
Deadline First Scheduling in Switched Real-Time Ethernet −
Deadline Partitioning Issues and Software Implementation Experiments

Hoai Hoang, Magnus Jonsson, Anders Larsson, Rikard Olsson, and Carl Bergenhem

School of Information Science, Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden, Box 823, S-
301 18, Sweden. {Hoai.Hoang, Magnus.Jonsson, Carl.Bergenhem}@ide.hh.se, http://www.hh.se/ide

Abstract

This paper presents work on a switched Ethernet
network extended to allow for earliest deadline first (EDF)
scheduling. We show by example that asymmetric deadline
partitioning between the links of a real-time channel can
increase the utilization substantially, still not violating the
real-time guarantees. We also report measurements on a
software implementation of the switch on an ordinary PC.

1 Introduction

An important trend in the networking community is to
involve more switches in the networks (e.g., LAN, Local
Area Networks) and a pure switched-based network
becomes more and more common. At the same time, the
industrial communication community has a strong will to
adapt LAN technology (e.g. Ethernet) for use in industrial
systems. The involvement of switches does not only
increase the performance; the possibility to offer real-time
services is also improved. Now when the cost of LAN
switches has reached the level where pure switched-based
networks have become affordable, the collision possibility
in IEEE 802.3 (Ethernet) networks can be eliminated and
methods to support real-time services can be implemented
in the switches without changing the underlying widespread
protocol standard.

Several protocols to support real-time communication
over shared-medium Ethernet have been proposed [1] [2]
[3]. However, these protocols are either changing the
Ethernet standard or do not add guaranteed real-time
services. Real-time communication over switched Ethernet
has also been proposed (called EtheReal) [4]. The goal of
the EtheReal project was to build a scaleable real-time
Ethernet switch, which support bit rate reservation and
guarantee over a switch without any hardware modification
of the end-nodes. Ethereal is throughput oriented which
means that there is no or limited support for hard real-time
communication, it has no explicit support for periodic
traffic so it is not suitable for industrial applications. A
review of research on real-time guarantees in packet-
switched networks is found in [5].

This paper presents work on a previously proposed
switched Ethernet network with support for both bit rate
and timing guarantees for periodic traffic [6]. Only a thin
layer is needed between the Ethernet protocols and the
TCP/IP suite in the end-stations. The switch is responsible
for admission control, while both end-stations and the
switch have EDF (Earliest Deadline First) scheduling [7].
Internet communication is supported at the same time as
nodes connected to the switch can be guaranteed to meet
their real-time demands when they communicate with each
other. This is highly appreciated by the industry since it
makes remote maintenance possible, e.g., software
upgrades or error diagnostics.

The rest of the paper is organized as follows. The
network architecture and traffic handling are presented in
Section 2. In Section 3, asymmetric deadline partitioning is
described and exemplified. Experiments with a software
implementation of the switch are then presented in
Section 4. The paper is concluded in Section 5.

2 Network architecture and traffic handling

We consider an example of a network with a full-duplex
switched Ethernet and end-nodes. Both the switch and the
nodes have software (RT layer) added to support
guarantees for real-time traffic. All nodes are connected to
the switch and nodes can communicate with each other
over logical real-time channels (RT channels), each being a
virtual connection between two nodes in the system.

In our network configuration, both the switch and the
end-nodes use the Earliest Deadline First (EDF) algorithm
for traffic control. The switch is responsible for admission
control, MAC functions, frame buffering and traffic
scheduling. The switch periodically sends synchronization
frames to the end-nodes, at an interval, Tcycle, of ten
maximum sized frames, Tframe, i.e.,

Tcycle = 10Tframe. (1)

In this way, every node has a uniform comprehension about
global time, with the resolution of Tframe. In this paper, we
assume Fast Ethernet (100 Mbit/s) with a maximum frame
size of 12 144 bits which, with some extra time for timing



uncertainties and for simplicity, gives Tframe = 125 µs,
which just happens to match the time resolution of many
telecommunication systems.

The function of and interaction with the RT layer etc
shown in Figure 1 is explained below. When an application
wants to setup an RT channel, it interacts directly with the
RT layer (1). The RT layer then sends a question to the RT
channel management software in the switch (2). Outgoing
real-time traffic from the end-node uses UDP and is put in
a deadline-sorted queue in the RT layer (3). Outgoing non-
real-time traffic from the end-node typically uses TCP and
is put in an FCFS-sorted (First Come First Serve) queue in
the RT layer (4). In the same way, there are two different
output queues for each port on the switch too (5).

An RT channel with index i is characterized by:

{Tperiod,i, Ci, Tdeadline,i} (2)

where Tperiod,i is the period of data, Ci is the amount of data
per period, and Tdeadline,i is the relative deadline used for the
end-to-end EDF scheduling. Both Tperiod,i, Ci, and Tdeadline,i

are expressed as the number of maximal sized frames, i.e.,
the number of Tframe.

When a node wants to establish an RT channel, it sends
a request frame (ReqF) with source and destination node
MAC and IP addresses and {Tperiod,i, Ci, Tdeadline,i} to the
switch. A connection ID to distinguish between several
possible connection requests is also added. When receiving
a ReqF, the switch will calculate the feasibility of the
traffic schedule between the requesting node and the switch
and between the switch and the destination node. The ReqF
is then forwarded to the destination node, after adding a
network unique ID in the RT channel ID field. The
destination node responds with a response frame (ResF) to
the switch telling whether the establishment is accepted or
not. The switch will then, after taking notation of the
response, forward the ResF to the source node.

The RT layer in an end-node prepares outgoing real-
time IP datagrams by changing the IP header before letting
the Ethernet layers sending it (see Figure 2). The IP source
address and the 16 most significant bits of the IP
destination address, 48 bits together, are set to the absolute
deadline of the frame. A 48 bit absolute deadline with a
resolution of Tframe = 125 µs, gives a “life time” longer than

one thousand years. The 16 least significant bits of the IP
destination are set to the RT channel ID for the RT channel
to which the frame belongs. The MAC destination address
is set to a special address that all nodes use for real-time
traffic, while the Type of Service (ToS) field is always set
to value 255.

The switch exchanges the source and destination IP
addresses and the MAC destination address of an incoming
real-time frame with the correct ones (as stored in the
switch when the RT channel was established) for delivery
to the final destination.

3 Asymmetric Deadline Partitioning

Below, we will show by example that the possible
amount of guaranteed real-time traffic can be increased by
partitioning the deadline asymmetrically between the
different links crossed by an RT channel. We compare the
asymmetric partitioning with a symmetric partitioning for a
master-slave situation, i.e., a typical case of real-time
traffic pattern in industrial systems.

We assume that master node M1 is responsible for five
slave nodes S1 to S5. The master node has one RT channel
to each slave node via the switch. The real-time guarantee
from M1 to Si is uphold by RT channel i, 1 ≤ i ≤ 5. The
latency due to synchronization and in-transmission frames
[6] is neglected. For the deadline scheduling we assume:

Tdeadline,,i = Tperiod,i = TD1,i + TD2,i (3)

for each RT channel i, where TD1,i is the relative deadline
for real-time traffic from the master node to the switch and
TD2,i, is the relative deadline from the switch to the
destination node. In the same way, let us assume that N1

and N2 represent the total number of RT channels on the
links a specific RT channel crosses, i.e. the load of the
links to and from the switch. For simplicity, all channels
are assumed having the same characteristics and being
unidirectional with the master node as the source node.

With an asymmetric deadline partitioning, Tdeadline is
partitioned so the local deadline for a link of the end-to-end
path is weighted according to the load of the link divided
by the sum of the loads across the whole path. For our
example, this gives:

iperiodiperiodiD TT
NN

N
T ,,

21

1
,1 6

5=
+

= (4)

IP

TCP

End-node

Application and
application protocols

RT layer

Ethernet MAC
(and LLC)

Ethernet PHY

UDP

43
1

Switch

MAC

RT layer

PHY

5

RT channel management

2

Figure 1: Layers and output queues.

IP
source

address
32 bits

IP header

Dest. MAC addr.
= switch addr.

48 bits

IP dest.
address

32 bits

Type of
Service
(ToS)
8 bits

IP data field
containing an

UDP datagram

Value = 255 Absolute
deadline
48 bits

RT ch.
ID

16 bits

Figure 2: Data frame sent over an RT channel.



iperiodiperiodiD TT
NN

N
T ,,

21

2
,2 6

1=
+

= (5)

This is a simple partitioning method to show the
opportunities with deadline partitioning. Our future work
includes looking at partitioning method that can handle
more complex traffic patterns and dynamic channel setup
as the network is designed for.

According to the basic EDF theory [7], the utilization of
real-time traffic is defined as

∑=
iperiod

i

T

C
U

,

. (6)

One is assured that all deadlines are met if the utilization of
real-time traffic does not exceed a certain level, Umax:

∑ ≤= max
,

U
T

C
U

iperiod

i (7)

This guarantee holds for deadline scheduling of traffic
when the deadline for a specific link is equal to the period
multiplied by a constant k ≤ 1, for all RT channels
traversing the link in the same direction. When scheduling
a channel with 100 % theoretical utilization, Umax = k. For
deadline scheduling of traffic with arbitrary deadlines, see
[8] or subsequent work (e.g. [9]). We define Umax1 as the
maximum utilization for the link from the master node to
the switch and Umax2 as the maximum utilization from the
switch to the slave node. In the theoretical case Umax is
100 %, but when using the network proposed in this paper
the worst-case maximum utilization for the link from the
switch and to the slave node is reduced from 100 % to
90 % due to having 10 % bandwidth for the network
control. In symmetric deadline partitioning [6], we have
Umax2 = 45 % and Umax1 = 50 %. When using asymmetric
deadline partitioning with the weights from Equations 4
and 5 (k1 = 5/6 and k2 = 1/6, respectively), we get the
following maximum utilizations instead:

%83%100
6

5
1max =⋅=U (8)

%15%90
6

1
2max =⋅=U (9)

We denote Cmax1 and Cmax2 as the maximum capacity
(transmission time per period) per channel for the first and
the second link traversed by an RT channel, respectively.
When assuming the same period, Tperiod, and deadline,
Tdeadline, for all RT channels, we have

5

5 1max
1max1max

1max period

period

TU
CU

T

C =⇒= (10)

for the master link and

period
period

TUCU
T

C
2max2max2max

2max =⇒= (11)

for a slave link. For example, let us assume that

ms24== deadlineperiod TT (12)

According to Equations 4, 5, 8, and 9, we then have:

ms6.3

ms4
5

ms4

ms20

2max2max

1max
1max

2

1

==

==

=
=

period

period

D

D

TUC

TU
C

T

T

(13)

The second link is the bottleneck because Cmax2 < Cmax1.
With C = Cmax2 = 3.6 ms for all RT channels we get a
utilization of U = C / Tperiod = 0.15 on each slave link and
U = 5C / Tperiod = 0.75 on the master link.

In the asymmetric case, we have 75 % utilization on the
master link compared with 50 % in the symmetric case. We
still guarantee worst-case delay for real-time traffic. The
analysis given above holds for the opposite direction (from
each slave and to the master) and for other, not
overlapping, master slave groups in the network too.

4 Software Implementation

We have implemented the switch using a PC with a 200
MHz Pentium processor, some network interface cards and
LINUX 2.4.2. The two most important parts in the switch
regarding the real-time communication are the RT-layer
and the RT channel management (see Figure 1). The RT
channel management is responsible for approving RT
channels requested by nodes in the system. Information
about the approved RT channels is made available to the
RT layer, which handles the actual scheduling and
forwarding of data frames. If the load on the switch
becomes too high it simply discards non-RT frames.

The tests were performed in a network with the switch
and three nodes, two sending and one receiving. All nodes
were equipped with 100 Mbit/s full-duplex Ethernet cards.
The PC acting as switch operates at 200 MHz. In the first
test, the frame size, Nbyte, is set to 1 000 bytes, including
headers. In the receiving node, a timer, tmeasure, starts at the
arrival of the first RT frame and is stopped when the last
frame is detected. During this time all received frames are
registered either as RT frames or non-RT frames. The
number of registered RT frames and non-RT frames are
denoted as NRT and NNRT, respectively. The corresponding
data rates for received data, RRT and RNRT, are calculated as:

measure

RTByte
RT t

NN
R

8
= (14)



measure

NRTByte
NRT t

NN
R

8
= (15)

The measured data rates in the receiving node are
plotted against the frequency of the injected periodic traffic
(see Figure 3). In this test, both RT traffic and non-RT
traffic were injected with the frequency indicated in the
figure. The result shows that the switch prioritizes the RT
frames. It also shows that the breakpoint, where the switch
begins to discard non-RT frames, is when the total traffic
load reaches 96 Mbit/s, i.e., when the total traffic-load
approaches the maximum capacity of the switch, the switch
starts to discard non-RT traffic. As the traffic load
increases, the RT-Switch is finally forced to discard RT
traffic as well. This happens when the period of the traffic
from the sending application is about 0.1 ms. This situation
can only arise when the system runs without any channel
management.

Additional tests where made including the two
extremes: (i) Only maximum sized frames (1518 bytes) are
transmitted. This gives a maximum throughput for the
switch, measured to 96 Mbit/s, which is near wire speed.
(ii) Only minimum sized frames (64 bytes) are transmitted.
This gives the lowest throughput, measured to 18 Mbit/s.
This case also gives us a maximum switching capacity of
14 400 frames/s.

The tests that have been performed shows that it is
possible to build an Ethernet switch with deadline
scheduling by using only standard components. This gives
an indication on the possibility of implementing real-time
capabilities in an Ethernet network. One can get a good
feeling from the measurements about the amount of real-
time traffic and number of ports that can be supported if,
for example, a processor should assist a switch chip by
handling deadline scheduling in software.

5 Conclusions

In this paper, we have presented an Ethernet network
with support for real-time traffic by deadline scheduling.
We have showed by example that the performance can
benefit a lot from asymmetric deadline scheduling. An
increase in utilization from 50 % to 75 % on the outgoing
link from the master node (the bottleneck) is observed, still
not violating the real-time guarantees.

From a software-implemented switch, we have showed
experimental results. The measurements showed that the
switch bottlenecks are 96 Mbit/s (measured for maximum-
sized frames) and 14 400 frames/s (measured for
minimum-sized frames). From these measurements one can
get a good feeling of the amount of real-time traffic and
number of ports that can be supported by an Ethernet
switch that is fully or partly implemented in software.

References

[1] C. Venkatramani and T. S. Chiueh, "Supporting real-time
traffic on Ethernet," Proc. 15th IEEE Real-Time Systems
Symposium (RTSS’94), pp. 282-286, 1994.

[2] D. W. Pritty, J. R. Malone, D. N. Smeed, S. K. Banerjee, and
N. L. Lawrie, "A real-time upgrade for Ethernet based factory
networking", Proc. IEEE IECON’95, vol. 2 , 1995.

[3] S.-K. Kweon, K. G. Shin, and G. Workman, "Achieving real-
time communication over Ethernet with adaptive traffic
smoothing," Proc. 6th IEEE Real-Time Technology and
Applications Symposium (RTAS'2000), Washington, D.C., USA,
31 May - 2 June 2000, pp. 90-100.

[4] S. Varadarajan and T. Chiueh, "EtheReal: A host-transparent
real-time Fast Ethernet switch," Proc. ICNP, Oct. 1998.

[5] H. Zhang, "Service disciplines for guaranteed performance
service in packet switching network," Proc. of the IEEE, vol. 83,
no. 10, Oct. 1995.

[6] H. Hoang, M. Jonsson, U. Hagström, and A. Kallerdahl,
“Switched real-time Ethernet with earliest deadline first
scheduling - protocols and traffic handling”, Proc. Workshop on
Parallel and Distributed Real-Time Systems (WPDRTS'2002) in
conjunction with International Parallel and Distributed
Processing Symposium (IPDPS'02), Fort Lauderdale, FL, USA,
April 15-16, 2002.

[7] C. L. Liu and J. W. Layland, "Scheduling algorithms for
multipprogramming in hard real-time traffic environment",
Journal of the Association for Computing Machinery, vol. 20, no.
1, Jan. 1973.

[8] D. Ferrari and D. C. Verma, ”A scheme for real-time channel
establishement in wide-area networks," IEEE Journal of Selected
Areas in Communications, vol. 8, no. 3, pp. 368-379, Apr. 1990.

[9] Q. Zheng and K. G. Shin, "On the ability of establishing real-
time channels in point-to-point packet-switched networks," IEEE
Transactions on Communications, vol. 42, no. 2/3/4, pp. 1096-
1105, Feb./Mar./Apr. 1994.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

R
ec

ei
ve

d
da

ta
sp

ee
d

(M
bi

t/s
)

Frequency (kHz)

RTTraffic
Non RTTraffic
Total traffic

Figure 3: Test results.


