core.

To implement the creation of separate threads we can
leverage infrastructure developed in previous versions of
L4Linux: the thread-based execution model [5], in which Linux
threads are mapped one-to-one to L4 threads. This approach
to threading in L4Linux predates the superior vCPU execution
model, but it is still being maintained. We build upon this
older implementation to add creation of separate L4 threads to
the vCPU model that is now used. Detached processes start as
normal processes, for which a new L4 host thread is created
and placed in the L4 task of the user process. Then, instead of
resuming execution through the vCPU, the execution is resumed
to the L4 thread by using L4 exception IPC. Exception IPC is
a special type of IPC carrying the thread’s register state and
that is used to transfer the exception state between the causing
thread and a handler thread, which is the L4Linux kernel.

After launching the thread, L4Linux puts the kernel-
part of the user thread into uninterruptible state and calls
schedule() so that another context is chosen. While a
context is in state uninterruptible it is not chosen to be
dispatched by the Linux scheduler. Thus, in L4Linux’s view,
the context is blocked, however, it is running outside and
independent of the virtual machine provided by L4Linux.

While the detached program is running, it will eventually
cause an exception, such as triggered by issuing a system call,
or causing a page fault. In both cases the thread’s state will
be transferred to the L4Linux kernel using L4 exception IPC.
However, the context that will be active at that time in L4Linux’s
kernel will not be the one of the detached thread as this one

is in uninterruptible state. Thus the L4Linux kernel will just
save the transmitted state in the thread’s corresponding kernel
context and bring the thread out of the uninterruptible state
via a wakeup operation. When L4Linux’s scheduler has chosen
the thread again, the request will be handled. When done,
execution is resumed by replying to the incoming exception
IPC and setting the thread to uninterruptible again.

By using exception IPC, any request made by the detached
user-level thread is transparently forwarded to the L4Linux
kernel. One may also describe that in a way that the user
thread is being reattached while executing requests to the
L4Linux kernel.

A. L4 Interactions

When a thread is running detached, it is not restrained
to run code only but it can also interact with other L4
components or the microkernel. For example, a control loop can
be implemented using absolute timeouts of the L4 system or
the thread can wait on other messages or interrupts, including
device interrupts. Waiting directly for device interrupts in
detached threads might be beneficial to avoid interaction with
the Linux kernel and thus to achieve lower interrupt response
latency.

For doing L4 IPC, the L4Linux kernel needs to provide
the thread information where its User Thread Control Block
(UTCB) is located. The UTCB is a kernel provided memory
area that is used to exchange data with the kernel and
communication partners. The way of retrieving the address
of the UTCB, as used in native L4 programs, does not work
within an L4Linux environment as the segment, as used on
x86, registers are managed by L4Linux and might be used by
the libc. Thus an alternative approach must be provided, for
example, by a specifically provided extra system call. As the
UTCB address is fixed for a thread, it can be cached. When
just using one thread in the application, the UTCB address is
always the same and a well-known constant can be used as a
shortcut.

For the program to communicate with other L4 services,
the L4Linux kernel needs to map a base set of capabilities
into the task of the user process. L4Linux must have been
setup accordingly to receive those capabilities itself beforehand.
Further the user program must be able to get information on
where which capabilities have been mapped. In L4Re, this
information is provided through the environment when the
application is started. As application starting is done by the
L4Linux kernel, an alternative approach is required, such as a
dedicated system call or a sysfs interface.

B. Implementation Details

In the following we will shortly describe interesting aspects
of the implementation.

1) Signal Handling: As threads run detached from the
L4Linux kernel they are blocked by being in the uninterruptible
state. This affects signal delivery, such as SIGKILL, to take
effect, as the signal will just be processed when the thread is in
the kernel or enters it. When the detached thread never enters

33

the L4Linux kernel again (“attaches” again), any posted signal
will have no effect. For that reason, we added a mechanism
that periodically scans detached threads for pending signals,
and if it finds any, the detached thread is forced to enter the
L4Linux kernel to have the signal processed eventually.

2) Memory: As already described, all memory of a detached
application is managed by L4Linux. Linux may do page
replacement on the pages given to the application which
in turn affect the undisturbed execution. Thus it is advised
that applications instruct the L4Linux kernel to avoid page
replacement by means of mlock and mlockall system calls.
Generally, using large pages to reduce TLB pressure is also
recommended. L4Linux and the L4Re microkernel support large
pages.

With the possibility of a detached thread to call out to
other L4 services, it could also acquire memory pages. This
is possible, given the application is provided with appropriate
service capabilities, however, care must be taken as the address
space is managed by the L4Linux kernel and Linux is unaware
of other mappings in the address space. Reservations of regions
of the address space can be done via mmap, and given no page
faults are generated in those regions, the pages can be used.
Using memory from elsewhere is useful, for example, to use
shared memory with other L4Re applications.

3) Floating Point Unit: vCPUs also multiplex the state of
the Floating Point Unit (FPU) on behalf of the virtualized
OS kernel. FPU handling for vCPUs is built in a way that
it matches the hardware’s behavior and thus aligns well with
how operating systems handle the FPU natively. Although a
vCPU can handle multiple FPU states, only one at a time can
be active per vCPU. However, with detached threads, there are
additional L4 threads, and thus active FPU states, that need to
be handled.

The FPU-state multiplexing is built in a way that an FPU
state travels between different threads, that is, the set of L4
threads building up a virtual CPU just use one single FPU state.
Additionally, the state is handled lazily so that an FPU state
transfer must only be done when the FPU is actually used. Thus,
when a detached L4 thread enters the L4Linux kernel, its FPU
state cannot be transferred automatically to the L4Linux kernel
because another FPU state might be active there. To resolve this
situation, we extended the L4Re microkernel with an operation
for explicitly retrieving a thread’s FPU state. This way L4Linux
can save the FPU state of a thread to L4Linux kernel’s internal
FPU state for other Linux activities to access it. An operation
for setting the FPU state of an L4 thread is not required because
the FPU state is transferred with the exception IPC upon the
resume operation. This is possible because resumption is done
out of the thread’s context, contrary to the incoming operation,
that is done on a different context.

4) Sysfs Interface: As already described, we use a sysfs-
based interface to control detaching of threads. Contrary to
using an extra system call, this gives use the possibility to
easily use it in wrapper scripts without requiring to modify
the application itself. Noteworthy characteristics is that the

detached state is retained through the execve system call,
allowing to build wrapper scripts that detach an application:

#! /bin/sh
SYSFS_PATH=/sys/kernel/l4/detach
echo $$ > $SYSFS_PATH/detach
echo $HOST_CORE_ID > $SYSFS_PATH/$$/cpu
exec "$@"

As seen, specifying the target host CPU of the detached
thread is also possible via the sysfs interface. The sysfs
interface will only detach the first thread of an application, thus
multi-threaded programs will need to take care of detached
threads themselves.

IV. EVALUATION

In the following we will evaluate our detaching mechanism
regarding undisturbed execution. First, we use the FWQ bench-
mark, which is famous in the high performance computing
(HPC) area for measuring OS noise. Then we will implement
a control loop and monitor results for timing deviations. With
both experiments we will generate load in the L4Linux VM.

For all benchmarks, we use the same x86 system, running an
Intel R© CoreTM i7-4770 quad-core CPU clocked at nominally
3.4GHz, reported with 2993MHz.

A. FWQ Benchmark

First, we run the fixed-work quantum (FWQ) benchmark [6].
The benchmark measures a fixed amount of work multiple
times. Ideally the time it takes to run the work loop is the
same for all runs, however, due to preemptions and other
activities in the OS and the hardware, the measured times
fluctuate. Thus the degree of deviation shows the impact of
those other activities. The benchmark executes the work 10,000
times.

Figure 2 shows a run of FWQ on native Linux-4.6 built with
preemption enabled (CONFIG_PREEMPT=y) and run with
chrt -f 10 while I/O intensive work is running as well,
comprising network and disk load.

0 2000 4000 6000 8000 10000
4200000
4300000
4400000
4500000
4600000
4700000
4800000
4900000
5000000
5100000

C
P
U

 C
y
cl

e
s

p
e
r

W
o
rk

Fig. 2. FWQ results for Linux-4.6 PREEMPT with I/O load in Linux.

We see, although the FWQ benchmark is running as a real-
time program and the Linux kernel uses its full preemption
mode, deviation goes up to about 18%.

When running the same FWQ benchmark in L4Linux using
our presented mechanism, we measure results as seen in
Figure 3. The maximum deviation is 1152 CPU cycles, or
0.027%.

When we run a Linux kernel compile instead of I/O load
in L4Linux, we see a pattern as in Figure 4 that has larger
deviations: 6500 cycles, or 0.15%. When the L4Linux is idle,

34

0 2000 4000 6000 8000 10000
4250800

4251000

4251200

4251400

4251600

4251800

4252000

4252200

C
P
U

 C
y
cl

e
s

p
e
r

W
o
rk

Fig. 3. FWQ results for detached mode with a I/O load in L4Linux-4.6.

we see a behavior as seen in Figure 5 with just 21 cycles
difference.

0 2000 4000 6000 8000 10000
4250000

4251000

4252000

4253000

4254000

4255000

4256000

4257000

4258000

C
P
U

 C
y
cl

e
s

p
e
r

W
o
rk

Fig. 4. FWQ results for detached mode with a build load in L4Linux-4.6.

0 2000 4000 6000 8000 10000
4251005

4251010

4251015

4251020

4251025

4251030

C
P
U

 C
y
cl

e
s

p
e
r

W
o
rk

Fig. 5. FWQ results for detached mode with an idle L4Linux-4.6.

Although the FWQ benchmark is so small that it is running
out of L1 cache, effects can be seen in the results. Our
speculation is that due to the inclusiveness of the caches in
Intel’s multi-level cache architecture, cache content can be
evicted due to aliasing. However, whether this explains the
different levels in Figure 3 is unclear and requires further
investigations that are out of scope for this paper.

In summary, the results show for the FWQ benchmark that
our detaching mechanism significantly improves the execution
predictability of programs. It effectively isolates activities of the
Linux kernel and unrelated background load from the detached
real-time program, such that execution-time jitter is reduced
by more than two orders of magnitudes.

B. Host-driven Control Loop

In our second experiment, we emulate a control loop that
blocks repeatedly until an absolute time in the future to execute
some task. In each iteration of the loop, we increment the
programmed wake-up time by 1,000µs (delta = 1,000µs)
as illustrated in the following code:

next = now() + delta;
while (1) {

wait_for_time(next);
/* do work */
next += delta;

}

While the loop is running, we capture the time-stamp counter
(TSC) and plot the delta of each consecutive loop iteration.

Ideally, the measured delta between TSC-read operations should
be constant, meaning that the wait_for_time call unblocks
at precisely the specified time. The target for the delta is
2,993,000 cycles, as determined by CPU clock speed of
2,993MHz. We run the loop for 10,000 iterations so that the
benchmark runs for 10 seconds.

On Linux, we implement the blocking using clock_-
nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
...). We see results as depicted in Figure 6 for I/O load and
in Figure 7 for a build load. The way to generate the load
has been the same as in the previous experiment. All Linux
programs are pinned to a core and run with real-time priority
(using chrt -f 10).

0 2000 4000 6000 8000 10000
2400000

2600000

2800000

3000000

3200000

3400000

3600000

C
P
U

 C
y
cl

e
s

p
e
r

Lo
o
p

Fig. 6. Control loop results on native Linux with I/O load.

0 2000 4000 6000 8000 10000

2000000

3000000

4000000

5000000

C
P
U

 C
y
cl

e
s

p
e
r

Lo
o
p

Fig. 7. Control loop results on native Linux with build load.

The two graphs show an interesting arrow-style pattern.
With about 20 of such outlier events, one each half second,
we suspect an internal activity in the Linux kernel that induces
this result. We see a deviation from the target of about 500,000
CPU cycles in each direction, translating to about 167µs. The
results for the I/O-load experiment look similar to the build-
load case, however, there is an even larger outlier with about
1,300,000 cycles deviation (430µs).

With L4Linux, using our detaching mechanism, the control
loop uses L4 system calls to block until a specified point in
time (absolute timeout). Thus, the blocking and unblocking is
directly done by the microkernel and does not use or depend
on Linux. We use the same background load as before; the
results are shown in Figures 8 and 9. Note the change of range
in the y-axis.

0 2000 4000 6000 8000 10000
2991000

2992000

2993000

2994000

2995000

C
P
U

 C
y
cl

e
s

p
e
r

Lo
o
p

Fig. 8. Control loop results on L4Linux with I/O load.

The major difference between Linux and L4Linux is the
significantly reduced deviation. With I/O load, we observe that
the biggest outlier is about 1700 cycles away from the target

35

0 2000 4000 6000 8000 10000
2986000

2988000

2990000

2992000

2994000

2996000

2998000

C
P
U

 C
y
cl

e
s

p
e
r

Lo
o
p

Fig. 9. Control loop results on L4Linux with build load.

while the biggest outlier of the build load is about 4700 cycles
away, translating to 600ns and 1.6µs deviation. This is a 2-fold
improvement over the Linux results.

V. RELATED WORK

There is plenty of work regarding the combination of real-
time and general purpose operating systems (GPOS), using
virtualization or co-location approaches. There are also efforts
for enhancing the real-time capabilities of Linux itself [1].

In co-location approaches, a real-time executive is added
to the GPOS that hooks into low-level functions to execute
real-time tasks. Examples are Xenomai [7] and RTAI [8].

Xen-RT [9] adds real-time support to the Xen Hypervi-
sor [10] by adding real-time schedulers. Jailhouse [11] is
a recent development that uses the Jailhouse hypervisor to
partition Linux and an RTOS to different cores on a multi-core
system. Other hypervisors for real-time are Xtratum [12] and
SPUMONE [13], and there are also commercial offerings, such
as Greenhill’s Integrity.

Similar work is also done in the HPC community. Although
the real-time and HPC communities are typically disjunctive,
they strive for similar goals. The focus in HPC is to minimize
the disturbance caused by other software, such as the OS, and
hardware, that is experienced while executing HPC applications.
Uninterrupted execution is required because HPC application
communicate over many nodes where a delay on a single node
also has influences on other nodes. Thus disturbance must be
minimized [14]. Proposed solutions are similar to what is done
in the real-time area: Multi-core systems are partitioned into
“OS Cores” and “Compute Cores”. The OS core(s) typically
run Linux to provide functionality that applications running on
the compute cores require, but that the jitter-free “light-weight
kernel” (LWK) does not implement. Several implementations of
this approach exist, such as mOS [15] and McKernel/IHK [16],
as well as our own work [3].

VI. CONCLUSION AND FUTURE WORK

Our experiments show that our detaching mechanism is
capable of improving the predictability of execution by at least
two orders of magnitude compared to using a standard Linux.
As the real-time programs on our system are unmodified Linux
programs, existing development environments and tool can be
used. This allows for an efficient use of developer’s time when
implementing timing sensitive functionality.

Implementing this or a similar mechanism using hardware-
assisted virtualization promises to use any available Linux

version, giving a broader access to platforms. We also plan
evaluation on other architectures than Intel x86.

ACKNOWLEDGMENT

The research and work presented in this paper is supported
by the German priority program 1500 “Dependable Embedded
Software” and the German priority program 1648 “Software
for Exascale Computing” via the research project FFMK [17].
We also thank the cluster of excellence “Center for Advancing
Electronics Dresden” (cfaed) [18].

REFERENCES

[1] Real-Time Linux Project. Real-Time Linux Wiki. https://rt.wiki.kernel.
org.

[2] Alexander Warg and Adam Lackorzynski. The Fiasco.OC Kernel and
the L4 Runtime Environment (L4Re). avail. at https://l4re.org/.

[3] Adam Lackorzynski, Carsten Weinhold, and Hermann Härtig. Decoupled:
Low-Effort Noise-Free Execution on Commodity System. In Proceedings
of the 6th International Workshop on Runtime and Operating Systems
for Supercomputers, ROSS ’16, New York, NY, USA, 2016. ACM.

[4] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E.
Porter. A Study of Modern Linux API Usage and Compatibility: What
to Support when You’Re Supporting. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16, pages 16:1–
16:16, New York, NY, USA, 2016. ACM.

[5] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The
performance of µ-kernel-based systems. In Proceedings of the 16th
ACM Symposium on Operating System Principles (SOSP), pages 66–77,
Saint-Malo, France, October 1997.

[6] Lawrence Livermore National Laboratory. The FTQ/FWQ Benchmark.
[7] Xenomai Project. https://xenomai.org.
[8] RTAI – Real Time Application Interface. https://www.rtai.org/.
[9] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen:

towards real-time hypervisor scheduling in xen. In Proceedings of the
ninth ACM international conference on Embedded software, EMSOFT
’11, pages 39–48. ACM, 2011.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
art of virtualization. In Proceedings of the nineteenth ACM symposium
on Operating systems principles, SOSP ’03, pages 164–177. ACM, 2003.

[11] Jan Kiszka and Team. Jailhouse: Linux-based partitioning hypervisor .
http://www.jailhouse-project.org/.

[12] A. Crespo, I. Ripoll, and M. Masmano. Partitioned Embedded Archi-
tecture Based on Hypervisor: The XtratuM Approach. In Dependable
Computing Conference (EDCC), 2010 European, pages 67–72, April
2010.

[13] Tatsuo Nakajima, Yuki Kinebuchi, Hiromasa Shimada, Alexandre
Courbot, and Tsung-Han Lin. Temporal and spatial isolation in a
virtualization layer for multi-core processor based information appliances.
In Proceedings of the 16th Asia and South Pacific Design Automation
Conference, ASPDAC ’11, pages 645–652. IEEE Press, 2011.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence
of System Noise on Large-Scale Applications by Simulation. In
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’10), Nov. 2010.

[15] R.W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen. mOS:
An Architecture for Extreme-scale Operating Systems. In Proc. ROSS
’14, pages 2:1–2:8. ACM, 2014.

[16] T. Shimosawa, B. Gerofi, M. Takagi, G. Nakamura, T. Shirasawa, Y. Saeki,
M. Shimizu, A. Hori, and Y. Ishikawa. Interface for heterogeneous kernels:
A framework to enable hybrid os designs targeting high performance
computing on manycore architectures. In High Performance Computing
(HiPC), 2014 21st International Conference on, pages 1–10, Dec 2014.

[17] FFMK Website. https://ffmk.tudos.org. Accessed 17 Jun 2016.
[18] cfaed Website. https://www.cfaed.tu-dresden.de/. Accessed 17 Jun 2016.

36

Timeliness Runtime Verification and Adaptation
in Avionic Systems

José Rufino and Inês Gouveia
LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

jmrufino@ciencias.ulisboa.pt, igouveia@lasige.di.fc.ul.pt

Abstract—Unmanned autonomous systems (UAS) avionics call
for advanced computing system architectures fulfilling strict size,
weight and power consumption (SWaP) requisites, decreasing
the vehicle cost and ensuring the overall system dependability.
The AIR (ARINC 653 in Space Real-Time Operating System)
architecture defines a partitioned environment for aerospace
applications, following the notion of time and space partitioning
(TSP), aiming to preserve the highly demanding application
timing and safety requirements.

In addition to expected changes in the vehicle configuration,
which may naturally vary according to the mission’s progress
and its phases, a vehicle may be exposed to unforeseeable events
(e.g., environmental) and to failures. Thus, vehicle survivability
requires advanced adaptability and reconfigurability features, to
be supported in the AIR architecture. Adaptation in the presence
of hazards may largely benefit from the potential of non-intrusive
runtime verification (RV) mechanisms, currently being included
in AIR. Although this paper focuses on system level (timeliness)
monitoring and adaptation, similar approaches and methods may
be taken with respect to application/mission adaptation.

I. INTRODUCTION AND MOTIVATION

Avionic systems have strict safety and timeliness require-
ments as well as strong size, weight and power consumption
(SWaP) constraints. Modern unmanned autonomous systems
(UAS) avionics follow the civil aviation trend of transitioning
from federated architectures to Integrated Modular Avionics
(IMA) [1] and resort to the use of partitioning.

Partitioned architectures implement the logical separation
of applications in criticality domains, named partitions, and
allow hosting both avionic and payload functions in the
same computational infrastructure, thus fulfilling both SWaP
and safety/timeliness requirements [2]. Avionic functions are
related with vehicle control and typically include: Attitude and
Orbit Control Subsystem (AOCS) or Guidance, Navigation and
Control (GNC); Onboard Data Handling (OBDH); Telemetry,
Tracking and Command (TTC); Fault Detection, Isolation and
Recovery (FDIR). On the other hand, payload functions are
strictly related with the mission’s purpose. Partitioning implies
that each one of those functions is hosted in a different
partition.

The notion of temporal and spatial partitioning (TSP) means
that the execution of functions in one partition does not
affect other partitions’ timeliness and that dedicated addressing
spaces are assigned to different partitions [3]. The design

This work was partially supported by FCT, through LaSIGE Strategic
Project 2015-2017, UID/CEC/00408/2013. This work integrates the activities
of COST Action IC1402 - Runtime Verification beyond Monitoring (ARVI).

and development of AIR (ARINC 653 in Space Real-Time
Operating System) has been motivated by the interest in
applying TSP concepts to the aerospace domain [4]. However,
TSP concepts can be applied to a broader set of applications
such as, planetary exploration, automotive, underwater rovers,
and aquatic/aerial drones. The case for low-cost drones, com-
monly available as radio-controlled gadgets, with little or no
provisions of safety guarantees, is specially sensitive.

Usually, an UAS mission goes through multiple phases (e.g.,
takeoff, flight, approach, exploration, flight back, landing).
Adaptation to changing temporal requirements as the mission
progresses, throughout its phases, is of great importance.
Furthermore, adaptation to unplanned circumstances, such as
unforeseeable external events and internal failures, is manda-
tory for vehicle and mission’s survivability [5]. The design
of AIR Technology already includes mechanisms of support
for adaptation and reconfiguration [6]. Nevertheless, given the
high complexity of UAS functions, modern avionic systems
may largely benefit from the verification in runtime whether
or not the system/mission parameters are in conformity with
the planned specification.

This paper addresses how innovative non-intrusive runtime
verification (RV) capabilities, specially designed for time- and
space-partitioned systems, may enable the design and im-
plementation of advanced timeliness adaptation mechanisms,
which allow to reduce the temporal overhead of such mecha-
nisms in the operation of onboard systems.

The paper is organized as follows. Section II introduces
the AIR architecture for TSP systems. Section III describes
the non-intrusive RV features being introduced in the AIR
architecture. Section IV details the new adaptability features
of AIR. Section V discusses the integration of those features
in the AIR architecture and performs its analysis. Section VI
describes the related work and, finally, Section VII presents
some concluding remarks and future research directions.

II. AIR TECHNOLOGY FOR TSP SYSTEMS

The AIR Technology evolved from a proof of feasibility
for adding ARINC 653 functional support to the Real-Time
Executive for Multiprocessor Systems (RTEMS) to a multi-
OS (operating system) TSP architecture [4]. The AIR modular
design aims at high levels of flexibility, hardware- and OS-
independence (through encapsulation), easy integration and in-
dependent component verification, validation and certification.

37

Fig. 1. AIR architecture for TSP systems

A. System architecture

The AIR modular architecture is pictured in Figure 1. The
AIR Partition Management Kernel (PMK) is the basis of a
core software layer, enforcing robust TSP properties and pro-
viding support to fundamental mechanisms such as partition
scheduling and dispatching, low-level interrupt management,
interpartition communication facilities and encapsulation of
special-purpose hardware resources. Temporal partitioning en-
sures that the real-time requisites of the different functions
executing in each partition are guaranteed. Spatial partitioning
relies on having dedicated addressing spaces for the functions
executing on different partitions.

Each partition can host a different OS (the partition op-
erating system, POS), which, in turn, can be either a real-
time operating system (RTOS) or a generic non-real-time one.
The AIR POS Adaptation Layer (PAL) encapsulates the POS
of each partition, providing an adequate POS-independent
interface to the surrounding components.

The Portable Application Executive (APEX) interface [7]
provides a standard programming interface derived from the
ARINC 653 specification [1], with the possibility of being
subsetted and/or adding specific functional extensions, on a
system-level and/or on a per-partition basis [8].

The organization of vehicle functions in different partitions
requires interpartition communication services, since a func-
tion hosted in a partition may need to exchange information
with other partitions. Interpartition communication consists
of the authorized transfer of information between partitions
without violating neither spatial separation constrains nor
information security properties [3], [4], [9].

B. Two-level scheduling

The AIR technology employs a two-level scheduling
scheme, as illustrated in Figure 2. The first level corresponds to
partition scheduling and the second level to process schedul-
ing. Partitions are scheduled on a cyclic basis, through the
partition scheduling and dispatching components (Figure 2),
according to a partition scheduling table (PST) repeating over
a major time frame (MTF). The PST assigns execution time
windows to partitions. Inside each partition’s time windows,
its processes compete for processing resources according to
the POS’s native process scheduler.

Native POS
Process Scheduler

Process τ1,1

Process τ1,3

Process τ1,2

Process τ1,4

Partition P3

PMK

Partition P1 . . .

Native POS
Process Scheduler

Native POS
Process Scheduler

Process τ3,1 Process τ3,2

Process τ3,3

Partition P2

Process τ2,1 Process τ2,2

Process τ2,3

. . .

Process Deadline Violation Monitoring

Partition Dispatcher

Partition Scheduler

AIR PAL

Partition Scheduling Tables (PST)

Mode-based Schedules

150 190

First hierarchy level
Partition Scheduler

20 60

0 20 60 130

Major Time Frame (MTF)

Second hierarchy level
Process Scheduler

τ2,1 τ2,2 τ2,1 τ2,3

Tasks (processes)
 in partition P2

Partition P1 Partition P2 Partition P3

PST3(N)
(Inactive)

PST3(S)
(Inactive)

PST3(R)
(Inactive)

PST2(N)
(Inactive)

PST2(S)
(Inactive)

PST2(R)
(Inactive)

PST11
mode: normal

(active)

PST12
mode: survival

(inactive)

PST13
mode: recovery

(inactive)

mission phase

mode

PST selection

Fig. 2. Two-level hierarchical scheduling with partition scheduling featuring
timeliness adaptation through mode-based schedules

This paper proposes an evolution of the AIR two-level
hierarchical scheduling towards a highly effective short-term
adaptation of timeliness parameters to the mission phase
and/or to environmental changes, through a proficient use of
mode-based schedules, as highlighted in Figure 2.

C. Health monitoring and event handling

The AIR architecture incorporates Health Monitor (HM)
functions that spread throughout virtually all of the AIR
architectural components, aiming to contain faults within their
domains of occurrence.

At system-level, HM functions monitor the correctness of
fundamental AIR system components. In the event of an
error, handling is performed through fully integrated HM event
handlers (Figure 3). For example: system-level timeliness (e.g.,
partition scheduling) is verified at runtime, with a contingency
signalling of timing errors through low-level event handlers.

EH defined? EH running?

Action defined?

Default Action

EH: event
handler

application-related

system-related
Interrupt

yes

no yes

no

yes

no

Exception!

AIR PMK/POS interrupt handling

AIR Health Monitor

Activate (event-driven)POS Process

Application

Shutdown

Ignore

Restart

System-level

Fig. 3. System-level and application-level health monitoring

At application-level (Figure 1), which comprises both avion-
ics and payload functions, HM functions aim to enforce
overall correctness and to prevent the ill-effects of process
and/or partition level errors, occurring at one partition, from
propagating to the remaining partitions.

The runtime verification of application correctness is deeply
dependent on the application itself. Detection of deviations
from a given application/mission specification and handling
of abnormal situations must be performed by special-purpose
event handlers, provided by the application programmer and/or
by the system integrator, as shown in the diagram of Figure 3.
Only some specific aspects of application correctness may be
verified at system-level (e.g., the monitoring of violations to
registered process deadlines, pointed out in Figure 2).

38

In any case, the actions to be performed in the event of
errors are cast into appropriate event handlers. These may
comprise adaptability features such as the redefinition of
timing and control parameters. If no handler is provided, a
response action defined by the partition’s HM ARINC 653
configuration table is executed, as shown in Figure 3. The
design of AIR allows HM handlers to simply replace existing
exception handlers or to be added to existing ones, in pre-
and/or post-processing modes.

III. TSP-ORIENTED NON-INTRUSIVE RUNTIME
VERIFICATION

Runtime verification (RV) obtains and analyses data from
the execution of a system to detect and possibly react to
behaviours, either satisfying or violating a given specification.
The classical approach to RV implies the instrumentation of
system components. Small components, which are not part
of the functional system, acting as observers, are added to
monitor and assess the state of the system in runtime.

The usage of reconfigurable logic supporting versatile plat-
form designs (e.g., soft-processors) enables innovative ap-
proaches to RV [10]. In particular, in the context of TSP sys-
tems, a design for TSP-oriented observers was proposed [11].
The AIR Observer (AO) features: non-intrusiveness, meaning
system operation is not adversely affected; flexibility, meaning
code instrumentation with RV probes is not required, although
it may be used; configurability, being able to accommodate
a set of different system-level, application-related and even
mission-specific event observations.

Observer

Configuration

Bus
Interfaces

System Clock

Bu
se

s

Mgmt.
Interface

Time Base
currentTicks

other variables/registers

Fig. 4. AIR Observer architecture

The AO is plugged to the platform where the AIR software
components execute, and comprises the hardware modules
depicted in Figure 4: Bus Interfaces, capturing all physical
bus activity, such as bus transfers or interrupts; Management
Interface, enabling AO configuration; Configuration, storing
the patterns of the events to be detected; Observer, detecting
events of interest based on the registered configurations.

A robust time base1 accounts for, in the AO hardware
(Figure 4), the number of system-level clock ticks elapsed
so far, to which AIR components have access, through the
read only currentT icks variable/register. For optimization
purposes, other relevant read/write variables/registers may be
available from the AO.

1The design and engineering of AIR robust timers is out of the scope of
this paper. It will be addressed in future work.

The AO continuously monitors the timeliness of AIR com-
ponents and applications, functionally assuming a dual role:
it detects when a given temporal bound is reached and/or if a
given deadline was violated; it signals that it is time to perform
a given (check) action, in order to verify/enforce timeliness.

IV. MISSION’S TIMELINESS ADAPTATION

The adaptation to changing environmental or operating
conditions is crucial for unmanned space and aerial missions
survivability, which can be significantly improved through
software reconfigurability, as reported in [5].

The design of AIR integrates special-purpose mechanisms
to address specific adaptation requirements, as thoroughly
described in [6]. Aiming to improve its time domain behaviour,
the mode-based schedules mechanism is reviewed.

A. Mode-based schedules

The original ARINC 653 notion of a single fixed PST [1],
defined offline, hinder adaptation to changes in application
requirements, according to the mission’s phase, given certain
functions may be required to execute only during some phases.

To address this primary limitation, AIR uses the notion
of mode-based partition schedules [4], [6], inspired by the
optional service defined within the scope of ARINC 653
Part 2 specification [12].

B. AIR mode-based schedules: original design and limitations

Instead of using one fixed PST, AIR-based systems can be
configured with multiple PSTs, which may differ in terms
of the MTF duration, of which partitions are scheduled, and
of how much processor time is assigned to them, as shown
in Figure 2. The system can switch between different PSTs;
selection of the active PST is performed through a service call
issued by an authorized and/or dedicated partition.

In the original definition of AIR mode-based schedules, a
PST switch request is only effectively granted at the end of the
ongoing MTF. This simple approach ensures that every process
in all partitions have executed completely, upon a PST switch.
Thus: applications are in a coherent state; PST switching is in
conformity with the specified application timing. This model
is adequate for long-term stable adaptation, such as entering
a different mission’s phase.

C. Redesigning AIR mode-based scheduling

During the ongoing MTF, a response to sudden and unex-
pected events (such as, a warning of an imminent collision)
may be adversely delayed by the execution of functions,
defined in the active PST, which do not have the capability
of reacting to those (critical) events.

To extend the number/duration of periods where the ex-
ecuting functions have the capability of responding to crit-
ical events, a different schedule is required. The selec-
tion/activation of a new schedule is enhanced in two ways:
• by design, the new schedule is activated as soon as no

critical activity is executing;
• by PST definition and configuration, the new schedule

assigns execution time windows only to critical activities.

39

The first condition implies that, each partition needs to be
classified as having its execution as critical or non-critical and
that the time boundaries delimiting the execution of the critical
execution periods need to be registered in the AO, both for
monitoring purposes and to avoid ill-timed mode changes.

Secondly, for each mission phase, three schedules should
be provided, each corresponding to a mode (see Figure 5), as
follows:
• normal - corresponding to the normal execution of the

activities defined for the mission;
• survival - meaning some severe external/internal condi-

tion that puts the vehicle and/or the mission in risk has
been detected. This state is entered in response to the is-
suing of a SET MODE SCHEDULE primitive (Table I),
by some system/application event handler (Figure 3). The
schedule for this phase/mode shall allocate processor time
only to fundamental avionic functions, in order to ensure
safe and secure operation.

• recovery - the operation of the vehicle is no longer in
risk, as confirmed, at all levels, by the RV mechanisms.
A relevant system/application component issues a further
SET MODE SCHEDULE primitive. Processing could
now include full FDIR activities that, once accomplished,
may allow the return to the normal mode.

Normal Survival

Recovery

SET_MODE_CHANGE ˄ t = MTF

schedule(phase(current_schedule), mode←survival)

SET_MODE_CHANGE ˄ t = MTF

schedule(phase(current_schedule), mode←normal)
SET_MODE_CHANGE ˄ t = MTF

schedule(phase(current_schedule), mode←recovery)

SET_MODE_CHANGE ˄
partition (current_schedule) = ¬critical ˅ t = MTF

schedule(phase(current_schedule), mode←survival)

Fig. 5. Function schedule modes and allowed transitions

Hosting multiple PSTs aboard autonomous vehicles opens
room for the (self-)adaptability of unmanned missions, in
function of passage of time and of changing environmental
and operational conditions. The use of full-fledged mode-based
schedules contributes to a timely response to sudden changes
in the operational conditions.

Pre-generation of different partition schedules can be aided
by a tool that applies rules and formulas to the temporal
requirements of processes/partitions, taking into account the
functions’ needs in different anticipated conditions [4], [13].
Unforeseeable conditions can be handled thorough the mech-
anisms for remote update of onboard software and PSTs [8].

V. IMPLEMENTING MISSION’S TIMELINESS ADAPTATION

The proposed integration of non-intrusive RV and timeliness
adaptation features follows the hardware-assisted approach
described in [11]. This hardware/software co-design allows
to maintain some degree of AIR architectural flexibility with
advantages in terms of improved safety and timeliness, being
specially interesting for running AIR in platforms integrating
processor cores (e.g., dual-core ARM) and FPGA logic [14].

Algorithm 1 AIR Partition Scheduler with runtime verification
featuring adaptation through mode-based schedules
1: � Entered upon exception: partition preemption point signalled by the AO
2: � Runtime verification actions
3: if (mode(currentSchedule) = mode(nextSchedule) ∧

schedulescurrentSchedule .tabletableIterator .tick 6=
(currentTicks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf) ∨
(mode(currentSchedule) 6= mode(nextSchedule) ∧
schedulescurrentSchedule .tabletableIterator .critical >
(currentTicks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf) then

4: HEALTHMONITOR(activePartition)

5: else � Partition Scheduling Table (PST) and partition switch actions
6: if currentSchedule 6= nextSchedule ∧

((mode(currentSchedule) 6= mode(nextSchedule) ∧
(currentTicks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf ≥
schedulescurrentSchedule .tabletableIterator .critical) ∨
((currentTicks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf = 0)) then

7: � PST switch actions
8: currentSchedule ← nextSchedule
9: lastScheduleSwitch ← currentTicks

10: tableIterator ← 0
11: end if
12: � Partition switch actions
13: heirPartition←

schedulescurrentSchedule .tabletableIterator .partition
14: tableIterator ← (tableIterator + 1) mod

schedulescurrentSchedule .numberPartitionPreemptionPoints
15: end if

A. AIR full-fledged mode-based scheduling

In a hardware-assisted approach to the implementation of
AIR full-fledged mode-based scheduling, partition scheduling
switch decisions from the AO hardware are complemented
with software RV and partition switch actions: when a par-
tition is dispatched, the absolute value (in POS-level clock
ticks) of its partition preemption point is inserted in the AO
configuration; when this instant is reached, an AO’s hardware
exception triggers the execution of Algorithm 1.

In Algorithm 1, if no mode change is claimed, the RV
actions check (line 3), from the active PST, if the current
instant is a partition preemption point. If a mode change
is pending, the RV actions ensure (line 3) that no critical
activity is executing at this instant. If none of these conditions
apply, a severe system level error has occurred and the HM
is notified (line 4) to handle the situation. Otherwise, the
conditions for a full-fledged mode-based partition switch are
checked in line 6: a PST schedule switch request is pending;
a mode change switch is claimed and no critical activities are
executing at the current instant or the current instant is the
end of the MTF. If these conditions apply, the PST switching
actions specified in [4], [11] are applied (lines 7-10) and a
different PST will be used henceforth (line 8). The remaining
lines of Algorithm 1 (lines 13-14) implement the conventional
partition switch actions of [4], [11]. The processing resources
to be assigned to the heir partition, until the next partition
preemption point, are obtained from the PST in use (line 13).
The AIR Partition Scheduler is set (line 14) to access the heir
partition parameters.

40

Algorithm 2 AIR Partition Dispatcher
1: � Entered from the AIR Partition Scheduler after partition switch actions
2: SAVECONTEXT(activePartition.context)
3: activePartition.lastTick ← currentTicks − 1
4: elapsedTicks ← currentTicks − heirPartition.lastTick
5: activePartition ← heirPartition
6: REPLACEPREEMPTIONPOINT(heirPartition.tick)

7: REPLACECRITICALPOINT(heirPartition.critical)
8: RESTORECONTEXT(heirPartition.context)
9: PENDINGSCHEDULECHANGEACTION(heirPartition)

B. AIR hardware-assisted partition dispatching

The partition switch actions are followed by the execution
of the AIR Partition Dispatcher specified in Algorithm 2.
The hardware-assisted optimizations of [11] are maintained
with respect to the software-based approach [4]: suppression
of specific elapsed clock ticks setting, which are not required
because the partition dispatcher is always invoked after a
partition switch; insertion of the next partition preemption
point in the AO configuration (line 6). However, to allow
the runtime verification of mode change requests, the value
of the next time critical schedule bound is now also inserted
in the AO. The remaining actions in Algorithm 2 are related
to saving and restoring the execution context (lines 2 and 8)
and evaluation of the elapsed clock ticks (line 4). Line 9
enforces the execution of pending actions the first time the
partition is executed after a PST change [4]. This last point
is specially sensitive, since abrupt mode changes may leave
some partitions in an inconsistent state.

C. Extending the APEX interface

The implementation of AIR full-fledged mode-based
scheduling implies the addition of new primitives to the
APEX interface, summarized in Table I. The AIR PAL com-
ponent provides the adequate encapsulation with respect to
the registering of the schedule timing information in the AO.
The primitives listed in Table I can only be issued from an
authorized and/or dedicated partition.

TABLE I
EXTENDING APEX PRIMITIVES TO SUPPORT

FULL-FLEDGED MODE-BASED SCHEDULES

Primitive Short description

Need to register/update critical execution period bounds in the AO
SET MODE SCHEDULE Requests a mode change for a new schedule

Served if/when no critical activities

SET PHASE SCHEDULE Requests a new mission phase schedule
Served in normal mode, at the end of a MTF

No need to register/update critical execution period bounds in the AO
GET MODE SCHEDULE ID Obtains the current schedule identifier

GET MODE SCHEDULE STATUS Obtains the current schedule status

Although semantically different APEX primitives are listed
in Table I for the long-term adaptation of mission phases and
for a (fast) short-term (self-)adaptation, through mode changes,
both primitives share the same method (i.e., the activation of
a new schedule), thus being optimal with respect to fitting the
previous design and implementation of AIR components.

D. Analysis and discussion

Critical software, namely that developed to go aboard an
aerial or space vehicle, goes through a strict process of veri-
fication, validation and certification. Code complexity affects
the effort required for that process.

The AIR hardware-assisted approach translates to a signifi-
cant reduction of AIR software code complexity. Most AIR
software-based components have constant time complexity,
O(1): accesses to multielement structures are made by index,
being independent of the number and position of the elements.
Nevertheless, some components exhibit a linear time complex-
ity. That is the case associated with the Pending Schedule
Change Actions procedure (Algorithm 2 - line 9), which in
the worst case wields O(n), being n the number of processes
in the partition.

Similar considerations apply to timing issues. However, due
to the highly effective (i.e., O(1)) implementation of the AIR
software-based approach, the analysis in [11] for the AIR
Partition Scheduler and AIR Partition Dispatcher components
has shown only a moderate improvement in time overheads.

The expected reduction in the mode change response delay,
with the corresponding increase in the ability of AIR-based
systems to timely respond to sudden and unexpected changes
in operational conditions, is heavily dependent of the structure
of the active PST.

The exact value of the normalized mode change response
delay, Tmcd, in general depends on the instant, t, a mode
change primitive is issued. That value is given by:

Tmcd (T) =
ncp∑

i=1

(
H(T − Tcs,i)−H(T − Tce,i)

)
×

(Tce,i − Tcs,i)
(1)

where:

T = mod

(
t

TMTF

)
(2)

is the current instant t normalized with the major time frame
duration, TMTF , through the module function, mod(). H() is
the Heaviside function, defined as:

H(T − T0) =
{
0 T < T0
1 T ≥ T0

(3)

Furthermore, the following parameters are defined:
• ncp - the number of periods executing critical activities;
• Tcs,i - the instant, normalized by TMTF , where the

execution of the critical period i starts;
• Tce,i - the instant, normalized by TMTF , where the

execution of the critical period i ends.
The results obtained for the mode change response delay

with different types of schedules is illustrated in Figure 6. In
the first case, only critical activities are scheduled for execu-
tion and therefore the mode change can only be performed
by the end of the MTF. The second schedule includes an
initial period of critical activities followed by a (small) period

41

0,00

0,20

0,40

0,60

0,80

1,00

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

T m
cd

(n
o

rm
al

iz
ed

 t
o

 T
M

TF
ti

m
e

u
n

it
s)

T (normalized to TMTF time units)

Case 1 - One critical period - Tcs1=0,00; Tce1=1.00

Case 2 - One critical period - Tcs1=0,00; Tce1=0,86

Case 3 - Two critical periods - Tcs1=0,00; Tce1=0,20; Tcs2=0,40; Tce2=0,75

Fig. 6. Analysis of the mode change response delay obtained under different
schedule scenarios

where mode change is allowed without delay. In the third and
last schedule, illustrated in Figure 6, critical and non-critical
activities are intermixed along the MTF, resulting in an overall
decrease in the duration of the maximum and average periods
where it is necessary to wait for a mode change to occur.

VI. RELATED WORK

Reconfiguration and adaptation approaches have been ap-
plied in the realm of TSP systems and tested in avionic
demonstrators [15]. Furthermore, non-instrusive runtime mon-
itoring has been applied in embedded systems [16], [17] and,
more specifically, in safety critical environments [18]. Con-
figurable non-intrusive event-based frameworks for runtime
monitoring have been developed within the embeddedd sys-
tems’ scope [19], employing a minimally intrusive method for
dynamic monitoring. Additionally, the RV concept has been
applied to autonomous systems [20] and to a AUTOSAR-like
RTOS, aiming the automotive domain [21]. [22] describes a
runtime monitoring approach for autonomous vehicle systems
requiring no code instrumentation by observing the network
state. A unified framework for the specification, analysis and
description of mode-change semantics applicable to real-time
systems is presented in [23]. However, to the extent of our
knowledge, no such techniques have been applied to TSP
systems, specially if targeting avionic applications.

VII. CONCLUSION

This paper addressed fundamental mechanisms providing
support for adaptive and self-adaptive behaviour to applica-
tions based on the AIR architecture for time- and space-
partitioned systems. The usage of hybrid platforms combining
processor cores and programmable logic makes advantageous
the use of a hardware-assisted design complemented with
some simple software-based components.

The introduction of full-fledged mode-base scheduling con-
tributes for achieving a timely response to sudden and/or
unexpected environmental and internal conditions, and enables
improvements in both safety and timeliness properties. These
mechanisms benefit from the use of non-intrusive runtime
verification.

Non-intrusive runtime verification is a relevant contribution
with respect to verification, validation and certification efforts
of TSP systems that will be extended in future research.

Additional work aims to take full advantage of multicore
platforms in AIR, which include adaptation/reconfiguration
features and, in the near future, extended RV capabilities.

REFERENCES

[1] AEEC (Airlines Electronic Engineering Committee), Avionics Applica-
tion Software Standard Interface, Part 1 - Required Services, Mar. 2006.

[2] TSP Working Group, “Avionics time and space partitioning user needs,”
ESA, Technical Note TEC-SW/09-247/JW, Aug. 2009.

[3] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms and assurance,” SRI International, California, USA, Tech. Rep.
NASA CR-1999-209347, Jun. 1999.

[4] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and
timeliness in a new generation of aerospace systems,” in Architecting
Dependable Systems VII, ser. LNCS, A. Casimiro, R. de Lemos, and
C. Gacek, Eds., vol. 6420. Springer, 2010.

[5] M. Tafazoli, “A study of on-orbit spacecraft failures,” Acta Astronautica,
vol. 64, no. 2-3, pp. 195–205, 2009.

[6] J. P. Craveiro and J. Rufino, “Adaptability support in time- and space-
partitioned aerospace systems,” in Proc. 2nd Int. Conf. on Adaptive and
Self-adaptive Systems and Applications, Lisbon, Portugal, Nov. 2010.

[7] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor, “A portable
ARINC 653 standard interface,” in Proc. 27th Digital Avionics Systems
Conference, St. Paul, MN, USA, Oct. 2008.

[8] J. Rosa, J. P. Craveiro, and J. Rufino, “Safe online reconfiguration of
time- and space-partitioned systems,” in Proceedings 9th IEEE Int. Conf.
on Industrial Informatics (INDIN 2011), Caparica, Portugal, Jul. 2011.

[9] J. Carraca, R. C. Pinto, J. P. Craveiro, and J. Rufino, “Information secu-
rity in time- and space-partitioned architectures for aerospace systems,”
in Atas 6th Simpósio de Informática (INForum 2014), Porto, Portugal,
Sep. 2014, pp. 457–472.

[10] R. C. Pinto and J. Rufino, “Towards non-invasive run-time verification
of real-time systems,” in 26th Euromicro Conf. on Real-Time Systems -
WIP Session, Madrid, Spain, Jul. 2014, pp. 25–28.

[11] J. Rufino, “Towards integration of adaptability and non-intrusive runtime
verification in avionic systems,” SIGBED Review, vol. 13, no. 1, Jan.
2016, (Special Issue on 5th Embedded Operating Systems Workshop).

[12] AEEC (Airlines Electronic Engineering Committee), Avionics Applica-
tion Software Standard Interface, Part 2 - Extended Services, Dec. 2008.

[13] J. P. Craveiro and J. Rufino, “Schedulability analysis in partitioned
systems for aerospace avionics,” in Proceedings 15th IEEE International
Conference on Emerging Technologies and Factory Automation, Bilbao,
Spain, Sep. 2010.

[14] ZYBO Reference Manual, DILIGENT, Feb. 2014.
[15] G. Durrieu, G. Fohler, G. Gala, S. Girbal, D. G. Pérez, E. Noulard,

C. Pagetti, and S. Pérez, “DREAMS about reconfiguration and adapta-
tion in avionics,” in Proc. 8th Congress on Embedded and Real-Time
Software and Systems (ERTS2016), Toulouse, France, Jan. 2016.

[16] C. Watterson and D. Heffernan, “Runtime verification and monitoring
of embedded systems,” Software, IET, vol. 1, no. 5, Oct. 2007.

[17] T. Reinbacher, M. Fugger, and J. Brauer, “Runtime verification of em-
bedded real-time systems,” Formal Methods in System Design, vol. 24,
no. 3, pp. 203–239, 2014.

[18] A. Kane, “Runtime monitoring for safety-critical embedded systems,”
Ph.D. dissertation, Carnegie Mellon University, USA, Feb. 2015.

[19] J. C. Lee and R. Lysecky, “System-level observation framework for non-
intrusive runtime monitoring of embedded systems,” ACM Transactions
on Design Automation of Electronic Systems, vol. 20, no. 42, 2015.

[20] G. Callow, G. Watson, and R. Kalawsky, “System modelling for run-
time verification and validation of autonomous systems,” in Proc. 5th
Int. Conference on System of Systems Engineering, Loughborough, UK,
Jun. 2010, pp. 1–7.

[21] S. Cotard, S. Faucou, J.-L. Bechennec, A. Queudet, and Y. Trinquet,
“A data flow monitoring service based on runtime verification for
AUTOSAR,” in Proceedings of the 14th Int. Conf. on High Performance
Computing and Communications. Liverpol, UK: IEEE, Jun. 2012.

[22] A. Kane, O. Chowdhury, A. Datta, and P. Koopman, “A case study on
runtime monitoring of an autonomous research vehicle (ARV) system,”
in Proc. 15th Int. Conf. on Runtime Verification, Vienna, Austria, Sep.
2015, pp. 102–117.

[23] L. T. X. Phan, I. Lee, and O. Sokolsky, “A semantic framework for mode
change protocols,” in Proceedings of the 17th Real-Time and Embedded
Technology and Applications Symposium. IEEE, Apr. 2011.

42

Effective Source Code Analysis with Minimization

Geet Tapan Telang
Hitachi India Pvt. Ltd.

Research Engineer
Bangalore, India

Email: geet@hitachi.co.in

Kotaro Hashimoto
Hitachi India Pvt. Ltd.

Software Engineer
Bangalore, India

Email: kotaro.hashimoto.jv@hitachi.com

Krishnaji Desai
Hitachi India Pvt. Ltd.

Researcher
Bangalore, India

Email: krishnaji@hitachi.co.in

Abstract—During embedded software development using open
source, there exists substantial amount of code that is ineffective
which reduces the debugging efficiency, readability for human
inspection and increase in search space for analysis. In domains
like real-time embedded system and mission critical systems,
this may result in inefficiency and inconsistencies affecting lower
quality of service, enhanced readability, increased verification and
validation efforts. To mitigate these shortcomings, we propose the
method of minimization with an easy to use tool support that
leverages preprocessor directives with GCC for cutting out ifdef
blocks. Case studies of Linux kernel tree, Busybox and industry-
strength OSS projects are evaluated indicating average reduction
in lines of code roughly around 5%-22% in base kernel using
minimization technique. This results in increased efficiency for
analysis, testing and human inspections that may help in assuring
dependability of systems.

I. INTRODUCTION

The outgrowth of Linux operating system and other real-
time embedded systems in dependable computing has raised
concern in possible areas such as mission critical system. The
size of code has grown to approximately 20 million lines of
code (Linux) and with this scale and complexity, it becomes
impossible to follow traditional methods for meeting the safety
and real-time requirements.

Since tools for analysis and testing are getting advanced,
the safety and time requirements can be verified and validated
by capturing evidence and justifications. Most of these tools
are interested in meeting the coverage expectations in terms
of code, execution times, resources, throughput and fault
tolerance that define the overall dependability of systems.

Code coverage with different analysis and test tools be-
comes the major part of verification and validation, in order to
perform this effectively, we propose method of minimization
devised for keeping functional safety and real-timeliness into
consideration for narrowed search space verification, false pos-
itive reduction, easier human inspection and shorter verification
time. The term minimization as shown in figure 1 signifies
removal of unused piece of code comprising of #ifdef and
#if blocks. The target code along with configuration file
when executed using minimization process produces compi-
lable code without #ifdef and #if block and other unused
lines of code, which is different from execution with GCC
preprocessor where compiled code comprises of #ifdefs.

The evaluation is exercised on targets such as Linux Kernel
source tree, BusyBox [1] tree and similar quantification of
other OSS projects.

Fig. 1: Overview of minimization.

II. BACKGROUND

In OSS software domain, there are many developers con-
tributing towards the common goal such as real-time, safety-
mitigation etc. because of which, the source code developed
lacks strict guidelines. Although, there are checks made with
semantic patches [2] and other utilities before the source code
is committed, no clear coding guidelines are followed that will
make the source code easy to inspect and analyze.

Primary problem with the OSS code in embedded domain
is the usage of pre-processor directives and conditional code
compilations that are used due to varying configuration op-
tions. In case of Linux kernel alone, there are more than 10,000
different configuration flags that have to enabled/disabled and
thereby used as part of the pre-processor directive in the source
code [3].

The configurations of OSS code is easy to enumerate
and apply depending on the configuration flags and configure
command. However, the source code is still having all of con-
ditional compilation code with pre-processor directives. Too
much of conditional compilation code based on configuration,
is difficult to inspect and analyze for different static analysis
tools. As the configuration options increase, the usage of
same in code also increases significantly resulting in analysis
complexity.

To solve this problem, there are few tools that are built
with pre-processor directives awareness so that during the
source code analysis these tools read system configuration and
directives to selectively analyze relevant code and skip the

43

disabled code automatically. Some of these tools are GNU
cflow, Coccinelle etc. Problem here is that dead code elim-
ination is not the main purpose of these tools. Pre-processor
handling is best done with its corresponding compiler in place.
Standalone tools cannot do a good job with this as they do not
have required constructs configured for effective application of
conditional compilation. Hence, a standardized method needs
to be made available that can suffice minimization agnostic to
other static analysis tools and human inspection. However, the
proposed method needs to leverage compiler technology that
can best apply the pre-processor directives.

For this purpose, the GCC [4] compiler based pre-processor
is selected for realizing the minimization technique. GCC is the
choice due to its immense usage in OSS community including
Linux, Busybox etc.

A. Linux kernel configuration

Configuration plays a very important role in building any
software. In case of OSS, it becomes an essential pre-requisite
as the software is developed by different developers with
multiple configurations concurrently. To illustrate the same,
Linux kernel is a classic example for showing the varied
configuration it supports.
The Linux kernel configurations are available in
arch/*/configs. To alter configuration, integrated
options such as make config, make menuconfig and
make xconfig are available. Once configuration is done,
it gets saved in .config file. The indication available in
.config file has option =y illustrating driver is built into
the kernel, =m for built as a module or it is not selected [5].
The .config file appears as below:

#General setup
CONFIG_INIT_ENV_ARG_LIMIT=32
CONFIG_CROSS_COMPILE=""
CONFIG_COMPILE_TEST is not set
CONFIG_LOCALVERSION=""
CONFIG_LOCALVERSION_AUTO is not set
CONFIG_HAVE_KERNEL_GZIP=y

B. GCC preprocessor

GCC [4] is the compiler choice that is used from utils
to operating system level and rigorously tested for several
years using tools such as CSMITH [6]. Hence, configuration
based pre-processor is best applied with GCC and is choice
for realizing our methodology.
The GCC preprocessor implements macro language that is
utilized to change C programs before they are compiled. The
output is similar to input however, the preprocessor directive
lines are replaced with blank lines and spaces are appended
instead of comments based on the configuration. Certain time
some directives may be duplicated in output of the preproces-
sor, majority of these are #define and #undef that contains
certain debugging options [7].

III. RELATED WORK

The proposed minimization methodology improves static
analysis efficiency and easier code inspection. As per prior
work regarding source code stripping [8], the GCC options are

used to tweak pre-processor directives such that conditional
compilation code is stripped as per enabled configurations.
This helps in generating .c code that has conditional directives
applied to remove the redundant code. Limitation here is that,
the approach is not generalized for complete source code tree.

One alternative can be Cflow [9], [10] a GNU based tool,
which can preprocess input files before analyzing them and
it is integrated with pre-processing option itself, however it
renders difficulty because all the required preprocess options
needs to be copied and pasted for execution of Cflow leading
to incorrectness.

Other alternative can have GCC compilation log and then
tweak the log options for each file with required pre-processor
options using GREP. Based on which the required .c and
.h files with the stripped code based on the pre-processor
options can be generated. In subsequent sections, an approach
is proposed with Makefile integration and subsequent post
processing for easier code inspection and narrowed down
search space.

IV. MINIMIZATION APPROACH

A. Minimization Process

Minimization approach emphasizes on a collection of pro-
cesses which tweaks integrated MakeFile options to produce
compilable minimized code.

1) Definition: The term minimization signifies an efficient
way to get a set of stripped source code, where all the code
which is not required according to .config file is left out.
Often it is observed that it becomes hard to debug, maintain
and verify the code because of macros and preprocessor
directives that are expanded during compilation through GCC.
This difficulty is subdued with our approach where target
source code is free from selected preprocessor options and
macros expansion, thereby reducing source code. The approach
that has been used for minimization of source code follows
the use of GREP command. This filters GCC (used compiler
commands) and generates the source tree consisting of limited
or useful internal components which are available in shortlisted
configuration .config file as dedicated output.

The GCC compiler: In general scenario the source code
modules are compiled with certain GCC options to make them
work [11]. Typical GCC option looks like given snippet of
kernel modules:

gcc -Wp,-MD,
arch/x86/tools/.relocs_32.o.d
-Wall -Wmissing-prototypes
-Wstrict-prototypes -O2
-fomit-frame-pointer -std=gnu89
-I./tools/include -c -o
arch/x86/tools/relocs_32.o
arch/x86/tools/relocs_32.c

For reduction of unused code the above illustrated options are
further added with -E -fdirectives-only to produce
human readable output for easier review, debug, maintain and
verify.

44

2) Problem: The major difficulties with GREP based ap-
proach is illustrated below:

• It requires a complete build in advance to obtain full
set of used GCC commands written in build log.

• The text parsing (grep and gcc commands) is required
and has to be acquired from the build log.

• Finally source code needs to be modified to remove
#include lines.

However with the help of minimization approach code re-
duction can be achieved by executing minimize.py script
which requires no pre-build, no build log parsing and no code
modification.

The minimization approach is implemented using python
script with a stripping technique [12] as below:

• Elimination of configuration conditionals such as
#ifdef #if #endif.

• Preservation of #define macros.
• Preservation of #include sentences.

The stripping is initiated and exercised by initially focusing
on Linux kernel source code through tweaking the GCC
preprocessor options for complete kernel source tree.

Fig. 2: Minimization technique process flow.

3) Solution: As depicted in figure 2, the MakeFile is inher-
ited and CHECK option is tweaked, where existing CHECK
feature in kernel MakeFile is replaced with minimize.py
script, which processes the minimization on the fly with single
execution pass. In make process, minimize.py receives
options that are completely similar as the compile flag of each
source file along with $CHECKFLAGS variable. Below snippet
shows on the fly approach:

$ make C=1 CHECK=minimize.py
CF="-mindir ../minimized-tree/"

The pre-process tweaks the source files with the gcc options
gcc -E -fdirectives-only. This command allows re-
moval of #ifdef, followed by expansion of #include but
preserving #define macros.

The preprocess() function available in minimization tech-
nique, takes gcc options that are passed via Makefile as in-
puts, which then appends gcc -E -fdirectives-only
flags and performs preprocess for target C files.
Next is identification and deletion of the expanded header
contents that is present in used compiler commands once
make command is executed. To remove header con-
tent, line-markers are used as clues that exists in the
preprocessed file of kernel source. For example: #30
"/usr/include/sys/stsname.h" 2.
The stripHeaders() function in minimization script ac-
quires the preprocessed C file and then search for preprocessor
output which is relevant to #include lines and is accom-
panied by deletion of #include contents guided by line-
markers. #include content file name and line number infor-
mation is conveyed in preprocessor output, for example: In fol-
lowing syntax #30 "/usr/include/sys/stsname.h"
2, 30 signifies that this line originates in line 30 of file
utsname.h after having included in another file which is
signified by flag 2. The flag which in this example is indicated
by 2 represents returning to the file. However flag 1 signifies
start of the file.
This stripHeader() algorithm finds the line-markers that
starts with # number file name and if file name is the
target C file then it copies the line and searches for flag.
If flag in the line marker is 2 the algorithm marks it "TO
BE REPLACED" which illustrates ”there is #include line”.
Finally the #include sentences are restored from the original
source code by copying relevant #include lines.
The restoreHeaderInclude() function in minimization
technique carry out header-stripped preprocessed files and
searches for "TO BE REPLACED" mark, followed by com-
paring with the original C file and copy original #include
lines. Once the above steps are accomplished the diff result is
only deletion of the unused code without changing #include
and #define lines.

Fig. 3: Code reduction through minimization technique.

Figure 3 illustrates the minimized code after the make
process where the #ifdef and #if blocks are removed.
The minimization script minimize.py does not support
minimization of include files. The main motive behind this
exclusion is that, a single include file is referred from multiple
C files and resulting minimized include file is not identical for
all C files referring the include file. Consequently, if compile
option for each C file differ, effective definitions at compile
time shall differ too and this differentiate #ifdef blocks in
the included file.

45

B. Minimization methodology

1) Prerequisites: The script which is developed to exercise
minimization approach requires following commands execut-
ing in the host machine:

• diffstat
• diff
• echo
• file
• gcc (Other options that are required to build Linux

Kernel or BusyBox)
• python (2.x and 3.x compatibility is supported by

minimization technique)
2) Usage: Proposed minimization technique needs

following points for execution of script:

1) Navigate to source directory. Example:
$ cd linux-4.4.9

2) Copy minimize.py to kernel directory.
3) Prepare configuration file by tuning the .config file

and storing it in kernel tree directory. The .config
can also be generated by executing make command.
Example:
$ make allnoconfig

4) Add the script directory path. For example:
$ export PATH=$PATH:‘pwd‘

5) Execute make with the following CHECK options:
$ make C=1 CHECK=minimize.py
CF="-mindir ../minimized-tree/"
Parameter value C=1 signifies minimization only for
(re)compilation target files. C=2 is used to perform
minimization for all the source files regardless of
whether they are compilation target or not. Similarly
to specify output directory -mindir option in CF
flag is used.

On other hand minimization is also applicable
for sub target sources. For example: $ make
drivers C=1 CHECK=minimize.py CF="-mindir
../minimized-tree/".
In addition, the script has been modified in such a way that
on successful execution, compilation and minimization will
be performed at the same time and minimized source tree will
be generated under directory ../minimized-tree/. One
thing that needs to be known is that only the target C source
files will be minimized. The other file contents(included
header etc) remain as they are.

V. RESULTS

Minimization technique [12] has been experimented and
evaluated on platforms such as Linux kernel and BusyBox
Tree. The experiment is basically conducted to check reduction
metrics after executing minimization technique on original
code base.

The evaluation of minimization technique has been im-
plemented on hardware specifications: Processor: 3600MHz,
width-64bits, cores-8. Memory: size-7891MiB. Architecture:
x86 64.

It has been performed by comparing different configu-
rations of target source, particularly "allnoconfig" and

"defconfig". Main motivation for using different configu-
ration is to comply minimization with expectations, as follows:

• In case of "allnoconfig" most features are dis-
abled. This signifies substantial amount of disabled
#ifdef causing large amount of code reduction.
Eventually, it leads to higher minimization ratio.

• Similarly, in case of "defconfig", only a part of
features are disabled which leads to less number of
disabled #ifdef resulting in less amount of code
reduction. Hence in case of "defconfig" reduction
is expected to be lower than "allnoconfig".

A. Linux Kernel

Implementation on Linux kernel with "allnoconfig"
and "defconfig" option results in substantial reduction of
unnecessary code has been achieved as shown in figure 4. The
metrics are as follows:

• allnoconfig: 64684 unused lines were removed
from kernel source which constitutes around 22% of
original C code in kernel source.

• defconfig: With this option 103144 unused lines
were removed from kernel source that comprises about
5% of original C code.

Fig. 4: Minimization technique execution on Linux Kernel.

The minimization script minimize.py executes not only
for limited configurations, but also other customized ones
including PREEMPT RT patch.

B. BusyBox Tree

On executing minimization technique in BusyBox tree
having "allnoconfig" and "defconfig" configuration
options, the reduction metrics obtained are as follows:

• allnoconfig: 51 out of 112 compiled C files have
been minimized. 5945 lines (34% of original C code)
unused lines were removed.

• defconfig: 296 out of 505 compiled C files have
been minimized. 20453 lines (11% of original C code)
unused lines were removed.

C. Quantification of other OSS projects

Apart from Linux Kernel and BusyBox tree, quantification
of #ifdef and #if-blocks that could potentially be
removed from open-source project ARCTIC Core source code
[13] as compared to Linux Kernel has been exercised.
The motive is to quantify how much beneficial can Minimiza-
tion approach be for OSS projects such as ARCTIC Core.
The quantification is carried out by finding total number of
#ifdef and #if-block and calculating the ratio with total
lines of code as below:

46

Complexity
Metrics

Linux Kernel BusyBox Tree PREEMPT RT

Original Source Minimized(x86 defconfig) Minimized(allnoconfig) Original Source Minimized(x86 defconfig) Minimized(allnoconfig) Original Minimized

Average Line Score 23 7 5 22 21 19 10 7

50%-ile score 4 3 2 9 9 5 4 3

Highest Score 1846 194 158 283 283 283 530 194

TABLE I: Complexity metrics in original and minimized targets.

Total number of lines in all C files
of Arctic Core source code = 407994 lines.
Total number of #ifdef existing = 12744.
Number of lines that can
be reduced = 12744/407994*100 = 3.12%

Similarly, in Linux Kernel,

Total number of lines in all
C files = 15086494 lines.
Total number of #ifdef existing = 85728.
Number of lines that can be reduced =
85728/15086494*100 = 0.568%

The statistics above indicates that there are more (approxi-
mately 5.5 times higher) chances in Arctic Core of eliminating
unused #ifdef switches. This can be stated as a possible
advantage of Minimization technique, however port implemen-
tation is yet to be realised.

VI. EVALUATION

A. Complexity statistics

To analyze the complexity of ”C” program function, Linux
with PREEMPT RT patch, Linux Kernel source and BusyBox
tree has been evaluated by comparing complexities of C
program functions of minimized and original source code of
these targets respectively. The statistics have been acquired
using ”Complexity” tool [14].
The complexity tool has been used because it helps extensively
in getting an idea of how much effort may be required to
understand and maintain the code. Higher the score, more
complex is the procedure, and minimization shows comparably
lower complexity score which signifies it is easy to read and
maintain [14].

Table I illustrates the measured complexities of original
and minimized targets (Linux kernel, BusyBox tree and PRE-
EMPT RT Kernel) respectively. For Linux kernel and Busy-
Box allnoconfig and x86_defconfig configurations
has been evaluated for minimized code. The minimized code
demonstrate decreased complexity in terms of average line
score, 50%-ile score and highest score in all three targets.

B. Verification for the minimized built binary

The disassembled code (”objdump -d”) matches the bina-
ries that are built from minimized and original source code.
Also the configuration and target has been confirmed based on
Busybox and Linux kernel as below:

• BusyBox-1.24.1: Checked configuration options in-
clude defconfig and allnoconfig.

• Linux kernel-4.4.1: Configuration options verified
allnoconfig.

VII. BENEFITS

A. Verification time and cost improvement

For verification time improvement static analysis has been
implemented by comparing results of original and minimized
kernel source tree using Coccinelle which is a program match-
ing and transformation engine for C code and has many
semantic patches to the new submissions to the mainline kernel
repository [15], [16]. The verification has been implemented by
executing a semantic patch [2] which detects functions whose
declared return value type and actually returned type differs
by scanning source files (*.c and *.h) that are referred from
init/main.c in kernel tree. Results of the static verification
in terms of time parameter are illustrated below:
Average spatch execution time:

Original Kernel Source: 12.37[s]
Minimized Kernel Source: 2.24[s]

The minimized technique provide around 5.5 times faster
analysis as compared to original kernel source tree.

B. False Positive reduction

False positive is a test result which wrongly indicates that
a particular condition or attribute is present. To mitigate such
situation static analysis [15] was conducted on original and
minimized kernel source tree. The number of meaningless
detection were mitigated as follows in the minimized kernel
source. Number of detection using Coccinelle:

Original Kernel Source: 126
Minimized Kernel Source: 82

C. Easy Code Inspection

The minimization technique generates easy to read source
code by implementing following assimilation:

• Unused #ifdef, #if blocks are removed.
• #include and #define lines are preserved.
• Producing same binary file as that of original source

tree.

D. Pruning function call graph:

During analysis, it is required to identify every possible call
path to establish and trace relationship between program and
subroutines, callgraph is a directed graph that represents this
relationship [17]. The call graph displays every function call
regardless of #ifdef switches which results in substantially
complex graph which is difficult to trace. With minimization
technique, call graph display illustrates only used function calls

47

Fig. 5: Call graph for Linux kernel before (left) and after (right)
minimization.

thereby providing minimized search space. Figure 5 illustrates
call graph transformation before and after minimization.

With minimization the number of nodes reduced from 94
to 85 followed by edges which are from 140 to 123 hence a
narrow search space.

E. Extracting minimal subtarget sources:

To easily identify which files are used in source tree for
efficient software walk-through, subtarget can be specified in
the minimized command in result of which minimization will
extract only the used source files. The following snippet shows
addition of subtarget init in minimized command:

$ make init C=2 CHECK=minimize.py
CF="-mindir ../min-init"

This results in extraction of only used source files when
subtarget is defined and is shown in figure 6.

Fig. 6: Depended *.c files of Linux kernel in minimized form.
Actually included *.h files.

VIII. CONCLUSION

The minimization technique helps substantially in improv-
ing the readability of source code which results in efficient
code review and inspection. It helps in narrowing down search

space by giving evidence for unused code. The evaluation of
this technique has been performed on target platform such
as Linux Kernel, BusyBox Tree and PREEMPT RT Ker-
nel. Minimization reduction of approximately 5% is achieved
across the PREEMPT RT Linux kernel, Linux kernel and
the Busybox software. From analysis stand-point, this provide
essential benefits such as reduction in verification time (spatch
execution) from 12.37[s] in original kernel source to 2.24[s] in
minimized kernel, false positive reduction where the number
of detection relating to bugs using Coccinelle (static analysis)
reduces from 126 to 82.
This helps in application domains such as automotive, rail-
ways, industry etc. The future work for minimization technique
includes extension to other compilers such as LLVM [18]
followed by adaption with architecture such as ARM; various
build system e.g. CMake, automake. Binary equivalence is
checked, however formal equivalence between the original and
minimized source code tree is still a future work. The source
code is available at GitHub [12].

REFERENCES

[1] E. Andersen. Busybox. [Online]. Available: https://www.busybox.net
[2] W. Sang. Evolutionary development of a semantic patch using

coccinelle. [Online]. Available: http://lwn.net/Articles/380835/
[3] S. Zhou, J. Al-Kofahi, T. N. Nguyen, C. Kästner, and

S. Nadi, “Extracting configuration knowledge from build files
with symbolic analysis,” in Proceedings of the Third International
Workshop on Release Engineering, ser. RELENG ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 20–23. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820690.2820700

[4] GCC-Team. Gcc, the gnu compiler collection. Free Software
Foundation, Inc. [Online]. Available: https://gcc.gnu.org/

[5] D. Gilbert. (2003, August) The linux 2.4 scsi subsys-
tem howto. Linux Document Project. [Online]. Available:
http://www.tldp.org/HOWTO/SCSI-2.4-HOWTO/kconfig.html

[6] Y. Xuejun, C. Yang, E. Eric, and R. John. Csmith. [Online]. Available:
https://embed.cs.utah.edu/csmith/

[7] GNU-Manual, The C preprocessor, GNU. [Online]. Available:
https://gcc.gnu.org/onlinedocs/cpp/index.html

[8] StackOverflow. Strip linux kernel sources according to .config.
[Online]. Available: http://stackoverflow.com/questions/7353640/strip-
linux-kernel-sources-according-to-config

[9] S. Poznyakoff. Gnu cflow. GNU. [Online]. Available:
http://www.gnu.org/software/cflow/

[10] A. Younis, Y. K. Malaiya, and I. Ray, “Assessing vulnerability
exploitability risk using software properties,” Software Quality
Journal, vol. 24, no. 1, pp. 159–202, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11219-015-9274-6

[11] P. J. Salzman. The linux kernel module programming guide. [Online].
Available: http://www.tldp.org/LDP/lkmpg/2.4/html/x208.html

[12] K. Hashimoto, The Minimization script. [Online]. Available:
https://github.com/Hitachi-India-Pvt-Ltd-RD/minimization

[13] ArcticCore. Arctic core autosar 3.1 repositories. [Online]. Available:
www.arccore.com/resources/repositories

[14] B. Korb. Measure complexity of c source. [Online]. Available:
https://www.gnu.org/software/complexity/manual/complexity.html

[15] G. Muller. (2015, October) Coccinelle. INRIA; LIP6; IRILL. [Online].
Available: http://coccinelle.lip6.fr/documentation.php

[16] V. Nossum. Impact on the linux kernel. [Online]. Available:
http://coccinelle.lip6.fr/impact linux.php

[17] G. Kaszuba. Python call graph. [Online]. Available:
http://pycallgraph.slowchop.com/en/master/guide/intro.html

[18] The llvm compiler infrastructure. [Online]. Available:
http://www.llvm.org

48

Towards Real-Time Operating Systems for
Heterogeneous Reconfigurable Platforms
Marco Pagani, Mauro Marinoni, Alessandro Biondi, Alessio Balsini, Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa, Italy
Email: {name.surname}@sssup.it

Abstract—Heterogeneous platforms equipped with proces-
sors and field programmable gate arrays (FPGA) can be
exploited to accelerate specific functions triggered by soft-
ware activities. Thanks to dynamic partial reconfiguration
(DPR) capabilities of modern FPGAs, such functions can be
programmed at run-time, thus opening a new dimension in
the resource management problems for such platforms. To
properly exploit the DPR feature, novel operating system
supports are needed. With the aim of investigating this
direction, we developed a prototype implementation of a
timesharing mechanism that can be used to dynamically
reconfigure predefined FPGA areas for accelerating different
functions associated with real-time recurrent tasks.

This work reports some preliminary experimental studies
conducted to evaluate the feasibility of the proposed approach,
profile the temporal parameters involved in such systems (e.g.,
reconfiguration and execution times) and identify possible
bottlenecks. The achieved results are encouraging and clearly
show that, in spite of the relatively high reconfiguration times
of FPGAs, a timesharing mechanism can significantly improve
the performance of real-time applications with respect to fully
static approaches.

I. INTRODUCTION

Modern computing architectures integrate heterogeneous
components, like different types of processors and field pro-
grammable gate array (FPGA) modules that can be exploited
to accelerate specific functions to improve the application
performance. FPGAs with dynamic partial reconfiguration
(DPR) capabilities allow the user to reconfigure a portion of
the FPGA at runtime, while the rest of the device continues
to operate [1]. This is especially valuable in mission-critical
systems that cannot be disrupted while some subsystems
are being redefined [2].

Such a DPR feature opens a new scheduling dimension
for systems running on such heterogeneous platforms, giving
the possibility of virtualizing the FPGA, using timesharing
techniques, so that it can be used to accelerate a number
of hardware functions that is higher than that allowed by
static partitioning, thus further improving the application
performance.

Today, however, reconfiguration times are about three
orders of magnitude higher than context switch times in
multitasking, therefore FPGA virtualization can only be
used for a limited set of applications. As shown in the next
section, reconfiguration times significantly reduced in the
recent years and are expected to further decrease in the near
future. This enables the development of a new generation
of operating systems that can manage the FPGA module,
handling both software tasks (SW-tasks) and hardware tasks
(HW-tasks) in a uniform fashion.

To investigate this issue, this paper presents a prototype
implementation of a timesharing mechanism that can be
used to dynamically reconfigure predefined FPGA areas for

accelerating different functions associated with real-time
periodic tasks. The results achieved on such a prototype are
encouraging and clearly show that, in spite of the relatively
high reconfiguration times, a timesharing mechanism on the
FPGA can significantly improve the performance of real-
time applications with respect to a fully static approach.

A. Trend of Partial Reconfiguration Performance

During a partial reconfiguration process, different hard-
ware modules are involved, such as the memory, the bus,
and the FPGA reconfiguration port. As a reconfiguration
bitstream traverses such series of modules, the performance
of the reconfiguration processes is limited by the slowest
element, which represents the DPR bottleneck. Since the
DPR feature was introduced in FPGAs, all such elements
were improved during the years. In the early 2001, Xilinx
developed the Virtex-II FPGA device, which was able to
store data on 64x8 bits DDR memory at 294 MHz and write
the configuration to the logic elements with a peripheral
(denoted as Slave SelectMAP) running at 50 MHz with a
data size of 8 bits. The DPR throughput of this device was
measured as 60 Mbps.

Nowadays, one of the top gamma products is represented
by the Xilinx Zynq Ultrascale+, compatible with DDR4
memory and able to reach a maximum transfer rate of 2400
Mbps. It is connected with the ARM AMBA AXI4 and
its logic elements are configured by an evolution of the
SelectMAP reconfiguration port, called ICAP, running at a
maximum frequency of 200 MHz with a data size of 32
bits.

In addition to the improvements achieved on the memory
and the communication bus, a performance boost from the
memory storage side has also been obtained through a
bitstreams compression [3], moving the actual bottleneck to
the reconfiguration interface.

Estimating the throughput of the reconfiguration process
is not trivial, as it requires a precise ad-hoc orchestration
of each hardware module involved in the process and also
requires the availability of all the hardware devices that are
intended to be compared. Figure 1 shows the evolution of
the FPGA reconfiguration performance during the last years,
obtained by comparing the theoretical maximum throughput
estimations calculated from the device’s datasheets.

Since a higher throughput corresponds to smaller reconfig-
uration times (for a given bitstream size), the positive trend
shown in Figure 1 enables a more dynamic management
of the FPGA, allowing the implementation of virtualization
mechanisms that can provide great advantages to real-time
applications, with respect to fully static approaches.

49

2000 2002 2004 2006 2008 2010 2012 2014 2016

100

300

500

700

900

1100

1300

1500

V
ir

te
x-

II
V

ir
te

x-
II

Pr
o

V
ir

te
x-

4

V
ir

te
x-

5
V

ir
te

x-
6

St
ra

tix
-V

V
ir

te
x-

7

V
ir

te
x-

7-
U

ltr
aS

ca
le Z
yn

q
U

ltr
aS

ca
le

+

Year

T
he

or
et

ic
al

T
hr

ou
gh

pu
t

(M
B

/s
)

Figure 1: Reconfiguration interface throughput evolution.

II. RELATED WORK

The reduction of reconfiguration times resulting from
the FPGA technology evolution allowed exploiting the
advantages of DPR for handling applications with a dynamic
behavior. For example, a HW-task that could only be
statically allocated in the earlier platforms, can now be
reconfigured at runtime to implement mode changes in the
application. More recently, some authors proposed methods
for supporting a reconfiguration that can be periodically
requested by SW-task at every job execution. This approach
is referred to as job-level reconfiguration.

A few approaches have been proposed to provide an
operating system support for DPR in platforms including an
FPGA. The common adopted solution for exchanging data
between SW-task and HW-tasks is through proper software
stubs interacting with the kernel scheduler and handling the
HW-tasks using a dedicated library.

For instance, Lübbers and Platzner [4] proposed the
ReconOS operating system, which extends the classic multi-
threading programming model to hardware activities exe-
cuted on an FPGA. HW-tasks interact with SW-tasks threads
trough a custom developed POSIX-style API, using the same
operating system mechanisms, like semaphores, condition
variables, and message queues. Originally designed for fully-
reconfigurable FPGAs, this solution has then been extended
by the same authors to support partial reconfiguration [5],
with a cooperative multitasking approach dealing with the
contentions on a set of predefined reconfiguration slots. More
recently, Happe et. al. [6] extended the ReconOS execution
environment to provide HW-tasks preemptability. However,
the focus of this work is on hardware enabling technologies,
rather than kernel support mechanisms.

Iturbe et al. [7] presented the R3TOS operating system to
support dynamic task allocation on an FPGA without relying
on predefined slot partitioning and static communication
channels. In their solution, scheduling and allocation of
HW-tasks are performed by a module, called HWuK, which
is also in charge of controlling the programming interface
in an exclusive manner. The authors proposed a HW-task
model, as well as algorithms for scheduling and allocation.
However, a worst-case analysis is not provided and nothing
is said on the schedulability of SW-tasks. Such a dynamic
slot partitioning increases flexibility in the FPGA allocation
at the cost of a higher complexity of the reconfiguration

algorithms, reflecting in higher worst-case reconfiguration
times.

The major problem in such kernel extensions is that
they have been designed to improve the average system
performance, without providing tight worst-case response
times bounds. As a consequence, a model of the FPGA
runtime behavior based on these methods leads to huge
pessimism if used for a real-time scheduling analysis.

In the context of real-time systems, Di Natale and Bini [8]
proposed an optimization method to partition the FPGA area
between slots allocated to HW-tasks and softcores in charge
of executing the remaining tasks. Pellizzoni and Caccamo [9]
considered a more dynamic scenario proposing an allocation
scheme coupled with an admission test to provide real-
time guarantees of applications supporting mode changes.
Other authors [10], [11] presented scheduling algorithms to
manage job-level reconfiguration of the FPGA, but assuming
reconfiguration times negligible or fixed. Dittmann and
Frank [12] addressed the issue of scheduling reconfiguration
requests as a uniprocessor scheduling problem. However,
their model can manage only HW-tasks and it is not suitable
for platforms that also integrate softcores or processors.
Although these works were aimed at providing real-time
bounds, the models used for the reconfiguration infrastruc-
ture are too simplistic to describe the complexity of real
platforms, hence the corresponding approaches cannot be
used for analyzing real implementations with DPR features.

This paper. In summary, none of the presented papers
addressed the problem of modelling the timing behavior of
the reconfiguration interface and the interaction between
SW-tasks and HW-tasks in such a way that they can be
used for a tight real-time analysis. To address this issue, a
prototype implementation of a job-level FPGA management
has been developed to (i) profile the timing behavior
of the reconfiguration port with the purpose of deriving
such a model, (ii) investigate the practical feasibility of
the job-level approach for real-time applications, and (iii)
identify possible bottlenecks. Section V reports the results
of some experimental studies conducted on such a prototype
implementation.

III. SYSTEM DESCRIPTION

This work considers a heterogeneous computing system
consisting of one processor and a DPR-enabled FPGA fabric,
both sharing a common DRAM memory. A representative
block diagram of the considered system is illustrated in
Figure 2.

Possible representative platforms compatible with the
considered system include the Zynq-7000 family by Xilinx,
which provides ARM Cortex A9 processors and a FPGA
fabric ranging from 28K up to 444K logic cells. Two types
of computational activities can run on such a system:
• software tasks (SW-tasks): they are computational

activities running on the processor; and
• hardware tasks (HW-tasks): they are functions imple-

mented in programmable logic and executed on the
FPGA fabric.

SW-tasks can speedup parts of their computation by re-
questing the execution of HW-tasks, which can be considered
as hardware accelerated functions.

50

The area of the FPGA fabric is divided into a reconfig-
urable region and a static region. The reconfigurable region
hosts the HW-tasks while the static region includes support
modules for the HW-tasks, such as communication devices.
The reconfigurable region is partitioned into slots, each
including the same number of logic blocks. A HW-task can
execute only if it has been programmed into a slot. Each
slot can be reconfigured at run-time by means of a FPGA
reconfiguration interface (FRI) and can accommodate at
most one HW-task.

As typical for most real-world platforms (e.g., [13], [14]),
the FRI

(i) can reconfigure a slot without affecting the execution
of the HW-tasks currently programmed in other slots;

(ii) is a peripheral device external to the processor (e.g.,
like a DMA [15]) and hence does not consume
processor cycles to reconfigure slots; and

(iii) can program at most one slot at a time.
To program a given HW-task into a slot, the FRI has to

program all the logic blocks of the slot. This is because
unused logic blocks have to be disabled to “clean” possible
previous configurations. The FRI is characterized by a
throughput ρ, meaning that a time r = bS/ρ is needed to
reconfigure a slot, where bS is the number of logic blocks
in each slot.

Each SW-task uses a set of HW-tasks by alternating
execution phases with suspension phases where the SW-task
is descheduled to wait for the completion of the requested
HW-task. The same HW-task cannot be used by more than
one SW-task. Each SW-task is periodically (or sporadically)
released, thus generating an infinite sequence of execution
instances (denoted as jobs). SW-tasks are also subject to
timing constraints, meaning that each of its jobs must
complete its execution within a deadline relative to its
activation. Figure 3 reports the pseudo-code defining the
implementation skeleton of a SW-task that calls a single
HW-task.

The HW-task is initialized at line 7, where the label
sample_hw_task is used to refer its implementation stored
in memory. At line 15, the SW-task configures the HW-
task by specifying two memory locations: (i) input_ptr,
that contains the input data for the HW-task and (ii)
output_ptr, prepared to contain the output data produced
by the HW-task. Finally, at line 18, the SW-task executes a

Figure 2: Block diagram of the considered system.

1 void sample_software_task()
2 {
3 // Task initialization (executed only once)
4 << Initialization part >>
5

6 // Define an instance of an HW-task
7 Hw_Task hw_task = hw_task_init(sample_hw_task);
8

9 // Task body
10 while (1)
11 {
12 << Software elaborations chunk >>
13

14 // Configure input and output data for the HW-task
15 hw_task_set_args(hw_task, input_ptr, output_ptr);
16

17 // Reconfigure and execute the HW-task
18 rcfg_manager_execute_hw_task(hw_task);
19

20 << Software elaborations chunk >>
21

22 // Wait for the next job
23 suspend_until(period);
24 }
25 }

Figure 3: Pseudocode of a SW-task calling a HW-task.

blocking call that triggers the reconfiguration and executes
the HW-task. The SW-task correspondingly suspends its
execution until the completion of the HW-task. The inter-
task communication mechanism is discussed in the following
section.

IV. SYSTEM PROTOTYPE

This section presents the implementation of a system
prototype to handle HW-tasks under DPR on a real platform.
The prototype has been used to conduct some preliminary
experiments to evaluate the feasibility and the performance
of the proposed approach.

A. Reference platform

The Zynq-7000 SoC family has been chosen as a reference
platform for developing a working prototype of the system.
It includes a dual-core ARM Cortex-A9 processor and a
DPR-enabled FPGA fabric integrated on the same die.

The internal structure of a Zynq SoC comprises two main
functional blocks referred to as processing system (PS) and
programmable logic (PL) [15]. The PS block includes the
ARM Cortex-A9 MPCore, the memory interfaces and the
I/O peripherals, while the PL block includes the FPGA
fabric. The subsystems in the PS are interconnected among
themselves, and to the PL side, through an ARM AMBA AXI
Interconnect.

The Interconnect can be accessed by custom logic
modules (configured on the PL side) through a set of master
and slave AXI interfaces exported by the PS to the PL side.
In particular, the slave interfaces allow hardware modules
hosted on the PL to access the global memory space where
the physical RAM memory is mapped. This is achieved by
implementing an AXI master interface inside the module
logic. Such a master interface can be connected to the
corresponding slave interfaces offered by the PS. In this way
it is possible to implement a shared-memory infrastructure
between the processor and the custom modules deployed
on the PL.

The SoCs of the Zynq family supports dynamic partial
reconfiguration under the control of the software running on

51

the PS. The FPGA fabric included in the PL can be fully or
partially reconfigured via the device configuration interface
(DevC) subsystem. The DevC includes a DMA engine that
can be programmed to transfer bitstreams (i.e., images of
custom modules to be configured onto the FPGA) from the
main memory to the PL. This is achieved by means of the
the processor configuration access port (PCAP).

B. Prototype architecture

In the system prototype, the area of the FPGA fabric
included in the PL is divided into a static region and a
reconfigurable region. The static region contains the static
portion of the communication infrastructure (consisting
in interconnection blocks similar to switches) and other
support modules, while the reconfigurable region hosts
the hardware modules that implement the HW-tasks and a
common communication interface.

Such a common interface is similar to the one adopted by
Sadri et al. [16] and includes (i) an AXI master interface for
accessing the system memory, (ii) an AXI slave interface
through which the HW-task can be controlled by the PS,
and (iii) an interrupt signal to notify the PS when the
computation has been completed. In the current setup, the
AXI master interfaces included in the HW-tasks are attached
to high-performance (HP) ports exported by the PS, while
the AXI slave control interfaces are attached to the PS AXI
master general purpose ports.

The reconfigurable region is partitioned into a fixed
number of slots, each containing an equal number of logic
resources. Each slot can accommodate a single HW-task.
Since bitstreams relocation is not supported by the Xilinx’s
standard tools [13] [14] (i.e., the same bitstream cannot be
used for multiple slots), each HW-task is synthesized as a
set of bitstreams, one for each slot defined in the PL.

C. Software support

The software part of the system prototype has been
developed as a user-level library for the FreeRTOS [17]
operating system. The library facilitates the reconfiguration
and the execution of HW-tasks by providing a simple API
that enables the client programmer to exploit hardware
acceleration.

From the client programmer perspective, the library mod-
els the concept of hardware acceleration with a set of HW-
task objects and a software module named reconfiguration
service. The interface of the reconfiguration service offers
a single function to request the execution of a HW-task (as
shown in Figure 3, line 18). Each HW-task object includes
the following information: (i) a set of bistreams, one for
each slot; (ii) the input parameters (memory pointers or
data); (iii) two optional callbacks (linked to the start and
the completion of the HW-task) that can be used to ensure
memory coherence. The library has been build on top of
the Xilinx software support library [18].

Before executing a HW-task, our implementation flushes
the portion of cache containing the input data prepared by
the SW-task, thus ensuring that the HW-task can access
coherent data from the RAM memory.

Once the input data have been prepared, the SW-task
checks for a vacant slot performing a wait operation on a
FreeRTOS counting semaphore (initialized with the number
of available slots). If all the slots are busy, the calling task

is suspended until one of the slots will be released. When at
least one slot is available, the function searches if any of the
vacant slots already contains the requested HW-task. If none
of the vacant slots contains the required HW-task, one of the
vacant slots is reconfigured with the corresponding bistream.
The calling task is suspended until the reconfiguration has
been completed.

As soon as the requested HW-task is configured, it starts
executing. The calling SW-task suspends its execution until
the completion of the HW-task. When the HW-task com-
pletes, the calling SW-task is resumed and performs a signal
operation on the slots counting semaphore. The completion
is notified to the PS with the interrupt signal predisposed
in the common interface described in Section IV-B. Once
the SW-task is resumed, our implementation invalidates the
cache portion corresponding to the output data produced by
the HW-task, thus ensuring that the processor can access
coherent data.

D. Experimental setup

To perform a set of experiments, the system prototype has
been deployed on a ZYBO board that includes the Z-7010
Zynq SoC and 512 MB of DDR3 memory. The ARM core
included in the PS of the Z-7010 runs at 650 MHz, while
the clock frequency for the PL is set to 100 MHz.

In the experimental setup, 50% of the logic resources of
the PL are allocated to the reconfigurable partition, while
the remaining 50% are allocated to the static part. The
reconfigurable partition is divided into two slots of equal
size. Each slot contains half of the resources available in the
reconfigurable partition. Since both slots contain an equal
number of resource, the corresponding bitstreams (resulting
from the logic synthesis of HW-task in each slot) have
the same size, equal to 338 KB. Considering the size of
the RAM memory available on the platform (512 MB), a
large number of partial bitstreams can be stored without any
relevant impact on the available memory.

V. EXPERIMENTAL RESULTS

This section reports the results of a set of experiments
that have been conducted to evaluate the proposed approach
on a case study application.

To test the system, four standard algorithms have been
implemented as both HW-tasks and equivalent software
procedures. The test set includes tree simple implementations
of image convolution filters (Sobel, Sharp and Blur) and an
integer matrix multiplier (referred to as Mult). The HW-tasks
have been designed with the Vivado high-level synthesis
tool, while the software versions have been implemented in
the C language.

The Blur and the Sharp filters have been configured to
process images of size 800× 600 pixels, while the Sobel
filter has been configured to process images of size 640×480
pixels. All the three filters process images with 24-bit color
depth. The matrix multiplier processes matrices of size
64× 64 elements.

A. Speed-up evaluation

A first experiment has been carried out to measure the
speed-up factors achievable by the HW-task implementation
of the four algorithms used in the case study. For each of
such algorithms, the execution time of the corresponding

52

HW-task has been compared with the equivalent full software
implementation for more 1000 runs. The results of this
test are reported in Table I. The minimum speedup has
been computed as the ratio between the minimum observed
execution time of the software implementation and the
maximum observed execution time for the HW-task.

As can be seen from the table, even though the FPGA is
running at a lower clock frequency (100 MHz) compared
to the processor (650 MHz), HW-tasks provide a consistent
speed-up ranging from 2.5 to 15.2. The small differences
between average and worst-case execution times can be
explained by the fact that the functions are essentially stream
processing operations with no branches depending on the
input data.

Algorithm Mult Sobel Sharp Blur
Observed HW
execution times

Average [ms] 0.785 12.710 24.631 24.628
Longest [ms] 0.785 12.712 24.633 24.629

Observed SW
execution times

Average [ms] 1.980 115.518 304.975 374.785
Longest [ms] 2.017 115.521 304.994 374.811

Speedup Average 2.523 9.089 12.381 15.217
Minimum 2.515 9.087 12.380 15.216

Table I: Speed-up evaluation.

B. Response-time evaluation

A second experiment has been performed to evaluate the
system behavior in a scenario where the number of HW-
tasks to be executed exceeds the number of slots available
on the FPGA fabric. Please note that such a scenario is
only possible by exploiting DPR. The task set used for this
experiment consists of four periodic SW-tasks with implicit
deadline (i.e., deadlines equal to task periods). Each SW-task
requests the execution of the HW-task corresponding to the
algorithm of the case study (Section V). SW-tasks priorities
are assigned according to the Rate-Monotonic algorithm. As
mentioned in Section IV-C, each SW-task executes a flush
operation (denoted as cache flush) before calling the HW-
task and invalidates the cache when the HW-task completes
(cache invalidate operation).

Table II reports the periods of the SW-tasks, the execution
times of the cache flush and cache invalidate operations,
and the response-times of the SW-tasks observed in 8 hours
of execution.

Based on the collected data, it is worth observing that the
considered application cannot be scheduled without DPR
for the following reasons:
• due to the large execution times (see Table I), the

application cannot be scheduled with a full software
implementation;

• since the FPGA fabric has only two slots, it is not
possible to statically configure all the four HW-tasks
of the application;

• if the algorithms that cannot be allocated on the FPGA
as HW-tasks are executed on the processor as pure
software implementation, any possible combination of
HW-tasks and software implementations leads to a non
schedulable system.

This example shows that virtualizing the FPGA by the
proposed timesharing mechanism can effectively improve
the schedulability of applications on current heterogenous
platforms.

The longest observed response time for the Mult SW-task
shows that, even if this task has the highest priority in the
system, it may experience high delays due to slot contention
with other HW-tasks issued by lower-priority SW-tasks.

This happens because of the FIFO ordering of the
semaphores used in the implementation. The execution of
HW-tasks can hence be delayed by the reconfiguration and
the execution of all the HW-tasks requested by other SW-
tasks (independently of their priority). The analysis of such
a delay is beyond the scope of this paper.

For some applications, the response-times can be im-
proved by adopting different scheduling policies (i.e.,
different from FIFO) to manage HW-tasks. However, since
HW-tasks execute in a non-preemptive manner, the largest
execution time of the HW-tasks will always impose a lower-
bound for the slot contention delay.

SW-task Mult Sobel Sharp Blur
Period [ms] 30 50 80 100
Cache flush [ms] 0.030 1.123 1.754 1.754
Cache invalidate [ms] 0.017 1.240 1.939 1.939
Observed
Response time

Average [ms] 3.829 17.603 31.416 35.624
Longest [ms] 24.017 20.418 33.086 43.160

Table II: Hardware accelerated task-set.

2.8 2.85 2.9 2.95 3
0

1

2

3

4

·105

Reconfiguration time [ms]

O
cc

ur
re

nc
es

4 tasks

2.8 2.85 2.9 2.95 3
0

0.25
0.5

0.75
1

1.25
·105

Reconfiguration time [ms]

O
cc

ur
re

nc
es

4 tasks + MemDisturb

Figure 4: Distribution of reconfiguration times.

C. Reconfiguration times profiling

Finally, a third experiment has been conducted to profile
reconfiguration times. The reconfiguration of the FPGA
fabric is performed by the DevC subsystem described in
Section IV-A. Such a module transfers bitstreams from the
main memory to the PL configuration memory trough the
PCAP port, which exploits the DevC DMA engine. The
DMA accesses the system memory (where bistreams are
stored) through an AXI master interface connected to the
internal AXI Interconnect. Unlike the processor and the HW-
tasks connected to the AXI slave ports, the DevC subsystem
is not directly connected to the DRAM controller. In fact,

53

it contends the access to the DRAM controller with other
peripherals in the PS side.

In general, the throughput achievable by the DevC DMA
depends on the traffic conditions on the AXI Interconnect,
and the load on the DRAM controller. Modeling the bus
contention on the AXI Interconnect and evaluating its
performance goes beyond the scope of this paper. However,
a first test was carried out to evaluate how a memory
intensive SW-task interferes with the DevC, and hence
affects reconfiguration times.

The task set used for this test includes the four tasks
described in the experiment of Section V-B, and an addi-
tional memory intensive software activity (referred to as
MemDisturb) continuously running in background without
invoking HW-tasks. The MemDisturb software activity
performs memory transfers between two memory buffers
of 32 MB. The sizes of the buffers exceed the size of the
processor L2 cache. Therefore, such a memory transfers
generate a continuous stream of request to the DRAM
controller that simulates a memory intensive SW-task.

Table III compares the reconfiguration times with and
without the MemDisturb activity. Figure 4 illustrates the
reconfiguration times distribution in both cases. The results
of this experiment show that, despite a memory intensive
software activity can affect reconfiguration times, its impact
is very small and in the order of 0.1 ms. We believe that this
result, although preliminary and far from being complete,
is encouraging for exploiting partial reconfiguration in real-
time systems, where bounded reconfiguration delays are
essential to guarantee the system predictability. Given the
size of the partial bistreams (338 KB), the average observed
throughput for the DevC amounts to 117 MB/s without
MemDisturb and to 113 MB/s with MemDisturb.

Experiment Reconfiguration time [ms]
Min Avg Max

4 tasks (Section V-B) 2.791 2.820 2.846
4 tasks + MemDisturb 2.795 2.910 3.012

Table III: Observed reconfiguration times.

VI. CONCLUSIONS

This work presented an experimental study aimed at
evaluating the use of dynamic partial reconfiguration for
implementing a timesharing mechanism to virtualize the
FPGA resource in heterogeneous platforms that also include
a processor. Hence, an application consists of both software
computational activities (running on the processor) and
hardware modules implemented in programmable logic to
be dynamically allocated on the FPGA, as requested by the
software tasks. The temporal parameters involved in such
a system (e.g., reconfiguration and execution times) have
been profiled for a case study application. The achieved
results are encouraging and clearly show that, in spite
of the relatively high reconfiguration times of FPGAs,
a timesharing mechanism can significantly improve the
performance of real-time applications with respect to a fully
static approach.

Besides the encouraging results, the experimental studies
highlighted two major bottlenecks of today’s platforms.
First, all the evaluated FPGA platforms provide only a
single reconfiguration interface, which is then contended

by all the HW-tasks. Second, when the main memory
is used to store both data and bistreams, an additional
contention there exists on the Interconnect and the DRAM
controller, which introduces further complications in the
timing analysis. As a consequence, the presence of memories
dedicated to bitstream storage would significantly improve
both performance and predictability.

Future challenges include (i) the design and the analysis
of scheduling algorithms for HW-tasks, (ii) the inves-
tigation of partitioning approaches for the FPGA area
to limit contention on the reconfiguration interface, (iii)
the implementation of improved inter-task communication
mechanisms, and (iv) the design of real-time operating
system mechanisms to support such a dynamic approach.

REFERENCES

[1] M. Goosman, N. Dorairaj, and E. Shiflet. (2006) How to take
advantage of partial reconfiguration in fpga designs. [Online].
Available: www.eetimes.com/document.asp?doc id=1274489

[2] S. Altmeyer and G. Gebhard, “WCET analysis for preemptive
scheduling,” in Proceedings of the 8th Int. Workshop on Worst-Case
Execution Time (WCET) Analysis, July 2008.

[3] R. Stefan and S. D. Cotofana, “Bitstream compression techniques for
virtex 4 FPGAs,” in International Conference on Field Programmable
Logic and Applications (FPL 2008), 2008.

[4] E. Lübbers and M. Platzner, “Reconos: Multithreaded programming
for reconfigurable computers,” ACM Transactions on Embedded
Computing Systems, vol. 9, no. 1, pp. 8:1–8:33, October 2009.

[5] ——, “Cooperative multithreading in dynamically reconfigurable
systems.” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), August 2009.

[6] M. Happe, A. Traber, and A. Keller, Proceedings of the 11th
International Symposium on Applied Reconfigurable Computing
(ARC). Springer International Publishing, April 2015, ch. in
Preemptive Hardware Multitasking in ReconOS, pp. 79–90.

[7] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, and T. Arslan,
“Microkernel architecture and hardware abstraction layer of a reliable
reconfigurable real-time operating system (r3tos),” ACM Transactions
on Reconfigurable Technology and Systems, vol. 8, no. 1, pp. 5:1–5:35,
March 2015.

[8] M. D. Natale and E. Bini, “Optimizing the fpga implementation of hrt
systems,” in Proceedings of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS), April 2007.

[9] R. Pellizzoni and M. Caccamo, “Real-time management of hardware
and software tasks for fpga-based embedded systems,” IEEE Trans-
actions on Computers, vol. 56, no. 12, pp. 1666–1680, December
2007.

[10] K. Danne and M. Platzner, “Periodic real-time scheduling for fpga
computers,” in Proceedings of the 3rd International Workshop on
Intelligent Solutions in Embedded System, May 2005.

[11] S. Saha, A. Sarkar, and A. Chakrabarti, “Scheduling dynamic hard
real-time task sets on fully and partially reconfigurable platforms,”
IEEE Embedded Systems Letters, vol. 7, no. 1, pp. 23–26, March
2015.

[12] F. Dittmann and S. Frank, “Hard real-time reconfiguration port
scheduling,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE), April 2007.

[13] D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools
and Applications. Springer-Verlag New York, February 2012.

[14] Vivado Design Suite User Guide: Partial Reconfiguration, Xilinx,
2015, v2015.4.

[15] Zynq-7000 AP SoC Technical Reference Manual, Xilinx, 2015, v1.10.
[16] M. Sadri, C. Weis, N. Wehn, and L. Benini, “Energy and performance

exploration of accelerator coherency port using xilinx zynq,” in
Proceedings of the 10th FPGAworld Conference, September 2013.

[17] R. T. E. Ltd. Freertos real-time operating system. [Online]. Available:
http://www.freertos.org/

[18] OS and Libraries Document Collection, Xilinx, 2015, v2015.3.

54

An implementation of the flexible spin-lock model
in ERIKA Enterprise on a multi-core platform

Sara Afshar1, Maikel P.W. Verwielen2, Paolo Gai3, Moris Behnam1, Reinder J. Bril1,2
1Mälardalen University, Västerås, Sweden

2Technische Universiteit Eindhoven, Eindhoven, Netherlands
3 Evidence Srl, Pisa, Italy

Email: {sara.afshar, moris.behnam}@mdh.se, pj@evidence.eu.com, r.j.bril@tue.nl

Abstract—Recently, the flexible spin-lock model (FSLM) has
been introduced, unifying spin-based and suspension-based re-
source sharing protocols for real-time multiprocessor platforms
by explicitly identifying the spin-lock priority as a parameter.
Earlier work focused on the definition of a protocol for FSLM
and its corresponding analysis under the assumption that various
types of implementation overhead could be ignored.

In this paper, we briefly describe an implementation of the
FSLM for a selected range of spin-lock priorities in the ERIKA
Enterprise RTOS as instantiated on an Altera Nios II platform
using 4 soft-core processors. Moreover, we present measurement
results for the protocol specific overhead of FSLM as well as the
natively provided multiprocessor stack resource policy (MSRP).
Given these results, we are now in a position to judge when it
is advantageous to use either MSRP or FMLP for our system
set-up for given global resource access times of tasks.

I. INTRODUCTION

In traditional lock-based resource-sharing protocols for real-
time multiprocessor platforms, a task that is blocked on a
global resource either performs a non-preemptive busy wait,
i.e. spins, or releases the processor, i.e. suspends. The flexible
spin-lock model (FSLM) [1] unifies these two traditional
approaches. By viewing suspension on a core as spinning
on a priority lower than any other priority on a core, the
spin-lock priority can be treated as a parameter. Spin-based
protocols, such as the multiprocessor stack resource policy
(MSRP) [15], can be viewed to use the highest priority (HP)
as spin-lock priority, and suspension-based protocols, such as
the multiprocessor priority ceiling protocol (MPCP) [21], to
use the lowest priority (LP). By being able to use an arbitrary
priority for spinning rather than the two extremes, the FSLM
is expected to improve schedulability.

The resource sharing rules for the FSLM have been defined
in [1], assuming partitioned, fixed-priority preemptive schedul-
ing, FIFO-based global-resource queues and both non-nested
as well as non-preemptive global resource access, similar
to MSRP and MPCP. These rules are complemented with
schedulability analysis for specific spin-lock priorities, such
as the HP , the LP , and the highest resource ceiling of global
resources on a core, also called the ceiling priority (CP).

This work is supported by the Swedish Foundation for Strategic Research
via the research program PRESS, the Swedish Knowledge Foundation and
ARTEMIS Joint Undertaking project EMC2 (grant agreement 621429).

Initial simulation results based on the developed theory [2]
confirm the expectations with respect to improved schedula-
bility. In particular, CP turned out to significantly improve
schedulability compared to HP . The schedulability analysis
developed in [1] does not take implementation overhead into
account, however. The simulation results may therefore be
biased.

In this paper, we present an implementation of the FSLM
for a selected range of spin-lock priorities [26], in particular
the range from CP until HP in Erika Enterprise [13],
as instantiated on an Altera DE0 board from Terasic [24]
using 4 soft-core processors. Erika Enterprise is a free of
charge, open-source real-time operating system (RTOS) im-
plementation, which was originally developed for small-scale
OSEK/VDX [18] compatible embedded systems for the auto-
motive market. Erika Enterprise has been ported to the Altera
Nios II environment [11], supporting multiple soft-cores. We
have ported Erika Enterprise to the Altera DE0 board. Based
on our implementation, we compare the overhead of HP , as
originally implemented in Erika Enterprise, and CP .

The remainder of this paper is organized as follows. In
Section II, we briefly present related work. Next, in Section III,
we present our real-time scheduling model and system. Sec-
tions IV and V describe the design and implementation of
FSLM in Erika Enterprise. Section VI describes the experi-
ments performed and briefly presents the measurement results.
We conclude the paper in Section VII.

II. RELATED WORK

In [17], two-phase waiting algorithms [19] are investigated
through analysis and experiments, with the aim to minimize
the cost of synchronization in large-scale multiprocessors. A
two-phase waiting protocol is a combination of a spin-based
and a suspension-based protocol. A task first spins for a
statically determined amount of time, and subsequently blocks
if further waiting is required. The MIT Alewife distributed-
memory multiprocessor [3], which supports a shared-memory
programming model, has been used for experimental mea-
surements. The paper suggests to use knowledge about wait-
time characteristics and the cost of blocking (i.e. the context-
switching overhead) to set the maximum spinning time.

In [14], an experimental evaluation of MPCP and MSRP
is presented based on a Janus dual-processor architecture. For

55

random period generation of tasks the results show MSRP to
be better than MPCP, although the results are not conclusive.
For a more application-specific architecture representing a
typical automotive application, MSRP has shown to clearly
perform better. Moreover, they observed that MSRP is signif-
icantly simpler to implement, has lower overhead, and can
achieve RAM memory optimization. Similar to this work,
interrupt-based inter-processor mechanisms have been used
for communication among tasks on different processors and
atomic test-and-set mechanisms have been used for shared
memory.

A first implementation of the PCP [22], SRP [5], M-PCP
(an extension of PCP for multiprocessors), D-PCP [20] (a
variant of MPCP used for distributed systems) and FMLP [6]
synchronization protocols has been discussed in [7]. FMLP
uses suspension-based mechanism for access to long resources
and spin-based mechanism for access to short resources. A
LITMUSRT [10] platform has been selected for implementa-
tion which is a real-time extension of Linux operating system.
In [8] a schedulability comparison has been made among
MPCP, D-PCP and FMLP considering runtime overheads on
LITMUSRT . The experiments showed that the spin-based
FMLP variant always had the best performance. The results
confirmed their earlier results in [9] regarding preferability of
spin-based approach to suspension-based approach under EDF
scheduling.

This work complements earlier work by evaluating preempt-
able spinning, as supported by FSLM, through experimental
measurements.

III. SCHEDULING MODEL AND SYSTEM

In this section we describe our real-time scheduling model,
the Altera DE0 board and development environment, and the
Erika Enterprise and accompanying tool-suite RT-Druid.

A. Real-time scheduling model

We assume a set P of m identical cores P0, . . . , Pm−1,
a set T of n sporadic tasks τ0, . . . , τn−1, and a set R of
resources other than cores used by tasks. Tasks are statically
allocated to cores, assigned unique priorities on each core, and
scheduled using fixed-priority pre-emptive scheduling. Tasks
do not suspend themselves.

Resources are categorized as private, local, or global based
on task usage and task allocation. Private resources are used by
a single task. Local resources are used by multiple tasks, and
all those tasks are allocated to the same core. Global resources
are also used by multiple tasks, but that set of tasks is allocated
to at least two different cores. In this paper, the focus will be
on global resources. Example 1 illustrates a configuration with
a global resource.

Example 1. Consider a set P of two cores P0 and P1, a set
T of 4 tasks τ0, . . . τ3, and a singleton set R of one resource
R. As also indicated in Table I, R is used by tasks τ0, τ1, and
τ3. Task τ3 is allocated to core P0 and tasks τ0, τ1, and τ2 to
P1. As a result, R becomes a global resource.

resource usage allocation
τ3 R P0

τ2 P1

τ1 R P1

τ0 R P1

TABLE I: Resource usage and allocation of tasks of T .

Moreover, we assume that the priority πi of task τi is higher
than the priority πj of task τj if and only if i > j. An activation
of a task is also called a job. We assume constrained deadlines,
i.e. deadlines of tasks equal or smaller than their periods.

For FSLM, we assume FIFO-based resource queues and
both non-nested as well as non-preemptive global resource
access, similar to MSRP and MPCP. When a task is blocked on
a global resource, it will perform a busy-wait on a core-specific
spin-lock priority. That spin-lock priority is determined stati-
cally, and may range from the lowest to the highest priority
on the core. In this paper, we assume the spin-lock priority
is taken from the range [CP ,HP], where HP represents the
highest priority on the core and CP represents the highest
resource ceiling of the global resources used on that core.
Example 2 illustrates FSLM for the configuration described
in Example 1.

Example 2. For the configuration of Example 1, the highest
resource ceiling of the global resources used on core P0 is
equal to the priority π3 of task τ3. Similarly, the highest
resource ceiling on P1 is equal to the priority π1 of task τ1.

For the same arrival pattern of tasks, Figure 1 illustrates
FSLM for two different spin-lock priority assignments; one
conform MSRP (Figure 1(a)), i.e. using HP , and one using
CP on each core (Figure 1(b)). Because task τ3 accesses
the global resource R in the time interval [1, 8), task τ0
starts spinning upon its resource request to R at time 3 for
both cases. Spinning is performed non-preemptively for MSRP
(Figure 1(a)), i.e. using HP , and preemptively when using CP
(Figure 1(b)). Using HP , τ2 is blocked from its arrival at
time 6 until task τ0 releases the global resource R at time 12.
Conversely, using CP , task τ2 can preempt τ0 at time 6 during
spinning. Task τ2 can execute till time 8, when τ3 releases R,
τ0 is granted R, and τ0 subsequently accesses R till time 12.
When task τ0 releases R at time 12, τ2 is resumed.

This example shows that tasks with a priority higher than
the spin-lock priority, e.g. τ2 on P1, experience less blocking
due to global resource arbitration under FSLM using CP than
using HP as spin-lock priority.

By restricting the range to [CP ,HP], the protocol maintains
two attractive properties of MSRP. Firstly, at any moment in
time, at most one job on a core can have a pending request
for or access to a global resource. As a result, a job that is
spinning on a global resource will have to wait for at most
m− 1 jobs on remote cores. Consequently, the length of any
global resource queue, even the sum of the length of all global
resource queues, is at most m−1. Secondly, any job of a task

56

Fig. 1: Timelines for the same arrival pattern of tasks of T , illustrating the FSLM for an assignment of (a) HP (conform
MSRP) and (b) CP to the spin-lock priorities of each core.

on a core can be blocked at most once due to global resource
requests of lower priority tasks on that core. Another attractive
property of MSRP, i.e. the ability to use a single stack for all
tasks on a core, is no longer maintained, however, as illustrated
by the preemption of task τ2 by τ0 in Figure 1(b) at time 8.

B. Altera DE0 board and development environment

The Altera DE0 development and education board
is equipped with the Altera Cyclone III 3C16 field-
programmable gate array (FPGA) device, which offers 15,408
logical elements (LEs). The FPGA device can be configured
by means of Altera’s Quartus II Web Edition Software and
Altera’s Nios II Embedded design suite.

Using Altera’s tools, we created a hardware design consist-
ing of 4 Nios II processors (cores) and added internal (RAM)
and external (SDRAM) memory, a mutex (to support mutual
exclusive access), inter-core interrupt communication between
every pair of cores, and performance counters (to enable high-
resolution measurements) to the design, amongst others.

The resulting multi-core platform can communicate through
a shared memory interconnect [23] and via inter-core in-
terrupts. The connections for the inter-core interrupts are
illustrated in Figure 2.
C. Erika Enterprise and RT-Druid

As mentioned above, Erika Enterprise was originally de-
veloped for OSEK/VDX-based systems. We used the multi-
core extension [11] of the so-called “multistack” configuration
of the “BCC2” conformance class of the OO (OSEK OS)
kernel [13] of Erika Enterprise. RT-Druid [12] is a tool-suite
developed for Erika Enterprise providing a system modeler,
code-generator plugins for the open-source Eclipse frame-
work [25] and schedulability analysis plug-ins. The RT-Druid
Modeler is used for configuring both the application as well as
Erika Enterprise, using the OSEK Implementation Language
(OIL).

Both Erika Enterprise as well as RT-Druid have been
extended for multiprocessor systems. To that end, the standard

Fig. 2: The connections for inter-core interrupts

OIL has been extended to facilitate allocation of tasks to cores,
amongst others.

Below, we first briefly describe the structure of a multi-core
Erika Enterprise and its mapping on the Altera DE0 board.
Next, we describe some key characteristics of Erika Enterprise.

1) Structure and mapping: The multi-core Erika Enterprise
is a kernel-layer on top of Altera’s hardware abstraction
layer (HAL); see Figure 3. For our instantiation, the kernel-
layer consists of approximately 20 standard files and 3 files
generated per core by RT-Druid. The input for RT-Druid is a
CONFIG.OIL file. The actual application is described by a
set op files in the API-layer next to the CONFIG.OIL file.

2) Characteristics of Erika Enterprise: Erika Enterprise
supports MSRP. To that end, it maintains a data structure in
shared memory. When a task is busy waiting for a global
resource, it spins on, i.e. polls, data in shared memory using
the G-T algorithm [16].

Erika Enterprise also support event-based communication
between cores using inter-core interrupts. As an example, a
remote activation of a task can be accomplished through a

57

Fig. 3: Erika Enterprise, Altera’s HAL, application and map-
ping

so-called remote notification (RN). The sending core builds
an RN message in shared memory and subsequently raises an
interrupt at the receiving core. The interrupt handler of the
receiving core inspects and processes the RN message asyn-
chronously. Message buffers for RN require mutual exclusion.

IV. DESIGN OF THE FLEXIBLE SPIN-LOCK MODEL

For the implementation of FSLM, five main aspects need to
be considered:

1) Static selection of the spin-lock priority per core;
2) Dynamic change of the system ceiling to the spin-lock

priority when a task blocks on a global resource;
3) Notification of a (blocked) task on a remote core that a

global resource became available, when applicable;
4) Preemption of a higher priority task upon global re-

source access, when applicable.
5) Resumption of the preempted, higher priority task, when

applicable.
We consider each of these aspects in more detail below.

A. Selection of spin-lock priorities

On each core where one or more tasks use a global resource,
a spin-lock priority must be selected. In this paper, we only
consider spin-lock priorities from the range [CP ,HP], and
we therefore need to derive CP and HP from the system
configuration. RT-Druid therefore needs to be extended with
means (i) to determine CP and HP from the CONFIG.OIL
file, (ii) to interact with a user to allow selection of spin-lock
priorities per core, and (iii) to configure the kernel-layer of
the RTOS with the spin-lock priorities.

B. Blocking on a global resource

When a task blocks on a global resource, the system ceiling
on that core is raised to the spin-lock priority and the task
starts spinning. This is illustrated in Figure 1(b) at time 3.
Raising the system ceiling upon blocking is similar to the
regular behavior upon a local resource access, which is based
on the stack resource policy (SRP) [5].

C. Notification of a (blocked) task

Unlike MSRP, a task may be preempted during spinning,
as illustrated in Figure 1(b) at time 6. As a result, the
blocked task may not be aware that the global resource is
released and becomes available. The design therefore has to
be adapted from a polling-approach by the spinning task to
a notification-approach by the releasing task. The existing
remote notification mechanism present in Erika Enterprise can
be used for FSLM as well. The first blocked job in the FIFO-
queue of a global resource R, if any, will therefore be notified
upon release of R by means of an interrupt, as illustrated in
Figure 1(b) at time 8.

D. Preemption of the preempting task

Whenever a task τs spinning on a global resource is
preempted by a task τp with a higher priority than the spin-
lock priority, the preempting task τp must be preempted when
the τs is granted the resource, as illustrated in Figure 1(b) at
time 8. Although this gives rise to a preemption that disallows
tasks to use a single stack, this behavior is supported by Erika
Enterprise.

E. Resumption of the preempting task

When the task releases a global resource, it is checked
whether or not the task preempted a task with a higher priority
than the spin-lock was executing at the moment the resource
was granted. In the former case, the preempted task is resumed,
as illustrated in Figure 1(b) at time 12. In any case, the system
ceiling is adapted, removing the traces of the request and
access to the global resource.

V. IMPLEMENTATION OF THE FLEXIBLE SPIN-LOCK
MODEL

In this section, we first briefly present the implementation of
MSRP in Erika Enterprise. Next, we will present the necessary
changes for the generalization of MSRP to FSLM for the
restricted range [CP ,HP] of spin-lock priorities.
A. Existing Implementation of MSRP in Erika Enterprise

In MSRP, a task requiring access to a global resource busy
waits non-preemptively until (i) it is the first in line (first-in-
first-out) waiting for the resource and (ii) the resource is free.
Because spinning in MSRP is non-preemptive, at most one
task per core can spin on a global resource. It is therefore
also possible to associate a FIFO-queue of cores with every
global resource.

To implement MSRP, Erika Enterprise essentially maintains
a distributed polling-bit queue for each global resource (G-
T algorithm [16]), i.e. a (non-empty) FIFO queue of polling

58

(a) MSRP (b) FSLM using CP as spin-lock priority on both P0 and P1

Fig. 4: Synchronization protocol specific overhead under MSRP and FSLM

bits used by cores that want to access that global resource.
The polling bits are stored as global data and the addresses
of queue elements are stored in local data. To enable access
to the queue, the tail of the queue is also stored as global
data, containing the address of the global polling bit that needs
to be inspected by the next core that requires access to the
global resource. Access to the tail of the queue requires mutual
exclusion. Releasing a global resource requires toggling the
related polling bit only.

B. From MSRP to FSLM in Erika Enterprise
In the MSRP implementation of Erika Enterprise, a task

that is accessing a global resource is unaware of the fact
that another task on a remote core may (or may not) have
requested the same resource, i.e. it is unaware of successors
in the polling-bit queue. A task that is waiting for a global
resource to become available is aware of the task in front of
it in the polling-bit queue.

To facilitate notification for FSLM, the releasing task must
know which task/core needs to be granted the global resource.
The “knowledge” of the order in the queue must therefore
become bi-directional. Rather than using a global polling-bit,
we therefore used a global field representing both locked and
unlocked as well as the task to be notified upon release of
the global resource, if any. This global field requires mutual
exclusive access. To reduce contention on shared data, we
implemented an additional local bit for spinning.

Upon a global resource release, a task first checks whether
or not tasks are blocked on that resource. The resource is
subsequently released. In case tasks are blocked, the first in
line, i.e. the successor of the releasing task, is notified through
a dedicated remote notification (RN).

When an RN is received, it is first checked if the task
blocked on the global resource is still spinning or has been
preempted by a (or actually one or more) task(s) with a higher
priority than the spin-lock priority. In the former case, the
system ceiling is raised to reflect non-preemptive execution
and the local bit is toggled, enabling the spinning task to
access the global resource. In the latter case, the currently
executing task must be preempted in addition, and the blocked
task allowed to continue.

When a task has released a global resource, it has to check
whether or not its access to the global resource induced the
preemption of a task. In the former case, the preempted task
(or any other task with a yet higher priority), is allowed to be
resumed (or started).

For the original implementation of MSRP, a single low-
level spin-lock is used for both the access to the shared data
structures for global resources as well the RN message buffers.
For the implementation of FSLM we added a low-level spin-
lock, allowing parallel access to these two types of shared
data.

VI. EXPERIMENTAL EVALUATIONS

We performed a comparative evaluation of the implementa-
tion of MSRP and FSLM by measuring the overhead of both
protocols. Overhead occurs at three specific moments during
the protocols (see also Figure 4), i.e.

A) upon global resource request,
B) when the access to a global resource is granted, and
C) when a global resource is released.

A global resource request requires mutual exclusive access to
the shared data structures for global resources for both MSRP
and FSLM. Because all m cores may simultaneously perform
a request to that data, a core may have to wait on m−1 other
cores before it is granted access. Under FSLM, the release of
a global resource also requires mutual exclusive access to that
shared data. Under MSRP, releasing a resource only requires
toggling a bit.

Under FSLM, releasing a resource may require the submis-
sion of a RN, and therefor mutual exclusive access to the RN
message buffers. Similarly, access to the RN message buffers
is required when a global resource is granted to a task while it
is waiting. Upon release, all cores, except the waiting core(s),
may require access to the RN message buffers, i.e. at most
m − 1. Upon access, all cores may require access to the RN
message buffers.

Measurements using performance counter cores [4] were
performed for two scenarios, one without preemption during
spinning (from time 0 until time 8 in Figures 4(a) and 4(b)) and
one with preemption during spinning (from time 10 onwards

59

in Figures 4(a) and 4(b)). We have repeated the experiments
100 times. The measurement results are given in Table II.

MSRP FSLM
Request A 160 + 79(a) A 189 + 146(a)

Access B 18 B1 127 + 538(b)

B2 140 + 538(b) + 700(c)

Release C 255 C1 322 + 94(a) + 560(b)

C2 255 + 94(a)

C3 255 + 94(a) + 700(c)

TABLE II: Measurement results in cycles. The superscripts
(a) and (b) are added to the values of the worst-case critical
section length for access to shared data structures for global
resources and to the RN message buffers, respectively. The
superscript (c) denotes context-switching overhead.

From these results, we conclude that the overhead for a
global resource request is roughly the same for MSRP and
FSLM. Compared to MSRP, the overhead for a global resource
access and a global resource release is significantly higher for
FSLM, however. As indicated in the table, this is mainly due
to additional logic, reading and writing RN message buffers,
and the additional context switches.

As described in Section III, FSLM reduces the blocking
time due to spinning for tasks with a higher priority than the
spin-lock priority. Based on our measurements, we are now in
a position to determine when to use MSRP or FSLM for those
tasks. The sum of the additional overheads for MSRP is 512
cycles, whereas this sum for FSLM is 2, 762 cycles, which
corresponds to 10µs and 55µs on our 50MHz platform. The
break-even is therefore when the sum of the remote global
resource access times of tasks on our multi-core platform
exceeds 2, 250 cycles, or 45µs.

VII. CONCLUSIONS

In this paper, we presented an implementation of FSLM
in Erika Enterprise on an Altera Nios II platform and a
comparative evaluation of the protocol specific overheads of
the native MSRP supported by Erika Enterprise and FSLM.
Our experiments reveal that the overhead of global resource
access and global resource release is significantly increased
for FSLM. Based on these results, we are now in a position to
judge when it is advantageous to use either MSRP or FSLM
for such a system set-up for given resource access times.

REFERENCES

[1] S. Afshar, M. Behnam, R. Bril, and T. Nolte. Flexible spin-lock model
for resource sharing in multiprocessor real-time systems. In 9th IEEE
International Symposium on Industrial Embedded Systems (SIES), pages
41–51, June 2014.

[2] S. Afshar, M. Behnam, R. J. Bril, and T. Nolte. On per processor spin-
lock priority for partitioned multiprocessor real-time systems. Tech-
nical Report 3874, Available: http://www.es.mdh.se/publications/3874-,
Mälardalen University Sweden, 2014.

[3] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kuri-
hara, B.-H. Lim, G. Maa, and D. Nussbaum. The MIT Alewife Machine:
A large-scale distributed-memory multiprocessor. In M. Dubois and
S. Thakkar, editors, Scalable Shared Memory Multiprocessors, pages
239–261. Springer US, Boston, MA, 1992.

[4] Altera. Quartus II 8.1 handbook, Volume 5: Embedded peripherals,
Chapter 29: Performance counter core. Technical Report
https://www.altera.com/en US/pdfs/literature/hb/qts/archives/quartusii
handbook 8.1.pdf, November 2008.

[5] T. Baker. Stack-based scheduling of real-time processes. Journal of
Real-Time Systems, 3(1):67–99, March 1991.

[6] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pages 47–56, Aug. 2007.

[7] B. Brandenburg and J. Anderson. An implementation of the PCP,
SRP, D-PCP, M-PCP, and FMLP real-time synchronization protocols
in LITMUSRT . In 14th IEEE Intl. Conf. on Embedded and Real-Time
Computing Sys. and Applications (RTCSA), pages 185–194, Aug. 2008.

[8] B. B. Brandenburg and J. H. Anderson. A comparison of the M-PCP,
D-PCP, and FMLP on LITMUSRT . In 12th International Conference
On Principles of Distributed Systems (OPODIS), pages 105–124, Dec.
2008.

[9] B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev, and J. H.
Anderson. Real-time synchronization on multiprocessors: To block or
not to block, to suspend or spin? In 14th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 342–353, April
2008.

[10] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUSRT : A testbed for empirically comparing real-
time multiprocessor schedulers. In 27th IEEE International Real-Time
Systems Symposium (RTSS), pages 111–126, Dec 2006.

[11] Evidence S.r.l. Erika Enterprise Manual for the Altera Nios II
target - the multicore RTOS on FPGAs (version 1.2.3). Techni-
cal Report http://download.tuxfamily.org/erika/webdownload/manuals
pdf/arch nios2 1 2 3.pdf, Evidence S.r.l., Pisa, Italy, December 2012.

[12] Evidence S.r.l. RT-Druid reference manual - A tool for the de-
sign of embedded real-time systems (version: 1.5.0). Technical
Report http://download.tuxfamily.org/erika/webdownload/manuals pdf/
rtdruid refman 1 5.0.pdf, Evidence S.r.l., Pisa, Italy, December 2012.

[13] P. Gai, E. Bini, G. Lipari, M. D. Natale, and L. Abeni. Architecture for
a portable open source real time kernel environment. In 2nd Real-Time
Linux Workshop and Hand’s on Real-Time Linux Tutorial, 2000.

[14] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the Janus
multiple-processor on a chip platform. In 9th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 189–
198, May 2003.

[15] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
22nd IEEE Real-Time Systems Symposium (RTSS), pages 73–83, Dec.
2001.

[16] G. Graunke and S. Thakkar. Synchronization algorithms for shared-
memory multiprocessors. IEEE Computer, 23(6):60–69, June 1990.

[17] B.-H. Lim and A. Agarwal. Waiting algorithms for synchronization in
large-scale multiprocessors. ACM Transactions on Computer Systems,
11(3):253–294, August 1993.

[18] OSEK group. OSEK/VDX operating system. Technical
report, February 2005. [Online], Available: http://portal.osek-
vdx.org/files/pdf/specs/os223.pdf.

[19] J. Ousterhout. Scheduling techniques for concurrent systems. In 3rd

IEEE International Conference on Distributed Computing Systems, Sep.
2014.

[20] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inher-
itance Approach. Kluwer Academic Publishers, Norwell, MA, USA,
1991.

[21] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for multiprocessors. In 19th Real-Time Systems Symposium
(RTSS), pages 259–269, Dec. 1988.

[22] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
an approach to real-time synchronization. IEEE Transactions on Com-
puters, 39(9):1175–1185, Sep. 1990.

[23] A. S. Tanenbaum. Structured Computer Organization (5th Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2005.

[24] Terasic16. Altera DE0 board. http://www.terasic.com.tw/cgi-bin/page/
archive.pl?Language=English&No=364, Last visited: May 2016.

[25] The Eclipse Foundation. eclipse. Technical Report http://www.eclipse.
org/.

[26] M. P. Verwielen. Performance of resource access protocols. Eindhoven
University of Technology (TU/e), MSc-thesis, June 2016.

60

Notes

OSPERT 2016 Program

Tuesday, July 5th 2016
8:30 – 9:30 Registration
9:30 – 10:45 Keynote talk: From Research to Reality: Releasing System Software to the Masses

Adam Lackorzynski

10:45 – 11:00 Short Paper

Towards versatile Models for Contemporary Hardware Platforms
Hendrik Borghorst, Karen Bieling, Olaf Spinczyk

11:00 – 11:30 Coffee Break

11:30 – 13:00 Session 1: Multicore and Parallel Systems

A communication framework for distributed access control in microkernel-based systems
Mohammad Hamad, Johannes Schlatow, Vassilis Prevelakis, Rolf Ernst

Tightening Critical Section Bounds in Mixed-Criticality Systems through Preemptible
Hardware Transactional Memory

Benjamin Engel

GPU Sharing for Image Processing in Embedded Real-Time Systems
Nathan Otterness, Vance Miller, Ming Yang, James H. Anderson, F. Donelson Smith, Shige Wang

13:00 – 14:30 Lunch

14:30 – 15:00 Discussion on Open Research Challenges in Real-Time Operating Systems

15:00 – 16:00 Session 2: Real-Time and Predictability

Combining Predictable Execution with Full-Featured Commodity Systems
Adam Lackorzynski, Carsten Weinhold, Hermann Härtig

Timeliness Runtime Verification and Adaptation in Avionic Systems
José Rufino and Inês Gouveia

16:00 – 16:30 Coffee Break

16:30 – 18:00 Session 3: OS and System Modelling

Effective Source Code Analysis with Minimization
Geet Tapan Telang, Kotaro Hashimoto, Krishnaji Desai

Towards Real-Time Operating Systems for Heterogeneous Reconfigurable Platforms
Marco Pagani, Mauro Marinoni, Alessandro Biondi, Alessio Balsini, Giorgio Buttazzo

An implementation of the flexible spin-lock model in ERIKA Enterprise on a multi-core
platform

Sara Afshar, Maikel P.W. Verwielen, Paolo Gai, Moris Behnam, Reinder J. Bril

18:00 – 18:15 Closing Remarks

Wednesday, July 6th – Friday, July 8th 2016
ECRTS main conference.

© 2016 RheinMain University of Applied Sciences. All rights reserved.

	Message from the Chairs
	Program Committee
	Keynote Talk
	Session 0: Short Paper
	Towards versatile Models for Contemporary Hardware Platforms

	Session 1: Multicore and Parallel Systems
	A communication framework for distributed access control in microkernel-based systems
	Tightening Critical Section Bounds in Mixed-Criticality Systems through Preemptible Hardware Transactional Memory
	GPU Sharing for Image Processing in Embedded Real-Time Systems

	Session 2: Real-Time and Predictability
	Combining Predictable Execution with Full-Featured Commodity Systems
	Timeliness Runtime Verification and Adaptation in Avionic Systems

	Session 3: OS and System Modelling
	Effective Source Code Analysis with Minimization
	Towards Real-Time Operating Systems for Heterogeneous Reconfigurable Platforms
	An implementation of the flexible spin-lock model in ERIKA Enterprise on a multi-core platform

	Program

